Iridium-Catalyzed Direct Synthesis of Tryptamine Derivatives from Indoles: Exploiting N-Protected β-Amino Alcohols as Alkylating Agents

Silvia Bartolucci, Michele Mari, Annalida Bedini, Giovanni Piersanti* and Gilberto Spadoni

Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Piazza del Rinascimento 6, 61029 Urbino (PU), Italy

giovanni.piersanti@uniurb.it

TOC

Abstract

The selective C3-alkylation of indoles with N-protected ethanolamines involving the “borrowing hydrogen” strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.
Introduction

The tryptamine moiety is found in a number of drugs and is a common motif in countless naturally occurring compounds that use L-tryptophan as a biosynthetic precursor.\(^1\) The direct and selective construction of tryptamine derivatives from simple and sustainable starting materials using a catalytic system provides convenient access to a range of structurally diverse natural products, pharmaceutical compounds, potential building blocks for indole alkaloid chemistry, and other polynitrogenated compounds.\(^2\) Although methods accessing these bioactive molecules have been reported, there are few one-step transformations that provide access to tryptamines. Classical methods involve the C-3 Friedel–Crafts alkylation of indoles\(^3\) with either nitroalkenes\(^4\) or aziridines\(^5\) as the electrophilic partner, promoted by Lewis acids and/or organocatalysts. However, due to the toxicity and instability of these strong electrophilic reactants\(^6\) as well as selectivity issues during the required extra reduction step of the nitro group and/or aziridine ring opening, a more sustainable and efficient method is highly desired.\(^7\) In the search for new suitable two-carbon nitrogen-containing electrophiles, we recently described the efficient use of N-protected aminoethyl acetals for the reductive alkylation of indoles,\(^8\) giving access to tryptamine derivatives in a single step. During the course of this study, we found that acyl protection of the amine side chain was necessary to achieve acceptable levels of reactivity. Although this approach employs safe and inexpensive reagents, proceeds under mild conditions, and tolerates several functional groups, the shortcomings associated with completely unsubstituted indoles as well as a large excess of the reducing agent and TFA prompted us to investigate a novel catalytic and less wasteful method encompassing a wider range of indoles without the need for an external reductant.

The so-called “borrowing hydrogen” methodology (also named as “hydrogen autotransfer”), in which dehydrogenation of poorly reactive alcohols is followed by in situ consumption of the generated hydrogen equivalents, has gained acceptance as an efficient synthetic strategy in organic synthesis. Seminal work by Grigg and Watanabe\(^9\) as well as extensive studies by many other
groups10 have shown that in the presence of transition metal catalysts (usually ruthenium or iridium complexes), poorly reactive alcohols are useful electrophilic partners for N-alkylation and C–C bond formation in which amines and methylene carbon acids are typically used as nucleophiles.11 The use of a neutral electron-rich aromatic system with alcohols in the direct transition metal-catalyzed alkylation has also been reported. However, to the best of our knowledge, there are no examples using the “borrowing hydrogen” strategy for the synthesis of tryptamine derivatives, despite the synthetic advantages of such an approach.12 Herein, we report the development of an effective protocol for the direct Ir-catalyzed alkylation of indoles with N-protected ethanolamines to afford tryptamine derivatives. This strategy could open attractive possibilities for the total synthesis of tryptamine-based alkaloids.

Results and Discussion

Preliminary studies were carried out at 150 °C in a sealed tube, using commercially available N-acetylethanolamine (2a) and unsubstituted indole (1a) in the presence of substoichiometric amounts of KOH (20%). A variety of transition-metal catalysts, well known to be highly active in hydrogen autotransfer reactions, including Pd/C, RuCl$_2$(PPh$_3$)$_3$, [Ir(cod)Cl]$_2$, [Ir(coe)$_2$Cl]$_2$, [Ir(OMe)(cod)]$_2$, and RuHCl(CO)(PPh$_3$)$_3$, were screened. We found that the iridium dimer [Cp*IrCl$_2$]$_2$13 was the most efficient catalyst. After 48 h, we observed complete consumption of the indole and selective formation of the desired N-acetyltryptamine (35% yield, Table 1, entry 9), without traces of the N_1-alkylated product. The discrepancy between conversion and yield (Table 1) is mainly explained by the formation of two side products: the bis(3-indolyl)methane species 4 and tryptophol (5). The bisindole 4, arising from addition of indole to the transient azafulvene,14 did not undergo conversion to 3a upon to the reaction conditions, but some degradation of 4 did take place, suggesting that 4 is not plausible intermediate of the reaction. On the contrary, the formation of the byproduct 5 could be explained by the formation of the intermediate amido aldehyde, which is in equilibrium/tautomerization with the reactive N-acetyliminium species that undergoes
amidoalkylation with the incoming indole, prior to return of hydrogen. This sequence accounts for the different regioselectivities in the alkylation process, without a less direct C–N oxidation step.15 Although to obtain pure 3a purification by flash chromatography on silica gel was necessary, the removal of side products is simple due to their small amount and high lipophilicity compared to tryptamines.

Next, we investigated the influence of the base on the model reaction. Increasing the quantity of base to a stoichiometric amount slightly improved the yield of the reaction (Table 1, entry 10). Most importantly, we discovered that when powdered Cs\textsubscript{2}CO\textsubscript{3} was used as the base, the desired N-acetyltryptamine was obtained in a synthetically useful yield (Table 1, entry 16). Lower conversions were generally observed when stronger bases such as t-BuOK and t-BuONa were employed (Table 1, entries 11 and 12), presumably due to partial hydrolysis of the ethanolamide used as the electrophile. A very low amount of the desired N-acetyltryptamine was also obtained by using solid NaHCO\textsubscript{3} or K\textsubscript{3}PO\textsubscript{4} as the base (Table 1, entries 13 and 15), highlighting the importance of Cs\textsubscript{2}CO\textsubscript{3} in this reaction. As expected, the reaction without the use of catalyst failed to provide the desired product, and the starting material was recovered (Table 1, entry 21). Comparing the amounts of electrophile used, the best results were obtained by applying three equivalents of N-acetylethanalamine (Table 1, entries 16, 18, and 19). Interestingly, no overalkylation products were ever observed.

Table 1. Optimization of Reaction Conditions.a

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst/ligand</th>
<th>base</th>
<th>conv. (%)b</th>
<th>yield (%)c</th>
<th>3a</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd/C</td>
<td>KOHf</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>RuCl\textsubscript{2}(PPh\textsubscript{3})\textsubscript{3}</td>
<td>KOHf</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>[Cp*RhCl\textsubscript{2}]\textsubscript{2}</td>
<td>KOHf</td>
<td>41</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[Ir(coe)\textsubscript{2}Cl\textsubscript{2}]</td>
<td>KOHf</td>
<td>55</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalyst</td>
<td>Base</td>
<td>Yield (after acidic workup)</td>
<td>Isolated yield (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[Ir(OMe)(cod)]$_2$</td>
<td>KOHf</td>
<td>47</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>[Cp*Ir(bpy)Cl]</td>
<td>KOHf</td>
<td>52</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>[Cp*Ir(Pro)Cl]</td>
<td>KOHf</td>
<td>54</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>[IrCl(cod)]$_2$</td>
<td>KOHf</td>
<td>42</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>KOHf</td>
<td>66</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>KOH</td>
<td>68</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>tBuOK</td>
<td>62</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>tBuONa</td>
<td>66</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>NaHCO$_3$</td>
<td>63</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>KOAc</td>
<td>64</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>K$_3$PO$_4$</td>
<td>62</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>Cs$_2$CO$_3$</td>
<td>>95</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>Cs$_2$CO$_3$</td>
<td>52</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18d</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>Cs$_2$CO$_3$</td>
<td>35</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19e</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>Cs$_2$CO$_3$</td>
<td>>95</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>-</td>
<td>23</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>[Cp*IrCl$_2$]$_2$</td>
<td>Cs$_2$CO$_3$</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aConditions: Indole (1 equiv), N-acetylenolamine (3 equiv), catalyst (2.5 mol %), and base (1.1 equiv) at 150 °C for 48 h. bDetermined by 1H-NMR analysis of the crude reaction mixture. cIsolated yield. d1 equiv of N-Acetylenolamine was used. e10 equiv of N-Acetylenolamine was used. fBase (0.2 equiv).

With the optimal reaction conditions established, we sought to probe the scope of the amine protecting groups that are amenable to this procedure. We investigated the use of alternative protecting groups that would not only allow efficient alkylation but also would be removed easily under relatively mild conditions. We tried to replace N-Ac with a traditional easily removable amino protecting group such as N-COCF$_3$, N-Cbz, or N-Ts. Unfortunately, N-COCF$_3$ and N-Cbz were very unstable and decomposed quickly under the basic reaction conditions. Interestingly, using N-Cbz-ethanolamine, we obtained only 3-benzylindole, which probably formed by the borrowing hydrogen reaction of indole with benzyl alcohol generated by an intramolecular cyclization to the corresponding oxazolidinone. Accordingly, N-benzylethanolamine (2c) selectively furnished the desired N-benzyltrypamine, though in a lower yield than N-acetylenolamine (2a) (Scheme 1). In sharp contrast, the reaction of N-Ts-ethanolamine failed to provide the expected product, and the
starting material was recovered almost quantitatively. We believe that a stable sulfonamido-iridium complex is formed, blocking the metal from participating productively in the catalytic cycle. Finally, when the phthalimido group was used as a protecting group, a complex mixture of products was obtained (probably because it was partly reduced), precluding its use in our protocol. When simple unprotected 2-aminoethanol was used, no reaction occurred, whereas using \(N,N \)-dimethylethanolamine resulted in a gratifying 42% yield (Scheme 1).\(^{16} \)

Scheme 1. Alkylation of Indole with \(N \)-alkylethanolamines.

Next, we examined a spectrum of substituted indoles (1a-l), with electron-donating or -withdrawing groups in all possible positions, gave moderate to good yields (36–78%) of the corresponding tryptamine derivative, although different reactivities were observed. For example, the electron-rich 5-methoxyindole was converted in a very good yield and selectivity to give melatonin (3b) as the desired product (Table 2), whereas lower than normal yields were recorded for the reaction with 7-methylindole (3c). The 4-MeO-, 5-Cl-, 6-OMe-, and 6-F-tryptamine derivatives (Table 2) were also obtained in decent yields, although the yields were lower than those of the 5-OMe analog. Pleasingly, the presence of a substituent at C-2 did not impair the reaction, despite the potential steric crowding around the reaction site. Thus, the 2-Me-, 2-Ph-, and 2-Bn-indoles reacted efficiently with \(N \)-acetylethanolamine to give the corresponding tryptamines in 45–51% yield (Table 2). We also examined the efficacy of unsubstituted 7-azaindole 1k in undergoing C3-alkylation under the above reaction conditions. Treatment of 1k with \(N \)-acetylethanolamine 2a furnishing, selectively, the desired 7-azatryptamine (3k), although only in poor yield. In sharp contrast, \(N \)-methylindole (1l) proved to be inert, suggesting the involvement of the indole N-H in a key interaction with the base during the rate-determining step. It is noteworthy that the present method is a step-efficient and atom-economic route to the pineal hormone melatonin (3b), which
has known sleep-inducing, antioxidant, and antiapoptotic properties, as well as the reference MT$_2$ melatonin receptor ligand luzindole (3j), which is employed in pharmacological tests to evaluate and discriminate the roles of melatonin receptor subtypes.

However, nearly complete recovery of the starting material was observed when C3-substituted indole, such as 3-methyl and 3-benzylindoles, were allowed to react with N-Acetylethanolamine 2a under the reaction conditions reported above. Neither indole annulations with dearomatization of the indole nucleus to pyrroloindolines products, nor C3- to C2-alkyl migration and rearomatization to afford 2-substituted tryptamines were detected, in spite of recent reports.

Table 2. Alkylation of Substituted Indoles with N-Acetylethanolamine using [Cp*IrCl$_2$]$_2$ and Cs$_2$CO$_3$.a

Reactions were carried out in a sealed vial at 150 °C for 48 h with indole (0.25 mmol), N-acetylethanolamine (0.75 mmol), [Cp*IrCl$_2$]$_2$ (2.5 mol %), and Cs$_2$CO$_3$ (0.275 mmol). Isolated yield.
As mentioned previously, a major concern regarding \(N\)-protected ethanolamine reactions is the removal of the protecting group following successful functionalization/alkylation. To demonstrate the advantages of utilizing the \(N\)-acetyl protecting group, we sought to deprotect melatonin (3b) and \(N\)-acetyl-2-methyltryptamine (3h). To our delight, by treating 3b and 3h with a combination of ammonium bromide and ethylenediamine under microwave irradiation,\(^{20}\) we were able to isolate the free 5-methoxytryptamine (7b) and 2-methyltryptamine (7h)\(^ {21}\) in 89% and 78% yield respectively, avoiding the use of strong acids or bases (Scheme 2).

Scheme 2. Removal of the \(N\)-Acetyl Protecting Group

![Scheme 2](image)

Conclusion

In summary, the direct synthesis of diversely functionalized \(N\)-acetyltryptamines, including melatonin and luzindole, via the modern “borrowing hydrogen” strategy is presented. The new iridium-catalyzed C3-indole dehydration/alkylation protocol utilizes \(N\)-acetylethanolamine as a simple aminoethylene alkylating agent and source of hydrogen, avoiding the use of an external reducing agent. The experimental procedure for this metal-catalyzed direct alkylation of different indoles is simple and there is no problem for removal of side products. This highly atom economical and environmentally benign process requires only inexpensive reagents, tolerates a range of functionalities, and may have applications in natural product synthesis and medicinal chemistry. The identification of more efficient catalytic systems to access a wider range of nitrogen-containing alcohols beyond ethanolamine as well as milder reaction conditions is the focus of current efforts in our laboratories.
Experimental Section

General Methods. All reactions were performed in a glass vial, under nitrogen atmosphere. Column chromatography purifications were performed in flash conditions using 230-400 Mesh silica gel. Analytical thin layer chromatography (TLC) was carried out on silica gel plates (silica gel 60 F$_{254}$), that were visualized by exposure to ultraviolet light and an aqueous solution of cerium ammonium molybdate (CAM) or p-anisaldehyde. Copies of 1H NMR and 13C NMR spectra are provided. 1H NMR and 13C NMR were recorded on a 200/50 or 400/100 spectrometer, using CDCl$_3$ as solvent. Chemical shifts (δ scale) are reported in parts per million (ppm) relative to the central peak of the solvent. Coupling constants (J values) are given in Hertz (Hz). Molecular ions (M + 1) are given for ESI-MS analysis. Optical absorbances are reported cm$^{-1}$ for the IR analysis. Melting points were determined on a capillary melting point apparatus and are uncorrected. Microwave assisted reactions were carried out in a CEM Discover SP microwave reactor. Elemental analyses are within ± 0.4 of the theoretical values (C,H,N). 2-benzyl-$1H$-indole,22 2,2,2-trifluoro-N-(2-hydroxyethyl)acetamide,23 benzyl 2-hydroxyethylcarbamate,24 2-(2-hydroxyethyl)isoindoline-1,3-dione,25 N-(2-hydroxyethyl)-4-methylbenzenesulfonamide26 were synthesized according to the literature procedure. Other chemicals were purchased from commercial suppliers, and were used without further purification.

General procedure for the synthesis of N-protected Tryptamines. A mixture of the suitable indole $1a$-h (0.25 mmol), Cs$_2$CO$_3$ (90 mg, 0.275 mmol), [Cp*IrCl$_2$]$_2$ (5 mg, 0.00625 mmol) and the appropriate N-protected ethanolamine $2a$-c (0.75 mmol) was stirred under N$_2$ atmosphere at 150 °C for 48h in a sealed vial. After cooling to room temperature the reaction mixture was dissolved in 1 ml of EtOAc/MeOH 9:1 and filtered through a silica gel pad. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel.

N-(2-($1H$-indol-3-yl)ethyl)acetamide ($3a$). Prepared according to general procedure from $1H$-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc) gave $3a$ as a grey solid.
(30 mg, 0.15 mmol). Yield: 60%. M.p.: 74-76 °C (CH₂Cl₂/petroleum ether); MS (ESI): 203 [M+H]+; ¹H NMR (200 MHz, CDCl₃): δ 1.92 (s, 3H), 2.98 (t, 2H, J=6.6 Hz), 3.60 (dt, 2H, J₁=J₂=6.6 Hz), 5.71 (brs, 1H), 7.05-7.27 (m, 3H), 7.39 (d, 1H, J=8 Hz), 7.61 (d, 1H, J=7.6 Hz), 8.51 (brs, 1H). The chemical-physical data are according to the literature.²⁷

N-(2-(5-methoxy-1H-indol-3-yl)ethyl)acetamide (3b). Prepared according to general procedure from 5-methoxy-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc) gave 3b as a white solid (45 mg, 0.19 mmol). Yield: 78%. M.p.: 114-116 °C (EtOAc); MS (ESI): 233 [M+H]+; ¹H NMR (200 MHz, CDCl₃): δ 1.94 (s, 3H), 2.94 (t, 2H, J=6.6 Hz), 3.59 (dt, 2H, J₁≈J₂=6.6 Hz), 3.86 (s, 3H), 5.74 (brs, 1H), 6.87 (dd, 1H, J=2.4 and J=8.8 Hz), 7.00-7.05 (m, 2H), 7.27 (d, 1H, J=8.8 Hz), 8.33 (brs, 1H). The chemical-physical data are according to the literature.²⁸

N-(2-(7-methyl-1H-indol-3-yl)ethyl)acetamide (3c). Prepared according to general procedure from 7-methyl-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc) gave 3c as a brown oil (23 mg, 0.11 mmol). Yield: 43%. R.f.=0.28 (EtOAc); MS (ESI): 217 [M+H]+; ¹H NMR (200 MHz, CDCl₃): δ 1.93 (s, 3H), 2.51 (s, 3H), 2.98 (t, 2H, J=6.6 Hz), 3.61 (dt, 2H, J₁≈J₂=6.5 Hz), 5.64 (brs, 1H), 7.01-7.12 (m, 3H), 7.45-7.48 (m, 1H), 8.28 (brs, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 16.7, 23.4, 25.4, 39.9, 113.4, 116.4, 119.7, 120.6, 121.9, 122.7, 126.9, 136.0, 170.2; FTIR (film, cm⁻¹): 3399, 3285, 1646; Anal. Calcd. For C₁₃H₁₆N₂O (216.13): C, 72.19; H, 7.46; N, 12.95; Found: C, 72.28; H, 7.39; N, 12.90.

N-(2-(4-methoxy-1H-indol-3-yl)ethyl)acetamide (3d). Prepared according to general procedure from 4-methoxy-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (cyclohexane:EtOAc=1:1 to EtOAc) gave 3d as a brown oil (25 mg, 0.11 mmol). Yield: 42%. MS (ESI): 233 [M+H]+; ¹H NMR (200 MHz, CDCl₃): δ 1.89 (s, 3H), 3.08 (t, 2H, J=6.2 Hz), 3.58 (dt, 2H, J₁≈J₂=6.2 Hz), 3.96 (s, 3H), 6.05 (brs, 1H), 6.52 (d, 1H, J=7.6 Hz), 6.88-7.27 (m, 3H), 8.35 (brs, 1H). The chemical-physical data are according to the literature.²⁹

N-(2-(5-chloro-1H-indol-3-yl)ethyl)acetamide (3e). Prepared according to general procedure from 5-chloro-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc:cyclohexane=9:1) gave 3e as a grey solid (29 mg, 0.12 mmol). Yield: 49%. M.p.: 149-151
°C (EtOAc/petroleum ether); MS (ESI): 237 [M+H]^+. \(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.95 (s, 3H), 2.91 (t, 2H, \(J=6.8\) Hz), 3.55 (dt, 2H, \(J_1\approx J_2=6.8\) Hz), 5.78 (brs, 1H), 7.03-7.04 (m, 1H), 7.11-7.31 (m, 2H), 7.53-7.54 (m, 1H), 8.72 (brs, 1H). The chemical-physical data are according to the literature.\(^{30}\)

\(\text{N-}(2-(6\text{-methoxy}-1H\text{-indol-3-yl})\text{ethyl})\text{acetamide (3f).} \) Prepared according to general procedure from 6-methoxy-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc) gave 3f (35 mg, 0.15 mmol). Yield: 61%. M.p.: 136-137 °C; MS (ESI): 233 [M+H]^+. \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 1.93 (s, 3H), 2.94 (t, 2H, \(J=6.6\) Hz), 3.59 (dt, 2H, \(J_1\approx J_2=6.6\) Hz), 3.86 (s, 3H), 5.57 (brs, 1H), 6.81 (dd, 1H, \(J=2.2\) e \(J=8.6\) Hz), 6.88 (d, 1H, \(J=2.2\)), 6.93 (d, 1H, \(J=2.0\)), 7.47 (d, 1H, \(J=8.6\) Hz), 8.04 (brs, 1H). The chemical-physical data are according to the literature.\(^{30}\)

\(\text{N-}(2-(6\text{-fluoro}-1H\text{-indol-3-yl})\text{ethyl})\text{acetamide (3g).} \) Prepared according to general procedure from 6-fluoro-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc) gave 3g as a brown oil (20 mg, 0.09 mmol). Yield: 37%. MS (ESI): 221 [M+H]^+. \(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.95 (s, 3H), 2.95 (t, 2H, \(J=6.7\) Hz), 3.59 (dt, 2H, \(J_1\approx J_2=6.7\) Hz), 5.67 (brs, 1H), 6.84-6.94 (m, 1H), 7.01-7.09 (m, 2H), 7.46-7.53 (m, 1H), 8.43 (brs, 1H). The chemical-physical data are according to the literature.\(^{30}\)

\(\text{N-}(2-(2\text{-methyl}-1H\text{-indol-3-yl})\text{ethyl})\text{acetamide (3h).} \) Prepared according to general procedure from 2-methyl-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc) gave 3h as a yellow solid (24 mg, 0.11 mmol). Yield: 45%. M.p.: 83-85 °C (CH\(_2\)Cl\(_2\)/petroleum ether); MS (ESI): 217 [M+H]^+. \(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.77 (s, 3H), 3.14 (t, 2H, \(J=6.6\) Hz), 3.56 (dt, 2H, \(J_1\approx J_2=6.6\) Hz), 5.51 (brs, 1H), 7.08-7.15 (m, 2H), 7.27-7.32 (m, 1H), 7.48-7.52 (m, 1H), 8.08 (brs, 1H). The chemical-physical data are according to the literature.\(^{31}\)

\(\text{N-}(2-(2\text{-phenyl}-1H\text{-indol-3-yl})\text{ethyl})\text{acetamide (3i).} \) Prepared according to general procedure from 2-phenyl-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc:cyclohexane=6:4 to EtOAc:cyclohexane=9:1) gave 3i as a yellow solid (32 mg, 0.12 mmol). Yield: 46%. M.p.: 114-116 °C (CH\(_2\)Cl\(_2\)/petroleum ether); MS (ESI): 279 [M+H]^+; \(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.77 (s, 3H), 3.14 (t, 2H, \(J= 6.6\) Hz), 3.56 (dt, 2H, \(J_1\approx J_2=6.6\) Hz), 5.51 (brs,
1H), 7.13-7.29 (m, 2H), 7.35-7.68 (m, 7H), 8.31 (brs, 1H). The chemical-physical data are according to the literature.8a

N-(2-benzyl-1H-indol-3-yl)ethylacetamide (3j). Prepared according to general procedure from 2-benzyl-1H-indole and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc:cyclohexane=1:1 to EtOAc) gave 3j as a light oil (37mg, 0.13 mmol). Yield: 51%. MS (ESI): 293 [M+H]+. 1H NMR (200 MHz, CDCl3): δ 1.76 (s, 3H), 2.98 (t, 2H, J= 6.5 Hz), 3.51 (dt, 2H, J1≈J2= 6.5 Hz), 4.10 (s, 2H), 5.51 (brs, 1H), 7.09-7.31 (m, 8H), 7.51-7.60 (m, 1H) 7.99 (brs, 1H). The chemical-physical data are according to the literature.8a

N-(2-(1H-pyrrolo[2,3-b]pyridin-3-yl)ethyl)acetamide (3k). Prepared according to general procedure from 1H-pyrrolo[2,3-b]pyridine and N-(2-hydroxyethyl)acetamide. Flash chromatography (EtOAc:MeOH=95:5 to EtOAc:MeOH=9:1) gave 3k as a white solid (18 mg, 0.09 mmol). Yield: 36%. M.p.: 175-177 °C (EtOAc); R.f.= 0.23 (EtOAc:MeOH=95:5); MS (ESI): 204 [M+H]+. 1H NMR (400 MHz, CDCl3): δ 1.95 (s, 3H), 2.98 (t, 2H, J= 6.7 Hz), 3.60 (dt, 2H, J1≈J2= 6.7 Hz), 5.58 (brs, 1H), 7.11 (dd, 1H, J=4.7 Hz and J=7.8 Hz), 7.19 (s, 1H), 7.96 (d, 1H, J=7.8 Hz), 8.33 (d, 1H, J=3.6 Hz), 10.03 (brs, 1H); 13C NMR (100 MHz, CDCl3): δ 23.3, 25.5, 39.8, 111.6, 115.6, 120.0, 122.5, 127.3, 142.9, 148.7, 170.1; FTIR (film, cm⁻¹): 3285, 1630. Anal. Calcd. For C_{11}H_{13}N_{3}O: C, 65.01; H, 6.45; N, 20.68; Found: C, 65.09; H, 6.39; N, 20.71.

N-(2,2-di(1H-indol-3-yl)ethyl)acetamide (4). Obtained and isolated as reaction byproduct in the conditions reported by the general procedure employing 1H-indole and N-(2-hydroxyethyl)acetamide. Yield: 9% (7 mg, 0.02 mmol). MS (ESI): 318 [M+H]+. 1H NMR (200 MHz, CDCl3): δ 1.90 (s, 3H), 4.07 (m, 2H), 4.75 (t, 1H, J=7.1 Hz), 5.60 (brs, 1H), 7.04-7.11 (m, 4H), 7.16-7.24 (m, 2H), 7.37-7.41 (m, 2H), 7.60-7.64 (m, 2H), 8.07 (brs, 2H). The chemical-physical data are according to the literature.32

2-(1H-indol-3-yl)ethanol (5). Obtained and isolated as reaction byproduct in the conditions reported by the general procedure employing 1H-indole and N-(2-hydroxyethyl)acetamide. Yield: 6% (2 mg, 0.015 mmol). MS (ESI): 162 [M+H]+. 1H NMR (400 MHz, CDCl3): δ 3.03 (dt, 2H, J=0.5 Hz and J=6.3 Hz), 3.91 (t, 2H, J=6.3 Hz), 7.07-7.26 (m, 3H), 7.38 (d, 1H, J=8.0 Hz), 7.62 (d,
1H, J=8.0 Hz), 8.07 (brs, 1H). The chemical-physical data are according to the literature.\(^{33}\)

N-benzyl-2-(1H-indol-3-yl)ethanamine (6c). Prepared according to general procedure from 1H-indole and 2-(benzylamino)ethanol. Flash column chromatography (EtOAc to EtOAc:MeOH=9:1) gave compound as a brown oil (25 mg, 0.1 mmol). Yield: 40%. MS (ESI): 251 [M+H]\(^+\). \(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 3.00 (app. s, 4H), 3.81 (s, 2H), 6.99-7.35 (m, 10H), 7.60 (d, 1H J=7.5 Hz), 8.15 (brs, 1H). The chemical-physical data are according to the literature.\(^{34}\)

2-(1H-indol-3-yl)-N,N-dimethylethanamine (6d). Prepared according to general procedure from 1H-indole and 2-(dimethylamino)ethanol. Flash chromatography (CH\(_2\)Cl\(_2\):MeOH:TEA=93:6:1) gave 6d as a brown oil (20 mg, 0.11 mmol). Yield: 42%. MS (ESI): 189 [M+H]\(^+\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 2.36 (s, 6H), 2.64-2.68 (m, 2H), 2.94-2.98 (m, 2H), 7.03 (s, 1H), 7.11-7.15 (m, 1H), 7.18-7.22 (m, 1H), 7.36 (d, J=8.0 Hz, 1H), 7.63 (d, J=8.0 Hz, 1H), 8.11 (brs, 1H). The chemical-physical data are according to the literature.\(^{35}\)

General procedure for the N-deacetylation. Ammonium bromide (49 mg, 0.5 mmol), ethylenediamine (0.135 ml, 2 mmol) and N-Acetyltryptamine derivative (0.5 mmol) are mixed in a suitable vial fitted with magnetic stirring. The mixture is then heated to 100 °C in a microwave apparatus (250 W) for 7 hours. After cooling to room temperature the crude reaction mixture is diluted with CH\(_2\)Cl\(_2\) and the desired tryptamine is extracted with an aqueous solution of 1M HCl. The aqueous layer is then made basic by addition of aqueous NaOH (1M) and then extracted with CH\(_2\)Cl\(_2\). The combined organic phases are washed with brine, dried over Na\(_2\)SO\(_4\) and concentrated by distillation at reduced pressure, obtaining a crude residue which was purified by filtration on a Flash column chromatography of silica gel (CH\(_2\)Cl\(_2\):MeOH:TEA = 90:9:1).

2-(5-methoxy-1H-indol-3-yl)ethanamine (7b). Colorless oil (85 mg, 0.45 mmol). Yield: 89%. MS (ESI): 191 [M+H]\(^+\). \(^1\)H NMR (200 MHz, CDCl\(_3\)): δ 1.98 (brs, 2H), 2.85-2.91 (m, 2H), 2.99-3.06 (m, 2H), 3.87 (s, 3H), 6.83-6.89 (m, 1H), 7.0 (s, 1H), 7.04-7.05 (m, 1H), 7.22-7.27 (m, 1H), 8.46 (brs, 1H). The chemical-physical data are according to the literature.\(^{36}\)

2-(2-methyl-1H-indol-3-yl)ethanamine (7h). Pale Yellow amorphous solid (68 mg, 0.39 mmol). Yield 78%. MS (ESI): 175 [M+H]\(^+\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 1.76 (brs, 2H), 2.38 (s, 3H),
2.83-2.87 (m, 2H), 2.95-2.99 (m, 2H), 7.05-7.13 (m, 2H), 7.26 (d, J=7.5 Hz, 1H), 7.50 (d, J=7.5 Hz, 1H), 8.00 (brs, 1H). The chemical physical data are according to the literature.8a

Acknowledgment

This work was partially supported by the Italian MIUR (Ministero dell’Istruzione, dell’Università della Ricerca) and University of Urbino “Carlo Bo”.

Supporting Information Available Copies of 1H NMR, 13C NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(26) Balaji, P. V.; Chandrasekaran, S. ChemCommn 2014, 50, 70-72.

