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Abstract 

Since its discovery in the 19
th

 century, radiotherapy has been one of the major medical treatments in 

oncology, providing curative, adjuvant and palliative therapy and improving overall survival. 

However, a low dose of irradiation (IR) is delivered outside the tumor target volume, increasing 

side effects and modifying the interaction between cancer and surrounding stromal cells. Recently, 

the role of fasting or short term starvation (STS) for cancer patients receiving chemotherapy has 

been taken into account to enhance therapeutic index and to prevent side effects, but no data are 

available from patients receiving radiotherapy. Here we investigated in vitro the effect of STS on 

the efficacy of radiotherapy in tumor cell lines derived from primary and metastatic site, and in 

normal cell lines. 

Cells were incubated in low glucose (0.5gr/l + 1%FBS) (STS condition) or normal glucose ( 1gr/l + 

10 %FBS) DMEM medium for 24 hours and treated with a single dose of 5Gyx1 ( normal 

fibroblasts and adenocarcinoma cells), 10Gyx1 (metastatic prostate cell line) and 8Gyx1 (metastatic 

pancreatic cell line). For the irradiation experiments, the flasks containing the cells were placed in a 

plexiglass custom-built phantom developed to mimic the passage of radiation through human tissue. 

The levels of DNA damage were evaluated using alkaline comet assay. 

The results indicated that after STS the radiation dose significantly increased levels of DNA 

damage in metastatic cancer cell lines but not in normal cells, compared to baseline values.  

Furthermore, using clonogenic assay, we observed that STS had a significative radiosensitizing  

effect on metastatic cell lines, reducing significantly the surviving fraction. Conversely, such 

radiosensitizing effect was not observed in fibroblastic cells. Moreover, our in vitro results indicate 

that adenocarcinoma patients could not take advantage of short-term starvation before radiotherapy. 

In conclusion, our results suggest that changings in cancer metabolism due to starvation could 

enhance the efficacy of radiotherapy treatment in in vitro metastatic cancer cells without  impact on 

survival fraction of healthy cells. 

Poster session: Starvation-induced metabolic changing: a boost for radiotherapy treatment in 

cancer? 
Sara Pignatta, Loris Zamai, Chiara Arienti, Claudia Cocchi, Michele Zanoni, Michela Cortesi, Anna Sarnelli, Donatella 

Arpa, Filippo Piccinini,  Anna Tesei. 

EACR: Mechanisms to Therapies: Innovations in Cancer Metabolism,  Bilbao, 2018  
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1. Introduction 

1.1. General principles of Radiotherapy  

Radiotherapy (RT) is one of the major medical treatments in oncology, providing curative, adjuvant 

and palliative treatments and improving overall survival.  

At present, numerous efforts in four main fields such as delivery and dose prescription, dose 

distribution and new technology, integration of image-guidance, and radiobiological studies are 

being devoted to improving radiotherapy. Radiobiology aims to study and clarify the molecular and 

cellular responses to radiation-induced damage that influence cell death. In particular, the effects of 

radiation exposure on biological systems are divided into three phases, physical, chemical and 

biological (Joiner, 2009). 

The physical phase is characterized by ionization and excitation of atoms and molecules ionization. 

Then, in the chemical phase, the absorbed energy is converted in thermodynamic energy transfer, 

producing reactive compounds and free radicals. In the biological phase, the action of ionizing 

radiation produces direct or indirect damage to the main targets: the nuclear DNA (nDNA), 

mitochondria and mitochondrial DNA (mtDNA), cytoplasm and cell membrane. The nDNA and 

mtDNA damage, as DNA single-strand break (SSB) or DNA double-strand break (DBSs) can arrest 

cell proliferation or induce apoptosis in vitro and inhibit tumor growth in vivo. 

However, the efficacy of radiotherapy is limited by its toxicity, because a low dose of irradiation 

(IR) is delivered outside the tumor target volume, increasing side effects (e.g. myelosuppression, 

cognitive dysfunction, and esophagitis) and modifying the interaction between cancer and 

surrounding stromal cells. 

Over time, the radiation dose fractionation has been one of the most successful strategies to reduce 

side-effects , due to its capacity to perturb the four major parameters of radiation response (Withers 

et al., 1999): 

1.   Repair of the sublethal damage: exposure of biological tissues to ionizing radiation leads to 

DNA damage.  The repair DNA system could repair DNA lesions if a time delay is allowed before 

the second ionization dose. If the distance between the two doses is reduced, a minor radiation dose 

fraction will be necessary to induce the same tissue damage.  

2.  Hypoxic cell re-oxygenation: hypoxic cells are less sensitive to ionizing radiation than 

oxygenated cells.  A change in the tumor hypoxic fraction occurs during fractionated radiotherapy, 

due to the death and elimination of well oxygenated tumor cells with consequent tumor re-

oxygenation. 

 

 



7 
 

 

 

Figure 1: Time-scale of radiation effects on the biological system (Maurya et al., 2011).  

 

3.  Cell cycle redistribution: The related cell cycle phases have a different radiosensitivity: cells in 

late G2 and M phase are the most sensitive together with the initial part of G1, while cells in the S 

phase are the most resistant. In practice, this entails a preferential killing of sensitive cells and a 

consequent semi-synchronization of the residual population in resistant phases. However, de-

synchronization of surviving cells takes place between radiation dose fractions, determining a new 

radiosensitization. 

4. Tissue Repopulation: in response to the depopulation determined by irradiation, both healthy and 

tumor tissues increase proliferative activity. This phenomenon translates into the need for an 

increase in the total radiation dose to obtain the same effect. 

Any strategy that selectively increases the radiosensitivity of tumor cells and radioresistence in 

normal cells is an appreciable factor to add to RT. 

The identification of potentially metabolic mechanisms that underlie the response of tumor and 

normal tissue to irradiation could contribute to new treatment strategies and drive to specific clinical 

protocols.  
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1.2. Cell Cycle 

 

The radiosensitivity of cells depends as they pass through the cell cycle. A cell's life is divided into 

the following phases: 

- phase G1: an increase in the biosynthetic activities is determined to prepare the cell for the 

duplication of the different cellular components, 

 - S phase: begins with DNA synthesis and ends when all the chromosomes have been duplicated 

- phase G2: temporal period between the phases S and M 

- phase M: mitosis proceeds as a continuous sequence of events divided into five stages: prophase, 

prometaphase, metaphase, anaphase, tele-phase; it also includes cytokinesis. 

All movement through the cycle phases is regulated by a group of serine-threonine kinases called 

cyclin-dependent kinases (CDKs). Their enzymatic function is active when they are linked with 

regulatory subunits called cyclin. The several cyclin-CDK complexes are involved at a different cell 

cycle steps, determining the activation of specific functions related to cell proliferation. 

The ordered progression of the phases of the cell cycle is guaranteed by control points ("check-

points") that inhibit the transition to a subsequent phase of the cell cycle if the previous phase has 

not been completed correctly (Foster et al., 2010). 

Checkpoints take place at the late stage G1 (checkpoint G1), between the transition from G2 phase 

and S phase (checkpoint G2), and within mitosis between metaphase and anaphase transition. 

CDKs activity influences the checkpoint activation and guarantees a crosstalk between cell cycle 

arrest and DNA damage response machine. 

 

Table 1: Crosstalk between cell cycle checkpoints and DNA-repair events (Branzei et al., 2008).  

 

The modification of molecular pathways (such as diet intervention) that coordinate the signals 

between these two complex cellular processes might be used to induce a temporary cell-cycle arrest, 

to preserve genome integrity or to implement the radiation therapy efficacy. 
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1.3. The DNA damage response  

 

Maintaining genetic stability is essential for organism survival. Therefore, a specialized repair 

system is developed by cells and organisms to protect DNA from several endogenous and 

exogenous agents (e.g. chemicals, UV, ionizing radiation). The DNA repair machinery is composed 

by several processes and the choice of which system to use depends on the type of DNA lesions and 

on the cell-cycle phase (Branzei et al., 2008). 

 

The efficient DNA repair is dependent by precise control points in which coordinated DNA damage 

sensors proteins and effector proteins allow repair and prevent the genetic lesions transmission to 

cell progeny. Since DNA is an extremely reactive molecule,  numerous mechanisms are evolved by 

the eukaryotic cell to repair different type of DNA lesions. The main repair mechanisms are 

described below. 

The double-strand breaks  (DSBs), the most destructive damages to DNA, are repaired through two  

mechanisms,  non-homologous end joining (NHEJ) or homologous recombination repair (HR). 

NHEJ is activated during the G1 phase in which a second genome copy is not yet available.  

Therefore the enzyme DNA ligase IV uses overhanging pieces of DNA adjacent to the break, to 

join and fill in the ends. Additional errors can be introduced during this process, such as a loss of 

genetic information or translocation. In contrast, during HR, the homologous chromosome is used 

as a template to repair damaged DNA. HR is predominantly active during phase S and G2, 

involving many factors including RAD proteins with recombinase activity and BRCA1 and BRCA2 

proteins. 

On the other hand, base excision repair (BER) and nucleotide excision repair (NER) are the 

machineries involved in DNA damage which arises during normal cellular metabolism.  

In particular, BER is the predominant mechanism that handles the spontaneous DNA damage 

caused by free radicals and other reactive species generated by metabolism; while nucleotide 

excision repair NER  repairs lesions produced by exogenous mutagenic agents that cause DNA 

double helix distortion (e.g. pyrimidine dimers produced by UV radiation and Cisplatin-induced 

complexes). A large multi-enzymatic complex performs a DNA scan looking for a distortion in the 

double helix rather than a specific change of a base; when the lesion is detected, a DNA-helicase 

excise the section of damaged DNA and DNA polymerase and DNA ligase filling the gap and seal 

the nick between the newly synthesized and older DNA. 
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Furthermore, during DNA synthesis, the base-base mismatches and small insertion or deletion loops 

are repaired by mismatch repair (MMR). MMR is a post-replication repair system that recognizes 

and corrects the erroneous sequences in the brother filament. The main genes involved in this 

mechanism are: hMLH1, hMSH2, hMSH3, hMSH6. 
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Figure 2: Overview of DNA damage repair pathway (Dietleine et al., 2014) 
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An important function for an efficient DNA repair is carried out by cell cycle checkpoints. The 

activation of cell cycle checkpoints mediates cell-cycle arrest and provides time to repair and 

recover from DNA lesions. 

In the field of oncology, this has led to the development of checkpoint inhibitors that do not directly 

induce DNA breaks but are used as adjuvants to DNA damaging agents, improving their therapeutic 

effects (Javle et al., 2011; Morales et al., 2014).  

Consequently, the cell cycle starvation resulting from caloric restriction or fasting could be a 

hopeful adjuvant for radiotherapy treatment. Some studies report in animal models improvement in 

overall survival with the combination of caloric restriction diets and radiotherapy. 

These results and further research in this field could have important implications for the design of 

radiotherapy clinical trials and for understanding the mechanism underlying the association of 

metabolism and DNA repair machinery. 

 

1.4. Physiological metabolic change due to starvation.  

Metabolism is a combination of anabolic and catabolic biochemical reactions that occur within 

cells, leading to proliferation, support and maintenance processes. In the course of remarkable 

progress in cancer research, new observations have considered to clarify the biochemical bases of 

some hallmarks of cancer including sustaining proliferation signaling, evading growth suppressors 

and resisting cell death.  Recently, the role of diet for cancer patients receiving chemotherapy is 

becoming a new approach to enhancing therapeutic index and to prevent side treatment effects 

(American Institute for Cancer Research).  

Dietary changes can affect tumor growth modifying the blood concentrations of many biomolecules 

and metabolites. Currently, several dietary interventions are under clinical investigations, including 

short-term starvation, ketogenic diets, and fasting-mimicking diet.   

The post-absorptive state after a meal (fed state), in which glucose and amino acids are transported 

from intestine to the blood, is characterized by insulin secretion by B cells of pancreas, storage of 

glucose in glycogen by liver, entry of glucose into muscle and adipose tissue providing synthesis of 

triacylglycerols and proteins (Berg et al., 2002).  

The starvation condition is divided into an early and late fasting state; the first one is characterized 

by insulin drop and glucagon secretion by pancreatic alpha cells, because the blood-glucose level 

must be maintained above 2.2.mM (40 mg/dl). Glucagon induces a mobilization, a breakdown of 
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glycogen (hydrolysis of glucose 6-phosphate) and its release by liver to blood,  in order to provide 

glucose fuel for brain and other tissue.  

At the beginning of the early phase, carbohydrate stores are the main component of body fuel, 

thereafter, the unique sources are fat and proteins. After about 3 days, the majority of energy needs 

is supplied by ketone bodies, because the second priority of metabolism during starvation is to 

preserve protein from breakdown into amino acids (Lignot).   

 

 

Figure 3: The metabolic changes between the post-absorptive and prolonged starvation (Cahill, 2006).  

 

After the depletion of the triacylglycerol stores, the only option is protein degradation, resulting in a 

dramatic body mass loss, accompanied by heart, liver and kidney loss functions. 

Mobeus et al. measured blood glucose after a caloric restriction and determined that to maintain 

glucose homeostasis, the human body adjusts glucose levels after 3 h.   

Some animal experiments (Jensen et al., 2013) demonstrated that initiating fasting at different 

points of the circadian rhythm could have different impacts on physiological parameters such 
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us,  hormone balance, hepatic enzymes and toxicological responses, due to the high nocturnal 

metabolic rate of mice. Because of these observations, we decided to apply a 24 hours  short-term 

restriction. This allowed us to standardize the experiments and get closer to a potential clinical 

application in patients. 

 

1.5. Tumor cell metabolism and radiotherapy 

Cancer is the second leading cause of mortality counting 8.9 million deaths in 2016 

(healthdata.org). As well note, carcinogenesis is a multifactorial process characterized by mutations 

in oncogenes and tumor suppressor genes responsible for cancer proliferation and metabolic 

pathway dysregulation. One of the emerging hallmarks of cancer is metabolic dysregulation. As 

described by Warburg in 1924, the cancer metabolic change is associated with high glucose uptake, 

with upregulation of glycolysis and downregulation of oxidative phosphorylation.  

This altered metabolism boosts the adoption of a compensatory and alternative pathway to generate 

energy in cancer cells. 

The Warbur effect seems to help tumor cells counteract high levels of ROS, as a result of high 

glucose concentrations in tumor microenvironment increased production of lactate and glutathione, 

promoting alternative strategies to generate energy and leading to accumulation of reactive oxygen 

species.  

Cancer cells are characterized by mutations in oncogenes, such as IGF-1 receptor (IGF-1R), the 

GTP proteins RAS/RAF, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase 

(PI3K), the transcription factor c-Myc, which play the roles of coordinators in progression and 

proliferation independently or partially independently of external growth factors (Buono et al., 

2018). In addition, cancer cells show insensibility to inhibitory signal due to loss of function 

mutations in tumor suppressor genes (e.g. p53, p21, PTEN) (Bianchi et al., 2015).  

The loss of function of p53 or mutation in genes involved in DNA repair could be associated to a 

difference in radiation sensitivity. Dysregulation in cell cycle arrest is a relevant event in the 

response to radiation, because the G1/S and G2/M checkpoints are activated to provide time for 

DNA repair. Dysregulation in this mechanism causes an inefficiency or an incomplete DNA repair. 

The difference in cell cycle kinetics induced by diets or food intake in normal and in cancer cells 

could show a divergent  DNA repair and response to IR, resulting from cancer gene instability (Shi 

et al., 2012). 
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Furthermore, hypoxic conditions could increase the cancer cell dependence to glycolysis. The 

expression of hypoxia-inducible transcription factor 1a (HIF-1α) and HIF-2α, induce the 

upregulations of glucose transporter, glycolytic enzyme, and expression of stem cell genes. As 

described by Béclèr in 1901,  hypoxia influences radiosensitivity of tumors.  

The understanding of molecular pathways and metabolism deregulation in tumors and its 

intervention changing may provide an improvement of radiotherapy. 

For this reason, we hypothesize that short-term starvation can increase the efficacy of radiotherapy 

on cancer cells.  
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1.6. Combining short-term starvation to enhance the anti-tumor effects  

The standard cancer treatment, chemotherapy and radiotherapy, even though their efficacy, are 

characterized by several side effects. Recent studies have elucidated as nutrient modulation through 

diet or geroprotective dietary regimens, may sensitize cancer cells to treatment and protect normal 

cells (Di Biase et al., 2017; Klement et al., 2018). 

Several studies demonstrated that fasting or short-term starvation (STS) can selectively protect 

normal cells, mice and potentially patients from chemo-toxicity without reducing the therapeutic 

effect on cancer cells (Brandhorst et al., 2017). This phenomenon was termed by Sadfie et al. as 

Differential Stress Resistance (DSR) and is based on the hypothesis that normal cells will enter an 

alternative metabolism state, during STS, characterized by the redistribution of cellular energy from 

reproduction/growth to protection/maintenance program. Instead cancer cells, characterized by 

constitutive activation of proliferative pathways causing by mutations in oncogenes and tumor 

suppressor genes, are unresponsive to DSR (Lee et al., 2011).  

 

 

Figure 4: Mechanism of Differential Stress Resistence in normal and tumor cells (Lee et al., 2011).  

 

Evidences from preclinical studies demonstrate that fasting reduces plasma levels of growth factors, 

insulin-like growth factor-I (IGF-I) and modulate intracellular metabolism signal rendering cancer 

cells more vulnerable to chemotherapeutics (Lettieri Barbato et al., 2018). 

In the last years, several randomized trials based on preclinical results were designed to test the 

efficacy and the effect of chemotherapy on both normal and cancer cells after a fasting cycles 

(Longo et al., 2014).  

A summary of clinical trials in which short-term starvation, intermittent fasting, or fasting-

mimicking diets, in combination with anticancer therapies are listed in Table 1. 



17 
 

Dietary Intervention Clinical trials Status Disease 
Enrollment 

(participants) 
Study (first author) 

Short-term fasting NCT01175837 
Active, 

not recruiting 
Malignant Neoplasm 12 No results posted 

Short-term fasting NCT01304251 Completed Breast Cancer 13 
De Groot et al., 2015 
Safdie et al., 2009 

Short-term fasting NCT00936364 Recruiting Solid Tumors 70 Dorff et al., 2016 

Fasting mimicking 
diet 

NCT02126449 Recruiting Breast Cancer 250 No results posted 

Low calorie diet NCT01802346 Recruiting 

Breast Cancer, 

Hormone-resistant Prostate Cancer, 

Recurrent Prostate Cancer 

120 No results posted 

 
Fasting 
 

 
NCT01954836 

 

 
Completed 

 

 

Cancer 

 

50 Bauersfeld et al., 2018 

 
Fasting 
 

NCT02710721 Recruiting Prostate Cancer 60 No results posted 

Starvation NCT02607826 Not yet recruiting 

 

Cholangiocarcinoma 

Pancreatic Ductal Adenocarcinoma 

Colorectal Cancer 

Gastric Cancer 
Adenocarcinoma of the 
Esophagogastreal Junction 
Esophagus Cancer 

 

298 No results posted 

Table 1: List of ongoing or completed clinical trial with diet intervention.  

https://clinicaltrials.gov/ct2/bye/rQoPWwoRrXS9-i-wudNgpQDxudhWudNzlXNiZip9Ei7ym67VZR05cKC5LR45A6h9Ei4L3BUgWwNG0it.
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The first preliminary clinical data were collected as a part of different pilot studies to assess the 

safety and feasibility of short-term fasting prior to administration of chemotherapy ( 

NCT01175837). One of the first randomized pilot study (NCT01304251), was planned to establish 

the safety and tolerance of short-term fasting with chemotherapy in early breast cancer patients.  

Due to limitations of this studies, such as small sample size and lack of stability in statistical 

analysis, larger randomized trials such as the DIRECT study (NCT02126449), will provide new 

data on possible benefits of short-term fasting in cancer patients. 

Other randomized clinical trials are been conducted to demonstrate the reduction of side effects in 

patients receiving gemcitabine hydrochloride and cisplatin for advanced solid tumors 

(NCT00936364), gynecological cancer disease, ovarian, breast and prostate cancer (NCT01802346,  

NCT01954836). 

In particular, the NCT02710721 study had the scope to evaluate if in CRPC castration-resistant 

prostate cancer or hormone-sensitive prostate cancer patients with metastatic disease, an 

intermittent fasting could improve quality of life, limit side effect and reduce tumor progression. 

Other randomized clinical trials are needed to support the efficacy of short-term starvation in 

cancer.  

This study could suggest if simultaneous STS or fasting during radiotherapy could be a novel 

approach to improve the therapy's efficacy, limit side effect and preserve healthy tissue. 
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1.7. Cancer and Radiotherapy 

In the recent years, the use of high-dose single fraction therapy in control of local tumor and 

metastases has achieved a growing number of impressive results. Several studies using a single dose 

or up to 3 large fractions radiotherapy have been published for lung cancer, liver metastases, brain 

metastases, spine metastases, kidney and pancreatic tumors, demonstrating an improvement in 

control diseases (Brown et al., 2008; Kennedy et al.,2017).  

In the field of preclinical oncology, research groups have recently displayed as the combination of 

intermittent fasting, a form of caloric restriction, and chemotherapy could improve therapy 

beneficial effects and prevent side-effects. 

At present, a small number of data are available on the effect of short-term starvation and 

radiotherapy. This lack, probably, is due to the complication to combine patients diets and 

radiotherapy treatment, furthermore plan a rigorous clinical trial. On the basis of previous 

consideration, we decided to focus on high-dose single-fraction radiotherapy and to the use of cell 

lines derived from spinal lesions, from pancreatic tumor's liver metastases and lung cancer.  

According to this set of single dose session, a fasting period of 24 hours before radiotherapy is 

feasibility.  

Below a listed of cancer disease in which high dose single radiotherapy illustrate a powerful clinical 

approach compared to multiple-dose low fractions.  

1.7.1. Lung cancer  

Lung cancer is the leading cause of cancer death in the United States. Non–small cell lung cancer 

(NSCLC) accounts for 85% of all lung cancer cases and the most common type of NSCLC is 

adenocarcinoma (40%).  The standard treatment for patients with advanced NSCLC has been 

chemotherapy, but more recent progress in molecular biology allowed the identification of several 

numbers of mutations, opening a scenario for personalized therapy.  

In the last years, the accelerated hypofractionated radiotherapy and SBRT in case of advance 

cancer,  inoperable lung cancer (McCloskey et al, 2013; Slotman et al., 2014) or elderly patients 

that cannot receive the standard of care,  are considered as an alternative option to conventional 

regimen (Chua et al., 2017; Tekatli et al., 2016). Despite rapid advancements in molecular biology 

research, the prediction of treatment response in lung cancer still remain a great challenge.  
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Approximately 50% of lung adenocarcinomas harbor TP53 tumor suppressor gene mutation. 

Several retrospective and meta-analysis studies demonstrate that the p53 mutations status is a 

significant predictor of poor outcome in patients with lung cancer (Ahrendt et al., 2003). P53 is 

implicated in several signal pathways, such as the induction of genes associated with DNA repair, 

cell cycle regulation, oxidative stress response and apoptosis regulation. Currently, no adjuvant 

therapy or biological approaches could produce a survival benefit, therefore new approaches are 

desirable.  Apontes et al. demonstrated that the induction of p53 with anti-diabetic drug determined 

a cell cycle G1/G2 arrest in normal cells and not in mutant p53 cancer cells,  protecting them from 

microtubule active inhibitors and cell cycle-specific chemotherapeutic agents. We supposed that 

short-term starvation characterized by low blood levels of nutrients (e.g. glucose, amino acids, 

insulin) protect normal tissue from side effect of radiotherapy and define an effective improve 

combination in adenocarcinoma with mutant p53.   

In perspective to precision medicine, we hypotized that tumor-related mutation, such as p53, in 

association with short-term starvation could influence the response to radiotherapy.  

1.7.2. Metastatic prostate cancer 

Prostate cancer is the fifth leading cause of death and the most common cancer among men. 

Prostate cancer often develops in a not responsive androgen deprivation therapy called Castration-

Resistant Prostate Cancer (CRPC). CRCP is associated with 80%  bone metastasis, with the spine 

the most common metastatic site. The pain and neurologic complications of vertebral metastasis 

alter the quality of life in CRCP patients. Treatment approaches for prostate spinal metastasis 

include a multidisciplinary approach as surgery,  chemotherapy,  hormone treatment, radioisotopes 

and radiotherapy. Radiotherapy is recommended to constant pain, spinal cord compression and 

inoperable pathological fractures. One of the emerging therapy for treatment of spinal mCRPC is 

stereotactic radiosurgery (SRS) (Scott et al., 2004). The stereotactic body ration therapy (SBRT) is 

characterized by high dose of radiation delivered in a few fractions in a total period of 5-10 days. 

The assessment and management of patients with spinal metastasis are complex due to the presence 

of adjacent critical organs (e.g. spinal cord, esophagus, bowel) and required a multidisciplinary 

team, involving radiation oncology, spine surgery, medical oncology and radiology. Anyway spine 

SBRT is a highly effective treatment due to improvement in patient immobilization, target 

visualization, and image guidance that had permitted the delivery of ablative doses to the target 

avoiding critical organs (Tseng et al., 2017). Currently, the spine SBRT is becoming an efficient 

option for the treatment of spinal oncological lesions, anyway the setting of ideal dose fractions and 
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an appropriate guidelines practice is at present uncertain (Gonzales Ruiz de Léon et al., 2017; Rao 

et al., 2017). 

 

1.7.3. Metastasis of pancreatic cancer  

Pancreatic cancer is still one of the oncological diseases with the worth prognosis. The early 

diagnosis is still difficult due to the lack of clear or peculiar symptoms in patients, to the absence of 

specific and sensitive markers for detection and  to complexity of image instrumental detection 

(Neoptolemos et al., 2018).  

When pancreatic cancer is diagnosed, many patients are already in advanced stage of metastases 

with dissemination in retroperitoneum, vascular system and nerves. The most frequent type of 

metastases are in liver and peritoneum. The overall survival (OS) of patients with metastatic disease 

remains less than 11 months. The therapeutic regimes consisted, only for a subset of patients, in a 

resection of both tumor (primary and metastasis), and for all other in a palliative chemotherapy 

(Yamada et al., 2006). Pancreatic liver metastases are not resectable in most case. Clinical trials 

studying SBRT and chemoradiation approach are limited, and the lack of solid data, due to biased 

published patient cohorts data, invalidate an established guideline (Crane, 2016; Ouyang et al., 

2011). 

The positive results of these studies indicate that a subgroup of patients with pancreatic metastatic 

disease may prolong survival when treated with a multimodal treatment consist of surgical resection 

and chemo-radiation (De Bari et al., 2016; Ikeda et al., 2001; Scorsetti et al., 2011).  

New future directions to improve the efficacy of neo-adjiuvant treatment, to overcome the issue of 

toxicity risk and subsequent damage to critical organs and to deliver ablative doses safely for 

pancreatic cancer are need.   

Here we investigate if a multimodal approach including diet, could be useful to enhance the effect 

of radiotherapy. 
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Material and Methods: 

 

Cell lines 

A549 (adenocarcinoma cell derived from primary lung cancer), MRC-5 (normal fibroblast lung cell 

lines), VCaP (prostate cancer cell derived  from vertebral metastatic site) and CFPAC1 (pancreatic 

cancer cell derived from liver metastatic site) were obtained from the American Type Culture 

Collection (ATCC, Rockville, MD). A549sip53 (silenced for p53) were kindly donate and silenced 

by Dott. Bossi. 

Cell lines were maintained in DMEM supplemented with 10% FBS and 1% L-glutamine 

(Euroclone, Milan, Italy) at 37°C. 

The oxygen partial pressure (pO2) plays a fundamental role in the molecular and metabolic features 

of cells, and in the response to ionizing radiation.  For this reason the cells were maintained in 

hypoxic conditions, in order to get as close as possible to the physiological microenvironment.  

 

In vitro radiation system 

The flasks, 96-multiwell plates containing monolayers cells or 3D-spheroids were inserted into a 

custom built plexiglass phantom (40 × 40 × 8 cm). The phantom was irradiated using a 6-MV 

photon beam delivered by an Elekta Synergy linear accelerator (Elekta Oncology Systems, 

Stockholm, Sweden). The delivered dose was calculated using the Philips Pinnacle 3 radiation 

therapy planning system (Philips Healthcare, DA Best, The Netherlands) customized with the 

geometric and dosimetric characteristics of an Elekta Synergy linear accelerator, as previously 

described ( Tesei et al., 2013). 

 

Treatments 

STS Treatments. Glucose restriction was done by maintaining cells in glucose-free DMEM 

(Invitrogen) supplemented with either low glucose (0.5 gr/liter) and 1% FBS for 24 hours 

(Raffaghello et al., 2008).  

Radiation. Cells were irradiated in 25-cm
2
 flasks or 96-multiwell plates using the linear acceleration 

Elekta Synergy Platform system. Cell lines were treated with a combination of STS followed by 

radiation treatments. The delivery dose used was 5 Gy for lung cell lines, 8 Gy and 10 Gy for 

metastatic cell lines (VCAP and CFPAC-1, respectively). 

 

 



23 
 

In vitro Cytotoxicity assay 

Cell viability assay was performed with CellTiterGlo (Promega, Milan, Italy) according to 

manufacturer’s protocols. Briefly, 5000 cells were cultured in a 96-well plate. CellTiter-Glo reagent 

was added in each well, and mixed for 2 minutes to induce cell lysis. After 10 minutes incubation at 

room temperature, the luminescent signal was recorded using Glomax (Promega, Milan, Italy). 

3D cell viability was measured using  CellTiter-Glo® 3D Cell Viability Assay (Promega, Milan, 

Italy). Spheroids were removed from the 96-well low-attachment culture plate and placed separately 

in single wells of a 96-well opaque culture plate (BD Falcon). CellTiter-Glo® 3D reagent was 

added to each well and the luminescence signal was read after 30 minutes with the GloMax® 

bioluminescent reader (Promega, Milan, Italy). 

 

Clonogenic assay 

Following treatment, 500 cells were seeded in 10 cm
2
 dishes in 500 ml of medium. After 14 days, 

the resulting colonies were fixed and stained using 0.5% crystal violet in 25% methanol; colonies 

with more than 50 cells were quantified under inverted microscope (I500X, Olympus) by two 

independent observers. Five series of samples were prepared for each treatment dose.  

 

Flow cytometry 

Flow cytometric acquisitions were performed using a FACS Canto flow cytometer (Becton 

Dickinson, San Diego, CA). Data were analyzed by FACSDiva software (Becton Dickinson, San 

Diego, CA ) and ModFit 2.0 (DNA Modelling System, Verity Software House, Inc., Topsham, 

ME). Samples were run in triplicate and 10,000 events were collected for each replica. Data were 

the average of three experiments, with errors under 5%. 

Cell cycle distribution. After each treatments, cells were fixed in 70% ethanol, stained with 

propidium iodide (10 mg/ml, MP Biomedicals, Verona, Italy), RNAse (10 kunits/ml, Sigma 

Aldrich) and NP40 (0.01%, Sigma Aldrich) overnight at 37 °C in the dark and analyzed by flow 

cytometry. Data were expressed as fractions of cells in the different cycle phases. 

Tunel. TUNEL assay was performed using In situ Cell Death Detection Kit, Fluorescein  (Roche 

Applied Science, Indianapolis, IN).Cells were fixed in 4% paraformaldehyde and resuspended in  

permeabilization solution (0.1% Triton-X100, 0.1% sodium citrato in PBS) for 10 minutes on ice.  

The cells were labeled with reaction solution composed by Tdt enzyme and FITC-labelled 

nucleotides. A negative control without addition of Tdt enzyme and positive control treated with 

DNase I were included. After incubation for 60 minutes at 37°C, the samples were analyzed by 

flow cytometry.  
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Immunofluorescence staining 

Cells were harvested by trypsinization, washed with serum and PBS1X and plated onto glass 

coverslips. The cells were fixed with paraformaldehyde for 15 minutes on ice.  

The coverslips were incubated overnight at 4°C  in primary antibody (anti Rad51 diluted 1:100, 

Cell Signaling, Danvers, MA; anti-γH2AX), diluted in blocking buffer, and then washed again with 

PBS1X and incubated with fluorochrome-conjugated secondary antibodies (FITC green, Alexafluor 

488 goat, Life Technologies) for 2 h at room temperature. Cells were analyzed with Zeiss Imager 

M1 microscope (Zeiss, Milan, Italy) and the images were recorded with Zeiss AxioVision camera. 

A minimum of 100 cells were analyzed for each experiment and the cells containing a minimum of 

five RAD51 and γH2AX foci per nucleos were scored as positive. An automatic focus scoring were 

performed using the cell image analysis software, Fuji ImageJ. All image analysis parameters were 

kept constant throughout the duration of experiments. 

 

 

Comet assay 

The alkaline comet assay was performed according to the manufacturer’s protocol (Comet assay, 

Trevigen, Gaithersburg, MD). Briefly, at the end of the treatments, 5000 cells were suspended in 

LMAgarose (at 37 °C) and were immediately transferred onto the comet slide. The slides were 

immerged for 1 h at 4 °C in a lysis solution, washed in the dark for 1 h at room temperature in an 

alkaline solution, and electrophoresed for 30 min at 21 Volt. Slides were then dipped in 70% 

ethanol and stained with the Syber green (Bio-Rad Laboratories, Hercules, CA, USA).  

One hundred of comets from category 0 to category 4 were selected and the image were capture 

using  EVOS microscope at 10x magnification.  

The DNA damage is quantified by computing, in single cells, the displacement between the genetic 

material contained in the nucleus, typically called "comet head", and the genetic material in the 

surrounding part, considered as the "comet tail". To obtain reproducible and reliable quantitative 

data, we developed an easy-to-use tool named CometAnalyser. 

Today, a few freely available tools exist to analyse microscopic images acquired with a comet 

assay. The two most known are OpenComet and CometScore. Gyori et al. developed OpenComet as 

a plug-in for ImageJ. The tool can be used for the analysis of both fluorescent and silver stained 

images. The segmentation of the comet's border is based on geometric shape attributes, whilst the 

segmentation of the comet head is obtained through an image intensity profile analysis. CometScore 

is an open-source tool freely available at: http://rexhoover.com/ (freeware v1.5). Using CometScore, 
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the expert selected the comet boundary and indicated its head centre manually. The parameters are 

then automatically calculated by the software. These tools typically work well in case of fluorescent 

images and, in general, ideal images. However, segmentation errors increase in case of noisy 

images like the silver staining ones (Ganapathy et al., 2016), usually presenting debris and 

vignetting effect (Piccinini et al., 2012), or in case of images with cells characterized by different 

morphologies. Several commercial tools are also available (for a list of commercial comet assay 

analysis tools see: www.cometassay.com), but they are costly and do not provide possibilities for 

examining the code and modifying the processing algorithm. 

CometAnalyser is a semi-automatic tool developed with the goal to be extremely user friendly. It 

has been developed in MatLab (The MathWorks, Inc., Natick, MA, USA) and the current version 

(CometAnalyser v0.9) requires MatLab R2017b and the MatLab Image Processing Toolbox 10.1, or 

a later version. CometAnalyser works with silver staining and fluorescent images. The working 

procedure can be briefly summarized in three main steps. (a) First of all, the user has to draw with 

the mouse a region surrounding the cells of interest. The tool then automatically segments comet 

heads and nuclei. By default, the Otsu thresholding segmentation method is used (Otsu, 1979), but 

other algorithms are available and several parameters can be then modified to adjust the 

segmentation. (b) Once the comets have been segmented, Tail Moment and all the other features 

listed by Gyori et al.  are automatically computed and saved as Excel file. (c) Snapshots of all the 

segmented comets are stored in different folders according to a classification currently manually 

performed by the user. Finally, the project with all the labels can be saved and loaded back for 

future modifications. 

Three-Dimensional Cell Culture 

A rotatory cell culture system (RCCS) (Synthecon Inc., Houston, TX, USA) was used as previously 

described (Tesei et al., 2013). The rotator bases were placed inside a humidified 37 °C incubator 

and connected to power supplies set up externally. Single cell suspensions of about 1 × 10
6
 cells/ml

of lung cell line were placed in the 10-ml rotating chamber at an initial speed of 12 rpm. The culture 

medium was changed every 4 days and tumor spheroids with an equivalent diameter ranging from 

about 500–700 μm (depending on the cell line used) were obtained in around 15 days. The 

spheroids were transferred into 96-well low-attachment culture plates (Corning Inc., Corning, NY, 

USA). 
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Morphological analysis of 3D tumor cultures 

Growth and morphology of the 3D tumor colonies were monitored for several days as regards 

changes in area, volume and shape. Phase-contrast imaging and morphological analyses of 

spheroids were carried out with an inverted Olympus IX51 microscope (Olympus Corporation, 

Tokyo, Japan), equipped with a Nikon Digital Sight DS-Vi1 camera (CCD vision sensor, square 

pixels of 4.4 μM side length, 1600 × 1200 pixel resolution, 8-bit grey level) (Nikon Instruments, 

Spa. Florence, Italy). The open-source AnaSP29 and ReViSP30 software tools (Piccinini et al., 

2015) were used to achieve morphological 2D (e.g. diameter, perimeter, area) and 3D (e.g. volume, 

sphericity) parameters, and to select morphologically homogeneous spheroids as previous described 

(Zanoni et al., 2016).  

 

Real-time Quantitative Polymerase Chain Reaction (RT-qPCR)  

Total RNA was extracted from cell lines using TRIzol® reagent following the manufacturer’s 

instructions (Invitrogen). Reverse transcription (RT) reactions were performed in 20-ul volume 

containing 400 ng of total RNA using an iScript TM cDNA Synthesis kit (Bio-Rad Laboratories, 

Hercules, CA, USA). The mRNA levels of the selected genes were assessed by real-time 

quantitative PCR (RT-qPCR) using costum TaqMan probes (Applied Biosystems, Carlsbad, CA) 

and an ABI7500 system. Probes were selected from inventoried gene expression assays (Invitrogen, 

Thermo Scientific). 

The comparative threshold cycle (Ct) method was used to calculate the relative gene expression. 

The gene  target expression  was normalized to an endogenous reference Beta-actin. Reference 

genes were chosen using the geNorm VBA applet for Microsoft Excel to determine the most stable 

reference genes. Relative quantification of target gene expression was calculated using the 

comparative Ct method. All experiments were conducted in triplicate. 

 

Western blot analysis  

Cells were treated according to the previously described Western blot procedure (Pignatta et al., 

2014). The following antibodies were used: goat anti-rabbit IgG-HRP: sc-2004 1:5000 (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), anti-vinculin 1:1000 (Invitrogen, Thermo Scientific), 

Precision Protein™ StrepTactin-HRP Conjugate 1:10,000 (Bio-Rad Laboratories, Hercules, CA, 

USA), anti-p53 1:1000 (Cell Signaling Technology, Inc., Beverly, MA, USA). Densitometric 

analysis was performed using Quantity One Software Version 4.6.7. (Bio- Rad Laboratories).  
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3. Results 

3.1. Silencing p53 in adenocarcinoma cell lines reduces sensitivity to radiation 

Two adenocarcinoma lung cancer cell lines were used in this study. One, A549, that expresses 

functional wild-type p53, and the other one, A549sip53, p53 silenced. First we checked the 

silencing of p53, evaluating the mRNA and protein expression. We observed, compared to A549,  a 

substantial downregulation of p53 transcript and protein (Fig1, A-B).  

The proliferation potential and radiosensitivity of A549 and A549sip53 were measured using 

clonogenic assay, after cells exposure to conventional IR treatment. The conventional treatment 

consists of 2Gy dose per fraction delivered daily over 24 days to a cumulative dose of 48 Gy. The 

cells were irradiated using a 6-MV photon beam delivered by an Elekta Synergy linear accelerator 

(Elekta Oncology Systems), the same machine used on a daily basis to deliver radiotherapy to 

patients. 

We found that the expression of p53 affects the response to radiation, resulting as shown in Figure 

1C,  in a considerable reduction in colony formation respect to p53 silenced cell line.  

A rotary cell culture system (RCCS) was used to produce 3D-spheroids culture.  Spheroids  were 

exposed to hypofractionate IR ( 5Gy dose per 5 fraction) to evaluate the proliferation potential and 

radiosensitivity in 3D structure. As shown in Figure 1D, the IR resistance of A549sip53 is 

maintained also in 3D-spheroids. 

 

3.2. Effect of short-term starvation on cell cycle 

A549 (wt p53), A549sip53 (silencing for p53), MRC-5 normal fibroblast lung cell lines and 

CFPAC1- VCaP (metastatic cell lines) were tested for short-term starvation. Cells were incubated in 

low glucose STS - short term starvation medium (0.5gr/l glucose + 1% FBS) or in control standard 

DMEM medium ( 1gr/l glucose + 10 % FBS) for 24h and cell cycle distribution were analyzed by 

flow cytometry.  

STS resulted in a higher disturbance of cell cycle distribution in MRC-5 fibroblast cell lines 

compared to cancer cell lines. As shown in (Fig. 2A), an increase of 20% of cells in the G0/G1 

phase was observed in STS MRC5 with a concomitant reduction of cell percentages in S-phase and 

G2/M phases (73% and 29%, respectively), compared to MRC5 cultured in control medium. 

Regarding tumor cell lines, the depletion of nutrients determined a moderate increase in the 

percentage of cells in G0/G1 phase, rising of 10% in all cell lines. The diminution of S-phase 

fraction in cancer cells  ranged from 10% to 43% (Fig. 2B-E). A549 was the only cancer cell line 

characterized by a drop of G2/M phase after STS (Fig.2B).    



28 
 

Instead, in metastatic pancreatic cancer cell line CFPAC1, the starvation condition did not 

drastically affect cell cycle distribution, with a change in all phases distribution of about 10% 

(Fig.2D).  

 

 

 

Figure 1: Effect of p53 silencing on radiation response cells. (A) p53 mRNA expression in lung adenocarcinoma cell 

lines were assessed by real-time quantitative PCR. The results were normalized to housekeeping and are presented as 

the mean ± SD of three independent experiments. (B) The p53 protein levels were measured by western blotting 

analysis. Vinculin was used as a loading control. (C) The radiation response was determined by colony formation assay. 

Data point are represented as mean ± SD. 
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Figure 2: Cell cycle distribution after 24h of short-term starvation. (A-E) Histograms G0/G1, S-phase and G2/M 

indicate the distribution of cell populations in each phase of the cell cycle. Data are reported as mean ± SD, for three 

experiments.  
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3.3. Cell viability assay in starved and non-starved cancer cell lines 

As a first step we performed a dose response curve to establish the effect of radiation on cells in 

short-term starvation (STS) or in control standard medium (CM). Cell viability rate is measured at 

72 hours. We observed that radiation caused 50% of cell death in MRC5, A549 and VCaP cell lines 

(Fig.3, A, B, E). Moreover, the differences between the radiation alone and combined with STS 

were not statistically significant (P ≥ 0.05), denoting that STS had no effect on cell death rate after 

72h in these cell lines.  

The radiation treatment in A549sip53 caused only 20% of cell death at 72h (Fig. 3C), indicating 

that the A549 cell lines p53 silenced are more radio-resistant than A549 wild type.  

Only the metastatic pancreatic cancer -cells (CFPAC1) displayed a cell death rate of 90% with 

radiation treatment (Fig. 3D). Furthermore, combining IR with STS, the induced inhibition of cell 

viability was statistically significant (P ≤ 0.05) compared to IR alone. 

3.4. Cell cycle arrest under the influence of RT 

Since RT prevent cell growth, proliferation and DNA synthesis, we then performed a cell cycle 

analysis to test whether RT influence cell cycle arrest. Moreover, we compared the cell cycle 

distribution of cells cultured in CM or STS. RT combined with STS treatment induce in MRC5 cell 

lines (Fig. 4A) an increase in the percentage of cells in  G0/G1 phase with a parallel decrease of S-

phase population. In particular, when we treated MRC5 cell lines with RT and STS, we observed a 

missing of S-phase and a reduction of G2/M phase compared to RT alone. 

Figure 4B-C shows how STS determined in both A549 and A549sip53 cell lines, a slight increment 

of G0/G1 phase and a reduction of S-phase. Anyway, we observed unsubstantial variations of cell 

cycle phases after IR exposure in combination or not with STS. The percentage of cells in cell cycle 

phases after IR remain unvaried.   

Instead, as shown in Fig. 4D-E, we observed a dramatic perturbation of cell cycle in metastatic cell 

lines (CFPAC1 and VCaP) after RT treatment, characterized by a drop-off in G0/G1 population 

associated with an increase of G2/M phase. These cell cycle perturbations are related to the 

mechanism of action of irradiation and hide the effect of STS alone. This suggests that the majority 

of the effects observed in these experiments is due to irradiation treatment. 
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Figure 3: Effect of IR on cell viability. Cells  (MRC-5, A549, A549sip53, CFPAC1 and VCaP) were exposed to  

ionization radiation in normal medium (CM) or in short-term starvation medium (STS). The cell viability was evaluated 

using CellTiter Glo after 72h from the end of IR. Data are reported as the mean ± SD for three separate experiments 

performed in octuplicate. (*P < 0.05)   
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Figure 4: Impact of RT and STS on cell cycle distribution. Cells were exposed for 24h to STS or CM medium and then 

treated with RT. Cell cycle was analyzed after 72h by flow cytometry. Histograms G0/G1, S-phase and G2/M indicate 

the distribution of cell populations in each phase of the cell cycle.  
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3.5. Clonogenic assay 

After an initial curative treatment, in cancer patients often occurs the re-growth of tumor due to a 

small number of cells that retain colony-forming ability. This phenomenon is associated with a poor 

clinical outcome. We performed colony formation assays to evaluate the long term response and the 

colony forming ability of the different cell lines exposed to RT and STS. 

Cells were incubated in STS or CM for 24h and treated with a single dose of 5Gyx1 (lung cancer 

cell line), 10Gyx1 (metastatic prostate cancer cell line) and 8Gyx1 (metastatic pancreatic cancer cell 

line) on the basis of clinical data (Fig.5). The clonogenic assay was fixed after 15 days.  

The surviving fraction of A549 (wt p53), A549sip53 (p53 silenced), MRC-5 normal fibroblast lung 

cell lines, VCaP (prostate cancer cell derived from vertebral metastatic site) and CFPAC1 

(pancreatic cancer cell derived from liver metastatic site) was evaluated. 

STS for 24h before RT caused a significant radiation sensitizing effect in metastatic cell lines 

CFPAC1 and VCaP (Fig.5D-E), with a complete inhibition of proliferation potential in VCaP. We 

also found that radiation effect was significantly not enhanced by STS in normal cell lines MRC5, 

denoting that STS could protect normal tissue by IR damage. (Fig.5A)   

Furthermore, a significant difference in surviving fraction was observed also in A549 where RT 

was combined with STS (Fig. 5B).  Counterwise, due to their basal radioresistance, in A549sip53 

cells the radiation effect was not as profound as seen in A549 and no significant change in surviving 

fraction between the different culture nutrient conditions was observed (Fig. 5C). All together these 

data show that p53 mutation status do not influence the effect of short-term starvation on 

radiosensitivity in tested adenocarcinoma cell lines.    
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Figure 5: Clonogenic assay (n=12) were analyzed for cell lines treated with RT in CM or STS. The data shown are the 

mean values (±SD) from independent experiments. Statistical significance *p < 0.05, **p<0.01.
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Figure 6: Apoptosis was assessed by TUNEL. Quantification of TUNEL-positive cells in cancer cell lines and normal 

lung fibroblast after 72 hours from radiation treatment. The cells were cultured before IR in control medium (CM) or 

short-term starvation medium (STS).  
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3.6. TUNEL apoptotic cell detection  

Since previous results have indicated that IR inhibited cell growth, cell viability, and promote cell 

cycle arrest, we tested the effect of IR on cell death. To further explore the mechanism by which 

STS could enhance the radiation effect on cell lines, we investigated whether STS could promote 

IR-induced apoptosis. 

Apoptotic cell death following exposure to irradiation was quantified after 72 hours using TUNEL 

assay by flow-cytometry (Fig.6). As shown in Figure 6A IR in combination with moderate STS 

reduced the rate of TUNEL-positive cells of 3,7% in MRC5 cell line compared to IR alone. This 

data confirmed the previous observations regarding a protective role of STS in normal cell line. 

Instead, no difference in the percentage of apoptotic cells, between CM and STS pre-conditions, 

was observed in cancer cell lines, except for A549 where TUNEL-positive cells increased of 38.9 % 

in STS medium (Fig.6B).  

The data indicate that the metastatic cell lines are more sensitive to IR compared to adenocarcinoma 

cells (Fig.6D-E). 

3.7. Measure of DNA damage 

Next, we hypothesized that STS condition may enhance IR sensitivity increasing the ability of 

irradiation to cause DNA damage. To test this hypothesis, we performed alkaline comet assay to 

determine the radio-responsiveness of normal and cancer cell lines in association with STS.  The 

comet assay is the most popular test used to detect DNA damage at the level of a single cell. 

We classified comets into five categories, from grade 0 to 4, according to % tail DNA value. The 

mean % tail DNA was chosen because it is directly proportional to DNA damage. 

Categories were classified as follows: grade 0: 0 – 5, grade 1: ≥5 -15; grade 2: ≥25 -45; grade 3: 

≥45 -70, grade 4: ≥70. 

Other parameters, such as shape, tail length and olive tail moment are calculated to describe 

heterogeneity within cell population. The tail moment calculated by Olive et al (1990) defined as 

Olive tail moment, describes the variations in DNA distribution within tails. It is determined as the 

product of % tail DNA and tail moment length measured from the center of the head and the center 

of the tail of comet. 

The basal level of DNA damage in non-irradiated cancer cells is ranging from 7.3% to 9.9%, while 

in normal cells is around 15%.  As shown in Fig 7 the amount of DNA damage in STS condition is 
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slightly increased in all cancer cells, conversely, we observed a reduction in DNA damage in 

normal cells.  

 

The % tail DNA of irradiated fraction revealed a significant increase of at least 2-fold in DNA 

damage in starved-irradiated CFPAC1, and 0.25-fold in VCaP (Fig 7B). In agreement with previous 

results, no statistically significant differences in the % tail DNA of the two irradiated fraction was 

observed in A549 cells, while a reduction in DNA damage was measured in A549sip53 in STS-

irradiated fraction.  

Remarkably, STS decrease the % tail DNA of MRC5 from 40% to 20%, suggesting a protective 

role of STS from IR damage. 

 

All these data are confirmed by the major count of comet in class 0 and 1 in starved-irradiated cells, 

compared to treatment alone (Fig.8A). 

Instead, the STS in all tumor cell lines determined a minor number of comets in class 0 compared to 

control medium, while a major number of comets was counted in class 3 and 4 in irradiated cells 

than in the treatment alone (Fig.8B-7E).   

Taken together, these results strongly support previous observations whereby STS may increase 

radiation therapeutic index in metastatic cancer cell lines, and may protect normal cells from 

radiation damage. 
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Figure 7: DNA damage measured by alkaline comet assay. A) Representative photomicrographs of comet assay 

showing cell lines stained with syber green after RT treatment and combination with STS, 10x magnification. B) DNA 

damage expressed as % tail DNA. Error bars represent mean ± SE. Statistical significance  *p < 0.05, **p<0.01. 



39 
 

 



40 
 

 



41 



42 
 

 

 



43 
 

 

Figure 8: Quantitative analysis of comet categories. The comet parameters, such as tail length, tail moment and olive 

tail moment are indicated in tables. The values represent the mean obtained from 100 comets ± SE. 
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Furthermore, we detected directly the DNA damage measuring phosphorylate histone H2AX foci 

(γ-H2AX) in the cell nuclei as indicator of cellular radiosensitivity (Fig. 9A). γ-H2AX 

phosphorylation indicates the presence of double-strand DNA breaks and could serve as a 

biomarker for chemotherapy toxicity in healthy cells. The results showed γ-H2AX foci in metastatic 

cell lines CFPAC1 and VCaP when exposed to radiation. In particular, pre-incubation with STS 

medium 24 hours before radiotherapy resulted in 2-fold increase of γ-H2AX foci comparedto IR 

alone in CFPAC1. Instead this trend is not maintained in metastatic prostate cells. 

In agreement with previous observations, we did not  detect foci in adenocarcinoma cell lines and in 

normal cells underlining an absence of DNA damage.   

Moreover, cells were stained withRad51, which accumulates at sites of broken DNA (Fig. 9B). We 

next counted the number of Rad51 foci and observed a high quantitative of DNA damage in MRC5 

cell line in normal condition, denoting a protecting role of STS. Like γ-H2AX detection, CFPAC1 

exhibit DNA damage accumulation after irradiation with an increase of Rad51 positive cells in STS 

condition.  

 

3.8. Short-term starvation and gene expression  

To better understand the mechanism through which radiotherapy was more effective combined with 

short-term starvation than with control medium in metastatic cells, we hypothesized that the low 

glucose level could be responsible for the activation or inactivation of genes involved in DNA 

damage repair machine. Furthermore, we evaluated the expression of glucose transporter GLUT-1 

that is the main actor of the uptake of glucose from the surrounding medium into the cell. As shown 

in Figure 10 (A-E) the GLUT-1 expression in the different cell lines did not change. Probably 

because of the restoration of normal glucose concentration after 72h from starvation. 

To investigate the potential synergic role of STS in association with irradiation treatment, we 

analyzed mRNA expression of PARP-1 (repair of single-strand breaks SSBs) and BRCA-1 

(components of homologous recombination HR repair system) genes. We observed after 72 hours a 

significant increase in BRCA-1 expression when radiotherapy is preceded by STS and a significant 

reduction of PARP-1 expression only in lung cancer cell lines. In conclusion, these results 

confirmed that the repair DNA genes are long activated in lung cancer cell lines maintained in low 

glucose conditions compared to the other cell lines, and that A549 are more sensitive compared to 

A549 sip53.  
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Figure 9: Imaging quantification of γH2AX and RAD51 foci. Cell lines were cultured on coverslips in control (CM) or 

short-term starvation medium (STS) for 24h, and then treated with IR and stained at 72h. At least 100 cells were scored 

for each condition. The percentage of positive cells for γH2AX-foci (A) and for RAD51-foci (B) was calculated. Cells 

with more than 5 foci were scored as positive. 
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Figure 10: Effects of radiation on mRNA expression. mRNA was isolated after 72hours from irradiation treatment and 

gene expression was determined using quantitative real-time RT-PCR. Graphs are representative of two independent 

experiments, each performed in triplicate. Error bars represent SD of triplicate values. Statistical one-way ANOVA is 

used to test for differences groups. *p < 0.05, **p<0.01.  



4. Discussion

Nowadays fasting, caloric restriction, fasting mimicking diet have become a popular topic in the 

field of oncology involving media, public opinion, marketing, and creating speculations and 

ambiguous messages. On the other hand, limited evidence in human studies have been shown 

how nutritional support improve the quality of life and survival in cancer patients (Caccialanza et 

al., 2018;  O'Flanagan et al., 2017). 

Recent studies in vivo and in vitro models demonstrated how short-term starvation or prolonged 

fasting (PF) could improve the efficacy of chemotherapy for some types of cancer with the 

possibility of protecting normal tissue against chemo-toxicity (Antunes et al., 2017;  D'aronzo et al., 

2015, Harvey et al., 2013; Huisman et al., 2015). At present few data are available on the effect of 

short-term starvation in association with radiotherapy (Simone et al., 2016). Thus, more preclinical 

studies are required to elucidate which kind of tumor, which stage, which therapy could effectively 

benefit from dietary approaches.  

The aim of this study is to provide additional informations on radio-sensitizing starvation’s effect in 

in vitro cancer cell lines and on protection in normal tissue.  

To elucidate the biological mechanisms of activation and the effects induced by radiation during 

starvation, we used tumor cells from different tumor types and normal fibroblast as in vitro model. 

To better mimicking microenvironment in vitro, for each cell lines tested, we performed all the 

experiments in hypoxia condition. The oxygen partial pressure (pO2) plays a fundamental role in the 

molecular and metabolic features of cells. Furthermore, as well know, Hif-1α,activated in hypoxia 

conditions, is one of the main transcription factor implicated in radiation resistance (Mckeown, 

2014). On the basis of these observations, the meaningful role of microenvironment, both in normal 

and pathological issues, implies the tight control of in vitro experimental conditions to which the 

cells are exposed, in order to get as close as possible to the physiological conditions (Carreau et al.,  

2011).  

In addition, in the present study, we used short-term starvation as a pre-condition to enhance radio-

effect against cancer cells and to protect healthy cells.  

Given that a starvation condition determines a differential cell cycle arrest, thus we hypothesized a 

protective G1/G2 selective cell cycle phase arrest and we explored the consequent potential 

vulnerabilities by nutrient deprivation of cancer cells to radiotherapy. 

Our data show that short-term starvation of 24 hours perturbs cell cycle, determining almost a shift 

into G0/G1 cell cycle phase in normal fibroblasts associated with a strong reduction in S-phase and 

G2/M, while this phenomenon is less evident in cancer cells. The entry of almost all normal cells 
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into a high protection cell cycle arrest in response to short-term starvation, could reduce the damage 

of DNA induced by radiation. 

In addition, we decided to evaluate the role of p53 in the induction of cell cycle arrest using a 

silenced p53 lung cancer cell line. We considered if protective effect of short-term starvation may 

be in part due to a regulation of cell cycle by p53, thus the presence of mutant p53 could be used as 

a strategy to not enter in a protective cell cycle status. Although our results show that the mutational 

status of p53, in adenocarcinoma model, is not responsible of a different response to radiotherapy 

by starved cell lines.  

Here we report that metastatic cancer cells became more sensitive to radiotherapy in nutrient 

depletion medium, drastically reducing their colony forming growth, while normal cells were not 

affected. Instead, our preliminary results for adenocarcinoma cell lines, shown that in this kind of 

tumor the starvation does not improve the efficacy of radiotherapy also in a p53 mutational status 

independent manner.  

As we expected, a short cell viability assay (72h) to test radiation treatment on the cell survival after 

different culture conditions, is not the best analysis setting. Notably, in this quick in vitro cell 

viability analysis, we observed a reduction of survival only in CFPAC1 cell line, the most sensitive 

cell line to radiotherapy. Instead, to better determine cell reproductive death after treatment with 

ionizing radiation, we used the gold standard clonogenic assay (Dunne et al., 2003). Our results 

demonstrate a reduction of the ability of single cell to grow into a colony in all metastatic cancer 

cell after radiation, with a complete inhibition when combined with 24 hours short-term starvation. 

Furthermore, the capacity to produce colonies is retained by normal fibroblast cells and is boosted 

when associated with starvation. As, previous data, in lung adenocarcinoma cells the radiation 

therapy is not reinforced by starvation, denoting a radio-sensitizing effect only in metastatic cell 

lines.  

Previously published studies, indicate an increase in glucose consumption by tumor cells after 

irradiation (Dittmann et al., 2013). This high energy demand is required for DSB repair processes. 

In fact, tumor cells, which have a small intracellular amount of ATP, are dependent on glucose 

supply to induce chromatin relaxation by the radiation-induced histone H3- and H4-acetylation and 

consequently repair DNA DSBs. Instead, normal fibroblasts are characterized by high intracellular 

ATP levels that permit them to not be influenced by glucose starvation (Ampferl et al., 2018). 

Recent studies demonstrate a role of nutrient deprivation in the regulation and activation of adaptive 

cellular response. We believed that short-term starvation may protect normal cells in part by 
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regulating cell cycle and influencing the activation of DNA repair machine. In support of our 

hypothesis we decided to measure DNA damage. Our comet assay experiments show an increase in 

DNA damage in starved-irradiated cancer cell lines, and a reduction in starved-irradiated normal 

cell, underlying a function of glucose deprivation in the regulation of repair pathways.  

This could be one of the possible mechanism that explains why different starved-cells (normal and 

tumor) contribute in different ways to the response of DNA damage, however,  further 

investigations are needed to better understand the metabolic changing and pathway regulation due 

to starvation.  

Nutrient levels, such as glucose, could generate a protective environment that reduces DNA damage 

in healthy cells and at the same time create a hostile condition for tumor cells. Consistent with our 

results, other approaches (Mohanti et al., 1996; Singh et al., 1990) that used an analog of glucose to 

inhibit glycolytic pathway revealed an increase in radiation-induced damage. 

GLUT1 is a member of glucose membrane transporters and its overexpression in cancer is 

frequently associated with chemo-resistance. Several studies demonstrated how the reduction of 

glucose and IGF-1, and the inhibition of mTOR pathway modulate the response to chemotherapy in 

vitro in cancer cells (Brandhorst et al., 2013; Sadfie et al., 2012). The glucose consumption is the 

preferred tumor metabolism, due to these reasons we expected that glucose transport is tightly 

regulated by glucose availability. Our results report that 24 hours of short-term starvation is not 

enough to down-regulate the GLUT1 expression for a long time as 72 hours, suggesting that the 

restoration of glucose could establish immediately the GLUT1 expression or that glucose-

responsive elements are absent on GLUT1 (Klip et al., 1994).  

Many metabolic changes due to radiation highlighting the need to understand how irradiation 

affects cancer cell response via changes in metabolism. PARP-1, a protein involved in the repair of 

single-strand breaks (SSBs), and BRCA1, an important component of the HR pathway, play an 

important role, not only in DNA repair pathways, but also in transcriptional regulation, cell death, 

angiogenesis, and metabolism (Bhute et al., 2016; Wu et al., 2010). 

The metabolic alterations to oxidative phosphorylation  or to glycolysis could result in a rapid ATP 

reduction, and a different regulation of PARP1 and BRCA1 proteins. Although our analysis of 

expression of some DNA damage pathways reveal a significant difference between lung 

adenocarcinoma cell lines, confirming the major resistance properties to irradition of A549sip53; 

and a high levels of BRCA1 in CFPAC1 cells after irradiation underlying the sensitiveness to 

radiotherapy.  

Thus, the combination of radiation treatment with STS could improve radio-sensitivity in metastatic 

cancer cells, but not in normal fibroblast and in our in vitro model of lung carcinoma primary 
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tumor. Some studies show how, in order to adapt to a reduced oxygen environment (Hypoxia), 

cancer cells at the primary tumor site often undergo a metabolism reprogram from oxidative 

phosphorylation (OXPHOS) to glycolytic metabolism, while other metabolic strategies are 

activated by metastatic cells depending to colonization site. Such metabolic differences could 

influence the effect of glucose deprivation (Doppler  et al., 2015).  

In summary, the present study investigates whether short-term starvation before radiotherapy could 

be an effective approach with limited side-effects to improve the therapeutic efficacy of radiation 

therapy and to preserve healthy tissue.  The aim of this study was to provide a scientific rationale for 

further preclinical and clinical studies, knowing that our in vitro investigations cannot directly be 

transferred into clinical practice without physiological, safety and feasibility parameters.  
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5. Conclusions

This study can provide potential powerful results about the simultaneous use of  STS or fasting in 

combination with radiotherapy. This diet intervention could be a novel approach to improve the 

therapy efficacy, it may limit side effects and preserve healthy tissue. Furthermore, new radiation 

schemes, such as high single dose fraction in combination with STS, could represent an alternative 

treatment option for patients with metastatic tumors.  

The data generated in this study could be used as radiobiological basis for further preclinical and 

clinical studies. 

. 
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