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Abstract

In this paper we study a highly nonlocal parametric problem involving
a fractional-type operator combined with a Kirchhoff-type coefficient.
The latter is allowed to vanish at the origin (degenerate case). Our
approach is of variational nature; by working in suitable fractional
Sobolev spaces which encode Dirichlet homogeneous boundary con-
ditions, and exploiting an abstract critical point theorem for smooth
functionals, we derive the existence of at least three weak solutions to
our problem for suitable values of the parameters. Finally, we provide
a concrete estimate of the range of these parameters in the autonomous
case, by using some properties of the fractional calculus on a specific
family of test functions. This estimate turns out to be deeply related
to the geometry of the domain. The methods adopted here can be
exploited to study different classes of elliptic problems in presence of
a degenerate nonlocal term.
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tional methods, multiple weak solutions.
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1 Introduction

The recent years have witnessed an ever more increasing attention to prob-
lems driven by nonlocal operators, notably of fractional type. This interest
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is motivated by both the theoretical research and the large number of appli-
cations (see, for instance, [19] and the references therein for a list of these
applications). Moving along this direction, we are interested here in the ex-
istence of weak solutions to the following fractional Kirchhoff-type problem:{

−M(‖u‖2X0
)LKu = λf(x, u) + µg(x, u) in Ω

u = 0 in Rn \ Ω,
(Pλ,µ)

where Ω ⊂ Rn is a bounded domain with Lipschitz boundary ∂Ω, 2s < n <
4s with s ∈ ]0, 1[, f, g : Ω×R→ R are two suitable Carathéodory functions
with subcritical growth, λ, µ are two positive real parameters and

‖u‖2X0
:=

∫
R2n

|u(x)− u(y)|2K(x− y)dxdy,

where, from now on, we set R2n := Rn × Rn.
Further, LK is a nonlocal operator of fractional type defined as follows:

LKu(x) :=

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ Rn,

where the function K : Rn \ {0} → ]0,+∞[ satisfies:

(k1) γK ∈ L1(Rn), where γ(x) := min{|x|2, 1};

(k2) there exists α > 0 such that

K(x) ≥ α|x|−(n+2s),

for any x ∈ Rn \ {0}.

The paradigm of the above K is given by the singular kernel K(x) :=
|x|−(n+2s); in this case LK reduces to the fractional Laplace operator defined,
up to normalization factor, by

−(−∆)su(x) :=

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn.

In our setting the Kirchhoff function M : [0,+∞[→ [0,+∞[ is assumed
to be continuous and to verify the structural assumptions:

(m1) M is non-decreasing ;

(m2) there exists m1 > 0 such that

M(t) ≥ m1t,

for every t ∈ [0,+∞[;
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(m3) there exists σ > 1 such that

mσ := lim inf
t→+∞

M̂(t)

tσ
> 0,

where

M̂(t) :=

∫ t

0
M(ξ)dξ,

for every t ∈ [0,+∞[.

A typical Kirchhoff function verifying the above hypotheses is given by

M(t) := m0 +m1t, where m0 ≥ 0 and m1 > 0; (1)

when M is of the type (1), problem (Pλ,µ) is said to be non-degenerate
when m0 > 0, while it is called degenerate if m0 = 0. The novelty of this
paper is that we manage to treat the degenerate case, namely we allow the
Kirchhoff function to take the zero value. This case is quite delicate and not
very covered in literature, even more in the fractional setting, as explicitly
pointed out in [21].

We also mention, for the sake of completeness, that degenerate Kirchhoff-
type problems driven by non-homogeneous elliptic operators have been re-
cently taken into account, for instance, in [13, 14, 15, 17, 34, 35].

The analogous and classical counterpart of our problem models several
interesting phenomena studied in mathematical physics, even in the one-
dimensional case. Its origins, as well known, date back to 1883 when G.
Kirchhoff proposed his celebrated equation

ρ∂2
ttu−

(P0

h
+
E

2L

∫ L

0
|∂xu(x)|2 dx

)
∂2
xxu = 0 (2)

as a nonlinear extension of D’Alambert’s wave equation for free vibrations of
elastic strings, where the constants have the following meaning: u = u(x, t)
is the transverse string displacement at the space coordinate x and time t,
L is the length of the string, h is the area of the cross-section, E is the
Young modulus of the material, ρ is the mass density and P0 is the initial
tension (see the classical manuscript [22]). In the very recent paper [21],
the authors have proposed an interesting and fascinating physical interpre-
tation of Kirchhoff’s equation in the fractional scenario. In their correction
of the early (one-dimensional) model, the tension of the string, which has
classically a “nonlocal” nature arising from the average of the kinetic en-
ergy |∂xu|2 /2 on [0, L], possesses a further nonlocal behavior provided by
the Hs-norm (or other more general fractional norms) of the function u.
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From a purely mathematical point of view, it is worth mentioning that
the early classical studies dedicated to Equation (2) were given by Bernstein
[12] and Pohozaev [33]. An important incentive to its study was provided
by Lions’s work [25], where a functional analysis approach was proposed
to attack it. We cite, amid the wide literature on the subject, the works
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 20] where Kirchhoff-type problems (also
in their stationary versions) were studied by exploiting different methods and
new technical approaches.

The aim of the present paper is to study (Pλ,µ) under the variational
viewpoint. Our approach employs a functional framework in appropriate
fractional Sobolev spaces and an abstract multiplicity result of the critical
point theory (see Section 4 for details). Thanks to these ingredients we
manage to derive the existence of three weak solutions to problem (Pλ,µ).
Our analytical context is inspired by (but not equivalent to) the fractional
Sobolev spaces, in order to correctly encode the Dirichlet boundary datum
in the variational formulation. The nonlocal analysis that we perform here
is quite general and exploited for other goals in several recent contributions;
see [26, 27, 28, 31, 32]. The papers [23, 24] contain some recent nice results
on nonlocal fractional problems as well.

Now, let us denote

Xn,s
0 :=

{
u ∈ Hs(Rn) : u = 0 a.e. in Rn \ Ω

}
, (3)

where the functional space Hs(Rn) is the fractional Sobolev space of the
functions u ∈ L2(Rn) such that the map

(x, y) 7→ u(x)− u(y)

|x− y|
n+2s

2

∈ L2(R2n, dxdy
)
.

With this notation, a particular case of our main result assumes the
following form.

Theorem 1.1. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary
∂Ω and fix s ∈ ]3/4, 1[. Moreover, let f : R → R be a continuous function
such that sup

t∈R
F (t) > 0 in addition to

(c′2) lim
t→0

F (t)

t4
≤ 0,

where F (t) :=

∫ t

0
f(ξ)dξ, for every t ∈ R. Further, assume that
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(c′3) lim
|t|→+∞

|f(t)|
|t|q

< +∞, for some q ∈ [0, 3[.

Then, for each compact interval [a, b] ⊂ ]θ,+∞[, with

θ :=
1

4
inf


‖u‖4∫

Ω
F (u(x))dx

: u ∈ X3,s
0 ,

∫
Ω
F (u(x))dx > 0

 ,

there exists % > 0 such that, for every λ ∈ [a, b], the problem
(∫

R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy

)
(−∆)su = λf(u) in Ω

u = 0 in R3 \ Ω,
(Ps,λ)

admits at least three weak solutions {uj}3j=1 ⊂ X
3,s
0 such that(∫

R6

|uj(x)− uj(y)|2

|x− y|3+2s
dxdy

)1/2

< %,

for every j ∈ {1, 2, 3}.

The structure of the parameter θ displayed in Theorem 1.1 is not simple
and its value depends on the geometry of the domain Ω and on the datum
f . As proved in Section 5, an explicit estimate of θ (an upper bound) can
be determined by using suitable test functions belonging to the fractional
Sobolev space Hs(Rn) and some technical lemmas proved in [19].

For instance, if Ω is an open ball of radius r > 1 and F (t0) > 0 for some
t0 ∈ R, then θ < θ?, where

θ? := min
η∈Σ3


3π2t40

4

(
F (t0)η3 − (1− η3) max

|t|≤|t0|
|F (t)|

) ((1− η3)κ1κ2

(1− η)2

)2

 , (4)

with

Σ3 :=


 max

|t|≤|t0|
|F (t)|

F (t0) + max
|t|≤|t0|

|F (t)|

1/3

, 1

 ,
κ1 :=

8

3

√
π

(
π

4
+

1

1 + 2s

)(
1 +

1

λ1

)
, κ2 :=

1

2(1− s)
+

2

s
, (5)
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and

λ1 := inf
u∈W 1,2

0 (Ω)\{0}

‖∇u‖2L2(Ω)

‖u‖2L2(Ω)

.

In such a case, Theorem 1.1 ensures that for each compact interval
[a, b] ⊂ ]θ?,+∞[, there exists % > 0 such that, for every λ ∈ [a, b], our
fractional problem on the ball admits at least three weak solutions in X3,s

0 ,
uniformly bounded in norm by %.

We point out that the assumption 2s < n < 4s is essential in our tech-
nical approach in order to guarantee the embedding of the working space
Xn,s

0 (or, more generally, the space X0 defined in Section 2) in the Lebesgue
space Lr(Rn), where

max{4, q + 1} < r <
2n

n− 2s
,

with q ∈
[
0,
n+ 2s

n− 2s

[
. This embedding seems to be crucial in the proof of

the main result (see Theorem 4.2).
The paper is organized as follows. In Section 2 we recall some basic tools

and illustrate the main features of our nonlocal setting. Subsequently, some
peculiar properties of the functionals involved in the weak formulation of
problem (Pλ,µ) are proved in Section 3 (see Proposition 3.2 and Remark 3.5).
In Section 4 we prove the main Theorem 4.2 (and some of its consequences)
by making use of the previous preparatory results and the already mentioned
abstract critical point theorem (Theorem 4.1). In the last section a concrete
upper bound for the parameter θ of Theorem 4.2 is presented. In such a
case a restriction on the structure of the kernel function K is required.

We cite the recent monograph [30] as a general reference on nonlocal
fractional problems and the variational methods used in this paper.

2 Variational setting

In this section we describe the variational background of problem (Pλ,µ),
starting with the space X0 where the weak solutions are going to be sought.
We recall that this space was introduced in [40].

To begin with, we define X to be the linear space of all Lebesgue mea-
surable functions from Rn to R such that the restriction to Ω of any function
u in X belongs to L2(Ω) and the map

(x, y) 7→ (u(x)− u(y))
√
K(x− y) ∈ L2(Q, dxdy),
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where Q := R2n \ (Ωc × Ωc) and Ωc := Rn \ Ω.
Denote by X0 the following linear subspace of X,

X0 := {u ∈ X : u = 0 a.e. in Ωc}.

We point out that X and X0 are non-empty since, for instance, C2
0 (Ω) ⊆

X0 by [40, Lemma 11]. It is easily seen that

‖u‖X := ‖u‖L2(Ω) +

(∫
Q
|u(x)− u(y)|2K(x− y)dxdy

)1/2

(6)

defines a norm on X (see [39]); in addition, the function

X0 3 u 7→ ‖u‖X0 :=

(∫
Q
|u(x)− u(y)|2K(x− y)dxdy

)1/2

(7)

represents a norm on X0 equivalent to (6) (see [39, Lemma 6]).
The space (X0, ‖ · ‖X0) turns out to be a Hilbert space with scalar prod-

uct

〈u, v〉X0 :=

∫
Q

(u(x)− u(y)) (v(x)− v(y))K(x− y)dxdy, (8)

see [39, Lemma 7].
Notice that in (7) and (8) the integral can be extended to the whole of

R2n, since u ∈ X0 (and so u = 0 a.e. in Ωc). In the sequel, in order to
simplify the notation, we will denote ‖·‖X0

and 〈·, ·〉X0
simply by ‖·‖ and

〈·, ·〉, respectively.
In the model case K(x) := |x|−(n+2s), the space X0 can be characterized

as follows
X0 =

{
u ∈ Hs(Rn) : u = 0 a.e. in Ωc

}
,

(see [42, Lemma 7(b)]), i.e. X0 = Xn,s
0 . Here Hs(Rn) denotes the usual

fractional Sobolev space endowed with the so-called Gagliardo norm (not
equivalent to (6)):

‖u‖Hs(Rn) = ‖u‖L2(Rn) +

(∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)1/2

.

Under assumptions (k1) and (k2) the space X0 embeds in the canonical
Lebesgue spaces; more specifically, the embedding X0 ↪→ Lp(Rn) is contin-
uous for any p ∈ [1, 2∗], while it is compact whenever p ∈ [1, 2∗[, where

2∗ :=
2n

n− 2s
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denotes the fractional critical Sobolev exponent (see [39, 41] for details).
The reader interested in knowing more about fractional Sobolev spaces is

invited to consult the very nice survey paper [19] and the references therein,
while for more details on X and X0 we refer to the papers [38, 39, 40, 41, 42],
where these functional spaces were introduced and analysed in their basic
properties.

Now, let us see how (Pλ,µ) is endowed with a variational structure. De-
note by A the class of all admissible nonlinearities for our problem, i.e. the
class of all Carathéodory functions h : Ω× R→ R such that

sup
(x,t)∈Ω×R

|h(x, t)|
1 + |t|q

< +∞ (9)

for some q ∈ [0, 2∗ − 1[. Further, let f, g ∈ A and put

F (x, t) :=

∫ t

0
f(x, ξ)dξ and G(x, t) :=

∫ t

0
g(x, ξ)dξ, (10)

for every (x, t) ∈ Ω× R.
Fixed the real parameters λ and µ, it is a standard matter to prove

that problem (Pλ,µ) is the Euler-Lagrange equation of the C1-functional
Eλ,µ : X0 → R defined by

Eλ,µ(u) := Φ(u)− λJf (u)− µJg(u) (11)

where

Φ(u) :=
1

2
M̂(‖u‖2), (12)

Jf (u) :=

∫
Ω
F (x, u(x))dx, Jg(u) :=

∫
Ω
G(x, u(x))dx, (13)

for any u ∈ X0.
As a result, the search for weak solutions to problem (Pλ,µ), namely

functions u ∈ X0 such that

M(‖u‖2) 〈u, v〉 = λ

∫
Ω
f(x, u(x))v(x)dx+ µ

∫
Ω
g(x, u(x))v(x)dx

for every v ∈ X0, reduces to the search for critical points of the energy
functional Eλ,µ.

The variational tool used to derive the existence of such critical points
is a multiplicity result established in [36] that we recall for ease of reference
in Section 4.

8



3 Some properties of the functionals Φ and J

For a generic Banach space E, denote by “→” and “⇀” the strong and the
weak convergence in E, respectively. Further, let E∗ be the topological dual
of E. Denote byWE the class of all functionals I : E → R with the following
property: if uj ⇀ u in E and

lim inf
j→∞

I(uj) ≤ I(u),

then uj → u up to a subsequence.

In this section, by using the above notations, we focus our attention
on some properties of the functionals involved in the weak formulation of
(Pλ,µ), starting with Φ.

First, let us recall the definition of a mapping of type (S+) which, as
known, generalizes the notion of uniform monotonicity.

Definition 3.1. Given a real Banach space E, a mapping I : E → E∗ is said
to be of type (S+) if for any sequence {uj}j∈N in E such that uj ⇀ u ∈ E
and

lim sup
j→∞

I(uj)(uj − u) ≤ 0,

then uj → u.

Proposition 3.2. Assume that the kernel K satisfies conditions (k1) and
(k2). Further, suppose that the Kirchhoff term M verifies (m1) and (m2).
Then, the following facts hold:

i) Φ is a C1 sequentially weakly lower semicontinuous functional;

ii) Φ ∈ WX0 ;

iii) Φ′ : X0 → X∗0 is strictly monotone;

iv) Φ′ is of type (S+);

v) Φ′ is invertible on X0 with continuous inverse.

Proof. i) It is easy to see that Φ ∈ C1(X0,R). Moreover, the non-negativity

of M forces M̂ to be increasing. The conclusion then follows by the sequen-
tial weak lower semicontinuity of u 7→ ‖u‖.
ii) Let uj ⇀ u in X0 and

lim inf
j→∞

Φ(uj) ≤ Φ(u).
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The sequential weak lower semicontinuity of Φ yields Φ(uj) → Φ(u) as

j →∞ up to a subsequence. Since M̂ and t 7→ t2 are continuous and strictly
increasing in [0,+∞[, then ‖uj‖ → ‖u‖. By a classical result holding in any
uniformly convex space, we obtain that uj → u, as desired.
iii) Let u, v ∈ X0 with u 6= v and α1, α2 ∈ ]0, 1[ with α1 +α2 = 1. Of course

u 7→ ‖u‖2 is strictly convex in X0 and by (m1), M̂ is convex in [0,+∞[.
Thus we have

Φ(α1u+ α2v) <
1

2
M̂
(
α1 ‖u‖2 + α2 ‖v‖2

)
≤ 1

2
α1M̂(‖u‖2) +

1

2
α2M̂(‖v‖2)

= α1Φ(u) + α2Φ(v);

so Φ is strictly convex and, in view of Proposition 25.10 of [43], Φ′ is strictly
monotone.
iv) Let us identify X0 with X∗0 via the canonical isomorphism. So, let uj ⇀ u
in X0 and assume that

lim sup
j→∞

〈
Φ′(uj), uj − u

〉
≤ 0.

We will prove that any subsequence of {uj}j∈N has in turn a strongly conver-
gent subsequence that converges to u. Pick such a subsequence and denote it
again by {uj}j∈N; since it is bounded there will exist a further subsequence,
still relabeled as {uj}j∈N, and a non-negative number c so that

lim
j→∞

M(‖uj‖2) = c.

If c = 0, in view of assumption (m2) we get

0 ≤ m1 ‖uj‖2 ≤M
(
‖uj‖2

)
for any j ∈ N and hence uj → 0 as j →∞.

Assume now c > 0. Since Φ′ is a monotone operator then

lim
j→∞

〈
Φ′(uj), uj − u

〉
= lim

j→∞
M
(
‖uj‖2

)
〈uj , uj − u〉

= c lim
j→∞

〈uj , uj − u〉 = 0.

Therefore, by exploiting also the fact that uj ⇀ u, we obtain

lim
j→∞

‖uj − u‖2 = lim
j→∞

(〈uj , uj − u〉 − 〈u, uj − u〉) = 0.
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Hence uj → u, as claimed.
v) We prove the assertion by using monotone operator methods. For any
u ∈ X0 \ {0}, by (m2) we have

〈Φ′(u), u〉
‖u‖

=
M
(
‖u‖2

)
‖u‖2

‖u‖
≥ m1 ‖u‖3

and thus Φ′ is coercive (in the sense of monotone operators), while the
function

t 7→M
(
‖u+ tv‖2

)
〈u+ tv, w〉

is continuous in [0, 1] for any u, v, w ∈ X0, meaning that Φ′ is hemicontinu-
ous.

Taking also iii) into account, we obtain via Minty-Browder’s theorem
(Theorem 26.A(d) of [43]) that Φ′ is invertible in X0 and Φ′−1 is, in partic-
ular, bounded. Let us prove the continuity of Φ′−1.

Let {vj}j∈N ⊂ X0 be a sequence such that vj → v ∈ X0 and let uj :=
Φ′−1(vj), u := Φ′−1(v). The boundedness of {uj}j∈N yields that uj ⇀ u0 ∈
X0. So, thanks also to Cauchy-Schwartz’s inequality, we obtain

|〈vj , uj − u0〉| ≤ |〈vj − v, uj − u0〉|+ |〈v, uj − u0〉|
≤ ‖vj − v‖ ‖uj − u0‖+ |〈v, uj〉 − 〈v, u0〉|

and therefore

lim
j→∞

〈
Φ′(uj), uj − u0

〉
= lim

j→∞
〈vj , vj − v0〉 = 0.

Being Φ′ of type (S+), we get uj → u0 and, being Φ′ continuous and
one-to-one, we finally get uj → u.

Remark 3.3. The delicate point in the previous proposition is the proof of
the property (S+) (carried out by passing to subsequences) which permits
to guarantee the continuity of the inverse of Φ′. The crucial fact is that,
due to (m2), M has a superlinear (or, at most, linear) behavior along all the
positive reals.

Remark 3.4. In [37] Ricceri dealt with a Kirchhoff-type problem driven
by the classical Laplace operator (which (Pλ,µ) reduces to when K(x) =
|x|−(n+2s) and s → 1−). Instead of standard monotonicity assumptions on
the Kirchhoff term M , taking advantage of the Hilbert space setting, he
used the following assumption:
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(h1) there exists a continuous function h : [0,+∞[→ R such that

h(tM(t2)) = t,

for every t ∈ [0,+∞[.

This hypothesis is crucial along the paper [37] to deduce regularity properties
on the functional Φ analogous to the ones of Proposition 3.2. This approach
is not feasible in our case as it requires that

inf
t∈[0,+∞[

M(t) > 0,

and hence rules the degenerate case out.

Remark 3.5. As concerns the functional J , the fact that f ∈ A and the
embeddings in the canonical Lp spaces lead to the conclusion, through very
standard arguments, that Jf ∈ C1(X0,R) and that J ′ is compact.

4 Abstract approach and main results

In this section we prove our main multiplicity results. The key tool will
be the following abstract critical point theorem for differentiable functionals
(cf. [36, Theorem 2]).

Theorem 4.1. Let E be a separable and reflexive real Banach space; Φ :
E → R a coercive, sequentially weakly lower semicontinuous C1 functional,
belonging to WE, bounded on each bounded subset of E and whose derivative
admits a continuous inverse on E∗; J : E → R a C1 functional with compact
derivative. Assume that Φ has a strict local minimum z0 with Φ(z0) =
J(z0) = 0. Finally, assume that

max

{
lim sup
‖z‖→+∞

J(z)

Φ(z)
, lim sup

z→z0

J(z)

Φ(z)

}
≤ 0 (14)

and
sup
z∈E

min{Φ(z), J(z)} > 0. (15)

Set

θ := inf

{
Φ(z)

J(z)
: z ∈ E, min{Φ(z), J(z)} > 0

}
. (16)

Then, for each compact interval [a, b] ⊂ ]θ,+∞[ there exists a number % > 0
with the following property: for every λ ∈ [a, b] and every C1 functional
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Ψ : E → R with compact derivative, there exists µ̃ > 0 such that, for each
µ ∈ [0, µ̃], the equation

Φ′(z)− λJ ′(z)− µΨ′(z) = 0 (17)

has at least three solutions whose norms are less than %.

The main result of this manuscript reads as follows.

Theorem 4.2. Let s ∈ ]0, 1[, 2s < n < 4s and let Ω ⊂ Rn be a bounded
open set with Lipschitz boundary ∂Ω. Assume that K : Rn \ {0} → ]0,+∞[
and M : [0,+∞[ → [0,+∞[ are two functions satisfying (k1) − (k2) and
(m1)− (m3), respectively. Further, let f ∈ A such that:

(a1) sup
u∈X0

∫
Ω
F (x, u(x))dx > 0,

(a2) lim sup
t→0

supx∈Ω F (x, t)

t4
≤ 0,

(a3) lim sup
|t|→+∞

supx∈Ω F (x, t)

|t|2σ
≤ 0,

with F defined by (10). Under such hypotheses, if we set

θ :=
1

2
inf


M̂
(
‖u‖2

)
∫

Ω
F (x, u(x))dx

: u ∈ X0,

∫
Ω
F (x, u(x))dx > 0

 ,

then for each compact interval [a, b] ⊂ ]θ,+∞[, there exists a number % > 0
with the following property: for every λ ∈ [a, b] and every g ∈ A, there exists
µ̃ > 0 such that, for each µ ∈ [0, µ̃], problem (Pλ,µ) has at least three weak
solutions whose norms in X0 are less than %.

Proof. Let us invoke the abstract Theorem 4.1 with the choices E := X0, Φ
as in (12) and J := Jf . In view of assumption (m2) Φ is coercive, as

Φ(u) ≥ m1

4
‖u‖4

for every u ∈ X0.
Moreover, the increasingness of M̂ implies that Φ is bounded on any

bounded subset of X0. The rest of the properties Φ is required to fulfill

13



follows from Proposition 3.2. It is straightforward to realize that u0 = 0 is
the only global minimum of Φ and that Φ(u0) = J(u0) = 0.

Now, the membership of f in A implies that

|f(x, t)| ≤ c (1 + |t|q) (18)

for all (x, t) ∈ Ω× R, for some c > 0 and for some q ∈ [0, 2∗ − 1[.
Since 2s < n < 4s, then 4 < 2∗ and it is possible to pick r ∈ R such that

max{4, q + 1} < r < 2∗.

Now, fix ε > 0. Due to (a2) there exists T > 0 so that

F (x, t) ≤ εt4

for each (x, t) ∈ Ω× [−T, T ]; on the other hand,

|F (x, t)| ≤ c(1 + |t|r)

for each (x, t) ∈ Ω × R and the function R \ [−T, T ] 3 t 7→ |t|r attains its
minimum at t = T , so

|F (x, t)| ≤ c|t|r

for each (x, t) ∈ Ω× (R \ [−T, T ]).
As a result we get the estimate

|F (x, t)| ≤ εt4 + c|t|r,

holding for each (x, t) ∈ Ω × R. So, by the embeddings X0 ↪→ L4(Ω),
X0 ↪→ Lr(Ω) and by (m2) we obtain

J(u) ≤ ε ‖u‖4L4(Ω) + c ‖u‖rLr(Ω)

≤ εc1 ‖u‖4 + c2 ‖u‖r

≤ 2εc1

m1
M̂
(
‖u‖2

)
+ c2

(
2

m1
M̂
(
‖u‖2

)) r
4

≤ 4εc1

m1
Φ(u) + c2

(
4

m1
Φ(u)

) r
4

for any u ∈ X0 and for suitable positive constants c1 and c2.
Due to the choice of r one has

lim sup
u→0

J(u)

Φ(u)
≤ 4εc1

m1
. (19)

14



Next, define β by

β := 2 min

{
σ,

n

n− 2s

}
.

When σ < n/(n− 2s), thanks to (a3) it is easy to obtain the estimate

|F (x, t)| ≤ ε|t|2σ + c3

for all (x, t) ∈ Ω × R, for some c3 > 0; on the other hand, when σ >
n/(n− 2s), owing to the fact that |t|r−2∗ → 0 as |t| → +∞, one gets

|F (x, t)| ≤ ε|t|2∗ + c4

for all (x, t) ∈ Ω× R and some c4 > 0.
As a byproduct we obtain

|F (x, t)| ≤ ε|t|β + c5

for all (x, t) ∈ Ω× R and some c5 > 0, and

J(u) ≤ c6(1 + ε ‖u‖β) (20)

for every u ∈ X0 and some c6 > 0.
Moreover, by (m3) one has

M̂(t) ≥ mσ|t|σ − c7

for every t ∈ [0,+∞[ and for some c7 > 0.
So, taking account of (20), we obtain

J(u)

Φ(u)
≤ c6(ε ‖u‖β + 1)

mσ ‖u‖2σ − c8

for every u 6= 0 and some c8 > 0 and, due to the definition of β,

lim sup
‖u‖→+∞

J(u)

Φ(u)
≤ c6ε

mσ
. (21)

Conditions (19), (21), together with the arbitrariness of ε, yield

max

{
lim sup
u→0

J(u)

Φ(u)
, lim sup
‖u‖→+∞

J(u)

Φ(u)
,

}
≤ 0,
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and all the assumptions of Theorem 4.1 are satisfied. So, for each compact
interval [a, b] ⊂ ]θ,+∞[ there exists a number % > 0 with the property
described in the conclusion of Theorem 4.1.

Fix λ ∈ [a, b], g ∈ A and set

Ψ(u) :=

∫
Ω
G(x, u(x))dx

for all u ∈ X0; clearly Ψ ∈ C1(X0,R) and Ψ′ is compact, so there exists
µ̃ > 0 such that, for each µ ∈ [0, µ̃], the equation

E ′λ,µ(u) = Φ′(u)− λJ ′(u)− µΨ′(u) = 0

has at least three solutions whose X0-norms are less than %.
This ends the proof.

The simplest example of a function M satisfying the set of assumptions
(m1)− (m3) is clearly a line passing through the origin, to wit M(t) := m1t,
m1 > 0. In this regard, it is immediate to obtain the coming theorem from
the previous one.

Corollary 4.3. Let s, n,Ω,K be as in Theorem 4.2 and let f ∈ A be such
that:

(b1) sup
u∈X0

∫
Ω
F (x, u(x))dx > 0,

(b2) max

{
lim sup
t→0

supx∈Ω F (x, t)

t4
, lim sup
|t|→+∞

supx∈Ω F (x, t)

t4

}
≤ 0.

Then, if we pick m1 > 0 and set

θ :=
m1

4
inf


‖u‖4∫

Ω
F (x, u(x))dx

: u ∈ X0,

∫
Ω
F (x, u(x))dx > 0

 ,

for each compact interval [a, b] ⊂ ]θ,+∞[, there exists a number % > 0 with
the following property: for every λ ∈ [a, b] and every g ∈ A there exists
µ̃ > 0 such that, for each µ ∈ [0, µ̃], the problem{

−m1 ‖u‖2 LKu = λf(x, u) + µg(x, u) in Ω
u = 0 in Rn \ Ω,

(P̃λ,µ)

admits at least three weak solutions whose norms in X0 are less than %.
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Proof. Fix m1 > 0 and apply Theorem 4.2 with M(t) := m1t for all t ≥ 0.
Condition (m3) follows at once with the choice σ = 2; this choice itself
implies (a3) via assumption (b2).

Finally, if we drop the dependence of f from x, we obtain the following
meaningful result.

Corollary 4.4. Let s, n,Ω,K be as in Theorem 4.2, and let f : R → R be
a continuous function such that

(c1) sup
t∈R

F (t) > 0,

(c2) lim sup
t→0

F (t)

t4
≤ 0.

Further, assume that

(c3) lim sup
|t|→+∞

|f(t)|
|t|q

< +∞, for some q ∈ [0, 3[.

Then, if we pick m1 > 0 and set

θ :=
m1

4
inf


‖u‖4∫

Ω
F (u(x))dx

: u ∈ X0,

∫
Ω
F (u(x))dx > 0

 , (22)

for each compact interval [a, b] ⊂ ]θ,+∞[, there exists a number % > 0 with
the following property: for every λ ∈ [a, b] and every g ∈ A, there exists
µ̃ > 0 such that, for each µ ∈ [0, µ̃], the problem{

−m1 ‖u‖2 LKu = λf(u) + µg(x, u) in Ω
u = 0 in Rn \ Ω,

(P̂λ,µ)

admits at least three weak solutions whose norms in X0 are less than %.

Proof. The continuity of f and assumption (c3) imply that f ∈ A and, in
turn, that

F (t)

t4
≤ c9|t|−3 + c10|t|q−3

for all t ∈ R \ {0} and for some c9, c10 > 0. Passing to the lim sup for
|t| → +∞ in the last inequality we obtain that (b2) is completely satisfied
and hence, we get the thesis from Corollary 4.3.

Remark 4.5. Theorem 1.1 stated in Introduction immediately follows by
Corollary 4.4 bearing in mind that, as pointed out in Section 2, in the
classical fractional Laplacian setting one has X0 = Xn,s

0 .

17



5 An upper bound for θ and some consequences

In this final section, by following the approach adopted in [29], we provide
an explicit estimate of the number θ appearing in Corollary 4.4.

To reach our goal we need to require that the kernel, instead of (k1) and
(k2), satisfies the following more restrictive hypothesis:

(k3) there exists α ∈ ]0, 1] such that

α|x|−(n+2s) ≤ K(x) ≤ α−1|x|−(n+2s),

for any x ∈ Rn \ {0}.

It is clear that (k3) implies (k1) and (k2). Moreover, for α = 1 we recover
exactly the singular Riesz kernel and hence the operator (−∆)s. We also
point out that assumption (k3) is not new in the literature; see, for instance,
the already cited paper [21] by Fiscella and Valdinoci.

In the one-dimensional setting, a function K satisfying the above as-
sumption is given by the coming

Example 5.1. Choose s = 3/8, n = 1, α = 1/2 and K : R \ {0} → ]0,+∞[
defined by

K(x) :=



1

2|x|
7
4

for x ∈ [−x0, x0] \ {0}

−x2 +
3

2
for x ∈ [−1,−x0[ ∪ [x0, 1]

2

|x|
7
4

for x ∈ ]−∞,−1[ ∪ ]1,+∞[,

where x0 ∈ ]0, 1[ is the root of the irrational equation

2x
15
4 = 3x

7
4 − 1.

Simple calculations show that K fulfills (k3).

The key point to estimate θ is the construction of a suitable function in
X0 at which evaluating the norm and the functional Jf . To this end, de-
note by B(x0, r) (respectively B(x0, r)) the n-dimensional open (respectively
closed) ball centered at x0 ∈ Rn and of radius r > 0. As Ω is open, we can
certainly choose a point x0 ∈ Ω and a number τ > 0 so that B(x0, τ) ⊂ Ω.
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Fix such x0 and τ and, for any η ∈ ]0, 1[, t ∈ R, define utη to be

utη(x) :=


0 if x ∈ Rn \B(x0, τ)

t

(1− η)τ
(τ − |x− x0|) if x ∈ B(x0, τ) \B(x0, ητ)

t if x ∈ B(x0, ητ),

(23)

for every x ∈ Rn, where | · | denotes the usual Euclidean norm in Rn.
Moreover, for n ∈ {1, 2, 3}, set

ν :=

(
1 +

1

λ1

)
, (24)

where

λ1 := inf
u∈W 1,2

0 (Ω)\{0}

‖∇u‖2L2(Ω)

‖u‖2L2(Ω)

. (25)

The next result gives a localization of utη in X0.

Lemma 5.2. Let τ > 0 be defined as before. For any η ∈ ]0, 1[ and t ∈ R
one has that utη ∈ X0 and

‖utη‖ <
|t|

(1− η)

√
2π

n
2 τn−2(1− ηn)

α
κ1κ2, (26)

where

κ1 :=



2√
π
ν if n = 1(

π

2
+

2

1 + 2s

)
ν if n = 2

8

3

√
π

(
π

4
+

1

1 + 2s

)
ν if n = 3

and κ2 :=
1

2(1− s)
+

2

s
.

Proof. We argue by following the procedure developed in [29, Lemma 3].
More precisely, the direct computation of the (standard) H1(Rn)-seminorm
of utη leads to

[utη]
2
H1(Rn) =

∫
Rn

|∇utη(x)|2 dx =

∫
B(x0,τ)\B(x0,ητ)

t2

(1− η)2τ2
dx

=
t2

(1− η)2τ2
(|B(x0, τ)| − |B(x0, ητ)|) (27)

=
t2π

n
2 τn−2(1− ηn)

(1− η)2Γ
(

1 +
n

2

) ,
19



where |B(x0, τ)| and |B(x0, ητ)| denote respectively the Lebesgue measure
of B(x0, τ) and B(x0, ητ) and

Γ(t) :=

∫ +∞

0
zt−1e−zdz, for all t > 0,

is the usual Gamma function.
Now, since utη ∈ W

1,2
0 (Ω) ⊂ W 1,2(Ω), by [19, Proposition 2.2] it follows

that utη ∈ W s,2(Ω). Moreover, the boundary ∂Ω is Lipschitz, B(x0, τ) ⊂ Ω,

and utη = 0 in Ω \B(x0, τ): by [19, Lemma 5.1] one has that utη ∈ Hs(Rn).
Hence, thanks also to Proposition 3.4 of [19], we have

‖utη‖2 ≤
1

α

∫
R2n

|utη(x)− utη(y)|2

|x− y|n+2s
dxdy

≤ 2

α

(∫
Rn

1− cosx1

|x|n+2s
dx

)∫
Rn

|ξ|2s|Futη(ξ)|2dξ,
(28)

where

Futη(ξ) :=
1

(2π)n/2

∫
Rn

e−iξ·xutη(x)dx

stands for the classical Fourier transform of utη. Now, since s ∈ ]0, 1[, one
has ∫

Rn

|ξ|2s|Futη(ξ)|2dξ <
∫
Rn

(
1 + |ξ|2

)
|Futη(ξ)|2dξ

and furthermore∫
Rn

(
1 + |ξ|2

)
|Futη(ξ)|2dξ =

∫
Rn

(
|utη(x)|2 + |∇utη(x)|2

)
dx

≤ ν
∫

Ω
|∇utη(x)|2dx = ν

[
utη
]2
H1(Rn)

. (29)

Indeed
utη ∈ L2(Rn) if and only if Futη ∈ L2(Rn)

and

‖utη‖2L2(Rn) = ‖Futη‖2L2(Rn); (30)

further, for every j ∈ {1, ..., n}, one has

∂ju
t
η ∈ L2(Rn) if and only if ξjFutη ∈ L2(Rn)
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and

‖∇utη‖2L2(Rn) = ‖|ξ|Futη‖2L2(Rn). (31)

Relations (30) and (31) give∫
Rn

(1 + |ξ|2)|Futη(ξ)|2 dξ = ‖utη‖2L2(Rn) + ‖∇utη‖2L2(Rn). (32)

Hence, by (24) and (25) one has that inequality (29) is a direct conse-
quence of (32). Then by virtue of (29) relation (28) becomes

‖utη‖2 ≤
2ν

α

(∫
Rn

1− cosx1

|x|n+2s
dx

)[
utη
]2
H1(Rn)

.

If n = 3 then∫
R3

1− cosx1

|x|3+2s
dx =

(∫
R2

1

(1 + |x|2)
3+2s

2

dx

)(∫
R

1− cos t

|t|1+2s
dt

)
.

The conclusion follows by (27) and the estimates∫
R2

1

(1 + |x|2)
3+2s

2

dx < 2π

(
π

4
+

1

1 + 2s

)
,

∫
R

1− cos t

|t|1+2s
dt <

1

2(1− s)
+

2

s
.

On the other hand, we also have

∫
Rn

1− cosx1

|x|n+2s
dx <


1

2(1− s)
+

2

s
if n = 1(

π

2
+

2

1 + 2s

)(
1

2(1− s)
+

2

s

)
if n = 2

and hence inequality (26) is completely proved.
Clearly utη : Rn → R is a continuous function, utη ∈ L2(Ω) and by the

above computations it follows that utη ∈ X. Finally utη = 0 in Rn \ Ω and
thus utη ∈ X0.

The following preparatory result will be crucial in the proof of Proposi-
tion 5.4.
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Lemma 5.3. Let τ be as before and let f : R→ R be a continuous function
satisfying (c1). Then there exist t0 ∈ R and η0 ∈]0, 1[ such that∫

Ω
F (ut0η0(x))dx ≥

(
F (t0)ηn0 − (1− ηn0 ) max

|t|≤|t0|
|F (t)|

)
ωnτ

n > 0, (33)

where ωn denotes the volume of the unit ball in Rn.

Proof. On account of (c1), there exists t0 ∈ R such that F (t0) > 0. Now,
let η0 ∈ ]0, 1[ be such that

F (t0)ηn0 − (1− ηn0 ) max
|t|≤|t0|

|F (t)| > 0

and, with the same notation as (23), consider the function ut0η0 , namely

ut0η0(x) :=


0 if x ∈ Rn \B(x0, τ)

t0
(1− η0)τ

(τ − |x− x0|) if x ∈ B(x0, τ) \B(x0, η0τ)

t0 if x ∈ B(x0, η0τ),

(34)

for every x ∈ Rn.
Since

max
x∈Ω
|ut0η0(x)| ≤ |t0|,

it follows that∫
B(x0,τ)\B(x0,η0τ)

F (ut0η0(x))dx ≥ −(1− ηn0 ) max
|t|≤|t0|

|F (t)|ωnτn

and therefore∫
Ω
F (ut0η0(x))dx =

∫
B(x0,η0τ)

F (ut0η0(x))dx+

∫
B(x0,τ)\B(x0,η0τ)

F (ut0η0(x))dx

≥ F (t0)ηn0 τ
nωn +

∫
B(x0,τ)\B(x0,η0τ)

F (ut0η0(x))dx

≥
(
F (t0)ηn0 − (1− ηn0 ) max

|t|≤|t0|
|F (t)|

)
ωnτ

n,

as desired.

Collecting the estimates of Lemmas 5.2 and 5.3 we obtain a concrete
upper bound for the parameter θ, as previously claimed.
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Proposition 5.4. Let θ be defined by (22), t0, η0 as in Lemma 5.3 and
κ1, κ2 as in Lemma 5.2. Then, one has

θ < θK(f,Ω), (35)

with

θK(f,Ω) :=
m1π

nt40τ
n−4(

F (t0)ηn0 − (1− ηn0 ) max
|t|≤|t0|

|F (t)|
)
ωn

(
(1− ηn0 )κ1κ2

α(1− η0)2

)2

.

Proof. Let ut0η0 be the function defined in (34). By Lemma 5.2 ut0η0 ∈ X0 and
by Lemma 5.3, due to the choice of t0 and η0, it follows that∫

Ω
F (ut0η0(x))dx > 0.

So, recalling the definition of θ, in view of inequalities (26) and (33) one has

θ ≤
m1

∥∥ut0η0∥∥4

4

∫
Ω
F (ut0η0(x))dx

<
m1π

nt40τ
n−4(

F (t0)ηn0 − (1− ηn0 ) max
|t|≤|t0|

|F (t)|
)
ωn

(
(1− ηn0 )κ1κ2

α(1− η0)2

)2

and the proof is complete.

Remark 5.5. The upper bound θK(f,Ω) in Proposition 5.4 is a function
of the nonlinearity f through t0 and η0; of the geometry of the domain Ω
through τ and of the kernel K through α and s.

Remark 5.6. We emphasize that, for a fixed τ̄ > 0 and t0 ∈ R such that
F (t0) > 0, the sharp value of the constant θK(f,Ω) is given by

θ?K(f,Ω) := τ̄n−4 min
η∈Σn

λ?(η),

where

Σn :=


 max

|t|≤|t0|
|F (t)|

F (t0) + max
|t|≤|t0|

|F (t)|

1/n

, 1

 ,
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and the real function λ? : Σn → ]0,+∞[ is defined by

λ?(η) :=
m1π

nt40(
F (t0)ηn − (1− ηn) max

|t|≤|t0|
|F (t)|

)
ωn

(
(1− ηn)κ1κ2

α(1− η)2

)2

.

Notice that min
η∈Σn

λ?(η) exists since λ? is continuous on Σn and, as it is easy

to see, one has
lim
η→η̄+0

λ?(η) = lim
η→1−

λ?(η) = +∞,

where

η̄0 :=

 max
|t|≤|t0|

|F (t)|

F (t0) + max
|t|≤|t0|

|F (t)|

1/n

.

Remark 5.7. Assume that Ω = B(x0, r) ⊂ R3 is an open ball centered at
x0 ∈ R3 and of radius r > 1. Then, for m1 = 1 and −LK = (−∆)s, clearly
θK(f,Ω) in Theorem 5.4 coincides with θ? defined in (4) by using the test
function

ut0η0(x) :=


0 if x ∈ R3 \B(x0, 1)

t0
(1− η0)

(1− |x− x0|) if x ∈ B(x0, 1) \B(x0, η0)

t0 if x ∈ B(x0, η0),

for every x ∈ R3, where η0 ∈ Σ3 is such that λ?(η0) = min
η∈Σ3

λ?(η).

We end this paper by exhibiting the example of a nonlinearity satisfying
Theorem 1.1 together with the related estimate of the parameter λ.

Example 5.8. Let Ω := B(0,
√

2) ⊂ R3, s = 7/8, K(x) = |x|−19/4 for any
x ∈ R3 \ {0} and take f(t) := t2 − t for any t ∈ R. It is clear that

sup
t∈R

F (t) = +∞, lim
t→0

F (t)

t4
= −∞,

and

lim
|t|→+∞

|f(t)|
|t|5/2

= 0.

Hence, all the assumptions of Theorem 1.1 are fulfilled. Setting t0 := 2,
η0 := ( 3

√
7 + 2)/4, and considering the fractional problem

(∫
R6

|u(x)− u(y)|2

|x− y|19/4
dxdy

)
(−∆)7/8u = λf(u) in B(0,

√
2)

u = 0 in R3 \B(0,
√

2),
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we obtain that for each compact interval [a, b] localized in the interval]
π3

8η0
3 − 7

(
ν(1− η3

0)

(1− η0)2

(
π

4
+

1

1 + 2s

)(
1

2(1− s)
+

2

s

))2

,+∞

[
,

there exists a number % > 0 for which there are at least three weak solutions

(in X
3,7/8
0 ) whose norm is less than %.
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