The present-day sea level variations and geodetically observed ground deformations in the Mediterranean area are normally ascribed to the combined effect of tectonic or human-driven subsidence and postglacial uplift as a result of the melting of the major Pleistocene ice sheets. However, another potential cause of deformation, only marginally considered to date, is the melting of the glacier that covered the Alps during the last glacial maximum (LGM). The aim of this paper is to predict the long-term sea level variations induced by the melting of both the late-Pleistocene and Alpine ice sheets and compare our results with the relative sea level (RSL) observations available in the Mediterranean region. This task is accomplished solving the sea level equation (SLE) for a spherically symmetric viscoelastic Earth. Our analysis shows that the melting of the Alpine glacier has marginally affected the Holocene sea level variations in the near-field sites in southern France (Marseilles and Roussillon) and the central Tyrrhenian sea (Civitavecchia), and that the RSL predictions are significantly sensitive to the chronology of the remote ice aggregates. The computations, which are performed using a specific mantle viscosity profile consistent with global observations of RSL rise, show that the uplift rate driven by the Alpine isostatic readjustment may account for up to 1/3 or the rates observed at GPS stations in the western portion of the chain. Our results suggest that a thorough modelization of both near- and far-field ice sheets is necessary to gain a better insight into the present-day deformations and sea level variations in the Mediterranean region.

Isostatic rebound following the Alpine deglaciation: impact on sealevel variations and vertical movements in the Mediterranean region

P. STOCCHI;SPADA, GIORGIO;
2005

Abstract

The present-day sea level variations and geodetically observed ground deformations in the Mediterranean area are normally ascribed to the combined effect of tectonic or human-driven subsidence and postglacial uplift as a result of the melting of the major Pleistocene ice sheets. However, another potential cause of deformation, only marginally considered to date, is the melting of the glacier that covered the Alps during the last glacial maximum (LGM). The aim of this paper is to predict the long-term sea level variations induced by the melting of both the late-Pleistocene and Alpine ice sheets and compare our results with the relative sea level (RSL) observations available in the Mediterranean region. This task is accomplished solving the sea level equation (SLE) for a spherically symmetric viscoelastic Earth. Our analysis shows that the melting of the Alpine glacier has marginally affected the Holocene sea level variations in the near-field sites in southern France (Marseilles and Roussillon) and the central Tyrrhenian sea (Civitavecchia), and that the RSL predictions are significantly sensitive to the chronology of the remote ice aggregates. The computations, which are performed using a specific mantle viscosity profile consistent with global observations of RSL rise, show that the uplift rate driven by the Alpine isostatic readjustment may account for up to 1/3 or the rates observed at GPS stations in the western portion of the chain. Our results suggest that a thorough modelization of both near- and far-field ice sheets is necessary to gain a better insight into the present-day deformations and sea level variations in the Mediterranean region.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/1886060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 59
social impact