The presence of Aeromonas spp. in water can represent a risk for human health. Therefore, it is important to know the physiological status of these bacteria and their survival in the environment. We studied the behavior of a strain of Aeromonas hydrophila in river water, spring water, brackish water, mineral water, and chlorinated drinking water, which had different physical and chemical characteristics. The bacterial content was evaluated by spectrophotometric and plate count techniques. Flow cytometric determination of viability was carried out using a dual-staining technique that enabled us to distinguish viable bacteria from damaged and membrane-compromised bacteria. The traditional methods showed that the bacterial content was variable and dependent on the type of water. The results obtained from the plate count analysis correlated with the absorbance data. In contrast, the flow cytometric analysis results did not correlate with the results obtained by traditional methods; in fact, this technique showed that there were viable cells even when the optical density was low or no longer detectable and there was no plate count value. According to our results, flow cytometry is a suitable method for assessing the viability of bacteria in water samples. Furthermore, it permits fast detection of bacteria that are in a viable but nonculturable state, which are not detectable by conventional methods.

Determination of the viability of Aeromonas hydrophila in different types of water by flow cytometry, and comparison with classical methods.

PIANETTI, ANNA;BRUSCOLINI, FRANCESCA;SABATINI, LUIGIA;PAPA, STEFANO
2005

Abstract

The presence of Aeromonas spp. in water can represent a risk for human health. Therefore, it is important to know the physiological status of these bacteria and their survival in the environment. We studied the behavior of a strain of Aeromonas hydrophila in river water, spring water, brackish water, mineral water, and chlorinated drinking water, which had different physical and chemical characteristics. The bacterial content was evaluated by spectrophotometric and plate count techniques. Flow cytometric determination of viability was carried out using a dual-staining technique that enabled us to distinguish viable bacteria from damaged and membrane-compromised bacteria. The traditional methods showed that the bacterial content was variable and dependent on the type of water. The results obtained from the plate count analysis correlated with the absorbance data. In contrast, the flow cytometric analysis results did not correlate with the results obtained by traditional methods; in fact, this technique showed that there were viable cells even when the optical density was low or no longer detectable and there was no plate count value. According to our results, flow cytometry is a suitable method for assessing the viability of bacteria in water samples. Furthermore, it permits fast detection of bacteria that are in a viable but nonculturable state, which are not detectable by conventional methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2302260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact