Among the non-neurological functions of melatonin, much attention is being directed to the ability of melatonin to modulate the immune system, whose cells possess melatonin-specific receptors and biosynthetic enzymes. Melatonin controls cell behaviour by eliciting specific signal transduction actions after its interaction with plasma membrane receptors (MT1, MT2); additionally, melatonin potently neutralizes free radicals. Melatonin regulates immune cell loss by antagonizing apoptosis. A major unsolved question is whether this is due to receptor involvement, or to radical scavenging considering that apoptosis is often dependent on oxidative alterations. Here, we provide evidence that on U937 monocytic cells, apoptosis is antagonized by melatonin by receptor interaction rather than by radical scavenging. First, melatonin and a set of synthetic analogues prevented apoptosis in a manner that is proportional to their affinity for plasma membrane receptors but not to their antioxidant ability. Secondly, melatonin’s antiapoptotic effect required key signal transduction events including G protein, phospholipase C and Ca2+ influx and, more important, it is sensitive to the specific melatonin receptor antagonist luzindole.

Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cell

PATERNOSTER, LAURA;ALBERTINI, MARIA CRISTINA;ACCORSI, AUGUSTO;BUCCHINI, ANAHI ELENA ADA;SPADONI, GILBERTO;DIAMANTINI, GIUSEPPE;TARZIA, GIORGIO;
2007

Abstract

Among the non-neurological functions of melatonin, much attention is being directed to the ability of melatonin to modulate the immune system, whose cells possess melatonin-specific receptors and biosynthetic enzymes. Melatonin controls cell behaviour by eliciting specific signal transduction actions after its interaction with plasma membrane receptors (MT1, MT2); additionally, melatonin potently neutralizes free radicals. Melatonin regulates immune cell loss by antagonizing apoptosis. A major unsolved question is whether this is due to receptor involvement, or to radical scavenging considering that apoptosis is often dependent on oxidative alterations. Here, we provide evidence that on U937 monocytic cells, apoptosis is antagonized by melatonin by receptor interaction rather than by radical scavenging. First, melatonin and a set of synthetic analogues prevented apoptosis in a manner that is proportional to their affinity for plasma membrane receptors but not to their antioxidant ability. Secondly, melatonin’s antiapoptotic effect required key signal transduction events including G protein, phospholipase C and Ca2+ influx and, more important, it is sensitive to the specific melatonin receptor antagonist luzindole.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2504183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 63
social impact