Many known 5-HT7 ligands contain either a serotonin-like or an arylpiperazine structure that, in published SAR studies, are generally supposed to bind the same receptor pocket. Conversely, we explored the hypothesis that two such moieties can co-exist in the same ligand, binding to different pockets. We thus designed and synthesized a set of compounds including both a 5-hydroxyindol-3-ylethyl and a 1- arylpiperazine moieties connected by a short linker. The compounds were tested for their affinity for human 5-HT7 serotonin receptor. We further prepared a novel series of 5-HT7 ligands, where the 5- hydroxyindol-3-ylethyl moiety was bioisosterically replaced by a 3-hydroxyanilinoalkyl one. Among the newly synthesized compounds, potent ligands at the 5-HT7 receptor, behaving as antagonists in functional tests, were identified, even if they showed limited subtype selectivity. Docking studies within a model of the 5-HT7 receptor showed that the binding site can actually accommodate both moieties, with the serotonin-like one in the putative orthosteric site and the arylpiperazine one occupying an accessory pocket. The present results demonstrate that it is possible to devise and develop new 5-HT7 ligands merging two privileged structures in the same molecule.

Towards the development of 5-HT7 ligands combining serotonin-like and arylpiperazine moieties

SPADONI, GILBERTO;BEDINI, ANNALIDA;BARTOLUCCI, SILVIA;TARZIA, GIORGIO;
2014

Abstract

Many known 5-HT7 ligands contain either a serotonin-like or an arylpiperazine structure that, in published SAR studies, are generally supposed to bind the same receptor pocket. Conversely, we explored the hypothesis that two such moieties can co-exist in the same ligand, binding to different pockets. We thus designed and synthesized a set of compounds including both a 5-hydroxyindol-3-ylethyl and a 1- arylpiperazine moieties connected by a short linker. The compounds were tested for their affinity for human 5-HT7 serotonin receptor. We further prepared a novel series of 5-HT7 ligands, where the 5- hydroxyindol-3-ylethyl moiety was bioisosterically replaced by a 3-hydroxyanilinoalkyl one. Among the newly synthesized compounds, potent ligands at the 5-HT7 receptor, behaving as antagonists in functional tests, were identified, even if they showed limited subtype selectivity. Docking studies within a model of the 5-HT7 receptor showed that the binding site can actually accommodate both moieties, with the serotonin-like one in the putative orthosteric site and the arylpiperazine one occupying an accessory pocket. The present results demonstrate that it is possible to devise and develop new 5-HT7 ligands merging two privileged structures in the same molecule.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2596783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact