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ASYMPTOTIC AVERAGE SOLUTIONS

TO LINEAR SECOND ORDER SEMI-ELLIPTIC PDES:

A PIZZETTI-TYPE THEOREM

ALESSIA E. KOGOJ AND ERMANNO LANCONELLI

Abstract. By exploiting an old idea first used by Pizzetti for the classical

Laplacian, we introduce a notion of asymptotic average solutions making point-

wise solvable every Poisson equation Lu(x) = −f(x) with continuous data f ,

where L is a hypoelliptic linear partial differential operator with positive semi-

definite characteristic form.

1. Introduction

The Poisson-type equations related to hypoelliptic linear second order PDE’s

with nonnegative characteristic form cannot be studied in Lp spaces due to the

lack of a suitable Calderon-Zygmund theory for the relevant singular integrals.

Our paper presents a result allowing to satisfactory study such equations in spaces

of continuous functions. We follow a procedure introduced by Pizzetti in his 1909’s

paper [14] based on the asymptotic average solutions for the classical Poisson-

Laplace equation.

1.1. Let Ω be a bounded open subset of Rn, and let f : Ω −→ R be a continuous

bounded function. Let us denote by uf the Newtonian potential of f , i.e.,

uf : Rn −→ R, uf(x) :=

ˆ

Ω

Γ(y − x)f(y) dy.

Here Γ denotes the fundamental solution of the Laplace equation, i.e.,

Γ(x) = cn|x|
2−n, x ∈ Rn r {0},

ωn being the volume of the unit ball in Rn and cn :=
1

n(n− 2)ωn

.

It is well known that uf ∈ C1(Rn,R), while, in general, uf |Ω /∈ C2(Ω,R). How-

ever, in the weak sense of distributions,

(1.1) ∆uf = −f in Ω.
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As a consequence, if the continuous function f is such that

(1.2) uf /∈ C2(Ω,R),

then the Poisson equation

(1.3) ∆v = −f

has no classical solutions, i.e., there does not exist a function v ∈ C2(Ω,R) satisfying

∆v(x) = −f(x) for every x ∈ Ω.

Indeed, assume by contradiction that such a function exists. Then, by (1.1),

∆(uf − v) = 0 in Ω

in the weak sense of distributions, so that, by Caccioppoli–Weyl’s Lemma, there

exists a function h, harmonic in Ω, such that

uf (x)− v(x) = h(x)

a.e. in Ω. Therefore, uf − v being continuous in Ω,

uf = v + h ∈ C2(Ω,R),

in contradiction with (1.2). This proves the existence of continuous functions f

such that the Poisson equation (1.3) is not pointwise solvable. In his paper [14],

Pizzetti introduced a notion of pointwise weak Laplacian, making pointwise solvable

every Poisson equation with continuous data. Pizzetti started from the following

remark. Given a function u of class C2 in Ω one has

(1.4) lim
r−→0

Mr(u)(x) − u(x)

r2
=

1

2(n+ 2)
∆u(x)

for every x ∈ Ω. Here Mr denotes the Gauss average

Mr(u)(x) :=
1

|B(x, r)|

ˆ

∂B(x,r)

u(y) dy,

|B(x, r)| being the volume of B(x, r), the Euclidean ball centered at x with radius

r. Then, if u ∈ C(Ω,R) is such that the limit at the left hand side of (1.4) exists

at a point x ∈ Ω, Pizzetti defines

∆au(x) := 2(n+ 2) lim
r−→0

Mr(u)(x) − u(x)

r2
.

We call ∆au(x) the asymptotic average Laplacian of u at x. Keeping in mind (1.4),

if u ∈ C2(Ω,R), then

∆au(x) = ∆u(x) for every x ∈ Ω.
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We denote by

A(Ω, ∆)

the class of functions u ∈ C(Ω,R), such that ∆au(x) exists at any point x ∈ Ω.

Obviously, A(Ω, ∆) is a (linear) sub-space of C(Ω,R). Moreover, by the previous

remark,

C2(Ω,R) ⊆ A(Ω, ∆).

Pizzetti proved that the Newtonian potentials of continuous bounded functions are

contained in A(Ω, ∆). Precisely he proved the following theorem.

Theorem A (Pizzetti Theorem). Let Ω ⊆ Rn, n ≥ 3, be a bounded open subset of

Rn and let f : Ω −→ R be a bounded continuous function. Then

uf ∈ A(Ω, ∆)

and

∆auf = −f in Ω.

The aim of this paper is to extend the notion of asymptotic average solution and

Pizzetti’s Theorem to the class of linear second order semi-elliptic partial differential

operators that we will introduce in the next subsection.

1.2. We will deal with partial differential operators of the type

(1.5) L =

n
∑

i,j=1

∂xi
(∂xj

aij(x)), x ∈ Rn,

where A(x) := (aij = aji)i,j=1,...,n is a symmetric nonnegative definite matrix,

x 7−→ aji(x), i, j = 1, . . . , n

are smooth functions in Rn and
n
∑

i=1

aii(x) > 0 for every x ∈ Rn.

Together with these qualitative properties we assume that L is hypoelliptic in

Rn and endowed with a smooth fundamental solution

Γ : {(x, y) ∈ Rn × Rn | x 6= y} −→ R,

such that

(i) Γ(x, y) = Γ(y, x) > 0, for every x 6= y;

(ii) limx→y Γ(x, y) = ∞, for every y ∈ Rn;

(iii) limx→∞

(

supy∈K Γ(x, y)
)

= 0, for every compact set K ⊆ Rn;
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(iv) Γ(x, ·) belongs to L1
loc(R

n), for every x ∈ Rn.

We recall that when we say that Γ is a fundamental solution of L we mean that,

for every ϕ ∈ C∞
0 (Rn,R) and x ∈ Rn:

ˆ

Rn

Γ(x, y)Lϕ(y) dy = −ϕ(x).

1.3. Important examples of operators satisfying our assumptions are the “sum of

squares”of homogeneous Hörmander vector fields. Precisely: let

X = {X1, . . . , Xm}

be a family of linearly independent smooth vector fields such that

(H1) X1, . . . , Xm satisfy the Hörmander rank condition at x = 0, that is,

dim{Y (0) | Y ∈ Lie{X1, . . . , Xm}} = n;

(H2) X1, . . . , Xm are homogeneous of degree 1 with respect to a group of dilations

(δλ)λ>0 of the following type

δλ : Rn −→ Rn,

δλ(x) = δλ(x1, . . . , xn) = (λσx1, . . . , λ
σnxn),

where the σj ’s are natural numbers such that 1 ≤ σ1 ≤ . . . ≤ σn.

Then,

(1.6) L =

m
∑

j=1

X2
j

satisfies all the assumptions listed in subsection 1.2 (see [1], [2]).

We stress that the sub-Laplacians on stratified Lie groups in Rn are particular

cases of the operator L in (1.6).

1.4. The extension of Pizzetti’s Theorem to the operator L in (1.5) rests on some

representation formulas on the superlevel set of Γ. If x ∈ R and r > 0, define

Ωr(x) :=

{

y ∈ Rn : Γ(x, y) >
1

r

}

.

We will call Ωr(x) the L-ball centered at x and with radius r. It is easy to recognize

that Ωr(x) is a nonempty bounded open set of Rn. Moreover

(1.7)
⋂

r>0

Ωr(x) = {x}
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and
|Ωr(x)|

r
−→ 0 as r −→ 0.1

Remark 1.1. If L = ∆, then

Ωr(x) = B(x, ρ), with ρ = (cnr)
1

n−2 .

Let Ω ⊆ Rn be open and let u ∈ C2(Ω,R). Then, for every L-ball, Ωr(x) such that

Ωr(x) ⊆ Ω and for every α > −1 we have

(1.8) u(x) = Mr(u)(x) −Nr(Lu)(x),

where Mr and Nr are the following average operators:

(1.9) Mr(u)(x) :=
α+ 1

rα+1

ˆ

Ωr(x)

u(y)K(x, y) dy,

where

K(x, y) :=
〈A(y)∇yΓ(x, y),∇yΓ(x, y)〉

(Γ(x, y))α+2
;

(1.10) Nr(w)(x) :=
α+ 1

rα+1

ˆ r

0

ρα

(

ˆ

Ωr(x)

(

Γ(x, y)−
1

ρ

)

w(y) dy

)

dρ.

The proof of the representation formula (1.8) can be found in [4].

Remark 1.2. If L = ∆ and α =
2

n− 2
, then the kernel K is constant and Mr

becomes the Gauss average on the Euclidean ball B(x, ρ), with ρ = (cnr)
1

n−2 .

Letting

(1.11) Qr(x) := Nr(1) =
α+ 1

rα+1

ˆ r

0

ρα

(

ˆ

Ωr(x)

(Γ(x, y)−
1

ρ

)

dy) dρ,

an easy computation shows that

Qr(x) =

ˆ r

0

Ωρ(x)

ρ2

(

1−
(ρ

r

)α+1
)

dρ.

Remark 1.3. If L = ∆ and α =
2

n− 2
, then, letting ρ = (cnr)

1

n−2 , we get

Mr(u)(x) − u(x)

Qr(x)
= 2(n+ 2)

1
|B(x,ρ)|

´

B(x,ρ)
u(y) dy − u(0)

ρ2
,

so that, by (1.4),

1If E is a measurable set of Rn, |E| denotes its Lebesgue measure.
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(1.12) lim
r−→0

Mr(u)(x)− u(x)

Qr(x)
= ∆u(x).

The limit in (1.12) extends to all the operators L in (1.5). Indeed, if u is a C2

function in an open set Ω ⊆ Rn, from the representation formula (1.8) and the

identity (1.7), using Corollary 2.5 in Section 2, one immediately gets

lim
r−→0

Mr(u)(x) − u(x)

Qr(x)
= Lu(x).

Then, in analogy with the case L = ∆, we introduce the following definition.

Definition 1.4. Let L be a partial differential operator satisfying the assumptions

of subsection 1.2 and let u be a continuous function in an open set Ω ⊆ Rn. We

say that

u ∈ A(Ω,L),

if

lim
r−→0

Mr(u)(x) − u(x)

Qr(x)

exists in R at every point x ∈ Ω. In this case we define

(La(u))(x) := lim
r−→0

Mr(u)(x)− u(x)

Qr(x)
.

Furthermore, if f ∈ C(Ω,R) and there exists u ∈ A(Ω,L) such that

(Lau)(x) = f(x) for every x ∈ Ω,

we say that u is an asymptotic average solution to

Lau = f in Ω.

In the case f = 0 this definition was first introduced in the paper [6].

The main result of our paper is the following theorem which extends Pizzetti’s

Theorem to the operators (1.5).

Theorem 1.5. Let f : Rn −→ R be a compactly supported continuous function.

Define

uf (x) :=

ˆ

Rn

Γ(x, y)f(y) dy, x ∈ Rn.

Then, uf ∈ A(Rn,L) and

Lauf = −f in Rn.

We will prove this theorem in the next section. Here, by using a result in [6], we

show a consequence of Theorem 1.5.
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Theorem 1.6. Let f, u : Rn −→ R be compactly supported continuous functions.

Then,

Lau = −f in Rn

if and only if

Lu = −f in D′(Rn).

Proof. By the previous Theorem 1.5,

Lau = −f in Rn

if and only if

La(u− uf ) = 0 in Rn.

Then, by Corollary 3.4 in [6], u− uf ∈ C∞(Rn,R) and

L(u − uf) = 0

in the classical sense (and vice versa). Since L is hypoelliptic, this is equivalent to

say that

L(u− uf ) = 0 in D′(Rn),

or that

(1.13) L(u) = L(uf ) in D′(Rn).

On the other hand, Γ being a fundamental solution of L, L(uf ) = −f in D′(Rn).

Then, (1.13) can be written as follows:

Lu = −f in D′(Rn).

This completes the proof. �

1.5. Bibliographical note. In recent years asymptotic mean value formulas char-

acterizing classical or viscosity solutions to linear and nonlinear second order Partial

Differential Equations have been proved by many authors; we refer to [6, 12, 11, 8,

5, 10, 7, 13, 3]. In those papers one can find quite exhaustive bibliography on this

subject.

We would also like to quote the papers [4] and [9] where the notion of asymptotic

sub-harmonic function is introduced in sub-Riemannian settings to extend classical

results by Blaschke, Privaloff, Reade and Saks.

2. Proof of Theorem 1.5

For the readers’ convenience, we split this section in two subsections.
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2.1. Let G be a compact subset of Rn and let r > 0. Define

(2.1) Gr :=
⋃

x∈G

Ωr(x).

Then, we have the following lemma.

Lemma 2.1. For every compact set G ⊆ Rn and for every r > 0, the set Gr is

compact.

Proof. It is enough to prove that Gr is bounded. We argue by contradiction and

assume that Gr is not bounded. Then, there exists a sequence (zn) in Gr such that

|zn| −→ ∞.

By the very definition of Gr, for every n ∈ N, there exists xn ∈ G such that

zn ∈ Ωr(xn). This means that

Γ(xn, zn) >
1

r
.

As a consequence,
1

r
< Γ(xn, zn) ≤ sup

x∈G

Γ(x, zn),

so that, by the assumption (iii) related to Γ

0 <
1

r
≤ lim

n−→∞

(

sup
x∈G

Γ(x, zn)

)

= 0.

This contradiction shows that Gr is bounded. �

2.2. In this subsection we prove the following lemma.

Lemma 2.2. Let G be a compact subset of Rn and let r > 0. Then, there exists a

positive constant Cr(G) such that

(2.2) sup
x∈G

Qr(x) ≤ Cr(G).

Proof. Keeping in mind the definition of Qr(x) (see (1.11)) for every x ∈ G we get

Qr(x) ≤
α+ 1

rα+1

ˆ r

0

ρα

(

ˆ

Ωr(x)

Γ(x, y) dy

)

dρ(2.3)

≤ (by (2.1))
α+ 1

rα+1

ˆ r

0

ρα
(
ˆ

Gr

Γ(x, y) dy

)

dρ.
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On the other hand, if ϕ ∈ C∞
0 (Rn,R) is such that ϕ = 1 on Gr, ϕ ≥ 0 (such a

function exists thanks to Lemma 2.1), we have
ˆ

Gr

Γ(x, y) dy ≤

ˆ

Rn

ϕ(y)Γ(x, y) dy

≤ sup
x∈G

ˆ

Rn

ϕ(y)Γ(x, y) dy

= Cϕ(G).

Using this estimate in (2.3) we obtain

sup
x∈G

Qr(x) ≤ Cϕ(G)
α + 1

rα+1

ˆ r

0

ρα dρ

= Cϕ(G) := Cr(G).

�

Remark 2.3. Since Qρ(x) ⊆ Qr(x) for every ρ ∈]0, r[, we can assume

Cρ(G) ≤ Cr(G)

for every 0 < ρ < r.

2.3. Now, we show a kind of continuity property of the Ωr(x) balls with respect

to the Euclidean topology. Precisely, we prove the following lemma.

Lemma 2.4. For every x ∈ Rn and for every R > 0 there exists r > 0 such that

Ωr(x) ⊆ B(x,R).

Proof. We still argue by contradiction and assume the existence of R > 0 such

that Ωr(x) * B(x,R) for every r > 0. Then, if (rn) is a sequence of real positive

numbers such that rn ց 0, for every n ∈ N there exists yn ∈ Ωrn(x) such that

yn /∈ B(x,R).

This means

yn /∈ B(x,R) and Γ(x, yn) >
1

rn
.

Since Γ(x, y) −→ 0 as y −→ ∞ and
1

rn
−→ ∞, the sequence (yn) is bounded. As

a consequence, we may assume

lim
n−→∞

yn = y∗

for a suitable y∗ ∈ Rn. Then y∗ /∈ B(x,R). In particular y 6= x so that Γ(x, y) < ∞.

On the other hand,

Γ(x, y∗) = lim
n−→∞

Γ(x, yn) ≥ lim
n−→∞

1

rn
= ∞.
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This contradiction proves the lemma. �

From the previous lemma we obtain the following corollary.

Corollary 2.5. Let f : Rn −→ R be a continuous function. Then, for every

x ∈ Rn,

sup
y∈Ωr(x)

|f(y)− f(x)| −→ 0 as r −→ 0.

Proof. Since f is continuous at x, for every ε > 0 there exists R > 0 such that

sup
y∈B(x,r)

|f(y)− f(x)| < ε.

By the previous lemma, there exists r0 > 0 such that Ωr0(x) ⊆ B(x, r). Then, for

every r < r0,

sup
y∈Ωr(x)

|f(y)− f(x)| ≤ sup
y∈Ωr0

(x)

|f(y)− f(x)| ≤ sup
y∈B(x,r)

|f(y)− f(x)| < ε.

We have so proved that for every ε > 0 there exists r0 > 0 such that

sup
y∈Ωr(x)

|f(y)− f(x)| < ε

for every r < r0. Hence,

lim
r−→0

(

sup
y∈Ωr(x)

|f(y)− f(x)|

)

= 0.

�

2.4. Let f as in Theorem 1.5 and, to simplify the notation, let us denote uf by u.

The aim of this subsection is to prove the following identity:

(2.4) u(x) = Mr(u)(x) +Nr(f)(x) ∀x ∈ Rn.

To this end we choose a sequence (fp) in C∞
0 (Rn,R) with the following properties:

(i) there exists a compact set K ⊆ Rn such that supp f ⊆ K and supp fp ⊆ K

for every p ∈ N;

(ii) supK |fp − f | −→ 0 as p → ∞.

For simplicity reasons, let us put up = ufp , i.e.,

up(x) =

ˆ

Rn

Γ(x, y)fp(y) dy =

ˆ

K

Γ(x, y)fp(y) dy.

Then, by Lebesgue’s dominated convergence Theorem,

u(x) = lim
p−→∞

up(x) =

ˆ

K

Γ(x, y) lim
p−→∞

fp(y) dy,
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for every x ∈ Rn. Actually, we have a stronger result. For every compact set

G ⊆ Rn,

sup
G

|up − u| ≤ sup
x∈G

∣

∣

∣

∣

ˆ

K

Γ(x, y)(fp(y)− f(y)) dy

∣

∣

∣

∣

≤ sup
K

|fp − f | sup
x∈G

ˆ

K

Γ(x, y) dy

= C(G,K) sup
K

|fp − f |.

We explicitly observe that C(G,K) is a strictly positive finite constant.

Hence,

(2.5) sup
G

|up − u| −→ 0 as p −→ ∞.

Moreover, for every p ∈ N,

up ∈ C∞(Rn,R) and Lup = −fp.

Then, by identity (1.8),

up(x) = Mr(up)(x)−Nr(Lup)(x)

= Mr(up)(x) +Nr(fp)(x)

for every p ∈ N.

We have already noticed that up(x) −→ u(x) as p −→ ∞.

To prove (2.4) we now show that

lim
p−→∞

Mr(up)(x) = Mr(u)(x)(2.6)

and

lim
p−→∞

Nr(fp)(x) = Nr(f)(x).(2.7)

For every x ∈ Rn we have

|Mr(up)(x) −Mr(u)(x)| = |Mr(up − u)(x)|

≤ sup
Ωr(x)

|up − u|M1(1)(x)

= sup
Ωr(x)

|up − u|.

Since Ωr(x) is compact (see Lemma 2.1), and keeping in mind (2.5), the last right

hand side goes to zero as p −→ ∞. Then,

|Mr(up)(x) −Mr(u)(x)| −→ 0 as p −→ ∞,

proving (2.6).
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Let us now prove (2.7). For every x ∈ Rn, we have

|Nr(fp)(x) −Nr(f)(x)| ≤ |Nr(|fp − f |)(x)|

≤ sup
K

|fp − f |Qr(x).

Then, for every compact set G ⊆ Rn,

sup
G

|Nr(fp)−Nr(f)| ≤ sup
K

|fp − f | sup
x∈G

|Qr(x)|

≤ (by (2.2)) Cr(G) sup
K

|fp − f |.

So we have proved that (Nr(fp)) is uniformly convergent to Nr(f) on every compact

subset of Rn. This, in particular, implies (2.7).

2.5. In this subsection we complete the proof of Theorem 1.5. To this end we first

remark that, thanks to (2.4), for every x ∈ Rn, we have

Mr(u)(x)− u(x)

Qr(x)
= −

Nr(f)(x)

Qr(x),

so that, as f(x) is constant with respect to y ∈ Ωr(x),
∣

∣

∣

∣

Mr(u)(x)− u(x)

Qr(x)
+ f(x)

∣

∣

∣

∣

=
1

Qr(x)
|Nr(f(x)− f)(x)|

≤ sup
y∈Ωr(x)

|f(u)− f(y)|Qr(x).

By Corollary 2.5 and Remark 2.3, the left hand side of the previous inequality

goes to zero as r −→ 0. Hence,

lim
r−→0

Mr(u)(x)− u(x)

Qr(x)
= −f(x)

for every x ∈ Rn. This completes the proof of Theorem 1.5.

Declarations

- Conflict of interest: The authors declare that they have no conflict of in-

terest.

- Data availability: Data sharing not applicable to this article as no datasets

were generated or analysed during the current study.

- Funding: The first author has been partially supported by the Gruppo

Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
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homogeneous Hörmander operators. Ann. Mat. Pura Appl. (4), 201(4):1875–1934, 2022.

[3] P. Blanc, F. Charro, J. J. Manfredi, and J. D. Rossi. Asymptotic mean-value formulas for

solutions of general second-order elliptic equations. Adv. Nonlinear Stud., 22(1):118–142,

2022.

[4] A. Bonfiglioli and E. Lanconelli. Subharmonic functions in sub-Riemannian settings. J. Eur.

Math. Soc. (JEMS), 15(2):387–441, 2013.

[5] F. Ferrari. Mean value properties of fractional second order operators. Commun. Pure Appl.

Anal., 14(1):83–106, 2015.

[6] C. E. Gutiérrez and E. Lanconelli. Classical viscosity and average solutions for PDE’s with

nonnegative characteristic form. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend.

Lincei (9) Mat. Appl., 15(1):17–28, 2004.

[7] M. Ishiwata, R. Magnanini, and H. Wadade. A natural approach to the asymptotic mean

value property for the p-Laplacian. Calc. Var. Partial Differential Equations , 56(4):Paper No.

97, 22, 2017.

[8] B. Kawohl, J. J. Manfredi, and M. Parviainen. Solutions of nonlinear PDEs in the sense of

averages. J. Math. Pures Appl. (9), 97(2):173–188, 2012.

[9] A. E. Kogoj and G. Tralli. Blaschke, Privaloff, Reade and Saks theorems for diffusion equa-

tions on Lie groups. Potential Anal., 38(4):1103–1122, 2013.

[10] P. Lindqvist and J. J. Manfredi. On the mean value property for the p-Laplace equation in

the plane. Proc. Amer. Math. Soc., 144(1):143–149, 2016.

[11] J. J. Manfredi, M. Parviainen, and J. D. Rossi. An asymptotic mean value characterization

for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal.,

42(5):2058–2081, 2010.

[12] J. J. Manfredi, M. Parviainen, and J. D. Rossi. An asymptotic mean value characterization

for p-harmonic functions. Proc. Amer. Math. Soc., 138(3):881–889, 2010.

[13] B. Mebrate and A. Mohammed. Harnack inequality and an asymptotic mean-value property

for the Finsler infinity-Laplacian. Adv. Calc. Var., 14(3):365–382, 2021.

[14] P. Pizzetti. Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie

di una sfera. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. Serie V, 18:182–185, 1909.

Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino
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