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Abstract
The United Nations aim to perform a transition toward a sustainable environment
where people can live by decoupling economic growth from resource use. Through the
definition of the Agenda 2030 and the corresponding sustainable development goals,
this transition asks for a lower dependence on non-renewable resources and for the use
of recycledmaterials in a finite term perspective. In this respect, we provide an optimal
controlmodelwhich searches for an efficient allocation of labor between non-recycling
and recycling sectors exploiting a given non-renewable resource. The optimization
process is carried out over a finite time horizon in accordance with the need of rapidly
achieving the targets imposed by the ecological transition. By employing the classical
tools of optimal control theory, a complete theoretical analysis of the model well-
posedness is developed under the assumption of linear production in both sectors. The
approach is applied in order to simulate a hypothetical test case.
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1 Introduction

Since 2016, through the definition of the Agenda 2030 and the corresponding Sustain-
able Development Goals, the United Nations (UNs) have drawn a particular attention
to a necessary transition toward a sustainable scenario where people and the Earth
could coexist and flourish (see United Nations 2015). Today, this transition has already
begun, but the urgency of an action is higher than the actual velocity of the transition
itself. European Union (EU) has concretized this issue as an urgent deadline in the
EU Green Deal with the purpose of reinforcing existing agreements and managing
the “just and inclusive transition” transformation (see European Commission 2023).
It is required economic growth to be decoupled from resource use; this means that
a lower dependence on non-renewable (or depletable) resources and a better waste
management are encouraged by the adoption of closed-loop approach including the
use of recycled materials. Non-renewables include a large variety of resource stocks,
such as oil, coal, gas, uranium, and gold, which are generated through natural pro-
cesses with very slow formation rate that is timescales relevant to humans; therefore,
their endowment is fixed and finite in the Earth’s crust and environmental systems
(see Perman et al. 2003; Sweeney 1993; Withagen 1999; Hotelling 1931). Depletable
resources have a great importance in the current socio-economic scenario. First of all,
most of them still represent important inputs for industrial production; second, their
natural stock is limited and geographically concentrated, so that supply shortages may
negatively affect global markets. Finally, their waste disposal efficiency and recycling
involve crucial issues for the ecological transition. In 2014, the EUWaste Framework
Directive outlined the waste management hierarchy which underlines the importance
of waste production prevention, re-use, recycling, recovery and ending with disposal.
Within this hierarchy, recycling plays a pivotal role since it allows to use generated
waste as a new resource for production and it also allows to scale down the demand
for extraction of resources from ores (European Environmental Agency 2014). Recy-
cling process is an important part of circular economy approach as well. It minimizes
the amount of waste sent to landfill and helps in preventing and reducing the nega-
tive socio-economic-environmental effects of using raw natural resources (European
Environmental Agency 2021). Given this scenario, this paper deals with the problem
of both preserving a non-renewable natural resource, whose shortage could lead to
economic and environmental depletion, and reducing the waste sent to landfill by
recycling. In the framework of optimal control theory, we search for an optimal allo-
cation of inputs in order to maximize the social welfare determined by consumption
patterns and environmental damages, which are generated by the waste disposal and
by the usage of the non-renewable depletable input.

The economic literature studied the waste management under a municipality per-
spective at first. In this context, several papers have dealt with optimal control models
for analyzing different waste management strategies, such as recycling procedure and
landfilling (see Highfill and McAsey 1997; Huhtala 1997). More recently, a slightly
different perspective has been adopted to understand which is the interaction among
recycling, employment of natural resource and consumption (see Highfill andMcAsey
2001; Huhtala 1999; André and Cerdá 2006). In this approach, both the waste man-
agement sector and the conventional production, requiring the resource extraction, are

123



Recycled and non-recycled exhaustible resource…

involved in the optimal control process. Inspired andmotivated by the current scenario
and by the above-mentioned literature, we focus our attention on a specific optimal
strategy to control the use of both non-recycled and recycled depletable resourceswhen
the time horizon is set as finite. Our approach may be considered as the finite coun-
terpart of the analysis developed in Huhtala (1999), where the study of the economy
steady state is carried out over the infinite time horizon.

Our assumption of a fixed and finite temporal threshold is original and crucial. On
one hand, it is motivated by the UNs and EU policies which impose that some spe-
cific environmental targets must be achieved up to a given year in order to complete
the ecological transition. On the other hand, accounting for a finite time horizon also
allows to better understand the short-term dynamics of the non-renewable resource
management and the corresponding recyclability. Fast responses can potentially sup-
port the ecological transition and reduce environmental damages for the forthcoming
future. Our model emphasizes the effects of technological characteristics of recycling
and extraction programs, as well as the social pressure about environmental issues on
policymakers.

Precisely, our model assumes that the production of a consumption good requires
the employment of a given amount of input, represented by a non-renewable resource,
in its non-recycled and recycled form. The economy is endowedwith a fixed amount of
labor which is employed between the non-recycling and the recycling sectors. The first
sector refers to the production of the raw non-recycled material, while the second one
relates to the recovery of the recycled resource from waste disposal. The social plan-
ner efficiently allocates labor so that the social welfare is maximized by accounting
for both current and future damages. Thus, the main issues faced by the whole eco-
nomic system are: the environmental damages caused by both the use of non-recycled
resource and the accumulation of waste stock, the optimal allocation of labor between
non-recycling and recycling sectors and the management of non-recycled depletable
resource. From amathematical viewpoint, the problem is faced by classical techniques
of optimal control theory (see Léonard and Van Long 1992; Weber 2011; Halkos and
Papageorgiou 2015). The objective function includes a suitable damage function along
the whole time horizon together with a scrap value function, which involve both cur-
rent and future damages due to the employment of non-recycled depletable resource
and to the waste accumulation. We provide necessary optimality conditions under the
assumption of linear production in both non-recycling and recycling sectors. A com-
plete theoretical analysis is carried out in order to prove the model well-posedness.
The study is completed by a simulation of a hypothetical case of a non-renewable
resource. By considering different scenarios regarding the technological framework
and future damages, our paper contributes to the existing literature as a support for
social planners to choose suitable strategies for non-renewable resource conservation
and waste recycling management. In this respect, we would like to notice that the
optimal allocation of labor together with the related state variables is not available in
closed form, and then, they need to be approximated. In the literature, a partitioned
symplectic Runge–Kutta scheme is determined as the correct numerical tool for han-
dling the Lagrangian’s first-order conditions on the discrete formulation (see Bonnans
and Varin 2006; Hager 2000; Ragni et al. 2010). In this respect, we adopt the numer-
ical procedure proposed in Diele et al. (2011), where the nearly Hamiltonian system
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arising from the necessary optimality conditions is discretized by exploiting the expo-
nential Lawson integration in the framework of a partitioned symplectic Runge–Kutta
method.

Concerning the outline of this paper, the starting point for defining the economic
model is described in Sect. 2, where the assumptions on consumption and production
are stated. Then, the optimal control plan is defined in Sect. 3. We characterize the
optimal trajectories for the production and we study their properties in Sect. 4. In this
respect, a characterization of the optimal control variable is provided in Sect. 5 under
the assumption of linear production. The model is applied for simulating a hypo-
thetical non-renewable resource’s employment in a mixed conventional and recycling
production process; the results are described in Sect. 6. Finally, conclusions are drawn
in Sect. 7.

2 Assumptions on consumption and production

We account for an economy where a final consumption good is produced through a
non-renewable resource. This input can be purchased from two sectors: one relates to a
conventional production of the resource itself (non-recycling sector) and the other one
exploits the existing waste stock obtained by a recycling process (recycling sector).
Both inputs are employed for the production of the final good C over a time horizon
[0, T ], with given length T > 0. Therefore, at each time t , C(t) is made up of two
different inputs related to the same exhaustible resource: the non-recycled material
denoted by V (t) and the recycled material R(t), which is recovered from a waste
disposal site. Therefore, production depends on these two factors, respectively; more
precisely, it is evaluated by the CES function

C = [
θV ρ + (1 − θ)Rρ

]1/ρ
, (1)

where θ ∈ (0, 1) is a time-invariant parameter with θ
1−θ

[ R
V

]1−ρ
representing the

technical rate of substitution (in absolute value) and ρ is related to the elasticity of
substitution between non-recycled and recycled materials. In the case when the two
inputs are qualitatively homogeneous (i.e., they are perfect substitutes), then ρ = 1
and the CES function is linear. In our framework, we assume that 0 < ρ < 1, meaning
that the two inputs are imperfect substitutes. This means that the quality of recycled
and non-recycled resources is different, and in our context, we may suppose that the
quality of the recycled input does not exceed the quality of the non-recycled one.

Concerning the non-recycled stock resource,we denote by S(t) the stock of resource
at time t ; then, the following equation describes the time evolution of the stock
depletion process

Ṡ(t) = −V (t),

S(0) = S0, (2)
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where S0 > 0 represents the initial amount of the available non-recycled input.Accord-
ing to Eq. (2), the evolution over time of the non-recycled input corresponds to the
amount of resource implemented in the production process.

From a technical perspective, the consumption process generates waste which can
be partially saved and recycled for the production. For the sake of simplicity, both
waste production and recycling process are assumed to be instantaneous and occur at
the same time. In this framework, let W (t) denote the cumulative amount of waste at
time t . As the flow of waste R(t) is used by the recycling sector and thus, removed
from the accumulated stockW (t), then the process of waste accumulation is modeled
by the following equation

Ẇ (t) = γ1V (t) − (1 − γ2)R(t),
W (0) = W0,

(3)

whereW0 ≥ 0 represents the initial stock of recyclablewaste inherited at the beginning
of the process from the past, γ1 and (1−γ2) denote thewaste generation rate of the non-
recycled and the recycled materials, respectively. Assume that the constant parameters
γ1 and γ2 are exogenous such that γ1, γ2 ∈ (0, 1). In the sequel, we suppose that the
waste content rate γ1 of non-recycled resource exceeds the waste content rate γ2 of
recycled input so that γ1 > γ2.

Moreover, we also assume that there is no waste degradation process.
The considered economy is endowed with a fixed amount of labor L > 0, which is

devoted to get both inputs and is taken as exogenous. Let lv(t) and lr (t) be the labor
demand used in conventional sector and recycling at every time t , respectively, so that
the labor market equilibrium is given by the following condition

lv(t) + lr (t) = L. (4)

The marginal productivity of labor is positive and decreasing in both sectors, then
production functions V (t) = h(lv) and R(t) = g(lr ) satisfy the following features:
h(0) = g(0) = 0, h′(lv) > 0, g′(lr ) > 0, h′′(lv) ≤ 0 and g′′(lr ) ≤ 0. For the sake of
notation, we denote l(t) = lv(t) for each t ∈ [0, T ]. From a mathematical viewpoint,
function l(t) lies in the following space of bounded functions:

A = {l : [0, T ] → R l is Lebesgue measurable and 0 ≤ l(t) ≤ L, ∀t ∈ [0, T ]},

which represents the admissible set for labor. Due to condition (4), we have lr (t) =
L − l(t) at any time and notice that lr ∈ A. In this respect, we set V (t) and R(t) as
follows

V (t) = h(l(t)), R(t) = g(L − l(t)), (5)

for any t . In the sequel, (5) is exploited in (2) and (3), where forcing terms are bounded
by the following relationships
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− h(L) ≤ −V (t) ≤ 0, −(1 − γ2)g(L) ≤ γ1V (t) − (1 − γ2)R(t) ≤ γ1h(L),

(6)

at any time t . We notice that the previous inequalities hold due to the production
function monotonicity. From an economic point of view, the first bound in (6) means
that the employment of the non-recycled input cannot exceed its maximum admissible
level when the total amount of labor is completely devoted to the non-recycling sector.
On the other hand, the secondbound completes thefirst one, but it refers to the recycling
sector. More precisely, the waste accumulation of non-renewable resource cannot
exceed neither the maximum admissible level of resource when the total amount of
labor is used in the non-recycling sector nor the maximum admissible level of resource
when labor is totally employed in the recycling sector.

As a further remark, the assumption that labor l(t) is Lebesguemeasurable is crucial
in the analysis of well-posedness developed in the next Sect. 5. Actually, it implies that
right-hand sides can be integrated in (2) and (3); thus, the differential system admits
a unique solution. We notice that, by integrating equations (2) and (3) in time and
exploiting bounds (6), we get

S0 − h(L)T ≤ S(t) ≤ S0,

and

W0 + (γ2 − 1)g(L)T ≤ W (t) ≤ W0 + γ1h(L)T ,

for any time t . In the sequel, we assume that the time horizon length T does not exceed
an established temporal threshold so that

T ≤ min

{
S0

h(L)
,

W0

(1 − γ2)g(L)

}
. (7)

Condition (7) assures that the following inequalities hold

S0 − h(L)T ≥ 0, W0 + (γ2 − 1)g(L)T ≥ 0. (8)

As a consequence, S(t) andW (t) get non-negative values, i.e., S(t) ≥ 0 andW (t) ≥ 0,
and they are bounded functions of time. From an economic viewpoint, we remark that
T does not exceed the minimum value between two different temporal levels. The
first one is the time necessary for completely depleting the original non-recycled
resource in the case when labor is all devoted to the non-recycling sector. The second
level represents the time necessary for letting the recyclable part of waste disposal be
empty in the case when labor is totally employed in the recycling sector.

We will see that inequalities in (8) are crucial in order to prove the results in the
next Sect. 5.
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3 Optimal production program

A crucial issue in the circular economy approach is represented by guaranteeing
the maximum welfare benefit from economic activities provided that non-renewable
resource stock is maintained over time and the waste recycling capability increases.

In this framework, we analyze the social planner program which consists in effi-
ciently allocating a restricted amount of labor, l(t), in order to maximize the social
welfare that accounts for different contributions. The first one consists of the con-
sumers’ utility U (C) deriving from the consumption of the final produced good. In
order to provide an example of optimal trajectories, we consider a standard isoelastic
utility function of parameter σ ∈ (0, 1) given by

U (C) = C1−σ

1 − σ
;

therefore, due to (1) and (5), the utility depends on labor l according to the following
relationship

U (C(l)) = [θ [h(l)]ρ + (1 − θ) [g(L − l)]ρ](1−σ)/ρ

1 − σ
. (9)

We also assume that the social welfare takes into account the environmental benefit
and damage related to recycled and non-recycled stocks both in the transient horizon
[0, T ] and in the future. Actually, social welfare grows according to the benefit B(S)

which comes from preserving the non-renewable resource stock S(t) over the whole
time horizon. The term B(S) is assumed to be strictly increasing with B(0) = 0 and
strictly concave in S, then B ′(S) > 0, B(S) ≥ 0 and B ′′(S) < 0. We also suppose
that social welfare diminishes according to the environmental damage D(W ) caused
by accumulating waste stock W (t) in the transient at any time over the whole interval
[0, T ]. This damage function is strictly increasing with D(0) = 0 and strictly convex
in W , then D′(W ) > 0, D(W ) ≥ 0 and D′′(W ) > 0.

Furthermore, in a future perspective, we add another term �(ST ,WT ) which
depends on final values S(T ) = ST and W (T ) = WT and can be interpreted as
the value of an integral of future utility flow related to the future damage associated
with the resource implementation. Indeed, this term is split into two contributions as
�(ST ,WT ) = �1(ST ) + �2(WT ); in particular, according to some examples in the
literature (see for instance Léonard and Van Long (1992)), we set

�1(ST ) = ν ST e−δT , �2(WT ) = −μWT e−δT ,

where ν > 0 andμ > 0 represent two constantweightswhich are exogenously chosen.
The first term�1(ST ) represents the value of an integral of future utility flow related to
the future damage associated with the exhaustible original resource implementation,
starting from time T with a non-renewable resource stock ST . We notice that �1(ST )

is increasing with the value ST , which means that the future utility flow is higher as ST
increases. In this respect, the damage is as lower as the future utility flow �1(ST ) gets
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a higher value, which corresponds to a higher non-renewable input stock ST . On the
other hand, the second term �2(WT ) can be interpreted as the value of an integral of
future utility flow related to the future damage from waste disposal site starting from
time T with a waste stock WT . As �2(WT ) is decreasing with the value WT , then
the future utility flow is higher as WT decreases. More precisely, the environmental
damage due to the cumulative amount of non-renewable resource in waste disposal is
as lower as the future utility flow �2(WT ) gets a higher value, which corresponds to
a smaller value for waste stock WT .

Under the previous assumptions, the objective function is defined as

J (l(·)) =
∫ T

0
e−δt [U (C(l(t))) + B(S(t)) − D(W (t))] dt + �(ST ,WT ), (10)

where δ > 0 is the constant discount rate over time. Our goal consists of searching
for a control l∗ ∈ A such that

J (l∗) = max
l∈A

J (l), (11)

subject to conditions (5) and state equations (2) and (3).

4 Optimal trajectory of the economy

With the aim of characterizing an optimal strategy for allocating the labor devoted
to non-recycling and recycling sectors, we first define the current value Hamiltonian
H = H(l, S,W , ϕ1, ϕ2) as

H = [C(l)]1−σ

1 − σ
+ B(S) − D(W ) + ϕ1 [−h(l)] + ϕ2 [γ1h(l) − (1 − γ2)g(L − l)],

where the costate variables ϕ1 and ϕ2 are the shadow prices of the non-recycled
resource and recyclable stock, respectively. According to the well-known Pontrya-
gin’s Maximum Principle, we notice that an optimal solution l∗(t) together with state
variables S(t),W (t) and costate onesϕ1(t),ϕ2(t)must satisfy the following optimality
necessary conditions:

(i) l∗(t) maximizes H(l, S(t),W (t), ϕ1(t), ϕ2(t)), provided that l∗(t) belongs to the
admissible set [0, L];

(i i) state dynamics is described by (2)-(3), where the role of l(t) is played by l∗(t),
and costate variables are continuous functions of t with piecewise continuous
derivatives which satisfy the following equations

ϕ̇1(t) = δϕ1(t) − B ′(S(t)), ϕ1(T ) = ν e−δT ,

and

ϕ̇2(t) = δϕ2(t) + D′(W (t)), ϕ2(T ) = −μ e−δT .
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These equations can be integrated in order to obtain

ϕ1(t) = νe−δ(2T−t) +
∫ T

t
e−δ(s−t)B ′(S(s))ds, (12)

ϕ2(t) = −μe−δ(2T−t) −
∫ T

t
e−δ(s−t)D′(W (s))ds, (13)

for all t ∈ [0, T ]. It is worthwhile to notice that ϕ1 gets non-negative values since the
non-recycled resource stock is a “good” for the society. This means that the larger the
stock of non-recycled resource, the better is for the society, since we are indirectly
preserving Earth resources. Furthermore, ϕ2 gets negative values, as expected, since
the waste stock may represent a “bad” for the society. Specifically, the larger is the
waste stock, the worse is social welfare since waste harms the environment; on the
other hand, a larger waste stock implies a larger stock for recycling. The condition
ϕ2 ≤ 0 yields that the negative effect of harming the environment prevails over the
positive effect of increasing the endowment of recyclable resource.

As we search for l∗ maximizing the Hamiltonian function H so that the neces-
sary optimality condition stated in item (i) is satisfied, then we need to evaluate the
following derivative

∂H

∂l
= C(l)1−σ−ρ · ϒ(l) − �(l, ϕ1, ϕ2),

where we set

�(l, ϕ1, ϕ2) = ϕ1h
′(l) − ϕ2

[
γ1h

′(l) + (1 − γ2)g
′(L − l)

]
,

and

ϒ(l) = θ
h′(l)

h(l)1−ρ
− (1 − θ)

g′(L − l)

g(L − l)1−ρ
.

We notice that

dC

dl
= [C(l)]1−ρϒ(l),

then �(l, ϕ1, ϕ2) is the marginal benefit related to the recycled input and the marginal
consumption arising from the employment of a marginal unit of labor in the non-
recycling sector depends on ϒ(l). We also remark that, due to the assumptions on
functions h(l) and g(l), the following Inada conditions hold:

lim
l→0+ ϒ(l) = +∞, lim

l→L− ϒ(l) = −∞. (14)

They are crucial in order to prove the next result providing a necessary condition for
optimal control.
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Proposition 1 Let l∗ ∈ A be an optimal control. Then, there exists a constant value
L̂ ≤ L such that ϒ(L̂) = 0 and the following relationships hold for all t ∈ [0, T ]:

0 ≤ l∗(t) ≤ L̂, (15)

and

C(l∗(t))1−σ−ρ · ϒ(l∗(t)) = �(l∗(t), ϕ1(t), ϕ2(t)). (16)

Furthermore, the optimal labor satisfies the following condition

θ

1 − θ

[
g(L − l∗(t))
h(l∗(t))

]1−ρ

≥ g′(L − l∗(t))
h′(l∗(t))

, (17)

at any time t ∈ [0, T ].
Proof We assume that l∗ represents an optimal control and exploit the necessary con-
dition stated in the previous item (i). In this respect, according to the evaluation of
the shadow prices in (12) and (13), we have ϕ1 > 0, ϕ2 < 0; moreover, h′(l) > 0,
g′(L − l) > 0 for all l. Then, � gets finite values such that �(l, ϕ1, ϕ2) > 0 for any l,
ϕ1 and ϕ2. Furthermore, as already mentioned, we have ϒ(l) → +∞ as l → 0+ and
ϒ(l) → −∞ as l → L−. In addition, we get

ϒ ′(l) = (ρ − 1)
(
θ [h(l)]ρ−2[h′(l)]2 + (1 − θ)[g(L − l)]ρ−2[g′(L − l)]2

)

+θ [h(l)]ρ−1h′′(l) + (1 − θ)[g(L − l)]ρ−1g′′(L − l) < 0,

for any 0 < l < L . Therefore, ϒ(l) is decreasing with respect to l; thus, the existence
of a constant threshold L̂ , 0 < L̂ < L , can be established such that ϒ(L̂) = 0 and
ϒ(l) > 0 for l ∈ (0, L̂).

In this framework, we recall that 0 < ρ < 1 and notice that C gets finite values
such that C(l) > 0 at each l ∈ A. Then, for any ϕ1 and ϕ2, Inada conditions (14)
yield [C(l)]1−σ−ρ ·ϒ(l)−�(l, ϕ1, ϕ2) → +∞ as l → 0+ and [C(l)]1−σ−ρ ·ϒ(l)−
�(l, ϕ1, ϕ2) → −∞ as l → L−.

As a conclusion, ∂H/∂l → +∞when l → 0+ and ∂H/∂l → −∞when l → L−.
Then, since function ∂H/∂l is continuous with respect to l, it follows that ∂H/∂l
nullifies at l∗(t) which lies inside interval (0, L). This assertion yields (16).

In addition, due to condition � > 0, l∗ has to satisfy relationship ϒ(l∗(t)) > 0
which yields conditions (15) and (17) to be satisfied. In thisway, the proof is completed.


�
In the previous proof, we getϒ(l∗) > 0: this condition means that the optimal path

l∗ is reached in the case when the consumption is increasing with respect to the labor
employed in the non-recycling sector.

Moreover, equation (16), which represents the so-called Euler condition, states that
the optimal labor allocation occurs when the marginal benefit of employing one more
unit of labor in the non-recycling sector equals the marginal cost related to both the
non-recyclable input depletion and the waste stock accumulation.
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5 Optimal labor under linear production and special benefit and
damage functions

As already mentioned, Proposition 1 states optimal control features arising from the
Pontryagin’s Maximum Principle. Anyway, the arguments developed in its proof can-
not be exploited in order to state the existence of an optimal control solution under
general assumptions on functions h(l) and g(l). Actually, convexity requirements for
both production functions h(l) and g(l) are not enough to assure that the same convex-
ity feature holds for the Hamiltonian function too. However, the further assumption of
linear production in both non-recycling and recycling sectors simplifies the problem
in a support for a complete theoretical analysis of well-posedness. For this reason, we
suppose that

V (t) = h(l(t)) = m1l(t), R(t) = g(L − l(t)) = m2(L − l(t)), (18)

at any time, where the labor productivities m1 > 0 and m2 > 0 are fixed and
exogenous. According to equations (2) and (3), state dynamics is described by

Ṡ(t) = −m1 l(t),

and

Ẇ (t) = γ1m1 l(t) − (1 − γ2)m2 (L − l(t)),

in time horizon [0, T ]. First of all, we notice that the length T is assumed to be under
the threshold established in (7), then conditions (8) hold and the state variables are
bounded functions according to the following relationships:

0 ≤ S ≤ S(t) ≤ S0, 0 ≤ W ≤ W (t) ≤ W , t ∈ [0, T ], (19)

where S = S0 − m1LT , W = W0 + (γ2 − 1)m2LT and W = W0 + γ1m1LT .
Furthermore, the benefit B(S) and the damage D(W ) are defined as the following

functions:

B(S) = 2cS
√
S, D(W ) = cW

W 2

2
, (20)

where cS > 0 and cW > 0 represent the weights of the benefit and damage, respec-
tively, in the optimization process during the whole time horizon. It is evident that,
under this choice, we have B ′(S) = cS/

√
S and D′(W ) = cW W .

In the framework described so far, the following result provides a proof of existence
and uniqueness for the optimal solution.

Proposition 2 Under assumptions (18) and (20), there exists a labor function l∗ ∈ A
which is the unique optimal solution of problem (11).
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Proof As a first step, we notice that the existence of an optimal control l∗ can be proved
by employing the results outlined for a general minimum Bolza problem in Theorem
4.1 and Corollary 4.1, page 68, in Fleming and Rishel (1975). With this aim, we write
the problem in equivalent form with similar notation as in Fleming and Rishel (1975):
the state variables are arranged in vector form such that x(t) = (S(t),W (t))T and the
corresponding differential system is revisited as

ẋ(t) = f (l(t)),

where x(0) = x0 := (S0,W0)
T and the right-hand side is defined as f (u) = α + βl

with vector coefficients given by α = (0, (γ2 − 1)m2L)T and β = (−m1, γ1m1 +
(1 − γ2)m2)

T . In addition, by interpreting the definition of feasible class F ′ given in
Fleming and Rishel (1975), hereF ′ merely corresponds to the class of all pairs (x0, l)
such that l ∈ A and the state variable can be integrated as

x(t) = x(0) +
∫ t

0
f (l(s)) ds, 0 ≤ t ≤ T , (21)

by prescribing the initial condition x(0) = x0 which is given and fixed in our problem.
Furthermore, using definitions in (20) of benefit and damage functions, we consider
the functional

L(t, x(t), l(t)) = e−δt

(

cW
[x (2)(t)]2

2
− 2cS

√
x (1)(t) − [C(l(t))]1−σ

1 − σ

)

,

with x (1)(t) and x (2)(t) corresponding to the entries of vector x(t) for any time t . In
this framework, the so-called performance index can be defined as

J̃ (x0, l) =
∫ T

0
L(t, x(t), l(t)) dt − �(x (1)(T ), x (2)(T ), T ).

We remark that our functional J (l) in (11) takes on the same value as J̃ (x0, l) but oppo-
site in sign (i.e., J̃ (x0, l) = −J (l)). As a consequence, our model (11) is equivalent
to the problem which consists of finding a control l∗ ∈ A such that the correspond-
ing performance index J̃ (x0, l∗) is minimized in the class F ′. The result provided by
Theorem 4.1 and Corollary 4.1 in Fleming and Rishel (1975) represents a sufficient
condition for the existence of a solution, and it is employed for the specific problemwe
face. Actually, in our case, it can be applied since f (u) is continuous and there exists
a positive constant C1 = max{|α|, |β|} such that | f (l)| ≤ C1(1 + |l|) for all l ∈ A.
In addition, Theorem 4.1 in Fleming and Rishel (1975) relies on further assumptions
(a), (b), (c), (d), (e) which hold in our case according to the following items:

• The assumption (a) stated in Theorem 4.1 of Fleming and Rishel (1975) is merely
satisfied; indeed, the feasible classF ′ is not empty due to the fact that it is possible
to pick any l ∈ A which is Lebesgue integrable, then the state system admits a
unique solution which is obtained by the integration in (21).
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• The subset of R involved in the assumption (b) stated in Theorem 4.1 of Fleming
and Rishel (1975) corresponds to the interval [0, L]where each labor function l(t)
has its value. The same assumption is verified as [0, L] is a closed set.

• Due to (19), x(t) is bounded for any t ; therefore, each labor l ∈ A steers x(T ) to
a compact set where the scrap function � is continuous with respect to its inputs.
Then, the assumption (c) stated in Theorem 4.1 of Fleming and Rishel (1975) is
satisfied.

• The assumption (d) in Theorem 4.1 is replaced by the corresponding (d’) stated in
Corollary 4.1 of Fleming and Rishel (1975); it is satisfied sinceL(t, x, ·) is convex
in [0, L]. Indeed, it is not so difficult to verify that

∂L
∂l

= e−δt [C(l)]−σ

(

σ [C(l)]−1
(
dC

dl

)2

− d2C

dl2

)

> 0,

since

d2C

dl2
= (ρ − 1)[C(l)]1−2ρ θ(1 − θ)L2[m1m2]ρ · [l(L − l)]ρ−2 < 0,

under the assumption 0 < ρ < 1.
• Also, the assumption (e) in Theorem 4.1 is replaced by the corresponding (e’)
stated in Corollary 4.1 of Fleming and Rishel (1975). In this respect, due to the
bounds in (19), for any t ∈ [0, T ] we have 0 <

√
x (1)(t) ≤ √

S0 and

[x (2)(t)]2 ≥ W 2 ≥ (1 − γ2)
2 (m2T )2 [l(t)]2 − 2W0(1 − γ2)m2LT .

Furthermore, due to the fact that the consumption function C(·) is continuous, we
may consider its maximum value C = max0≤z≤L C(z). It follows that there exist
two constants c1 = e−δT (cW /2)(1−γ2)

2 (m2T )2 > 0 and c2 = e−δT (cWW0(1−
γ2)m2LT + 2cS

√
S0 + C

1−σ
/(1 − σ)) > 0 such that

L(t, x(t), l(t)) ≥ c1|l(t)|2 − c2.

Thus, assumption (e’) stated in Corollary 4.1 of Fleming and Rishel (1975) is
satisfied.

Under the previous argument, all the assumptions stated inTheorem4.1 of Fleming and
Rishel (1975) hold; as a consequence, there exists l∗ ∈ Aminimizing the performance
index J̃ (x0, l) on the class F ′. Due to the equivalence between the two problems,
l∗ represents an optimal control which solves also our model (11). Therefore, the
existence of a solution is proved for the problem at hand.

As the next step, we focus on the uniqueness proof. We notice that, in
correspondence with any optimal solution l∗ of (11), the Hamiltonian function
H(l, S,W , ϕ1, ϕ2) defined in the previous Sect. 4 is maximized with respect to l,
according to the Maximum Principle statement (i). In this respect, we remark that it
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is not so difficult to get the second derivative:

∂2H

∂l2
= [C(l)]1−σ−2ρ

(
−σ [ϒ(l)]2 + (ρ − 1)θ(1 − θ)L2[m1m2]ρ[l(L − l)]ρ−2

)
.

Since ∂2H/∂l2 < 0, then the Hamiltonian function is strictly concave in l and it can
admit no more than one maximum value. As a conclusion, problem (11) can admit no
more than one solution. 
�

In this framework, under the assumption of linear production, condition (15) is
satisfied by setting

L̂ = L

1 + [ 1−θ
θ

]1/(1−ρ)
[
m2
m1

]ρ/(1−ρ)
.

Remark 1 We notice that the choice of the temporal threshold T assures that relation-
ships (19) hold: this is crucial to bound both costate variablesϕ1(t) andϕ2(t). Actually,
due to the previous assumptions, the derivative B ′(S) = cS/

√
S is decreasing with

respect to S so that 0 < B ′(S0) ≤ B ′(S) ≤ B ′(S) for each S, with S ≤ S ≤ S0. Then,
from (12) we get

νe−δ(2T−t) < ϕ1(t) ≤ νe−δ(2T−t) + B ′(S)

δ

(
1 − e−δ(T−t)

)
,

which yields the following bounds

νe−δ(2T−t) < ϕ1(t) ≤ νe−δ(2T−t) + B ′(S)

δ
, (22)

that holds for any t ∈ [0, T ]. By a similar argument, starting from D′(W ) = cW W ,
we get 0 < D′(W ) ≤ D′(W ) ≤ D′(W ) for each W , with W ≤ W ≤ W ; these
inequalities yield the bounds

− μe−δ(2T−t) − D′(W )

δ
≤ ϕ2(t) < −μe−δ(2T−t), (23)

for any t ∈ [0, T ]. Then, we set

χ = (m1ν + (γ1m1 + (1 − γ2)m2) μ) e−δ(T−t),

χ = χ + m1B ′(S) + (γ1m1 + (1 − γ2)m2) D′(W )

δ

(24)

and notice that, in correspondence with any labor strategy l ∈ A, it is possible to
obtain the following relationship

χ ≤ �(l, ϕ1, ϕ2) ≤ χ, (25)

123



Recycled and non-recycled exhaustible resource…

which holds for any t ∈ [0, T ]. These bounds for the term � are exploited in order to
prove the results in the next Subsections 5.1 and 5.2.

5.1 Waste stock accumulation dynamics

A crucial issue of the current analysis deals with the way of accumulating/reducing
waste over time. Actually, we are interested in investigating the rate of accumulation
in order to understand whether waste stock increases or not. It is easy to verify that
the inequality Ẇ (t) ≥ 0 holds in the case when the optimal labor allocation exceeds
the level L defined by

L = (1 − γ2)m2

γ1m1 + (1 − γ2)m2
L. (26)

It follows thatW (t) increases over a given time interval in the case when the following
relationship holds

l∗(t) ≥ L; (27)

on the other hand, W (t) is decreasing in time in the opposite case. Therefore, the
comparison between the optimal labor l∗ and the threshold L is crucial in order to
establish waste accumulation dynamics over time. This comparison is carried out in
the next Proposition which starts from some assumptions on the value

ϒ(L) = θmρ
1 L

ρ−1 − (1 − θ)mρ
2 (L − L)ρ−1.

We recall that dC
dl (L) = [C(L)]1−ρϒ(L), then ϒ(L) is related to the rate of variation

of the consumption good in correspondencewith amarginal increase in labor employed
in the non-recycling sector at l = L . The following result provides some sufficient
conditions for predicting the monotonic behavior of waste stock.

Proposition 3 We consider the following two different situations.

(a) When we assume that

ϒ(L) = θmρ
1 L

ρ−1 − (1 − θ)mρ
2 (L − L)ρ−1 > 0, (28)

we set

τ = [C(L)]1−σ−ρ ϒ(L)

νm1 + μ(γ1m1 + (1 − γ2)m2)
,

and

τ = τ − m1B ′(S) + (γ1m1 + (1 − γ2)m2)D′(W )

δ · (νm1 + μ(γ1m1 + (1 − γ2)m2))
;
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then we prove the following statements:

(a1) if τ < e−δ2T , then the waste stock reduces over the whole time horizon [0, T ];
(a2) if e−δ2T < τ < τ < e−δT , then there exist two temporal thresholds

t = 2T + ln (τ )

δ
, t = 2T + ln (τ )

δ
, 0 < t < t < T , (29)

such that the waste stock W (t) accumulates in the initial part of the time
horizon for t ∈ [0, t], after that it reduces for t ∈ [t, T ];

(a3) if e−δT < τ , then the waste stock accumulates over the whole time horizon
[0, T ].

(b) In the opposite situation, under the assumption that

ϒ(L) = θmρ
1 L

ρ−1 − (1 − θ)mρ
2 (L − L)ρ−1 ≤ 0, (30)

the waste stock is decreasing in time over the whole horizon [0, T ].
Proof As already mentioned, if condition (27) holds, then waste stock increases; in
the opposite case, W (t) is decreasing. Due to the results in Proposition 1, condition
(27) can be satisfied for any time t such that

∂H

∂l
(L, S(t),W (t), ϕ1(t), ϕ2(t)) > 0, (31)

which means that ∂H
∂l gets non-negative values at l = L .

As what concerns the first situation (a), we assume that (28) holds. We notice that,
due to a priori estimate (25) where χ and χ are defined as in (24), if the following
inequality holds

χ < C(L)1−σ−ρϒ(L), (32)

then we get

�(L, ϕ1(t), ϕ2(t)) < C(L)1−σ−ρϒ(L).

As a consequence, (32) represents a sufficient condition for satisfying (31) and (27).
In this respect, we notice that inequality (32) holds for any t such that eδt < eδ2T τ .

On the other hand, it is possible to verify that the other inequality

C(L)1−σ−ρϒ(L) < χ, (33)

represents a sufficient condition for having

∂H

∂l
(L, S(t),W (t), ϕ1(t), ϕ2(t)) < 0, (34)
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so that l∗(t) < L . In particular, (33) holds for any t such that τeδ2T < eδt .
Starting from this argument, we may prove the three different statements. The first

assumption τ < e−δ2T yields τeδ2T ≤ 1 < eδt at each time t ∈ [0, T ]; it follows that
(33) is satisfied, and it implies (31) for any time. Therefore, we get l∗(t) < L so that
Ẇ (t) ≤ 0 over the whole time horizon. It follows that waste stock reduces at every
time.

In the second case when e−δ2T < τ < τ < e−δT , we get 0 < t < t < T .
Under this assumption, starting from 0 < t < t , we exploit the exponential function
and we get that inequality eδt < eδ2T τ holds; thus, condition (32) is satisfied for all
t ∈ [0, t]. Due to the previous argument, we obtain Ẇ (t) > 0 so that the waste stock
is increasing in the same interval [0, t]. Moreover, when we start from t < t < T and
apply the exponential function, then inequality τeδ2T < eδt holds; thus, condition (33)
is satisfied for all t ∈ [t, T ]. Hence, Ẇ (t) < 0 so that the waste stock is decreasing in
the same interval [t, T ].

Under the third assumption e−δT < τ , we have eδt ≤ eδT < eδ2T τ for any
0 ≤ t ≤ T , which yields (33) at each time in [0, T ]. It follows that waste reduces over
the whole time horizon.

Concerning the second situation (b), we notice that assumption (30) yields

∂H

∂l
(L, S(t),W (t), ϕ1(t), ϕ2(t)) < 0;

then we get l∗(t) ≤ L̂ ≤ L for all t ∈ [0, T ] due to the results in the proof of
Proposition 1. It follows that Ẇ (t) ≤ 0 over the whole time horizon; therefore, the
waste stock reduces for all t ∈ [0, T ]. 
�

According to the previous results, waste accumulation/reduction is strictly related
to the values of weights ν and μ. Actually, a possible condition to assure global
reduction in waste consists of prescribing weights ν andμwhich are sufficiently large
in comparison with an economic system characterized by patient agents (i.e., small
value for δ) in a relatively short time horizon (i.e., short final time T ): in this case, the
quantity νm1+μ(γ1m1+(1−γ2)m2)may be large enough to let condition τ ≤ e−δ2T

hold. In the opposite case, an accumulation of waste happens either during an initial
period of time or, in the worst case, in the whole time horizon.

5.2 Even distribution of labor between sectors

Another interesting issue consists of arguing about the case when the same amount
of labor is employed both in the non-recycling sector and in the recycling one, i.e.,
l∗(t) = L/2 at a certain t̂ ∈ [0, T ]. In this respect, we provide the following result.

Proposition 4 Suppose that θmρ
1 − (1 − θ)mρ

2 > 0; then, set

τ̂ = [C(L/2)]1−σ−ρ ϒ(L/2)

νm1 + μ(γ1m1 + (1 − γ2)m2)
,
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and

̂̂τ = τ̂ − m1B ′(S) + (γ1m1 + (1 − γ2)m2)D′(W )

δ · (νm1 + μ(γ1m1 + (1 − γ2)m2))
.

Under the further assumption

e−δ2T < ̂̂τ < τ̂ < e−δT , (35)

define t̂1 = 2T + ln(̂̂τ )/δ and t̂2 = 2T + ln(̂τ )/δ. It is possible to prove that

(a) for every t ∈ [0, t̂1] the optimal choice l∗(t) is over L/2, i.e., l∗(t) > L/2;
(b) on the other hand, for every t ∈ [̂t2, T ] the optimal choice l∗(t) is under L/2, i.e.,

l∗(t) < L/2.

Proof Condition θmρ
1 − (1 − θ)mρ

2 > 0 is sufficient to assure that ϒ(L/2) > 0.
Moreover, under the assumption that (35) is verified, then we obtain 0 < t̂1 < t̂2 < T .
By exploiting the same approach developed in the proof of the previous Proposition 3,
it is possible to verify that the following different situations occur:

(a) for any t ∈ [0, t̂1] we get eδt < eδ2T̂̂τ , which yields

∂H

∂l
(L/2, S(t),W (t), ϕ1(t), ϕ2(t)) > 0,

therefore, the optimal choice at t satisfies the condition l∗(t) > L/2;
(b) for any t ∈ [̂t2, T ], we get eδ2T τ̂ < eδt , which implies

∂H

∂l
(L/2, S(t),W (t), ϕ1(t), ϕ2(t)) < 0,

therefore the optimal choice at t satisfies the condition l∗(t) < L/2.

Thus, the proof is completed. 
�
Remark 2 As a consequence of the previous Proposition 4, we may argue that any
switching time t̂ such that l∗(̂t ) = L/2 may be located between t̂1 and t̂2, i.e.,

0 < t̂1 < t̂ < t̂2 < T .

The role of this temporal threshold deserves attention: actually t̂ represents a switching
time where the social planner moves on preferring to employ more labor in a resource
sector rather than in the other one.

Remark 3 In the benchmark case, when both sectors are supposed to be equally pro-
ductive (i.e., m1 = m2), condition θmρ

1 − (1− θ)mρ
2 > 0 yields 2θ − 1 > 0; then we

obtain

τ̂ = [m1L/2]−σ (2θ − 1)

ν + μ(γ1 + 1 − γ2)
.
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It follows that both parameters τ̂ and ̂̂τ are independent of ρ, thus switching time t̂
lies in the temporal interval [̂t1, t̂2] which does not vary according to the elasticity of
substitution between the resources.

Remark 4 As a final remark related to the previous results in Propositions 3 and 4, we
notice that the temporal thresholds t , t , t̂1 and t̂2 decrease with respect to the values
chosen for ν and μ with rates

∂t

∂ν
= ∂t

∂ν
= ∂ t̂1

∂ν
= ∂ t̂2

∂ν
= − m1

δ(νm1 + μ(γ1m1 + (1 − γ2)m2))
,

and

∂t

∂μ
= ∂t

∂μ
= ∂ t̂1

∂μ
= ∂ t̂2

∂μ
= − γ1m1 + (1 − γ2)m2

δ(νm1 + μ(γ1m1 + (1 − γ2)m2))
.

As a consequence, when the social planner chooses a certain policy by fixing given
values of damage weights ν and μ, then the intertemporal dynamics of the variables
at hand updates according to non-recycling and recycling technologies through the
quantities m1 and γ1m1 + (1 − γ2)m2. Actually, we get

∂t

∂ν
= m1

γ1m1 + (1 − γ2)m2
· ∂t

∂μ
.

Thus, threshold t decreases with the same rate with respect to both ν and μ under the
assumption that

m1

m2
= 1 − γ2

1 − γ1
.

On the other hand, the rate of reduction ∂t
∂ν

overcomes the other one ∂t
∂μ

in the case
when

m1

m2
<

1 − γ2

1 − γ1
.

In this respect, we may get similar dynamics by changing the ratio m1/m2 rather than
(1 − γ2)/(1 − γ1). Similar argument can be developed as what concerns the rates of
reduction for t , t̂1, t̂2.

6 Discussion of some results from simulating a hypothetical test case

In order to evaluate the optimal allocation of labor betweennon-recycling and recycling
sectors, we perform some simulations related to a hypothetical case of non-renewable
resource. We provide a counterfactual analysis of the model by considering both con-
sumption and production decisions, and the corresponding external effects in terms of
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future damages. We account for different interesting scenarios, where all the variables
are dimensionless.

Starting from the parameters of the consumption function, we set θ = 0.6, which
represents the contribution of the non-recycled input on total production (and con-
sumption) of the final good. Setting this parameter higher than 0.5 means that the
market share of non-recycled resource producers is higher than the recycling firms’
one; this situation occurs when the recycling market is less developed than the con-
ventional one and reflects the current state of the recycling sector all around the world.
Furthermore, we consider different values of the elasticity of substitution between
non-recycled and recycled materials: ρ = 0.005, ρ = 0.5 and ρ = 0.955 such that
0 < ρ < 1.

The starting value of non-recycled resource stock, S0, is normalized and fixed at
100, while the initial stock of recycled resource, W0, is set at 10.

Concerning the waste accumulation process, as already pointed out in Sect. 2, we
set γ1 = 0.6 and γ2 = 0.5. According to this condition, the waste content rate γ1
of non-recycled resource exceeds the waste content rate γ2 of recycled input; it is
consistent with the assumption that the content of non-recycled resource exceeds the
content of recycled input in making consumption good, due to the previous setting
θ = 0.6 > 0.5.

Finally, we assume the discount rate δ is 0.01 and the utility parameter σ is 0.2.
In addition, concerning the benefit B(S) and the damage D(W ) defined as the func-
tions in (20), we suppose cS  1 and cW  1: this assumption means that, in the
optimization process, utility U (C) is much more weighted with respect to the envi-
ronmental damages related to B(S) and D(W ), due to the fact that consumption has
usually more relevance to the community wellness than the environment protection in
the short temporal term. In particular, we set cS = cW = 0.001.

In the following sections, two kinds of simulation are described in order to inves-
tigate the role of labor productivity and weights of future damages on the optimal
allocation of labor, between recycling and non-recycling sectors.1

In this respect, due to the fact that the optimal strategy cannot be evaluated in closed
form, then it is necessary to approximate the solution of the optimal control model
by a suitable numerical algorithm. Precisely, the optimal control l∗(t), t ∈ [0, T ], is
evaluated by employing the classical bisection method to approximate the root of (16)
in the interval [0, L̂] at each time t . The precision required for the bisection approxi-
mation is set at 10−12. In addition, by following the approach proposed in Diele et al.
(2011), the differential system related to the optimality necessary conditions is dis-
cretized by a partitioned symplectic Runge–Kutta method: the state equations in S(t)
and W (t) are integrated by the classical Euler scheme, while the costate variables
ϕ1(t) and ϕ2(t) are approximated by the exponential Lawson algorithm (see Law-
son 1967) related to the symplectic counterpart Radau IA 1-stage (see Lambert 1991).
Therefore, in the framework of the forward-backward integration, the resulting numer-
ical scheme consists of equations with opposite orientations, where the discrete state

1 For the sake of brevity, we do not provide any simulation about the role of non-recycling and recycling
waste generation process related to parameters γ1 and γ2, which are considered as given and fixed. Actually,
due to the remarks in Sect. 5, intertemporal waste dynamics and even distribution of labor between the two
sectors depend on damage weights, together with ratios m1/m2 and (1 − γ2)/(1 − γ1).
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variables start from an initial temporal condition and a final condition is imposed on
the discrete costate variables. This drawback is overcome by constructing successive
approximations in a sweep approach converging to the required solution. We notice
that, in general, the numerical convergence of any iterative approach depends on the
length T of the temporal interval and the procedure is often faster as time horizon
length decreases (see for instance McAsey et al. 2012; Ragni 2020, 2022). Thus, we
set the temporal length at T = 80. On one hand, all the previous settings assure that
the bounds in (7) are satisfied; on the other hand, the time horizon length is chosen so
small that the iterative algorithm converges to the required exact solution. The time
step length is set at �t = 0.005 in the process of numerical integration.

Finally, our numerical experiments are carried out in Matlab environment.

6.1 Labor productivity

A first set of simulations has been carried out in order to understand the role played
by non-recycling and recycling technologies on labor allocation, waste accumulation
and non-recycled resource depletion. More precisely, labor productivities m1 and m2
vary according to the following different scenarios on recycling technology:

1. m1 = m2, so that the recycling productivity equals the non-recycling one;
2. m1 > m2, meaning that the recycling productivity is lower than the non-recycling

one;
3. m1 < m2, thus the recycling productivity is greater than the non-recycling one.

We assume the productivity of non-recycling activity is fixed atm1 = 0.1. On the other
hand, we letm2 vary from 0.1, to 0.095 and 0.12. By combining all the possible values
of ρ andm2, we may carry out some dynamic simulations to perform a counterfactual
analysis of the model. The weights of future damages related to non-recycled input
depletion and waste accumulation are ν = 1 and μ = 1; this allows us to describe a
situation where the policymaker is accounting for all environmental aspects, by giving
the same importance to the final value of both recycled and non-recycled material
stocks.

The results are shown in Figs. 1 , 2 and 3 , respectively. Each figure consists of
three plots corresponding to all the three different levels of ρ. Precisely, the first row
is always related to ρ = 0.005, the second row corresponds to ρ = 0.5 and the third
row is related to ρ = 0.955. On the left hand side column, the optimal trajectories of
labor allocated between non-recycling and recycling sectors are shown: the solid line
represents the optimal labor l∗(t) devoted to non-recycled input over the whole time
horizon, the dashed line describes the labor devoted to recycling L − l∗(t). On the
right column, the dynamics of state variables (waste stock and non-recycled resource
stock) are provided.

In Fig. 1, which refers to the baseline situation where the two different technologies
are identically productive (i.e., m1 = m2), we focus on non-recycled and recycled
resources substitution since ρ is the only varying parameter. It is evident that, for
any value of ρ, the amount of labor employed in the non-recycling sector is higher
than the other one starting from the beginning up to the switching time t̂ discussed in
Remark 2 for an even allocation of labor between sectors. After that, an opposite trend
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Fig. 1 The results are obtained in correspondence with m2 = 0.1. We set ρ = 0.005 on the first row,
ρ = 0.5 on the second row, ρ = 0.955 on the third row

is observed. The time switching point t̂ is around 38, and its location is not affected by
the elasticity of substitution between the inputs, as expected due to Proposition 4 and
its consequence in Remark 3. Moreover, non-recycled resource stock is decreasing
over time.

In addition, in the case when the elasticity of substitution is sufficiently low (i.e.,
ρ = 0.005 in the first row of Fig. 1), the waste stock accumulates over the whole time
horizon; this behavior corresponds to the property (a1) in Proposition 3. Concerning

123



Recycled and non-recycled exhaustible resource…

Fig. 2 The results are obtained in correspondence with m2 = 0.095. We set ρ = 0.005 on the first row,
ρ = 0.5 on the second row, ρ = 0.955 on the third row

higher values of ρ (in the second and third rows of Fig. 1), the waste stock is accu-
mulated in the first part of the time horizon and, after that, it steadily decreases in the
remaining of the temporal interval; this behavior is consistent with the result in the
property (a2) of Proposition 3. It is evident that the time when the waste begins to
decrease depends on the chosen value of ρ; indeed, it is as closer to the time origin as
ρ is increasing, thus the decline of waste stock is as faster as the recycled input is a
closer substitute for the non-recycled one.
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Fig. 3 The results are obtained in correspondence with m2 = 0.12. We set ρ = 0.005 on the first row,
ρ = 0.5 on the second row, ρ = 0.955 on the third row

The second scenario is shown in Fig. 2, wherewe assume thatm1 > m2 correspond-
ing to the case where the recycling technology is less efficient than the non-recycling
one (i.e., the current state of the available technology for recycling). Labor trajectories
have similar trends as described in the first scenario m1 = m2, but the switching time
t̂ depends on the chosen value of ρ. The position of t̂ is shifted forward as closer to
T as the elasticity of substitution ρ is larger. This result points out that, in the optimal
transition, the social planner employs a large share of workers in the conventional
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sector when recycling is less productive than non-recycling and inputs are close sub-
stitutes. This implies that, despite inputs are qualitatively similar, recycling remains
unexploited for a long time period. Indeed, labor is transferred from the non-recycling
to the recycling sector only when approaching the deadline T .

As a consequence, less workers are employed in recycling. Waste accumulation
increases over the whole time horizon for low and middle quality inputs. In the case
when technology for recycling is able to produce high-quality (and close substitute)
inputs, then waste accumulation increases in the first path of the time horizon, after
that it reduces. This result is consistent with the situation (a3) stated in Proposition 3.
A low productive technology for recycling, even though for high-quality inputs, is not
able to anticipate and boost the transition.

The last scenario assumesm1 < m2. This assumption reflects the current objectives
of EU policies that are designed to foster recycling technologies. The results are
shown in Fig. 3. Similar behaviors arise for all values of ρ with respect to the previous
scenarios in terms of labor trajectories. The switching point t̂ such that l∗(̂t) = L/2
(Remark 2) reduces as the value ρ increases. Concerning waste stock dynamics, a
decreasing trend is shown only for all high-quality inputs along the entire time path.
On the other hand, as expected, a depletion of the non-recycled input stock occurs.
Crucially, the reduction in non-recycled resource is slower for high-quality inputs. It
means that, as expected, fostering recycling technology together with creating a high-
quality substitute for the non-recycled input represents the right option to slow down
non-renewable resource depletion. Actually, in the last case when recycled and non-
recycled inputs are close substitutes (bottom of Fig. 3), the non-recycled input stock
converges to a stationary level and the labor is completely employed in the recycling
sector in the last part of time interval.

6.2 Future damages

As a further analysis, other simulations focus on the role of future damages caused
by non-recycled resource employment and waste accumulation. We fix identical labor
productivity for recycling and non-recycling activities such that m1 = m2 = 0.1.
Again, we account for different values of the elasticity of substitution; we start from
ρ = 0.005, then we assume ρ = 0.5 and ρ = 0.955. A counterfactual analysis is
carried out by assuming different values of weights ν andμ, as these parameters affect
the relative shadow prices of both non-recycled and recycled resources. Precisely, we
account for three different scenarios:

1. a low and identical importance of both types of damage, i.e., ν = μ = 0.1;
2. a high and identical importance of both damages, i.e., ν = μ = 2;
3. a higher importance of final waste accumulation damage with ν = 1 and μ = 2.

As what concerns the first scenario in Fig. 4 , the amount of labor employed in
the non-recycling sector is always higher than the one used for recycling activities.
Moreover, there exists no switching time t̂ ≤ T such that l∗

(
t̂
) = L/2; this is due

to the fact that the inequalities in (35) are not satisfied, but in this case it holds that
e−δT < ̂̂τ . Then, the labor trajectory plots show a constant positive trend over time
and an increasing number of workers employed in non-recycling sector. In accordance
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Fig. 4 The results are obtained in correspondence with ν = μ = 0.1. We set ρ = 0.005 on the first row,
ρ = 0.5 on the second row, ρ = 0.955 on the third row. Moreover, m1 = m2 = 0.1 for all the different
cases

with the case of situation (a3) in Proposition 3, this result is associated with a waste
stock accumulation and a non-recycled resource depletion.

Figure5 shows the dynamics related to the second scenario. The labor trajectory
related to the recycling sector is always above the non-recycling labor trajectory. The
former has an increasing trend in the whole time horizon, the latter globally decreases.
It is due to the fact that the inequalities in (35) are not satisfied, but we have τ̂ < e−δ2T

in this case. Again, creating a close substitute for the non-recycled input represents
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Fig. 5 The results are obtained in correspondence with ν = μ = 2. We set ρ = 0.005 on the first row,
ρ = 0.5 on the second row, ρ = 0.955 on the third row. Moreover, m1 = m2 = 0.1 for all the different
cases

the best option to preserve non-renewable resources: for the highest elasticity of sub-
stitution (bottom of Fig. 5), non-recycled input stock remains stationary and labor is
totally employed in the recycling sector. Concerning recycled waste disposal, waste
stock progressively reduces, especially when inputs are close substitutes, due to the
wider share of workers allocated in recycling. Non-recycled resource availability is
also depleting; anyway, when the level of substitution is 0.955, it initially declines up
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Fig. 6 The results are obtained in correspondence with ν = 1 andμ = 3. We set ρ = 0.005 on the first row,
ρ = 0.5 on the second row, ρ = 0.955 on the third row. Moreover, m1 = m2 = 0.1 for all the different
cases

to a given time, after that depletion ceases and S(t) lies around a given lower bound
(Smin ≈ 99.89) whose value is very close to the initial stock.

The dynamics related to the third scenario is shown in Fig. 6. The amount of labor
employed in the non-recycling sector is higher than the one employed in the recycling
sector starting from the beginning of the time horizon up to the switching time t̂ , after
that an opposite trend is observed. For any value of ρ, the location of t̂ is around 27.
In correspondence with a low value of the elasticity of substitution (i.e., ρ = 0.005
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in the first row of Fig. 6), the waste stock accumulates over the whole time interval.
Concerning the other values of ρ, the waste stock is accumulated in the first part of the
time horizon and, after that, it is decreasing in the final part of the temporal interval;
this behavior corresponds to the result (a2) in Proposition 3. The decline of waste
stock is as faster as the recycled input is a closer substitute for the non-recycled one.
Again non-recycled resource stock always reduces over time.

Finally, for the sake of brevity, the results obtained for ν = 2 > 1 = μ are omitted
as the dynamics does not qualitatively change in a substantial way with respect to the
second scenario shown in Fig. 5.

7 Concluding remarks

Predictive modeling of an optimal strategy to control non-recycling and recycling
activities may represent an efficient tool to help policymakers in their decision-making
process for both environmental conservation and socialwelfaremaximization.Accord-
ing to Huhtala (1999), the necessary condition to guarantee the existence of a long run
equilibrium is recycling. In this respect, an optimal control model has been described
with the aim of finding an efficient allocation of labor between non-recycling and
recycling sectors to provide a non-renewable resource used in the production of con-
sumption goods. In this framework, the desired final level of both natural resource
and waste stocks can be interpreted as target to be achieved for future sustainability.
Differently from Huhtala (1999), the optimization process has been carried out over a
finite time horizon in accordance with the need of rapidly achieving the Sustainable
Development Goals adopted by UNsMember States and promoted by EUGreen Deal.
By employing classical tools of optimal control theory, a complete theoretical analysis
of the model has been developed under the assumption of linear production in both
sectors: the existence of a solution and its uniqueness have been proved by applying
the Pontryagin’s Maximum Principle and its consequences. The optimal production-
consumption paths result when both current and future environmental damages are
taken into account.

The model has been employed in order to determine the optimal strategy of labor
allocation in a hypothetical test case. Numerical simulations highlight that the exis-
tence of a recycled input to substitute for the depletable resource and social pressures
on political mechanisms for current and future damages are crucial in order to preserve
it by the finite deadline coming from the urgency of environmental issues. However,
this entails a strong effort to enhance the recycling technology and a growing social
awareness to environmental themes to translate into large damage weights in the
optimization process. Waste reduction occurs over the whole time horizon and the
non-recycled input stock remains stationary as a large share of labor is employed
in the recycling sector over a certain time interval. Producing high-quality recycled
inputs speeds the whole transition process up. An increase in recycling efficiency
unambiguously decreases the level of waste stock as in Huhtala (1999). Differently
from Huhtala (1999), whose main focus is on tax-subsidy schemes, this model con-
centrates the attention on structural characteristics relating to technology and social
preferences in the optimal allocation of inputs. Political pressure on policymakers and
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fast responses in terms of more advanced recycling technologies or, more generally,
strong incentives to attract labor in the recycling sector may support the ecological
transition, reduce environmental damages and assure intergenerational equity for the
forthcoming future.

As a future purpose, we aim to employ our optimal control model as a tool for
studying the management of non-exhaustible resources, such as timber materials and
biofuels, in sustainable transition.
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