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The Average Cumulative representation of fuzzy intervals is connected with the possibility 
theory in the sense that the possibility and necessity functions are substituted by a pair 
of non decreasing functions defined as the positive and negative variations in the Jordan 
decomposition of a membership function. In this paper we motivate the crucial role of 
ACF in determining the membership function from experimental data; some examples and 
simulations are shown to state the robustness of the proposed construction.
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1. Introduction

Fuzzy numbers and possibility theory have been initiated by Zadeh in [32], as mathematical tools to formulate and reason 
about uncertainty in complex decision making events. During the recent years, they are receiving an increasing attention 
in research, as they constitute a complete and useful setting for modeling and managing uncertainty, in particular when 
information is characterized by partial or incomplete knowledge and when sources of empirical data sets are heterogeneous, 
as it is shown by Dubois in [8] and investigated in [16] concerning its potentialities arising in applications.

Following a similar approach, we introduced in [30] the Average Cumulative Function (ACF) representation for fuzzy 
intervals focusing on the properties it shares with the Cumulative Distribution Function (CDF) for probability distributions. 
We also showed that the ACF can be uniquely defined for any fuzzy interval and that any alfa-cut of a fuzzy interval can 
be directly deduced from the ACF. Regarding applications, ACF amounts to be a powerful instrument in order to deduce the 
membership function from the any kind of time series, a topic that has just been a matter of interest in [16] and [6]. An 
exhaustive overview of methods for building possibility distributions is in [17] where qualitative and quantitative possibility 
distributions are explored within order or similarity-based statistical methods. A wide scenario of real life decisions arising 
in company’s management and based on possibility theory is analyzed in [3].

The possible connections between possibility and probability are studied in many contributions (see, e.g., [3], [4], [10], 
[14], [22], [23], [25], [26]); in [13] the problem of mutually transforming possibility measures into probability measures is 
handled with a deep attention to the philosophical nature of the two approaches that produces not equivalent representa-
tions of uncertainty. An additional class of transformations is extensively analyzed in [21] where the Arising Accumulation 
Transformation is applied to some decision making problems.
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The construction of a possibility distribution when the probabilities are unknown and a data sample represented by 
a histogram is available is proposed in [23]; in [29] possibility distributions are deduced as families of upper and lower 
bounded probabilities identified by an informational distance function.

In this paper, we apply the properties of AC functions to (a) generating samples from fuzzy intervals (adopting the 
insufficient reason principle), and (b) estimating a membership function from empirical data.

The organization of the paper is based on four sections; after the Introduction, section 2 details the main properties of 
ACF. In section 3, subdivided into two subsections, examines simple ways to generate samples from possibility distributions 
associated to fuzzy intervals. Then (subsection 3.2), a general procedure is suggested to obtain the AC function from empiri-
cal data and to estimate a corresponding membership function under suitable assumptions on the location of its core; some 
computational experiments are included. Conclusions and future research lines are summarized in section 4.

2. Average cumulative functions associated to a fuzzy interval

We denote by RF the space of real fuzzy intervals, with normal, upper semi-continuous and quasi concave membership 
function u : R → [0, 1] of bounded support (see [2], [9]). A fuzzy interval u ∈ RF is defined in terms of its membership 
function u :R −→ [0, 1] of the form

u(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < a

uL(x) if a ≤ x < c
1 if c ≤ x ≤ d

uR(x) if d < x ≤ b
0 if x > b.

(1)

We suppose a compact support [a, b] and a compact non-empty core [c, d] ⊂ [a, b] where it holds that a < c ≤ d < b ∈R; 
uL : [a, c] −→ [0, 1[ is the left side of the fuzzy interval, defined as a non-decreasing right-continuous function, uL(x) > 0
for x ∈]a, c], and uR : [d, b] −→ [0, 1] is the right side, defined as a non-increasing left-continuous function, uR (x) > 0 for 
x ∈ [d, b[.

The two functions uL(x) and uR(x) can be extended to the real domain by setting

uL
ext(x) =

⎧⎨⎩
0 if x < a

uL(x) if a ≤ x < c
1 if x ≥ c

(2)

uR
ext(x) =

⎧⎨⎩
1 if x ≤ d

uR(x) if d < x ≤ b
0 if x > b.

(3)

An extensive literature is devoted to the description of a fuzzy interval u ∈ RF as a possibility distribution on the 
real numbers such that a pair of cumulative distribution functions, called the lower and the upper CDFs of u, respectively, 
become the extended left side function uL

ext(x) and the extended right side function uR
ext(x). In particular, instead of the 

possibility and necessity functions (introduced in [32], [10] and extended in [3] and [15], [16], [18]); the main summarized 
results introduced in [30] follow, starting with the pair of functions F R

u , F L
u :R −→ [0, 1]:

F R
u (x) = 1 − uR

ext(x) =
⎧⎨⎩

0 if x ≤ d
1 − uR(x) if d < x ≤ b

1 if x > b.
(4)

F L
u(x) = uL

ext(x). (5)

The two functions F L
u and F R

u are non decreasing; F L
u is right continuous while F R

u is left continuous because of the 
upper semi-continuity of u. It also holds that:

u (x) = F L
u(x) − F R

u (x) ∀x ∈R. (6)

When equation (6) is viewed as the Jordan decomposition of u, then F L
u and F R

u are the positive and the negative 
variations of u and given the total variation function V u (x), x ∈R,

V u (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x ≤ a

sup
Px,n

{
n∑

j=1

∣∣u (
t j

) − u
(
t j−1

)∣∣ ; t j ∈ Px,n

}
if a < x ≤ b

V u (b) if x > b

we can write
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F L
u(x) = V u (x) + u(x)

2
(7)

F R
u (x) = V u (x) − u(x)

2
, (8)

where, for x ∈]a, b], Px,n = {a = t0 < t1 < ... < tn = x} is a finite decomposition of [a, x] with n subintervals and the sup(...)

is performed over all Px,n with arbitrary n ∈N and arbitrary points t j , j = 0, 1, ..., n.

Definition 1. For a fixed value of λ ∈ [0, 1], the λ-Average Cumulative Function (λ-ACF for short) of u is defined to be the 
following convex combination of F L

u and F R
u , for all x ∈R,

F (λ)
u (x) = (1 − λ)F L

u(x) + λF R
u (x) (9)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < a

(1 − λ)uL(x) if a ≤ x < c
1 − λ if c ≤ x ≤ d

1 − λuR(x) if d < x ≤ b
1 if x > b.

F (λ)
u is non-decreasing, right continuous on ]−∞,d[ and left continuous on ]c,+∞[. For the value λ = 1

2 we denote F
( 1

2 )
u (x)

simply by Fu(x).

Proposition 2. For a given fuzzy interval u ∈RF and a number ρ ∈R, the λ-ACF satisfies the translation property:

F (λ)
u+ρ(x) = (1 − λ)v L

ext(x) + λv R
ext(x) (10)

= (1 − λ)uL
ext(x − ρ) + λuR

ext(x − ρ)

= F (λ)
u (x − ρ),

where v = u + ρ is the translated fuzzy interval and v(x) = u(x − ρ) is the membership function.

An interesting relation holds:

Lemma 3. Let u ∈RF and let −u ∈RF be its opposite interval; then, the following equality is true for all λ ∈ [0, 1]
F (λ)

u (−x) + F (1−λ)
−u (x) = 1, for all x ∈R

where F (1−λ)
−u is the (1 − λ)-ACF of −u.

For a given non-decreasing function F : [a, b] −→ [0, 1], the generalized inverse (also called the quantile function of F in 
probability theory, see, e.g. [19], when F is càdlàg) is defined to be the function F −1 : [0, 1] −→ [a, b] such that

F −1(α) = inf{x|F (x) ≥ α} for all α ∈ ]0,1] and F −1(0) = a. (11)

The main theorem (proved in [30]) states that a partial càdlàg property of F (x) is sufficient to determine the α-cuts 
[u−

α , u+
α ] of u for α ∈]0, 1]. Recall that the fuzzy interval −u has α-cuts given by [−u+

α , −u−
α ], so that, in particular, u+

α =
−(−u)−α .

Theorem 4. Let u ∈RF and let F (λ)
u , F (1−λ)

−u be the λ-ACF of u and the (1 − λ)-ACF of −u, respectively, for any given value λ ∈]0, 1[. 
For all α ∈]0, 1], the α-cut [u−

α , u+
α ] of u is given by

u−
α (λ) = inf

{
x ∈ [a, c]|F (λ)

u (x) ≥ (1 − λ)α
}

(12)

=
(

F (λ)
u |∗

)−1
((1 − λ)α)

u+
α (λ) = −(−u)−α = − inf

{
x ∈ [−b,−d]|F (1−λ)

−u (x) ≥ λα
}

(13)

= −
(

F (1−λ)
−u |∗

)−1
(λα)

where 
(

F (λ)
u |∗

)−1
and 

(
F (1−λ)

−u |∗
)−1

are the generalized inverses of the restrictions of F (λ)
u and F (1−λ)

−u to the subintervals ] − ∞, c]
and ] − ∞, −d], respectively.
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Assume for simplicity the membership function u(x) (consequently F (x)) continuous.

In the particular case of λ = 1
2 , denoting Fu = F

( 1
2 )

u and F−u = F
( 1

2 )

−u , we have F−u(x) = 1 − Fu(−x) for all x, and we 
obtain, for α ∈]0, 1],

u−
α = (Fu)−1

(α

2

)
(14)

u+
α = (Fu)−1

(
1 − α

2

)
.

Given any fixed value λ ∈ ]0,1[, consider a non-decreasing function F :R−→ [0, 1] satisfying the properties:

1) aF = sup{x|F (x) = 0} ∈R, bF = inf{x|F (x) = 1} ∈R (clearly aF ≤ bF );
2) cF = inf{x|F (x) ≥ 1 − λ} ∈R, dF = sup{x|F (x) ≤ 1 − λ} ∈R (clearly cF ≤ dF );
3) aF ≤ cF ≤ dF ≤ bF and F is right-continuous on [aF , cF [, left-continuous on ]dF , bF ] and F (x) = 1 −λ for all x ∈ [cF , dF ].

Then there exists a unique fuzzy interval uF ∈RF with λ-ACF, for λ ∈ ]0,1[ given by F . Indeed, the membership function 
of uF is given by (compare with Definition 1)

uF (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < aF

1
1−λ

F (x) if aF ≤ x < cF

1 if cF ≤ x ≤ dF
1
λ

(1 − F (x)) if dF < x ≤ bF

0 if x > bF

(15)

and, from the assumptions 1), 2) and 3) on F , uF is a fuzzy interval (the proof is immediate by directly verifying that 
uF ∈RF ).

We denote by Fλ(R) the family of all functions F :R−→ [0, 1] satisfying properties 1)-2)-3).
In the particular case of λ = 1

2 , the family Fλ(R) will be simply denoted by F(R); the 1
2 − AC function of u ∈ RF is a 

non-decreasing function Fu :R−→ [0, 1] such that Fu(x) = 1
2 uL(x) on [a, c[, Fu(x) = 1 − 1

2 uR(x) on ]d,b] and Fu(x) = 1
2 on 

the core [c, d] of u, i.e., u(x) = 2 min{F (x), 1 − F (x)}.
In [30] we have formalized a bijection between the space RF of real fuzzy intervals and the spaces Fλ(R) of non-

decreasing functions F :R −→ [0, 1] such that, for a fixed λ ∈]0, 1[, F (x) is right-continuous on [aF , cF ] and left-continuous 
on [dF , bF ] and F (x) = 1 − λ on [cF , dF ] where⎧⎪⎪⎨⎪⎪⎩

aF = sup{x|F (x) = 0} ∈R,
bF = inf{x|F (x) = 1} ∈R,

cF = inf{x|F (x) ≥ 1 − λ} ∈R,
dF = sup{x|F (x) ≤ 1 − λ} ∈R.

(16)

Each F ∈ Fλ(R) is called a λ-AC function.
For a given u ∈RF with membership

u(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < a or x > b

uL(x) if a ≤ x < c
1 if c ≤ x ≤ d

uR(x) if d < x ≤ b

(17)

the λ-AC function F (λ)
u ∈ Fλ(R) corresponding to u is

F (λ)
u (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < a

(1 − λ)uL(x) if a ≤ x < c
1 − λ if c ≤ x ≤ d

1 − λuR(x) if d < x ≤ b
1 if x > b

(18)

Vice versa, if F ∈ Fλ(R) is given and λ ∈]0, 1[ is fixed, with aF ≤ cF ≤ dF ≤ bF , the corresponding u ∈RF is

uF ,λ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < aF or x > bF

1
1−λ

F (x) if aF ≤ x < cF

1 − λ if cF ≤ x ≤ dF
1 (1 − F (x)) if d < x ≤ b .

(19)
λ F F
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Remark that an equivalent compact form of (19) is the following (the explicit computation of aF , ..., bF is not required)

uF ,λ(x) = min

(
1

1 − λ
F (x),

1

λ
(1 − F (x))

)
, for all x. (20)

For a real random variable X with CDF F X , a quantile of order p ∈]0, 1[ is a real value κp where F X crosses or jumps 
over p, i.e., such that

lim
x↑κp

F X (x) ≤ p and F X (κp) ≥ p.

Given a simple sample x1, x2, ..., xN from a real random variable X , the (empirical) p-quantile κ̂p(N) is obtained by 
minimizing, with respect to κ , the function

S p,N(κ) = (1 − p)

N∑
i=1

xi<κ

(κ − xi) + p
N∑

i=1
xi>κ

(xi − κ); (21)

furthermore,

κ̂p(N) = arg min
κ

S p,N(κ)

is an unbiased estimate of κp .
According to Theorem 4 it is easy to deduce the following proposition.

Proposition 5. Let u ∈RF have continuous membership function (1); let Fu(x), x ∈R be its 1
2 -ACF. Then for all α ∈]0, 1], the α-cuts 

[u−
α , u+

α ] of u are such that u−
α is the α2 -quantile of Fu(x) and u+

α is the α2 -quantile of F−u(x).

Proof. We have

Fu(x) = 1

2
uL

ext(x) + 1

2

(
1 − uR

ext(x)
)

and, from equality F−u(x) = 1 − Fu(−x),

F−u(x) = 1

2
uR

ext(−x) + 1

2

(
1 − uL

ext(−x)
)

;

From the continuity of uL
ext(x) and uR

ext(x) it follows that both Fu and F−u are continuous and their inverses are quantile 
functions. �

Let us consider the case where the membership function is given at a finite number of points, i.e. suppose that the fuzzy 
number u ∈RF is “measured” at N (independent) observations (ti, u(ti)); this is equivalent to consider a set of independent 
variables X1, X2, ..., XN identically distributed on the support [a,b] and to extract a simple sample of N distinct values ti
from each Xi , i = 1, 2, ..., N .

Consider the decomposition PN={x1 < x2 < ... < xN } of the support [a,b], obtained by ordering the ti such that t(1) <

t(2)... < t(N) and defining xi = t(i) for i = 1, 2..., N . The corresponding empirical AC function is

F̂PN (x) = 1

N

N∑
i=1

Î (x ≥ xi) (22)

where

Î (x ≥ xi) =
{

1 if x ≥ xi
0 if x < xi

. (23)

For α ∈]0, 1], the α-cuts of u can be estimated by computing the empirical α
2 -quantile of the sample data {xi |i : 1, ..., N}

and the empirical α
2 -quantile of the data {−xi |i : 1, ..., N}. To this issue, we have to minimize the two empirical functions, 

as in eq. (21). The obtained values

κ−
α (N) = arg min

κ
S α

2 ,N(κ) (24)

κ+
α (N) = arg min

κ
S1− α

2 ,N(κ) (25)

give an estimate [κ−
α (N), κ+

α (N)] of the α-cut [u−
α , u+

α ] of u and are obtained without computing directly the (empirical) 
AC function from the data.
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The Glivenko-Cantelli theorem ensures the convergence, for N → ∞, of interval [κ−
α (N), κ+

α (N)] to the α− cut [u−
α , u+

α ].
In practical applications the assumption of continuity of Fu is not restrictive and it is a standard approach in statistics to 

estimate the quantiles and the cumulative distribution function from empirical data.
It is also interesting to observe that, for fuzzy numbers, the same empirical AC function can be associated to possibly 

several membership functions, according to the value λ ∈]0, 1[ appearing in equations (19), (20). For example, consider 
the linear ACF F (x) = x−a

b−a if x ∈ [a, b], F (x) = 0 if x < a, F (x) = 1 if x > b (we can consider F as a “uniform” ACF). If we 
take λ = 1

2 , then the associated λ-membership function u0.5(x) gives the linear-shaped triangular fuzzy number, usually 
represented by the triplet (a, a+b

2 , b), with core at c0.5 = a+b
2 and support [a, b]; if we take, e.g., λ = 3

4 , then the associated 
u0.75(x) gives the triangular fuzzy number (a, 0.75a + 0.25b, b) with the same support but core at c0.75 = 0.75a + 0.25b. 
In general, then, before associating the membership to a uniform AC function, we have to choose the value of λ; this is 
equivalent to choose the position of the core cλ = λa + (1 − λ)b between a and b.

A similar reasoning can be applied to the case of a non-linear AC function F on [a, b] by choosing the position of the 
core c ∈]a, b[ and by computing the membership function according to (20) with the value λ = F (c).

3. Membership functions from empirical quantiles

Two questions are relevant to managing a membership function u empirically: (a) how to generate (independent) obser-
vations from u, and (b) how to estimate u from data.

3.1. Generating data from a given AC function

A natural way to generate observations from a fuzzy interval u ∈ RF with α-cuts [u−
α , u+

α ], α ∈ [0, 1], is based on the 
application of the so called and well known insufficient reason principle, (IRP for short, see Dubois-Prade [11] and [12]): select 
a uniform sample of m α-cuts, corresponding to levels α1 < α2 < ... < αm ∈ [0, 1] (eventually αk = k−1

m−1 , k = 1, 2, ..., m
equispaced between 0 and 1) and choose uniformly from each [u]αk = [u−

αk
, u+

αk
] an equal number of values tk, j ∈ [u]αk , 

j = 1, 2, ..., n ≥ 2, so that a matrix of N = mn observations {tk, j |k = 1, ..., m; j = 1, ..., n} is obtained (eventually values 
tk, j = u−

αk
+ j−1

n−1 (u+
αk

− u−
αk

), equally spaced on each [u]αk ).
Suppose for simplicity that the values tk, j are all distinct. Let us organize the matrix tk, j (for example by rows) into a 

vector ̂ti , i = 1, 2, ..., N and denote by ̂t(i) the ascending ordered element in i-th position with ̂t(i+1) > t̂(i) , i = 1, ..., N − 1.
The corresponding empirical AC function of the data set is obtained by setting xi = t̂(i) , i = 1, ..., N and, for x ∈R,

F̂{tk, j}(x) = 1

N

N∑
i=1

Î(x ≥ xi). (26)

We have the following obvious property.

Proposition 6. The empirical AC function ̂F{tk, j}(x) is such that

lim
n,m→∞ sup

∣∣̂F{tk, j}(x) − Fu(x)
∣∣ = 0

where Fu(x) is the AC function of u.

Proof. It is sufficient to apply Proposition 25 in [30]. �
By the uniform construction of {tk, j} from the m α-cuts [u]αk we can see that the probability of xi ∈ [u]αk does not 

depend on n, the number of elements taken from each α-cut. Indeed, letting [a, b] the support and [c, d] the core of 
u, denote the lengths of the intervals δ1 = u+

α1
− u−

α1
= b − a, δk = u+

αk
− u−

αk
and δm = u+

αm
− u−

αm
= d − c, the nesting 

property of the α-cuts ensures that xi ∈ [u]αk+1 =⇒ xi ∈ [u]αk and all xi belong to [u]α1 (the support); on the other hand, 
by uniformity, the number of elements xi in [u]α j and not in [u]α j+1 , for fixed j, is the proportion δ j−δ j+1

δ j
of the difference 

of lengths of the two intervals. We then have

Pr{xi ∈ [u]αk } = 1

N

⎛⎝n(m − k + 1) + n
k−1∑
j=1

δ j − δ j+1

δ j

⎞⎠

= 1

m

⎛⎝m − k + 1 + k − 1 +
k−1∑
j=1

δ j+1

δ j

⎞⎠ = 1

m

⎛⎝m +
k−1∑
j=1

δ j+1

δ j

⎞⎠
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= 1 − 1

m

k−1∑
j=1

δ j+1

δ j
.

The last expression does not depend on n but only on the number m of α-cuts and on the lengths of the intervals 
[u]αk = [u−

αk
, u+

αk
].

It is also possible to see that the statistical modal value belongs (or coincides with it, if c = d) to the core of u; further-
more, the modal value and the median of the data set, under the IRP condition, will also coincide.

Assume that the core [c, d] is not a singleton, i.e. that δm > 0; eventually, if c = d the n data values corresponding to 
the core are generated uniformly from a neighbor [c − ε, c + ε] with a small ε > 0 and, in this case, δm = 2ε > 0. Lets now 
consider a histogram with p uniform classes C1, C2, ..., C p , obtained from the data set {xi |i = 1, ..., N}; each class has length 
b−a

p and is an interval Cl =
[
a + l−1

p (b − a),a + l
p (b − a)

]
, l = 1, 2, ..., p. It is not difficult to determine the composition of 

each class Cl , i.e. to compute the probability that xi ∈ Cl . Clearly, it will depend on the position of the class with respect to 
each α-cut [u]αk , k = 1, ..., m. Denote Il,k = Cl ∩ [u]αk and let ̂δl,k = length(Il,k) ≤ b−a

p (set ̂δl,k = 0 if Il,k is empty); then, the 

proportion of elements tk, j , j = 1, ..., n, from the interval [u]αk that belong to Cl will be the ratio δ̂l,k
δk

and we have

Pr{xi ∈ Cl} = n

N

m∑
k=1

δ̂l,k

δk
= 1

m

m∑
k=1

δ̂l,k

δk
≤ b − a

p

1

m

m∑
k=1

Il,k 
=∅

1

δk

i.e., each class has a number of elements proportional to the average ratio of the length of its intersection with each α-cut 
to the length of the α-cut itself. As a consequence, the highest probability corresponds to a class which intersects the core 
of u, denote it by Ĉl; by the nesting property of the α-cuts and by the uniformity of the tk, j with respect to each [u]αk , it 
also follows that the proportion of elements xi located on the left (before) the modal class is the same as after the modal 
class, with the consequence that the modal value coincides with the median of the data set {xi |i = 1, ..., N}.

In the special case of n = 2, i.e., to each α-cut two elements ti,1, ti,2 are generated for all i = 1, ..., m, we can deduce a 
procedure to generate a (random) sample from a fuzzy number u with a singleton core {c}, support [a, b] and continuous
AC function Fu : let αi be m (independent) random numbers generated between 0 and 1, determine tk,1 = F −1

u (
αk
2 ), tk,2 =

F −1
u (1 − αk

2 ) and set x2k−1 = tk,1, x2k = tk,2 for k = 1, ..., m (a set of N = 2m values), where F −1(α) = inf{a|F (x) ≥ α} is the 
generalized inverse of F .

If we chose n = 1, i.e., to each α-cut only one element xi is selected for all i = 1, ..., m, we can generate a (random) 
sample of values x1, x2, ...xm ∈ [a, b] from u: let αi be (independent) random numbers generated between 0 and 1 and 
determine xi as

xi =
{

F −1
u (

αi
2 ) with probability 1

2

F −1
u (1 − αi

2 ) with probability 1
2

, i = 1, ...,m. (27)

A Glivenko-Cantelli-like theorem (see [30]) ensures that, for m → ∞, the empirical cumulative distribution function of 
the data set {xi |i = 1, ..., m}, given in (26) with n = 1, converges almost surely and uniformly to Fu .

In equation (27), the quantile function is used under the assumption that the core of u corresponds to λ = 1
2 , i.e., if Fu is 

the 1
2 -ACF of u. A similar result is also valid if Fu is assumed to be the λ-ACF of u with λ ∈]0, 1[; in this case, we substitute 

equation (27) with the following

xi =
{

F −1
u (λαi) with probability 1

2

F −1
u (1 − λαi) with probability 1

2

, i = 1, ...,m. (28)

Example 1. Consider two fuzzy numbers X and Y (X with linear shaped membership function), as in Fig. 1. We have 
generated, according to the rule expressed in (27), i.e., assuming λ = 0.5, two samples of size m = 100 and m = 500; in this 
case we know exactly the position of the core of X and Y (1.0 and 2.0, respectively), so we do not face the problem with 
their location.

In Fig. 2, a sample of m = 100 data is extracted from the two fuzzy numbers and the membership function is recon-
structed from the empirical AC function with λ = 1

2 . The resulting percentage relative error between exact and estimated 
AC functions is 0.40% for X and 0.59% for Y . Remark that in this case a small portion on left and right of the support of X
and Y is not covered completely (in particular, the right side of X).

In Fig. 3, the sample has m = 500 points and the AC function is estimated empirically. The resulting percentage relative 
error between exact and estimated AC functions is 0.34% for X and 0.52% for Y . In this case, the covering of the supports 
of X and Y is more satisfactory than for the previous smaller sample.
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Fig. 1. Membership function (MF) and 1
2 -Average Cumulative function (ACF) of fuzzy numbers X and Y as in Example 1.

Fig. 2. Empirical (m = 100) and estimated Membership function (MF) and Average Cumulative function (ACF) of fuzzy numbers X and Y , as in Example 2.

3.2. Estimating a membership function from empirical data

As we have mentioned, the λ-AC function (ACF) of a fuzzy number u ∈ RF , in the continuous case, has the same 
properties of a cumulative distribution function (CDF) of a (real) random variable X , defined on the same (support) domain. 
This gives an interesting (formal) similarity between probability and possibility as, at least in principle, we can examine the 
same function by combining the two settings, as we did in section 3.1, to simulate data from the possibility distribution. 
If we work with fuzzy numbers, we can perform all the operations in terms of the corresponding λ-AC functions (see also 
papers by G. De Cooman, in particular [7]).

Clearly, the information about how the sample is extracted, becomes crucial when considering the empirical Fu : the 
connection between Fu , interpreted as a quantile function, and the underlying fuzzy membership u corresponds to the 
value λ = 1

2 . On the other hand, starting with a given ACF, we can apply Theorem 4 to reconstruct the membership function 
u (or its α-cuts) only if the value of λ ∈]0, 1[ is preliminarily decided; we know indeed that, in general, λ = 1

2 corresponds 
to the core of u only when it is coincident with the empirical median.

In the cases where we do not have such precise information, we face a situation where other values of λ ∈]0, 1[ can be 
used, according to equation (15), and we have to choose an appropriate value of λ, which corresponds to a particular choice 
of the position of the core of u. By choosing λ = 1

2 , we continue to assume that the core coincides with the median; on 
the other hand, if we assume that the core c = c∗ corresponds to a different value of λ = λ∗ , the following equality holds: 
F (c∗) = 1 − λ∗ , equivalently c∗ = F −1(1 − λ∗) and λ∗ = 1 − F (c∗).
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Fig. 3. Empirical (m = 500) and estimated Membership function (MF) and Average Cumulative function (ACF) of fuzzy numbers X and Y , as in Example 2.

Table 1
Median, mode, mean and corresponding λ∗ values for Example 2.

Data 1) Median 2) Mode 3) Mean

X c∗
X = 1.01, λ∗ = 0.5 c∗

X = 0.69, λ∗ = 0.68 c∗
X = 1.22, λ∗ = 0.45

Y c∗
Y = 2.01, λ∗ = 0.5 c∗

Y = 2.83, λ∗ = 0.30 c∗
Y = 1.75, λ∗ = 0.54

This is the rule (coherent with Theorem 4) to determine from the AC function either the location c∗ of the core if λ = λ∗
is fixed, or the value of λ if the core c = c∗ is fixed.

We suggest the following procedure to obtain a membership function ̂u(x) from an empirical AC function F̂ (x).

Procedure eACMF: Estimation of AC and membership functions from a data set.

Step 1 (Initialization): Let X = {x1, x2, ..., xm} be the available sample of values with the corresponding relative frequencies 
{p1, p2, ..., pm} (eventually, p j = 1

m for all j); let a = min{x j} − ε, b = max{x j} + ε, for some positive ε, be the support 
of ̂u(x).

Step 2: Construct the empirical AC function as F X (x) =
m∑

j=1
p ĵ I(x ≥ x j) where ̂ I(x ≥ x j) = 1 if x ≥ x j ; = 0 otherwise.

Step 3: Determine the central value c∗ ∈]a, b[ to be considered as the core of the fuzzy number û, e.g., c∗ = median{x j}, or 
c∗ = mode{x j} (if the data are uni-modal), or c∗ = mean{x j}.

Step 4: From the empirical AC function F X (x) compute F X (c∗), e.g. by interpolation, and set λ∗ = 1 − F X (c∗); if 
c∗ = median{x j}, then set λ∗ = 0.5; the empirical membership function of û at the points x j ∈ X is u X (x j) =
min

{
1

1−λ
F X (x j),

1
λ

(
1 − F X (x j)

)}
.

Step 5: From the empirical AC function construct, by some approximation, an estimated AC function F̂ (x), x ∈ [a, b].
Step 6: Use the estimated AC function F̂ (x) obtained in Step 5 to compute the membership function û as û(x) =

min
{

1
1−λ∗ F̂ (x j),

1
λ∗

(
1 − F̂ (x)

)}
, x ∈ [a, b].

In the next two examples, we apply formula (28) to a pair of fuzzy sets X , Y by comparing the construction of the 
membership functions corresponding to three cases: 1) the core c coincides with the median of the distribution; 2) the core 
c is the mode (assuming uni-modality); 3) the core c is the mean of the data.

Example 2. A sample of m = 250 data for two fuzzy numbers X , Y are generated from the same AC functions as in Exam-
ple 1, but this time the xi and yi are perturbed by adding a normal random number generated from N(0, σ 2) with σ = 0.3. 
The obtained AC functions are pictured in Fig. 4; remark that the median of X and Y are essentially preserved.

Considering that the AC functions are monotone, we have used the method in [5] to obtain their best (smooth) monotonic 
approximation.

From the data set, the cores c∗
X and c∗

Y are estimated from the empirical median, mode and mean of X and Y ; they are 
reported in Table 1, with the corresponding values of λ∗ , obtained from the empirical AC functions by linear interpolation.
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Fig. 4. The ACFs of numbers X ad Y are represented, following hypothesis in Example 2.

Fig. 5. Empirical (m = 250) and estimated MF and ACF of fuzzy numbers X and Y , as in Example 2, assuming the core coincident with the median; the 
horizontal dashed lines correspond to values of λ∗ .

The empirical and estimated AC functions of X and Y do not change for the three cases; instead, the membership 
functions, estimated according to Procedure eACMF corresponding to the appropriate values of λ∗ (see Table 1) are quite 
different in the three cases.

Fig. 5 reproduces the situation where the core of X and Y coincide with the median of ACFs; they are similar, considering 
that the data are perturbed, to the ACFs and to the membership functions reproduced in Fig. 4.

When the core is made coincident with the mode (Fig. 6) or the mean (Fig. 7), then the membership functions change 
significantly their position and shape (in particular, when the empirical ACFs exhibit some non-linearity).

Example 3. In this case, the two variables X , Y represent two properties (variables) from a sub-sample of the quakes data 
set, available in the R-language Package datasets (version 3.6.0). X and Y are the (rescaled) latitude and longitude from a 
cluster of m = 795 seismic events having locations in a cube near Fiji (frequently used to test clustering procedures). The 
empirical median, mode and mean of X and Y are given in Table 2.

The empirical AC functions of X and Y are pictured in Fig. 8.
The estimated ACFs and the corresponding membership functions, obtained according to Procedure eACMF for the three 

cases, are shown in Fig. 9 for the median, Fig. 10 for the mode and Fig. 11 for the mean.
Also for Example 3, the smooth monotonic approximations of the ACFs are obtained by the method described in [5]. We 

can remark that, in this example, the membership functions for the three cases exhibit similar forms (in particular for Y ), 



M.L. Guerra et al. / International Journal of Approximate Reasoning 124 (2020) 133–146 143
Fig. 6. Empirical (m = 250) and estimated MF and ACF of fuzzy numbers X and Y , as in Example 2, assuming the core coincident with the mode; the 
horizontal dashed lines correspond to values of λ∗ .

Fig. 7. Empirical (m = 250) and estimated MF and ACF of fuzzy numbers X and Y , as in Example 2, assuming the core coincident with the mean; the 
horizontal dashed lines correspond to values of λ∗ .

Table 2
Median, mode, mean and corresponding λ∗ values for Example 3.

Data 1) Median 2) Mode 3) Mean

X c∗
X = −0.33, λ∗ = 0.5 c∗

X = 0.64, λ∗ = 0.38 c∗
X = −1.23, λ∗ = 0.59

Y c∗
Y = 2.42, λ∗ = 0.5 c∗

Y = 2.07, λ∗ = 0.59 c∗
Y = 2.89, λ∗ = 0.42

due essentially to the fact that, with respect to the relatively large supports, the values of median, mode and mean are not 
so different as it is in Example 2.

4. Conclusions and further research

The AC function Fu associated to a (normal, convex) fuzzy number u ∈ RF creates a bridge with possibility theory and 
allows a setting to work with empirical observations. As we have seen in section 3, under the assumptions that

(a) data are generated according to an underlining membership function, and
(b) we have a precise information about the location of the core,
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Fig. 8. Empirical (m = 795) Average Cumulative functions of X and Y from the quakes dataset, as in Example 3.

Fig. 9. Empirical (m = 795) and estimated MF and ACF of fuzzy numbers X and Y , as in Example 3 when the core coincides with the median; horizontal 
dashed lines correspond to the values of λ∗ .

we can apply Theorem 4 to obtain an estimated function û ∈RF from the empirical (monotonic) AC function F̂ , assuming 
that the value λ∗ ∈]0, 1[ is fixed. On the other hand, the selection of λ∗ cannot be deduced directly from the data set 
without a precise (at least qualitative) assumption.

A natural choice, having a valid statistical justification, is to determine λ∗ such that the core of u coincides with the 
median of observed values. In this case, we know that the α-cuts of u coincide with the α

2 -quantile intervals; but other 
possible values can be determined, e.g., by the help of depth functions (see, [27], [1], [24]), or by analyzing the order 
structure of the data set.

4.1. Open problems

The choice of an appropriate meaningful value of λ∗ still remains an essentially open question, even if median, mode or 
mean values seem to merit special attention.

A second open question concerns the cases when (ordered) data are not able to evidence a unique central value, for 
example if the observations can be clustered into subsets around reasonably identified centroids; in these situations, we 
may have distinct fuzzy sets to identify and the use of clustering techniques can be of help to preliminarily subdivide the 
data into a number of sub-samples each giving a membership function with reduced supports.
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Fig. 10. Empirical (m = 795) and estimated MF and ACF of fuzzy numbers X and Y , as in Example 3 when the core coincides with the modal value; 
horizontal dashed lines correspond to the values of λ∗ .

Fig. 11. Empirical (m = 795) and estimated MF and ACF of fuzzy numbers X and Y , as in Example 3 when the core coincides with the mean; horizontal 
dashed lines correspond to the values of λ∗ .

4.2. Further research

Some additional research will also involve computational issues, in order to improve the empirical applicability of the 
proposed ideas. In particular, we have planned some work to address

• the generation of random fuzzy intervals (or random possibility distributions) via AC functions and the search for 
possible metrics on ACFs that focus on useful topological structures (see for example [28] and [31]);

• the search for general and flexible procedures for robust approximation of ACFs from empirical data: indeed, the ACF-
representation based on monotonic functions eases the search of approximation methods and algorithms, as is done 
in [5] by the use of F-transform. We remark that a similar procedure can be applied to the estimation of density and 
distribution functions of random variables;

• the identification of multiple membership functions with possibly overlapping supports, as in the case where observed 
data are obtained from mixtures of possibility distributions, e.g., as unions of fuzzy sets;

• the extension of a similar construction to the multi-dimensional case, using ideas from statistical or geometrical cluster 
analysis (including fuzzy clustering as, e.g., in [20]), related to multi-dimensional depth functions, copulas (or more 
general functions) to represent multidimensional fuzzy quantities and associated AC functions, with or without the 
convexity requirement.
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