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ABSTRACT

The systematic study of faults that have released strong earthquakes in the 
past is a challenge for seismic hazard assessment. In carbonate landscapes, 
the use of rare earth element (REE) concentrations on slickensides may aid 
the reconstruction of fault slip history. We applied this methodology to the 
Caggiano normal fault (Southern Apennines, Italy), cropping out southeast of 
the Irpinia 1980 CE earthquake fault (Mw 6.9), which was responsible for both 
the 1561 CE and partly the 1857 CE Basilicata earthquakes (Mw 6.7 and 7.1). 
We integrated the REE analysis approach with a high- resolution topographic 
analysis along 98 serial topographic profiles to measure vertical separations 
attributable to faulting since the Last Glacial Maximum (LGM). The asymmet-
ric scarp height profiles suggest fault- lateral propagation and along- strike 
variations in the fault evolution. Our results indicate the occurrence of 7 to 11 
earthquakes with variable slip between ~40 cm and ~70 cm within post- LGM 
times. We estimated the magnitudes of the respective earthquakes, between 
5.5 and 7.0, and most commonly between 6.3 and 6.5. The results suggest a 
recurrence time between 1.6 k.y. and 2.3 k.y. and a slip rate ranging between 
0.6 mm/yr and 0.9 mm/yr. This approach may be useful for application to 
carbonate fault planes in similar tectonic contexts worldwide.

 ■ INTRODUCTION

Italy is among the most seismically active areas of the entire Mediterranean 
basin, and it hosts extensional, compressional, and strike- slip earthquakes (e.g., 
de Nardis et al., 2022; Di Luccio et al., 2005; Herrmann et al., 2011; Pondrelli et 

al., 2006; Scognamiglio et al., 2006). Major extensional earthquakes concentrate 
along the Apennine chain in the so- called extensional seismogenic province 
(sensu Lavecchia et al., 1994, 2021). This province extends with an average NW- 
SE direction along the axial zone of the Apennines (Galadini and Galli, 2000; 
Lavecchia, 1988) and continues with a N- S strike in northern Calabria (Andrenacci 
et al., 2023; Brozzetti et al., 2009, 2017a, 2017b; Cirillo et al., 2022b; Napolitano 
et al., 2021; Tortorici et al., 1995) and a NNE- SSW strike in southern Calabria 
(Cucci, 2022; Galli and Bosi, 2003; Neri et al., 2020). In this active geological 
environment, the faults often form rock scarps, facilitated by Bahamian- type 
Mesozoic– Cenozoic carbonate rocks. These well- preserved rock scarps may 
reach up to tens of meters in height and stretch along the edges of great intra-
montane Quaternary basins for hundreds to thousands of meters (Brozzetti, 2011; 
Brozzetti et al., 2019, 2020; Bucci et al., 2013; Civico et al., 2018; Galadini and Galli, 
2000; Galli et al., 2006; Galli and Peronace, 2014; Gori et al., 2011; Mirabella et al., 
2011; Roberts and Michetti, 2004; Schirripa Spagnolo et al., 2021; Sgambato et 
al., 2020; Villani et al., 2018; Villani and Pierdominici, 2010). In some cases, these 
structures run in the highest portions of the main ridges, sometimes even with 
trends oblique to the ridges, where they form narrow intramontane along- strike 
elongated basins, some hundreds of meters long and filled with late Quater-
nary clastic deposits. This is the case for the 25- km- long Caggiano fault system 
(Mt. San Giacomo and Timpa del Vento segments in Galli et al., 2006), which, 
according to Bello et al. (2022b), could be the northern segment of a much lon-
ger system (Caggiano- Montemurro fault). The Caggiano- Montemurro fault is 
an ~65- km- long, SSW- dipping trans-ridge fault crossing a portion of the Monti 
della Maddalena ridge (Fig. 1), connecting the Auletta and Val d’Agri basins and 
bordering the northernmost portion of the Vallo di Diano (Fig. 1). The Caggiano- 
Montemurro fault was recently hypothesized to be the main fault of the area, 
with a length capable of generating the 1857 CE (Mw 7.1) earthquake (Bello et 
al., 2022b). In turn, previous paleoseismological investigations across the Cag-
giano fault by Galli et al. (2006, 2008) accounted for several surface- faulting 
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Figure 1. (A) Seismotectonic map of the Campania- Lucania extensional belt. Major normal faults are from literature (Bello et al., 2021a, 2022b; Brozzetti, 
2011; Galli and Peronace, 2014). Major earthquakes (EQS) with Mw ≥6.5 that occurred in the area from 1000 CE to 2020 CE are reported as white circles 
from the CPTI15 catalog (Rovida et al., 2020, 2022). Earthquake focal mechanisms (0– 15 km; 4.3 ≤ Mw ≤ 6.8; 1962– 2002; blue—normal; green—strike- 
slip) are from Pondrelli et al. (2020). The red focal mechanism is from López- Comino et al. (2021). (A′) Location map of panel A. (B) Hillshaded relief 
map of the study area. Black dashed rectangle is the area of Figure 4A. Red lines are the northern segments of the Caggiano- Montemurro fault (CMF).
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events in the past 6 k.y. The latest ones occurred in the last 2 k.y. B.P., probably 
during/after slope- debris deposition related to the Little Ice Age (ca. 1400– 1800 
A.D.). According to Castelli et al. (2008), both of the fault segments comprising 
the Caggiano fault were responsible for the two 1561 CE main shocks (31 July 
and 19 August 1561 CE; cumulative Mw = 6.7 in the Catalogo Parametrico dei 
Terremoti Italiani [CPTI15]), and, tentatively, also the northernmost shock of the 
devastating 1857 CE earthquake sequence (cumulative Mw = 7.0).

In recent years, many advances have been made to study coseismic defor-
mation at the surface using high- resolution topography (e.g., Bello et al., 2021b; 
Bubeck et al., 2015; Cirillo, 2020; Johnson et al., 2014; Westoby et al., 2012; Wilkin-
son et al., 2015, 2016). In fact, high‐resolution imagery and topography from light 
detection and ranging (LiDAR) and unmanned aerial vehicle (UAV) technologies 
provide excellent data sets for measuring fault scarps (e.g., Bello et al., 2022a; 
Scott et al., 2022; Stewart et al., 2018; Wilkinson et al., 2015; Wolfe et al., 2020). 
The high- precision measurements obtainable allow more in- depth studies, push-
ing forward the frontier of knowledge on old topics, like past earthquakes. Small 
UAVs can be equipped with onboard real- time kinematic global navigation sat-
ellite system (GNSS/RTK) antennas working with the post-processing kinematic 
(PPK) technique. The latter allows the acquisition of georeferenced photographs 
(centimeter- scale resolution) without placing ground- control points (Bolkas, 
2019; Cirillo et al., 2022a; Cledat et al., 2020; Vichi et al., 2022; Zhang et al., 2019).

With the help of a MATLAB algorithm, a recently developed technique 
allows semi- automatic measurement of the vertical displacement along the 
active fault strike (Bello et al., 2021b; Scott et al., 2020). This code, which per-
mits the measurement without losing control by the geoscientist, is valuable 
to constrain both the vertical displacement due to coseismic ruptures and the 
vertical displacement of long- term scarps. Although this approach is extremely 
useful because it provides an estimate of the scarp height potentially attrib-
utable to deformation since the Last Glacial Maximum (ca. 18 ka; post- LGM 
hereafter), it is not able to provide details of the number of earthquakes and 
the displacement likely associated with each of them.

A new approach that could allow researchers to quantitatively hypothesize 
the number of past earthquakes recorded by a fault scarp is to analyze, from a 
geochemical point of view, the concentration of certain chemical elements in the 
fault planes. In fact, carbonate fault planes react geochemically with the environ-
ment to which they are subjected, being enriched or depleted in certain chemical 
elements as a function of the exposure time. In particular, Benedetti et al. (2002, 
2013), Palumbo et al. (2004), Schlagenhauf et al. (2011), and Pousse- Beltran et 
al. (2022) investigated the postglacial earthquake record by analyzing bedrock 
fault planes using 36Cl cosmogenic dating. The methodology was applied on the 
Sparta fault (Greece) by Benedetti et al. (2002), on the Fucino basin fault (Italy) by 
Benedetti et al. (2013), on the Magnola fault (Italy) by Palumbo et al. (2004) and 
Schlagenhauf et al. (2011), and on the Mt. Vettore fault (Italy) by Pousse- Beltran 
et al. (2022). Recently, Iezzi et al. (2021) combined a geodetic survey with the 36Cl 
methodology on active normal faults near Athens, Greece. Carcaillet et al. (2008) 
and Mouslopoulou et al. (2011) were among the first to analyze the content of 
rare earth elements (REEs) in limestone fault planes to constrain the number 

of earthquakes released in post- LGM times by the Magnola and the Spili fault 
(Greece), respectively. Finally, the 36Cl dating and REE analyses were combined 
by Tesson et al. (2016) on the Pizzalto fault, in central Italy.

Both approaches (i.e., topographic displacement and geochemical analyses) 
are based on the same two principles: (1) Since the Last Glacial Maximum (ca. 
18 ka; Galli et al., 2006), the effects of surface faulting on rocky fault scarps are 
preserved due to the higher rates of faulting compared to the effects of erosion/
sedimentation and (2) any earthquake of such magnitude as to allow the rup-
ture to propagate at the surface will exhume a new portion of the fault plane, 
adding it to the cumulative fault scarp. For this last reason, the fault plane is 
ideally divided into ribbons of variable height, each of which would represent 
a seismic event. By sampling portions of rock parallel to the slip direction, a 

“log” of the slip increments can be recorded, and geochemical analyses can 
then be carried out on this record. Of course, fault planes can also be exhumed 
by non-tectonic (erosional and landslide) processes, and thus a geological and 
paleoseismological check must first filter out false active faults from real ones.

In this study, we concentrated on the northern section of the Caggiano- 
Montemurro fault. This highly segmented “trans-ridge fault” shows a 
well- defined en échelon geometric pattern at multiple viewing scales. Following 
the most widely adopted criteria in the literature (i.e., by identifying geometric 
and structural complexities such as gaps, overlaps, underlaps, and sudden 
strike variations), Bello et al. (2022b) constrained four orders of fault surface 
segmentation for the Caggiano- Montemurro fault. The section on which we 
concentrated, called Timpa del Vento, exposes fault planes that are suitable 
for our analyses because of their lithology, the quality of the outcrops, and the 
logistical ease of reaching them with instruments (Figs. 1– 3). We combined 
the methodology of the displacement discontinuity approach (measuring dis-
placements with high- resolution topography) to obtain information on ~5 km 
of fault length along with a detailed geochemical study at one site defining the 
variations in the content of trace elements (e.g., REEs + Y) on the fault plane.

The goal was to assess the number of earthquakes potentially released 
by the Timpa del Vento fault section, and likely by the Caggiano- Montemurro 
fault, which is considered to be a segmented or branched- at- depth normal fault 
(Bello et al., 2022b; Cello et al., 2003; Soliva et al., 2008). Finally, we used empir-
ical relationships to estimate earthquakes magnitude from fault slip (Leonard, 
2010; Thingbaijam et al., 2017; Wells and Coppersmith, 1994; Wesnousky, 2008).

 ■ TECTONIC SETTING AND SITE DESCRIPTION

The study area is located in the axial sector of the late Miocene– Pliocene 
Southern Apennines fold- and- thrust belt, which was dissected in the Quater-
nary by extensional structures (Lavecchia et al., 1994, 2021, 2022; Brozzetti, 2011, 
and references therein). We refer the interested reader to the broad available lit-
erature (e.g., Mostardini and Merlini, 1986; Nicolai and Gambini, 2007; Scrocca 
et al., 2007; Vezzani et al., 2010) for a complete and detailed description of the 
paleogeographic domains involved in the construction of the mountain chain. 
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The extensional fault system offsets preexisting compressive structures of the 
fold- and- thrust belt beginning in the early Pleistocene (e.g., Barchi et al., 2007; 
Brozzetti, 2011; Casciello et al., 2006; Di Naccio et al., 2013; Papanikolaou and 
Roberts, 2007; Schiattarella, 1998), with low to moderate slip rates (Galli, 2020; 
Galli et al., 2006; Papanikolaou and Roberts, 2007; Sgambato et al., 2020) gen-
erating intramontane basins filled with Quaternary clastic and fluvio- lacustrine 
deposits (Amicucci et al., 2008; Brozzetti et al., 2017b; Brozzetti and Salvatore, 
2005; Bucci et al., 2020; Di Giulio et al., 2016; Robustelli et al., 2014; Villani and 
Pierdominici, 2010; Villani et al., 2019). In the study area, these are the Auletta, 
the Vallo di Diano, and, marginally, the Val d’Agri (Fig. 1) basins, which show 
southwestward- thickening tilted beds in the Auletta basin (Amicucci et al., 
2008; Brozzetti, 2011) and northeastward- thickening tilted beds in the Vallo di 
Diano and Val d’Agri basins (Giano et al., 2000; Zembo et al., 2009). For the 
whole area, current stress field data from tectonic structures show NNE- SSW 
extension, with an approximately N032E- trending near- horizontal s3 axis (Bello 
et al., 2021a, 2022b), slightly deviating from the approximately NE- SW s3 axis 
highlighted further south (e.g., Brozzetti et al., 2009; Cirillo et al., 2022b) or 
further north (e.g., Castaldo et al., 2018; Ferrarini et al., 2015; Lavecchia et al., 
2017; Mariucci and Montone, 2016) along the Apennine chain.

The study area framed in Figure 2 is located along the Monti della Madd-
alena ridge (Fig. 1B), which is the structural continuity of the Mt. Marzano 
carbonate massif, the latter of which is bordered by the Irpinia fault system 
(Fig. 1A). This ridge is made of Triassic to Cretaceous marine carbonate and 
dolomitic rocks and Cretaceous– Paleogenic limestones, capped by Miocene 
siliciclastic deposits and by arenaceous flyschoid formations (Pescatore et al., 
1970). The study sites are characterized by the presence of a portion of the 
Caggiano fault, which was recognized to be active by Galli et al. (2006). At the 
footwall of the fault, beyond the cataclastic layer, the rock type is characterized 
by shelf- marginal facies consisting of massive or poorly bedded bioclastic 
rudstones and framestones. The rock fault scarp can be followed along the 
narrow (200– 400 m) Timpa del Vento and Campo di Venere basins, where it also 
affects active decametric- scale alluvial fans (Galli et al., 2006). The carbonate 
fault plane of our sampling site is located uphill of the southeastern tip of the 
Timpa del Vento basin, a few hundred meters from the beginning of a bedrock 
saddle dividing the two basins (Fig. 2). The sampling site is characterized by 
a tectonically exhumed fault plane portion (higher portion of ~370 cm) plus a 
lower part that was recently (between 2006 and 2016) bulldozed for the con-
struction of a dirt road. This allowed us to reach the fault plane with vehicles 
and to carry the necessary sampling instrumentation close to the plane. In this 
site, Holocene deposits cut and are in contact with the fault, and, thanks to 
recent excavation, it is possible to correlate the modern soil covering the fault 
plane until recently with the REE concentrations. Close to the site described 
here, the topographic depression deepens abruptly and begins to widen to 
reach, within 500– 600 m, its widest portion. According to some boreholes 
described in Galli et al. (2006), the infilling deposits of the basins are repre-
sented by a few meters of clays and sands along with alternating layers of 
slope debris and volcanic ashes. These deposits represent the last episode of 

a marsh environment related to the damming of the basin controlled by the 
fault. Below these continental deposits, boreholes showed ~15 m of yellow-
ish and blue- gray sandy clays, attributable to the marine Pliocene section by 
Lucchetti (1943) and covering the bedrock.

 ■ DATA AND METHODS

High-Resolution Topography

In April 2022, we acquired 2677 photographs along part of the Timpa del 
Vento fault using a DJI Mavic 2 Pro drone and a Phantom 4 Pro V2 drone that 
flew at ~50– 100 m altitude above ground level (Fig. 2A, inset A′). For the best 
positioning of the photographs, we used an Emlid Reach RS2 GNSS/RTK L1, 
L2, L5 base station, positioned in two central portions of the study area, and 
an antenna rover (L1/L2 RTK/PPK) installed on board both drones. In total, we 
covered ~5 km along the fault strike of the Timpa del Vento segment with an 
average imaging width of ~500 m (Fig. 4A). The acquired photographs were 
reviewed, and then those that were low quality, blurred, or taken during take-
off and landing were eliminated. We processed the photographs to produce 
dense point clouds, orthomosaics, and digital elevation models (DEMs) with 
the Agisoft Metashape Pro image- based photogrammetric modeling software 
(version 1.8.4; e.g., Bello et al., 2021b; James and Robson, 2012; Johnson et al., 
2014; Westoby et al., 2012). We aligned the 2619 selected photographs and pro-
duced the models with high- quality settings that were exported with the default 
recommended resolution. The obtained accuracy of the models was ~3 cm in 
the horizontal and vertical directions. We built hillshade maps in ArcMap (ESRI 
ArcMap© 10.8) with a resolution of ~3 cm/pixel. The DEM we produced ranged 
from ~1000 to ~1200 m altitude above sea level and covered an area of ~3.2 km2.

Vertical Separation Measurement

We mapped the Timpa del Vento fault at a fixed scale of 1:500 in ArcMap©, 
using the DEMs and orthomosaics produced as base maps (Fig. 4A). The fault 
trace is observable at the border of the small (i.e., 1–3 km2) intramontane 
Quaternary basins for the entire extent of the DEM (Figs. 3 and 4A). As men-
tioned, the fault pattern is highly segmented, and, even at the large scale (i.e., 
1–3 km), it is articulated in small portions that border small intramontane basins 
(Figs. 2A and 2B). Based on the mapped traces and the DEMs produced, we 
used a MATLAB algorithm developed by Scott et al. (2020) for use by Bello et 
al. (2021b) and investigated the topography to measure the vertical separation 
(VS) along 98 topographic profiles. This approach allowed us to measure the 
VS defined as the vertical distance between the linear surface projections at the 
hanging wall and footwall of the fault measured at the fault trace position. For 
normal to oblique- normal faults (i.e., dip- slip or dip- slip with a slight strike- slip 
component), this assumption is considered appropriate because the lateral 
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slip is thought to have minimal influence on the total displacement (Bello et 
al., 2021b; DuRoss et al., 2019; Scott et al., 2022). We reference the reader to 
Bello et al. (2021b) and to the user guide in Scott et al. (2020) for a detailed 
explanation of the steps for preparing the input files for the measurement 
process and a complete user guide of the MATLAB code.

We generated the topographic profiles, orientated perpendicular to the 
average fault strike (Fig. 4A), from the DEM with a 50 m spacing and a 2 m 
averaging window, which minimized the impact of the topography. To acquire 
the measurements, we manually marked two points on the hanging wall and 
two points on the footwall of the fault to provide the surface projection. The 
four points for the linear surface projections must be selected on bare ground, 
avoiding vegetation, which was easily identifiable on dense clouds, orthomo-
saics, DEMs, and topographic profiles (see details in Bello et al., 2021b; Scott 
et al., 2020). The position of the fault along the topographic profile was also 
manually picked by the operator and generally identified in the steepest part 
of the scarp face. The algorithm automatically measured the vertical separa-
tion. An example of one of the topographic profiles with the projection lines 
is shown in Figure 4B. The measurement was accompanied by a quality factor 
(measure quality ranking [MQR]), which characterizes the quality of the mea-
surement based on parameters such as vegetation, the angle between the 
two linear surface projections (more or less regularized slope), and the ease 
of identification of the fault trace position. In addition, the measurements were 
accompanied by a statistical error, which was automatically calculated by the 
code as in the following equation by Bello et al. (2021b):

 ( )Δ = − + Δ + Δ + Δx m m Fx b bfootwall hanging wall hanging wall footwall 

2 2
 

2 2 ,

where mfootwall and mhanging wall represent the best- fit slopes interpolated at the 
footwall and at the hanging- wall lines of the fault, while bfootwall and bhanging wall 
are the topographic intercepts. ΔFx is 25% of the scarp height, representing 
the error in fault positioning (for details on the best- fit slopes calculations, 
see Bello et al., 2021b).

In total, we acquired 86 measurements on 76 transects considering the fault 
scarp near field, plus a further six measurements on six profiles considering 
the fault far field (i.e., the entire slope) and assuming a rough slope rectification 
during the strong LGM rhexistasy phases (ca. 24 ± 3 ka; Fig. S11; Galli et al., 2012, 
2017, 2022). Profiles and measurements will be described in the next sections.

Trace-Element Analyses

Sedimentary limestones are generally REE- poor (e.g., Rosatelli et al., 2023, 
and references therein; Stoppa et al., 2021), while the pedogenic environment 

1 Supplemental Material. Contains Figures S1–S3. Please visit https://doi.org/10.1130 /GEOS .S 
.23066144 to access the supplemental material, and contact editing@geosociety.org with any 
questions.

(soil) they are in contact with is generally enriched during its development. 
The contents of REEs and other high field strength elements (HFSEs) in soils 
are highly variable, depending on the properties of the parent material, the 
degree of weathering, the content of organic matter, biological activity, and 
the presence of clay minerals, Fe/Mn oxides, phosphates, and hydroxides 
(Cao et al., 2001; Kabata- Pendias, 2010; Tangari et al., 2018, 2021; Tyler, 2004). 
In the uppermost part of the soil, REE forms organic complexes (Pourret et 
al., 2007), preventing their leaching and transfer to the deeper part of the 
soil. Thus, REE + Y enriches the organic- richer soil portion (Carcaillet et al., 
2008, and references therein). Primary (i.e., limestone) and secondary (i.e., 
cement) carbonates easily dissolve in the presence of any fluids acidified by 
dissolved CO2. Fault planes developing in limestone produce breccias subject 
to dissolution by rain and circulating (vadose) waters. As explained in detail 
by Carcaillet et al. (2008), the dissolution of carbonate along an exposed fault 
plane produces REE + Y enrichment in the runoff waters. These waters reach 
the pedogenized colluvial wedge at the base of the fault scarp, where REE + Y 
forms organic complexes (Pourret et al., 2007) and/or is taken up by specific 
bacteria (Chen et al., 2000), enriching the topsoil and its fluids. These fluids 
produce reprecipitation of carbonates on the fault plane. Elements with sim-
ilar ionic radius and valence similar to Ca2+ (e.g., Mg, Sr, P, Mn+2; Carcaillet et 
al., 2008, and references therein) may enter the new carbonate crystal lattice. 
Other elements, including REE + Y, however, are not readily incorporated 
into the cement (Rosatelli et al., 2010), but they are fixed by bacterial, algae, 
and root activity along grain boundaries (Carcaillet et al., 2008). Therefore, 
the REE + Y concentration peaks during quiescent earthquake periods in the 
fault scarp portion in contact with topsoil. The estimated time for the REE + Y 
enrichment in a limestone fault scarp is 0.7 k.y. (Carcaillet et al., 2008). Once 
the enrichment is established, it remains constant regardless of the length 
of the time of the soil– fault scarp contact (see residence time in Carcaillet et 
al., 2008). Therefore, there is not a linear correlation between residence time 
(earthquake interval) and REE + Y concentration unless the earthquake interval 
is less than 0.7 k.y. In addition, the REE + Y enrichment processes are linked to 
organic complexation and soil activity, so variations in environmental param-
eters affecting both weathering processes and soil organic production would 
affect the rate of REE + Y buildup. The exchange process stops at the time 
when the fault plane is exposed due to exhumation (slope erosion processes 
or surface faulting). The conceptual model in Figure 5 shows the principle of 
a carbonate bedrock fault plane enriched with REEs by modern soil.

Sampling Strategy

The samples for the bulk chemical analyses were acquired from a carbon-
ate fault plane outcropping along the Timpa del Vento fault (Figs. 3D, 6, and 
7A). For sample extraction, we used a 900 W, 115 mm grinder on which we 
installed a 3- cm- diameter and 4- cm- long diamond coring cup powered by an 
electric- powered generator (Fig. 6). On the fault mirror, the kinematic indicators 
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(i.e., slickenlines and calcite steps) show a sense of motion with a slight right- 
lateral component (rake = −116.3°, in Aki- Richard’s format; see the stereoplot 
in Fig. 2A), which we considered as the correct direction line for the sampling. 
We laid a wire tied to two nails, positioned one on the head and the other at 
the base of the scarp, parallel to the slip direction (considering the slickenside). 
Starting from the highest part, we cored the fault plane every 10 cm along 
the wire, in the best- preserved points (e.g., without pervasive fractures in the 
plane and vegetation), acquiring 37 limestone cores (Fig. 7B). We continued 
coring the fault plane every 20 cm in the lower portion, which had been recently 
bulldozed, acquiring further two samples (Fig. 7B). To have an external control 
over the subsequent analyses (samples as background to be compared with 
samples from the fault plane), we sampled three additional cores (hereinafter 
referred to as Timpa limestone background [LIM]) from an outcrop belonging to 
the same geological formation (Lower Cretaceous– Liassic carbonate platform 
deposits belonging to the Monte Marzano– Monti della Maddalena unit; sensu 
Pescatore et al., 1999), cropping out at the footwall of the fault (location in 
Fig. 3B) and therefore not in contact with any soil or colluvium. After sampling, 
we classified each sample, giving it an identifier, taking a photograph of the 
extraction location, and describing its characteristics such as the presence of 

more or less developed lichens on the exposed surface. The next steps took 
place in the laboratory.

Chemical Pretreatment

The 39 limestone sample cores from the scarp and the three Timpa lime-
stone background (LIM1, LIM2, LIM3) samples were prepared for inductively 
coupled plasma– mass spectrometry (ICP- MS) analysis. The first step was wash-
ing with 5 mL of 99.8% acetic acid to remove the dust from the drilling. We used 
a mini- drill to remove the surface patina affected by lichens and weathering. 
Then, the mini- drill was used to collect a 2 mm portion of carbonates from 
the external surface of the cores. Special care was taken to avoid as much as 
possible the limestone grains in the fault breccia and collect the carbonate 
cement among them. This powder was dried at 105 °C and weighed and then 
washed with 5 mL of ultrapure 130 vol% hydrogen peroxide for removal of 
organic matter, dried, and weighed again. The powder was dissolved with 
5 mL of 2 N ultrapure hydrochloric acid at 80 °C, assuring the dissolution of 
calcite and dolomite. The dried solution was diluted with 5 mL of ultrapure 
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Figure 5. Conceptual three- dimensional 
model (not to scale) that explains the 
principle behind our study (adapted 
from Mouslopoulou et al., 2011). The soil, 
rich in rare earth elements + Y (REE- Y), 
enriches the carbonate of the fault plane 
with which it is in contact until the mo-
ment in which it is exhumed due to a 
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nitric acid at 65%. The method adopted here was similar to that of Carcaillet 
et al. (2008) and Mouslopoulou et al. (2011) but adapted to our sample suite.

ICP-MS Analysis

Each solution was subjected to analysis by ICP- MS, looking for trace- 
element concentrations. The instrument used was an Agilent 7900 ICP- MS 
(Agilent Technologies, Tokyo, Japan) in the laboratory of newborn screen-
ing, proteomics, and endocrinology of the Center for Advanced Studies and 
Technology (CAST), University of Chieti. Detailed operating conditions and 
instrumental parameters are given in Table 1. The fourth- generation Octopole 
Reaction System (ORS) was able to measure all elements in helium (He) mode, 
even though low- mass elements are normally measured in “no gas” mode 
due to the lack of interferences (Balcaen et al., 2015). The optimization of 
ICP-MS was carried out to obtain maximum signal intensities for 7Li, 89Y, 140Ce, 
and 205Tl using a 1 μg L−1 tuning solution containing Li, Y, Co, Ce, Mg, and Tl 
(Agilent Technologies, Palo Alto, California), while keeping the formation of 

oxides 140CeO+/140Ce+ and doubly charged species Ce2+/Ce+ ratios below 1% 
and 3%, respectively. The sample introduction system was washed between 
different analyses with 2% HNO3. Three multi- element mixtures at 10 μg mL−1 
were used in acid solution:

• (A) Ag, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, and Zn 
in 5% HNO3;

• (B) Ce, Dy, Er, Eu, Ga, Gd, Ho, In, La, Lu, Nb, Nd, Pr, Sm, Th, Tb, Tm, Y, and 
Yb in 5% HNO3; and

• (C) Hf, Nb, Sn, Ta, and Zr in 5% HNO3.
These mixtures were employed to prepare daily diluted calibration solu-

tions, and three calibration curves were prepared using these multi- element 
mixtures. An internal standard correction was performed by online addition of 
an internal standard solution of Rh (50 mg L–1) in a T- piece. Ultrapure water (18 
MΩ cm−1) was obtained from a Milli- Q system (Millipore, Bedford, Massachu-
setts). Nitric acid (69% v/v) and an internal standard solution of Rh were bought 
from Merk (Darmstadt, Germany) and were ultrapure grade. The full data set 
was recorded with Agilent MassHunter Data Acquisition software (v. 4.2) and 
processed with the Agilent MassHunter Data Analysis software (v. 4.2).

SSWW

Fault plane sampled

GNSS base station

Electricity
power 

generator

900w 115mm grinder with
4 cm-long diamond coring cup

NNEE NNWWSSEE

Figure 6. Core drilling and sampling op-
erations on the Timpa del Vento fault 
plane. GNSS—global navigation satel-
lite system.
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Radiocarbon Dating

At our sampling site (Figs. 3D, 6, and 7B), the anthropic excavation aside 
the slickenside exhumed one brownish paleosol, truncated upward and man-
tled by a brownish pedogenized level, both developed on a volcanic layer. We 
sampled both levels (see Fig. S2) for radiocarbon dating to constrain the age 
by radiocarbon analyses. The two samples were named TDV18– 01 (upper one) 
and TDV18– 02 (lower one). The analyses were performed on bulk soil samples 
using the accelerator mass spectrometry (AMS) technique at the Beta Analytic 
(Miami, Florida) laboratories. Samples were physically pretreated to remove 
roots or macrofossils and acid washed to remove carbonates. The measured 
radiocarbon ages were calibrated using the software CALIB 8.2 (Stuiver et al., 
2021); for further details and for standards and analytical protocols see details 
available at http://www.radiocarbon.com/.

 ■ RESULTS

Surface Expression of the Fault Scarp

The analysis of the topographic profiles through the MATLAB algorithm 
(see Methods section) allowed the measurement of the vertical displacement 
on 76 topographic profiles out of 98 (Figs. 4 and 8A). The 22 profiles on which 
we did not acquire measurements were affected by complexities including 
man- made structures, such as roads, irrigation canals, quarries, or small 
landslides, and overdeveloped vegetation. The topographic profiles were 
traced every 50 m, roughly perpendicular to the main fault. On the profiles, 
we acquired 86 measurements of VS (Table 2; Fig. 8B). To characterize the 

long- term deformation and the variation of the fault scarps mapped in the 
study area, we plotted the VS data on a section parallel to the fault strike 
(Figs. 8B, 8C, and 8D). In Figure 8B, we plotted all the acquired measurements, 
while in Figures 8C and 8D, we considered the MQRs assigned during the 
measurement phase, and thereby we did not plot the quality = 4 values (i.e., 
low quality). We then used statistical errors (see Methods section) to add 
error bars to each measurement on the graph. Following Bello et al. (2022a), 
we computed envelope curves using the “envelope” function of the Signal 
Processing Toolbox in MATLAB (http://www.mathworks.com), which traces 
the envelopes of the peaks of the input signal, interpolating over local maxima 
separated by a given sampling interval, for which the units are the units of 
the data input. In Figure 8D, the sampling intervals are 2 and 30 m. We plotted 
the data both by differentiating the measurements based on the continuity of 
the mapped scarps (i.e., not cumulative in overlapping portions; Fig. 8C) and 
by cumulative values (Fig. 8D).

The displacement profile is characterized by a complex along- strike sinu-
osity with variable displacement, which overall follows a fairly regular trend. 
The displacement values (only those with MQR = 1– 3) reach a maximum of 
~400 cm and a minimum of around 70 cm, with mean and median values of 
~210 cm. There are two major peak areas, a milder one located between 700 
and 1800 m from the origin, and a more pronounced one located between 
3300 and 3800 m from the origin. The latter area matches a portion of the 
fault where two en échelon strands overlap for ~500 m. Overall, the data show 
a two- peak profile (dark red dashed line in Fig. 8D) with two large slightly 
asymmetrical enveloping “bells” that grow rapidly moving from NW to SE 
and gradually decrease from the peak area southeastward. Considering the 
topographic profiles shown in Figure S1, i.e., considering the entire slope from 
the far field with respect to the fault location, we observed post-LGM vertical 
displacements ranging between ~9 and ~18 m, with average values of ~14 m.

REE-Y Concentration and Variations on the Fault Plane

In Table 3, we reported the ICP- MS analyses for the 39 samples picked from 
the slickenside and the 3 LIM representing the marine bedrock. As mentioned in 
the Sampling Strategy section above, LIM are samples acquired at the footwall 
of the fault plane on the same geological formation to be used as background. 
They had an average ΣREE + Y content of 2.56 (±0.56 standard deviation) ppm, 
with a La/LuN ratio (normalized to C1 chondrite of Sun and McDonough, 1989) 
of 5.58 (±2.02) (Fig. 9). LIM showed a very slightly negative Ce anomaly, prom-
inent positive Eu anomaly, and variable Y content (Fig. 10). The Y variability is 
typical of limestones and can be related to sedimentation of Mn crusts with 
phosphate layers in the basin (Auer et al., 2016). The small Ce negative anom-
alies and the enhanced Eu positive anomalies, which determine high Eu/Eu* 
ratios (= Eu/√[Sm + Gd]; 12.2 ± 3.3 on average; Table 3; Fig. 9), can be related 
to the oxidation state of the waters (Madhavaraju et al., 2016). The bedrock 
LIM samples had V/Cr ratios between 25.7 and 30.6 (Table 3), i.e., well above 

TABLE 1. INDUCTIVELY COUPLED PLASMA–MASS SPECTROMETRY 
(ICP-MS) INSTRUMENTATION AND OPERATING CONDITIONS

Instrument parameters Agilent 7900 (Agilent Technologies, Tokyo, Japan)

Nebulizer Nebulizer, MicroMist, U-series
Torch Quartz glass torch
Spray chamber Scott double-pass type at 2 °C
Sample cone Nickel, 1.00 mm aperture
Skimmer cone Nickel, 0.45 mm aperture
Sampling depth 10 mm
Nebulizer 1.05 L/min
Auxiliary gas 1.0 L/min
Plasma gas 15 L/min
RF power 1550 W
RF matching 1.80 W
Detection mode Spectral
Integration time 0.3 s
Repetitions 3
Sample uptake rate 0.10 mL/min

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/19/5/1348/5969252/ges02627.1.pdf
by guest
on 30 November 2023

http://geosphere.gsapubs.org
http://www.radiocarbon.com/
http://www.mathworks.com


1360Bello et al. | REEs and high-resolution topography to investigate past earthquakes

Research Paper

GEOSPHERE | Volume 19 | Number 5

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
Distance SE along fault (m)

0
100
200
300
400
500

VS [cm]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
Distance SE along fault (m)

0
100
200
300
400
500

VS [cm]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
Distance SE along fault (m)

0
100
200
300
400
500

VS [cm]

15.550 (°E)

15.533 (°E)

40
.53

3 (
°N

)

40
.51

6 (
°N

)

0 0,5 10,25
km

379 1511265596 5398 8389 176076 1962 46 40 3269 67 244891 508693 436580 37 1330 2272 287478 153458

Sampling
site

Sampling
site

Timpa del Vento basin Piani di Venere basin

(colors as in map view)

Cumulated scarps - High quality

Separate measurements - High quality

Separate measurements - All MQR

(colors as in map view)

VS measurement and profile along-strike
(connected with blue lines when contiguous)

Error bars Envelope curve (sampling steps 2) Error bars envelope area
Envelope curve (sampling steps 30)

A

B

C

D
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TABLE 2. RESULTS OF THE TOPOGRAPHIC ANALYSIS MADE ON 
THE TOPOGRAPHIC PROFILES WITH THE MATLAB CODE

Ord. 
no.

Lat
(°N)

Long
(°E)

Elevation
(m)

Topo. 
profile

Dip 
direction

(°)

VS MQR Uncertainty

– – – – 1 – – – –
– – – – 2 – – – –
– – – – 3 – – – –
1 40.513774 15.560653 1023.3 4 218 305 3 35
2 40.514074 15.560202 1014.5 5 218 207 4 39
3 40.514552 15.560034 1010.7 6 218 202 4 20
– – – – 7 – – – –
– – – – 8 – – – –
– – – – 9 – – – –
4 40.515783 15.558281 1004.7 10 218 232 2 10
5 40.516212 15.558034 1011 11 218 207 3 13
6 40.516547 15.557639 1015.7 12 218 222 4 27
– – – – 13 – – – –
7 40.517078 15.556627 1016.6 14 218 200 3 20
8 40.517423 15.556249 1019.2 15 218 321 4 25
9 40.517603 15.555607 1013.4 16 218 220 3 17
10 40.517876 15.555114 1016.1 17 218 321 4 83
11 40.517959 15.554320 1006.6 18 218 203 3 24
12 40.518387 15.554072 1011.8 19 218 367 4 48
13 40.518831 15.553849 1014.5 20 218 262 3 151
14 40.519354 15.553752 1013.7 21 218 287 3 43
15 40.519802 15.553534 1015.4 22 218 89 4 13
16 40.520244 15.553309 1018.6 23 218 141 3 42
17 40.520808 15.553276 1025.1 24 218 463 4 64
18 40.521118 15.552840 1029.4 25 218 396 3 53
19 40.522757 15.555434 1089.4 25 233 70 2 7
20 40.521380 15.552330 1028.5 26 218 253 3 21
21 40.523107 15.555061 1094.3 26 233 46 3 6
22 40.521749 15.551988 1031.9 27 218 176 1 9
23 40.523407 15.554610 1100.8 27 233 83 3 6
24 40.522066 15.551564 1033.7 28 218 332 1 17
25 40.523768 15.554256 1107.9 28 233 149 4 10
26 40.522406 15.551178 1035.1 29 218 93 2 12
27 40.524096 15.553850 1118.4 29 233 226 3 8
28 40.522741 15.550782 1035.4 30 218 205 1 12
29 40.524412 15.553424 1127.2 30 233 66 3 20
30 40.523164 15.550525 1042.1 31 218 83 1 7
31 40.524696 15.552948 1132.8 31 233 321 3 32
32 40.525050 15.552583 1136.7 32 233 228 3 29
33 40.525240 15.551958 1119.6 33 233 211 1 35
34 40.525436 15.551343 1099.4 34 233 82 3 22
35 40.525703 15.550840 1090.2 35 233 62 3 12
36 40.526261 15.550798 1098.7 36 233 356 4 52
37 40.526589 15.550391 1092.09 37 233 69 3 45
38 40.526979 15.550084 1095.11 38 233 111 3 22
39 40.527211 15.549525 1094.70 39 233 298 4 44
40 40.527411 15.548916 1094.36 40 233 260 4 28
41 40.527565 15.548235 1099.40 41 233 177 2 19

(continued)

TABLE 2. RESULTS OF THE TOPOGRAPHIC ANALYSIS MADE ON 
THE TOPOGRAPHIC PROFILES WITH THE MATLAB CODE (continued)

Ord. 
no.

Lat
(°N)

Long
(°E)

Elevation
(m)

Topo. 
profile

Dip 
direction

(°)

VS MQR Uncertainty

42 40.527921 15.547873 1112.79 42 233 79 3 13
43 40.528363 15.547646 1128.24 43 233 121 2 13
44 40.528490 15.546922 1134.89 44 233 211 3 111
45 40.528866 15.546591 1146.10 45 233 196 4 18
46 40.528952 15.545802 1155.27 46 233 111 2 3
47 40.529003 15.544957 1155.02 47 233 86 1 15
– – – – 48 – – – –
48 40.529361 15.543673 1149.2 49 233 108 1 16
49 40.529736 15.543341 1149.2 50 233 168 3 21
50 40.529947 15.542750 1147.0 51 233 190 3 23
51 40.530253 15.542309 1155.7 52 233 139 4 16
52 40.530415 15.541639 1157.3 53 245 150 1 32
53 40.530618 15.541035 1164.1 54 245 163 1 21
– – – – 55 – – – –
54 40.530832 15.539523 1162.1 56 245 61 1 6
55 40.531558 15.540671 1194.5 56 230 49 1 5
56 40.531181 15.539150 1162.9 57 245 414 4 16
57 40.531962 15.540385 1192.7 57 230 21 4 9
58 40.532299 15.539993 1189.2 58 230 68 3 25
59 40.532644 15.539614 1189.4 59 230 154 1 26
60 40.532881 15.539063 1182.0 60 230 115 2 14
61 40.533201 15.538644 1185.1 61 230 51 4 6
62 40.533387 15.538012 1171.9 62 230 144 2 16
63 40.533564 15.537368 1167.4 63 230 96 4 18
– – – – 64 – – – –
64 40.534239 15.536585 1160.3 65 230 272 1 49
65 40.534548 15.536149 1147.3 66 230 278 2 43
– – – – 67 – – – –
66 40.535265 15.535432 1118.8 68 230 213 2 29
67 40.535921 15.535543 1124.6 69 226 329 1 34
68 40.535987 15.534723 1107.3 70 226 322 2 48
– – – – 71 – – – –
69 40.536509 15.533698 1112.2 72 226 225 2 49
– – – – 73 – – – –
70 40.537149 15.532860 1097.9 74 226 172 4 30
71 40.537498 15.532487 1089.6 75 226 211 1 12
– – – – 76 – – –
72 40.538196 15.531741 1073 77 226 386 3 69
– – – – 78 – – – –
73 40.538985 15.531137 1068 79 226 289 1 49
– – – – 80 – – – –
74 40.539496 15.530096 1053.3 81 226 297 3 158
75 40.539827 15.529694 1049.9 82 226 317 3 54
– – – – 83 – – – –
76 40.540280 15.528560 1026.9 84 227 173 2 9
77 40.540587 15.528120 1037.6 85 227 340 2 31
– – – – 86 – – – –
78 40.541219 15.527269 1037.3 87 227 217 3 50

(continued)
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the value of 4.3, which is the upper limit of suboxic conditions. Thus, the V/
Cr ratio of LIM indicates very reducing conditions in the limestone formation 
environment. The poorly oxygenated waters favored the reduction of Eu3+ to 
Eu2+. Eu2+ is more compatible than REE3+ and so more prone to enter into the 
forming carbonate lattice.

Carbonates sampled on the fault plane (from S1 to S37 in Fig. 7; Table 3) 
above the present soil had very variable REE + Y contents with an average 
of 14.51 (±9.15) ppm (Fig. 10) and very variable La/LuN values with an aver-
age of 17.87 (±13.55) ppm (Fig 9). However, the ratio of light to heavy REEs 
(LREE/HREE) in the fault carbonate cements was higher than that in the Timpa 
limestone. An Eu anomaly was present in many but not in all of the fault car-
bonate samples. Where it was present, it was less pronounced than in the 
bedrock limestones, and the Eu/Eu* ratio was 1.61 (±1.2) on average (Fig. 9). 
Carbonate samples on the fault plane covered by the active soil (S38 to S39; 
Fig. 7; Table 3) were characterized by high REE + Y contents with an average 
of 23.43 (±6.44) ppm (Fig. 10), high La/LuN values between 8.47 and 11.61 
(Fig. 9), and a low Eu/Eu* ratio with an average of 2.66 (±0.72) (Fig. 9). The 
data indicate that the soil at the contact with the fault plane scavenges REE + 
Y from the limestone breccia and deposits carbonate cements retaining some 
of the LIM characteristics, such as a negative Eu anomaly. However, the more 

oxygenated soil environment produces oxidation of Eu2+ into Eu3+, which can 
be incorporated into the newly formed cements with the same compatibility as 
the other REE3+ elements, reducing the Eu/Eu* ratio in those cements (Fig. 9). 
In the carbonate cements, the higher fractionation between LREEs and HREEs 
due to epigenetic crystallization is also evident (Fig. 9).

Figure 11 shows the variability of REE- Y concentration as a function of fault 
scarp height (cm). The vertical axis represents Δi/Δm, where Δi is the difference 
in concentration between each element and the average concentration of that 
element along the entire scarp (Ci – Cm), and Δm = Σ|Δi |N, with N = number 
of measurements (39) (e.g., Carcaillet et al., 2008; Mouslopoulou et al., 2011). 
The interpretation and discussion of the possible earthquakes highlighted by 
the REE-Y variations shown in Figure 11 are given in the next section.

We show in Figure S3 the detrended distribution (i.e., the difference between 
each abundance distribution and its trend) of REE-Y contents for each element, 
performed using MATLAB functions. REEs do not show homogeneous behavior 
in terms of LREE/HREE. Using this representation, we highlight the fractionation 
of REEs in each sample compared to the general trend of each element along 
the fault scarp.

 ■ DISCUSSION AND CONCLUSIONS

Constraints on Fault Geometry and Characteristics

We investigated the northernmost portion of the Caggiano- Montemurro 
fault, a highly segmented active fault believed to be responsible, or partially 
responsible, for the 1857 CE (Mw 7.1) and 1561 CE (Mw 6.7) earthquakes (Bello 
et al., 2022b; Galli, 2020; Galli et al., 2006, 2008; Spina et al., 2008). Three 
trenches opened by Galli et al. (2006) (location in Figs. 2A and 3A) account 
for multiple surface- faulting events during the past 6.5 ka (cal. yr B.P.) and 
show that the latest of these events occurred in the past 2 ka (cal. yr B.P.), 
possibly during/after the deposition of the slope debris of the Little Ice Age 
(ca. 1400– 1800 CE). The paleosol levels that we sampled for radiocarbon dat-
ing (see “Radiocarbon Dating” section) at the side of the fault plane shown 
in Figures 3D, 6, and 7B provided a calibrated age of ca. 23.7 ka (lower level, 
sample TDV18– 02, 0.9 m below ground surface) and ca. 11.0 ka (upper level, 
sample TDV18– 01, 0.7 m below ground surface) (Table 4). Considering these 
ages, the lower brownish paleosol was truncated upward by slope erosion 
at the onset of the LGM, whereas the upper brown level might have formed 
at the expense of the Neapolitan Yellow Tuff tephra, dated at 14.5 ± 0.4 ka by 
Galli et al. (2017).

The preservation of the rock- fault scarp mapped in continuity with an en 
échelon geometry and overlapping portions of the 5 km section investigated 
with high- resolution topography (Fig. 4) allowed us to reconstruct the deforma-
tion profile of the fault over the area. On average, the scarp height profiles in the 
study area are best fitted by an asymmetric triangular shape (i.e., major peaks 
shifted from the center of the profile; for detailed description, see Manighetti 

TABLE 2. RESULTS OF THE TOPOGRAPHIC ANALYSIS MADE ON 
THE TOPOGRAPHIC PROFILES WITH THE MATLAB CODE (continued)

Ord. 
no.

Lat
(°N)

Long
(°E)

Elevation
(m)

Topo. 
profile

Dip 
direction

(°)

VS MQR Uncertainty

– – – – 88 – – – –
79 40.541908 15.526508 1041.14 89 227 250 1 18
80 40.542387 15.526341 1045.49 90 233 95 2 9
81 40.542554 15.525679 1049.60 91 233 199 1 26
82 40.542901 15.525303 1065.76 92 233 192 1 22
– – – – 93 – – – –
83 40.543556 15.524488 1072.12 94 233 198 1 30
84 40.543340 15.523222 1024.58 95 236 58 3 11
85 40.543728 15.523834 1051.73 95 233 114 3 17
86 40.543653 15.522791 1021.52 96 236 47 2 9
– – – – 97 – – – –
– – – – 98 – – – –

Notes: Ord. no.—identifier for the measurement; Lat and Long—latitude and 
longitude in decimal degrees (dd.mmmmm) within the World Geodetic System (WGS) 
1984 Universal Transverse Mercator (UTM) 33N coordinate system; Elevation—altitude 
expressed in meters above sea level (a.s.l.) extracted from the digital elevation model 
produced for this work; Topo. profile—topographic profile number (see Figs. 4 and 7) 
along which the measurement was acquired; Dip direction—direction of the trace dip 
with respect to north, expressed in degrees; VS—vertical separation measurement 
expressed in centimeters; MQR—measure quality ranking, given as a number between 
1 and 4 indicating the quality parameter assigned to each measurement; Uncertainty—
uncertainty of the VS measurement, expressed in centimeters. Empty rows are 
topographic profiles along which no measurements were acquired.
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TABLE 3. RARE EARTH ELEMENT + Y (REE-Y) CONCENTRATIONS MEASURED BY INDUCTIVELY COUPLED PLASMA–MASS SPECTROMETRY (ICP-MS)  
FOR THE 39 LIMESTONE SAMPLE CORES FROM THE SCARP AND FOR THE THREE TIMPA LIMESTONE BACKGROUND SAMPLES

Sample no. Scarp height
(cm)

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑
REE

∑
LREE

∑
HREE

LREE/ 
HREE

S1 360 1.03 1.28 2.38 0.23 0.86 0.17 0.07 0.19 0.03 0.14 0.03 0.09 0.01 0.07 0.01 6.58 4.92 0.63 7.82
S2 350 0.98 0.90 1.00 0.13 0.47 0.09 0.04 0.11 0.02 0.09 0.02 0.06 0.01 0.06 0.01 3.95 2.58 0.40 6.41
S3 340 1.25 6.51 8.22 0.58 1.80 0.29 0.35 0.33 0.04 0.19 0.04 0.12 0.02 0.10 0.02 19.83 17.40 1.19 14.64
S4 330 2.33 2.64 4.31 0.47 1.77 0.35 0.10 0.39 0.05 0.30 0.06 0.19 0.03 0.16 0.03 13.19 9.53 1.32 7.21
S5 320 1.70 2.25 2.67 0.42 1.59 0.30 0.08 0.31 0.04 0.23 0.05 0.14 0.02 0.12 0.02 9.93 7.23 1.01 7.19
S6 310 2.37 2.84 4.60 0.53 1.98 0.38 0.10 0.41 0.06 0.30 0.06 0.19 0.03 0.16 0.03 14.03 10.32 1.34 7.69
S7 300 1.84 4.05 3.16 0.36 1.41 0.29 0.09 0.31 0.04 0.24 0.05 0.15 0.02 0.13 0.02 12.15 9.26 1.05 8.84
S8 290 3.67 4.82 8.39 0.94 3.67 0.75 0.20 0.78 0.10 0.54 0.11 0.32 0.04 0.24 0.04 24.60 18.57 2.36 7.87
S9 280 1.87 1.98 3.13 0.40 1.52 0.30 0.09 0.33 0.05 0.24 0.05 0.15 0.02 0.13 0.02 10.27 7.33 1.07 6.82
S10 270 2.77 15.75 20.19 1.69 5.22 0.79 0.42 0.91 0.10 0.48 0.09 0.27 0.03 0.21 0.03 48.96 43.64 2.55 17.13
S11 260 0.11 0.44 0.39 0.04 0.11 0.02 0.02 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 1.18 0.99 0.08 13.03
S12 250 0.18 0.55 0.56 0.05 0.19 0.03 0.03 0.04 0.01 0.03 0.01 0.01 0.00 0.01 0.00 1.70 1.39 0.13 10.34
S13 240 0.12 0.43 0.37 0.03 0.11 0.02 0.03 0.03 0.00 0.02 0.00 0.01 0.00 0.01 0.00 1.17 0.95 0.10 9.90
S14 230 2.26 5.10 8.51 0.75 2.65 0.48 0.16 0.53 0.07 0.35 0.07 0.22 0.03 0.17 0.03 21.37 17.49 1.62 10.78
S15 220 1.69 3.21 4.93 0.43 1.59 0.30 0.11 0.36 0.04 0.24 0.05 0.15 0.02 0.13 0.02 13.26 10.45 1.12 9.34
S16 210 2.28 3.79 6.95 0.69 2.56 0.50 0.15 0.55 0.07 0.36 0.07 0.22 0.03 0.18 0.03 18.41 14.48 1.66 8.75
S17 200 1.33 2.02 3.13 0.34 1.26 0.24 0.11 0.27 0.04 0.19 0.04 0.12 0.02 0.10 0.02 9.23 7.00 0.91 7.74
S18 190 1.25 1.65 2.45 0.30 1.11 0.22 0.09 0.25 0.03 0.18 0.04 0.12 0.02 0.09 0.02 7.80 5.73 0.82 6.98
S19 180 1.31 2.34 3.85 0.43 1.61 0.31 0.11 0.35 0.05 0.23 0.05 0.13 0.02 0.10 0.02 10.90 8.54 1.05 8.18
S20 170 1.58 12.06 10.97 0.90 2.53 0.35 0.86 0.47 0.05 0.22 0.05 0.15 0.02 0.12 0.02 30.32 26.80 1.94 13.84
S21 160 1.75 3.72 4.74 0.38 1.31 0.23 0.29 0.32 0.04 0.22 0.05 0.15 0.02 0.13 0.02 13.37 10.39 1.24 8.38
S22 150 1.56 3.51 4.62 0.48 1.66 0.30 0.14 0.36 0.05 0.25 0.05 0.16 0.02 0.14 0.02 13.31 10.57 1.19 8.92
S23 140 1.29 3.98 5.96 0.45 1.37 0.22 0.37 0.29 0.03 0.18 0.04 0.13 0.02 0.11 0.02 14.45 11.98 1.18 10.13
S24 130 1.47 2.69 3.80 0.34 1.18 0.22 0.18 0.28 0.04 0.20 0.05 0.15 0.02 0.13 0.02 10.77 8.23 1.07 7.70
S25 120 1.41 1.59 2.01 0.27 1.02 0.20 0.10 0.26 0.04 0.20 0.05 0.14 0.02 0.12 0.02 7.44 5.09 0.95 5.33
S26 110 2.40 4.05 6.81 0.81 3.15 0.65 0.21 0.75 0.10 0.50 0.11 0.32 0.04 0.27 0.04 20.20 15.46 2.34 6.60
S27 100 1.43 1.91 2.65 0.33 1.26 0.25 0.15 0.30 0.04 0.23 0.05 0.17 0.02 0.14 0.02 8.96 6.40 1.13 5.67
S28 90 1.87 3.06 4.60 0.52 1.97 0.38 0.25 0.49 0.06 0.34 0.08 0.24 0.03 0.21 0.03 14.14 10.55 1.73 6.10
S29 80 1.02 1.30 1.83 0.23 0.90 0.17 0.13 0.24 0.03 0.18 0.04 0.13 0.02 0.12 0.02 6.34 4.42 0.90 4.92
S30 70 1.92 3.46 5.00 0.63 2.40 0.47 0.19 0.61 0.08 0.42 0.09 0.28 0.04 0.23 0.04 15.86 11.95 1.98 6.03
S31 60 1.32 2.46 3.06 0.38 1.52 0.29 0.19 0.41 0.05 0.28 0.06 0.19 0.03 0.17 0.03 10.44 7.70 1.41 5.45
S32 50 1.71 2.72 3.38 0.42 1.65 0.32 0.19 0.46 0.06 0.34 0.08 0.24 0.03 0.23 0.04 11.85 8.48 1.66 5.11
S33 40 2.65 4.72 6.58 1.00 4.05 0.79 0.37 1.10 0.14 0.72 0.15 0.47 0.06 0.40 0.06 23.24 17.13 3.46 4.95
S34 30 2.84 5.22 3.33 0.95 3.88 0.70 0.37 1.02 0.13 0.70 0.15 0.48 0.06 0.40 0.06 20.30 14.07 3.38 4.16
S35 20 1.75 3.61 5.82 0.72 2.85 0.54 0.30 0.80 0.10 0.48 0.10 0.32 0.04 0.27 0.04 17.74 13.54 2.45 5.54
S36 10 2.32 4.87 6.95 0.90 3.62 0.67 0.44 1.12 0.13 0.65 0.14 1.03 0.06 0.40 0.06 23.34 17.01 4.02 4.23
S37 0 3.23 6.27 5.30 1.19 4.87 0.95 0.44 1.41 0.18 0.90 0.19 0.61 0.08 0.53 0.08 26.24 18.58 4.43 4.19
S38 -20 3.03 8.57 6.27 1.48 5.72 0.97 0.53 1.73 0.19 0.88 0.19 0.62 0.07 0.52 0.08 30.86 23.02 4.81 4.79
S39 -40 2.33 5.12 3.95 0.80 3.21 0.60 0.62 1.13 0.12 0.59 0.13 0.41 0.05 0.36 0.07 19.47 13.67 3.47 3.94
LIM1 Background 

concentration
0.36 0.32 0.39 0.04 0.36 0.05 0.36 0.04 0.02 0.06 0.01 0.03 0.00 0.03 0.00 2.08 1.17 0.55 2.11

LIM2 0.81 0.51 0.27 0.06 0.47 0.06 0.63 0.07 0.04 0.09 0.02 0.09 0.01 0.05 0.01 3.19 1.37 1.01 1.36
LIM3 0.27 0.29 0.23 0.05 0.40 0.07 0.79 0.07 0.04 0.06 0.01 0.07 0.01 0.05 0.01 2.41 1.04 1.11 0.93

Notes: ΣREE—sum of all REEs, from La to Lu; ΣLREE—sum of all light rare earth elements (LREEs), from La to Sm; ΣHREE—sum of all heavy rare earth elements (HREEs), 
from Eu to Lu; LREE/HREE—index of the degree of fractionation. All element measurements are in ppm.
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et al., 2009), suggesting fault- lateral propagation and along- strike variations 
in the fault evolution (sensu Manighetti et al., 2009). Considering that the 
structure has recently been mapped for several tens of kilometers (Bello et 
al., 2022b), further research could be done to investigate the evolution of the 
structure with the method of high- resolution topography for scarp analysis. 
Indeed, the same measurement carried out on other exposed portions of the 
fault would allow the along- strike evolution to be reconstructed as completely 
as possible. This would allow hypotheses to be formulated about the average 
propagation direction of long- term ruptures as a whole, that is, those that 
most frequently characterize the earthquakes’ entire structure. The propa-
gation direction of earthquakes in this area, or at least those that have been 
associated with the Caggiano- Montemurro fault (i.e., 1561 CE and 1857 CE), 
is still a matter of discussion (Bello et al., 2022b). In the studied portion, the 
trend most frequently characterizing the earthquakes is that of propagation 
from north to south, as suggested by the two asymmetrical envelope lines 
reconstructed from our VS data. In general, this characteristic of slip profiles is 
considered as self- similar, indicating areas of maximum and minimum asperity, 
and a function of fault maturity (Manighetti et al., 2007, 2009). However, we 
are aware that since the portion of the fault investigated in this work was only 
5 km long, our observations could represent a local trend and could fall into a 
larger- scale trend in a different way. In addition, as also suggested by Bello et 
al. (2022b), the remarkable segmentation of this fault, and its deviation from 
the general trends in the bordering large basins aligned instead in “transridge” 
alignment and generating small, suspended basins within the ridges, could 
be an index of lower maturity with respect to most of the known faults in the 
Apennines (e.g., Galli and Peronace, 2014). For all these reasons, subsequent 
studies are required.
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Figure 9. (A) Total rare earth elements + Y (ΣREE 
+ Y) compared to Eu/Eu* ratios of the samples 
analyzed. Note the highest Eu/Eu* ratio of the 
Timpa limestones (background). (B) Relation 
between ΣREE + Y and La/LuN ratio. The ce-
ment precipitation increases the fractionation 
between light REEs (LREEs) and heavy REEs 
(HREEs) with respect to bedrock limestones.

Figure 10. Pattern of rare earth elements + Y (REE + Y) for the Timpa limestone bedrock 
and fault carbonates normalized to chondrite C1. Figure highlights a positive Eu anomaly 
in limestone bedrock samples (LIM 1– 3) (which is less pronounced in fault carbonates), 
and a very slightly negative Ce anomaly, both related to anoxic environment conditions 
during their formation. The Y variability can be related to sedimentation of Mn crusts 
with phosphate layers in the basin (see main text for details). The content of REE + Y 
in the fault carbonate samples (gray area in this figure) above the present soil is vari-
able and averages 14.51 (±9.15) ppm (see Table 3). Fault carbonate samples on the fault 
plane covered by active soil are characterized by high REE + Y contents, which average 
23.43 (±6.44) ppm.
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Figure 11. Variability of rare earth elements 
+ Y (REE- Y) content in the 39 limestone 
sample cores as a function of fault scarp 
height (cm). Following Carcaillet et al. (2008), 
the vertical axis represents Δi/Δm, where 
Δi equals Ci – Cm, with Ci = concentration 
in each sample, and Cm = mean concen-
tration over the whole sample suite, and 
Δm represents ∑|Δi|/n, which is the mean 
absolute value of the difference normalized 
to n (number of measurements = 39). The 
black dots represent each element of REE- 
Y, while the triangle indicates the average 
value of REE- Y. The gray line represents the 
average REE- Y content in the three Timpa 
limestone background samples, and the 
dashed black line is the linear regression 
of the data (the equation of the line is in-
cluded in the figure). Shaded gray vertical 
rectangles highlight portions of the scarp 
that have been enriched in REE- Y. (A– B) The 
two different scenarios presented in the text. 
EQ—earthquake; MS—modern soil.

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/19/5/1348/5969252/ges02627.1.pdf
by guest
on 30 November 2023

http://geosphere.gsapubs.org


1366Bello et al. | REEs and high-resolution topography to investigate past earthquakesGEOSPHERE | Volume 19 | Number 5

Research Paper

Constraints on Surface Faulting

The results obtained from the analysis of the 39 cores acquired here (Figs. 1B, 
2A, and 7) on the slickenside cropping out along the Timpa del Vento segment 
allowed us to obtain the concentrations of REE- Y contents in their up- scarp vari-
ation. Our data showed an enrichment and depletion in the up- scarp evolution 
of the REE- Y concentrations, with clear peaks along the scarp. The analyses 
also showed that the present soil is enriching the fault plane in contact with the 
soil (see Fig. 10). We also observed fractionation between LREE/HREE contents, 
which indicates that the greatest enrichment is due to the behavior of LREEs, 
while HREEs remain almost immobile during the exchange process at the soil- 
fault plane. In Figure 11, we show these concentrations along the fault plane, 
and, following the approach adopted by Carcaillet et al. (2008), Manighetti et 
al. (2010), and Mouslopoulou et al. (2011), we identified sections that could be 
considered representative of seismic events or abrupt erosion phases that have 
occurred over time at least since the LGM. In particular, we considered at least 
two different scenarios, one with seven higher- magnitude earthquakes, and 
another with 11 lower- magnitude earthquakes. We underline that since both 
scenarios have in common the total displacement of the scarp, they should 
be considered equivalent in terms of total energy release; moreover, they just 
represent the extremes of what might have happened, whereas mixtures of 
the two are not excluded. The substantial difference is that, in the first case, 
we only considered the major enrichments as representing phases of contact 
between the soil and the fault plane, while in the second scenario, we high-
lighted each enrichment peak. Each earthquake is represented by the portion 
of the scarp that is enriched (gray areas in Fig. 11) plus the nonenriched por-
tion (white area immediately before the gray one in Fig. 11) that has not been 
in contact with the soil due to the minimum and variable thickness of the soil 
itself. In fact, as shown in the conceptual model in Figure 5, each enriched fault 
plane portion should not be considered with respect to all the others, but only 
with respect to an immediately preceding non-enriched portion. The sum of 
them represents the thickness of the earthquake displacement. Although the 
methodology applied in this work might have potential perspective for the 
study of past earthquakes, the findings are subject to at least two assumptions 
that need to be acknowledged: (1) Each of the peaks obtained is coseismic and 
not due to slope erosion; (2) the earthquakes that can be counted represent 
the minimum number of earthquakes sourced by the fault, as highlighted by 

Mouslopoulou et al. (2011). This latter statement is based in turn on the following 
three reasons: (2.1) Low- to moderate- magnitude earthquakes are not recorded 
because they did not rupture at the surface; (2.2) some earthquakes could have 
occurred temporally so close to each other as to not allow the soil to enrich the 
fault plane in REEs; and (2.3) some earthquakes may have had slip values less 
than the thickness of the soil.  As far as assumption 1, as the fault activity and 
capability have been demonstrated by paleoseismological investigations (Galli 
et al., 2006), we feel confident that peaks could really be coseismic.

Implications for Seismic Potential

We speculated on the magnitude of the earthquakes that could have gen-
erated the exhumations of the fault plane as seen in Figure 11, considering 
different empirical relationships, which needed the maximum and average 
displacement as input data (i.e., Leonard, 2010; Thingbaijam et al., 2017; Wells 
and Coppersmith, 1994; Wesnousky, 2008). As shown in Table 5, we calculated 
the magnitudes for both scenarios in Figure 11, considering the VS obtained 
from the REE analysis both as average displacement and as maximum displace-
ment (i.e., both for the empirical laws of Wells and Coppersmith [1994] and 
Wesnousky [2008] and only the average displacement for Leonard [2010] and 
Thingbaijam et al. [2017]). Obviously, this is an assumption, since, depending 
on the earthquake that generated it, the coseismic rupture that occurred at 
the measurement site may not represent the maximum or the average of the 
deformation. The result of the magnitudes can, however, be considered as 
a minimum, and therefore worthy of note. According to empirical laws, the 
observed displacements would account for earthquakes of 6.1 ≤ Mw ≤ 7.0 for 
scenario 1 and for earthquakes of 5.5 ≤ Mw ≤ 6.7 for scenario 2 (excluding Eq. 7 
and Eq. 11 from scenario 1 and 2, respectively, which has a minimum VS of 
20 cm but for which the maximum is unknown). Assuming an average of all 
the empirical laws for each earthquake, we estimate that the magnitude was 
always 6.1 ≤ Mw ≤ 6.7 for scenario 1 and 6.1 ≤ Mw ≤ 6.5 for scenario 2. Finally, 
regression curves offer an estimate of the most recurrent earthquake of Mw = 
6.6 in scenario 1 and Mw = 6.4 in the case of scenario 2.

From the REE analysis, it is not possible to assign a time to the exhumation/
faulting events. However, it is possible to constrain the number of supposed 
earthquakes within the post- LGM period, locally suggested by the radio carbon 

TABLE 4. RADIOCARBON AGES OF SAMPLES COLLECTED AT THE SAMPLING SITE SHOWN IN FIGURE S2  
(DEPOSITS CUT BY THE FAULT PLANE SAMPLED FOR GEOCHEMICAL ANALYSES)

Sample Laboratory Analysis Dated material δ13C
(‰)

Conventional radiocarbon age
(yr B.P.)

Calibrated age range
(2σ cal. yr B.P., 95%)

TDV18-01 Beta518964 AMS Organic sediment –24.2 9650 ± 30 11,185–10,800 
TDV18-02 Beta518965 AMS Organic sediment –24.3 19,670 ± 70 23,695–23,380 

Notes: AMS—accelerator mass spectrometry by Beta Analytic Inc., Miami, Florida. Samples were calibrated using the software CALIB 8.2 
(Stuiver et al., 2021). See text footnote 1 for Figure S2.
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age of the truncated paleosol in the hanging wall (ca. 24 cal. k.y. B.P.; Table 4). 
Therefore, on one hand, an earthquake with an average Mw = 6.6 would occur 
every 3.4 to 2.2 k.y. in scenario 1, while, on the other hand, an earthquake with 
an average Mw = 6.4 would occur every ~2.2– 1.5 k.y. Certainly, these calculations 
derive from the assumption of the maximum of the considered time (~24 k.y.), 
while it is likely that the observation time scale should be further restricted (less 
than 16 k.y., considering climatic flattening of the slope, which, according to 
Galli et al. [2006], ended ca. 16 ka, and the time needed for the soil to develop 
after the LGM). Nonetheless, many authors in the literature agree that faults 
may cluster earthquakes in frequent short periods, which then alternate with 
long periods of nonseismicity (e.g., Bull et al., 2006; Cowie et al., 2012, 2017; 
Galli et al., 2008; Mildon et al., 2022; Mouslopoulou et al., 2009; Romano et 
al., 2013; Wedmore et al., 2017; Zinke et al., 2018; among others). This would 
explain the supposed activation of the Caggiano- Montemurro fault in 1561 and 
again in 1857. A recurrence time between ~1.6 and ~2.5 k.y. is in the same order 
as the other known active faults of the Apenninic chain (Galli, 2000) as well as 
a slip rate, which, according to our results, ranges between ~0.6 and ~0.9 mm/
yr. These values were obtained by measuring ~14 m (average) of cumulative 
offset across the fault (see previous sections and Fig. S1) that occurred after the 
climatic flattening of the slope (ended ca. 16 ka). Our results confirm previous 

findings, contribute to our understanding of faults and earthquakes from this 
portion of Italy, and provide an approach that should be useful worldwide.
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