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Abstract: Proteins are essential to life, and the evaluation of their content, identification, and modifi-
cation represents a fundamental assay in biochemistry research. Different analytical techniques and
protocols have been specifically designed but have rarely been compared. Here, we test and compare
a variety of methodologies and treatments for the quantification of proteins in Amphistegina lessonii,
a larger symbiont-bearing benthic foraminiferal species. These analyses specifically include (a) lysis
buffer (homemade vs. RIPA), (b) protein assays (Lowry, BCA, and Bradford), (c) ultrasonic bath
treatment, and (d) protein staining (silver staining vs. Coomassie blue). On the basis of the compara-
tive outcome, we suggest using the homemade lysis buffer, Lowry or BCA assays, ultrasonic bath
treatment, and silver stain to maximize the extraction and characterization of protein for A. lessonii.
This protocol might be suitable and extended to other benthic foraminiferal species, including the
smaller ones.
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1. Introduction

The recent advances of “omic” technologies (i.e., genomics, proteomics, metabolomics,
and transcriptomics) have primarily provided fundamental information about targeted
biological samples and opened new research areas [1]. The application of these “omics”
allows the detection of biological variations at the molecular functional levels [2]. The
implementation of such technologies has stimulated the development of protocols, typ-
ically target-specific, and new techniques that require being intercalibrated to achieve
comparable results.

Proteins are essential to life because they are functionally involved in a vast array of
cellular activities from energy production to metabolism through DNA replication. The
evaluation of protein content, its identification, and modification represent a fundamental
assay in biochemistry researches that occasionally remains challenging [3]. In this context,
several analytical techniques and protocols specifically designed for purification, protein
extraction, quantification, and identification have been suggested [4]. These approaches
span from ultraviolet absorption spectroscopy to the more standard dye-based colorimetric
measurements using Lowry and Bradford assays, among others [4], and all have pros and
cons. Assay choice is carefully considered and is mainly related to the targeted biological
samples, sample volume, recovery, protein aggregation, and chemical reactions [4], as well
as the objective and applications.

Phytoplankton, zooplankton, and benthic organisms are among marine groups that
have been targeted for protein content analyses, although using different and sometimes
incomparable techniques [5]. Protein analysis has recently found a new application area in
the biomonitoring (i.e., pollution) or evaluation of climatic change effects (e.g., warming,
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acidification). In this context, benthic foraminifera—single-celled organisms— have been
extensively used as bioindicators in environmental biomonitoring from local to global scales
and, more recently, as ecotoxicological bioassays [6–9]. The investigation of physiolog-
ical and biochemical changes on foraminifera ascribed to various stressing factors such
as heavy metals, organic matter, and thermal pollution (i.e., global climate changes) can
provide valuable information on the marine environment’s environmental quality. Unfor-
tunately, to the best of our knowledge, only a few investigations have been performed to
characterize the protein content of foraminifera [10–15]. Doo et al. [10] provided a measure-
ment of the total protein content (i.e., 1.95 ± 0.04 µg/individual) in a foraminiferal species
(i.e., Baculogypsina sphaerulata). The protein yield was documented in the smaller ben-
thic foraminiferal species Ammonia tepida (0.066 ± 0.012 µg/individual), Ammonia beccarii,
(0.085 µg/individual), Elphidium crispum (0.04 µg/individuals), and Massilina secans
(0.231 ± 0.34 µg/individual) [12]. The protein content of selected larger benthic
foraminiferal (LBF) species, namely Amphisorus hemprichii (77.55 ± 2.79 µg/individual),
Marginopora vertebralis (171.28 ± 1.37 µg/individual), and Calcarina gaudichaudii (from
16.34 ± 0.46 to 16.34 ± 0.46 µg/individual) was reported by Doo et al. [11]. The same au-
thors also provided an accurate description of the protein protocol specifically designed for
foraminifera. The determination protocol details the protein extraction, electrophoresis, and
western blotting. Changes in the proteome composition in Amphistegina gibbosa—a diatom-
bearing benthic foraminifera—when thermally stressed were evaluated by Stuhr et al. [15].

The methodologies used for protein assay in foraminifera have been inherited from
traditional methods. However, the wide variety of such methods from extraction to
staining makes it rather difficult to compare the results [5]. Indeed, no comparative
tests on the reliability and performance of the different assays have been performed
on foraminifera so far. Hence, the objective of the present study is to apply and com-
pare the outcomes of different methods of lysis, protein assays, and protein staining on
foraminifera. Amphistegina lessonii—a symbiont-bearing foraminiferal species—was chosen
as the model organism.

2. Materials and Methods
2.1. Individual Collection

Individual A. lessonii (Amphisteginidae, Foraminifera) were collected from pieces of
rock pebbles within the Gulf of Aqaba-Eilat (Red Sea, Israel) in October 2020. Pebbles were
collected at water depths of 1 to 2 m in a reference site that is considered clean and has been
used for previous investigations [8]. Once in the laboratory, the pebbles were immediately
scrubbed using a small brush into a bucket containing seawater from the collection site
for separation living A. lessonii individuals. Adult living individuals (600 to 800 µm) were
placed in 50 mL tubes and delivered to Urbino University (Italy). Once in the laboratory,
individuals were placed in 100 mm glass Petri dishes with water at the sampling site for
acclimatization for 2 weeks at 25 ◦C and 12:12 light and dark cycles. Living individuals
showing a golden-brown color and exhibiting pseudopodial activity were then picked
under a stereomicroscope for specific tests to develop the protocol. Three replicated batches
containing 40 individuals of A. lessonii were ground with a Teflon needle, homogenized,
and mixed for each treatment (i.e., lysis buffer, protein assay, ultrasonic bath treatment,
and protein stain).

2.2. Lysis

Batches were ground and homogenized with two different lysis buffers—a) homemade
lysis buffer and b) RIPA buffer. For the homemade lysis buffer, samples were lysed with
0.5 mL of ice-cold lysis buffer [50 mM Tris·HCl, pH 7.8, 0.25 M sucrose, 1% (wt/vol) SDS,
1 µg/mL pepstatin, 10 µg/ml leupeptin, 2 mM sodium orthovanadate, 10 mM NaF, 5 mM
EDTA, 5 mM N-ethylmaleimide, 40 µg/ml PMSF, and 0.1% Nonidet P-40] and sonicated
for 45 s at 100 W.
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For RIPA buffer, samples were lysed with 0.5 ml of ice-cold RIPA complete lysis buffer
and sonicated for 45 s at 100 W. The homogenate was divided into two aliquots, one of
which was placed for 10 min in an ultrasonic bath. Samples were boiled for 10 min and
then centrifuged for 20 min at 14,000× g to remove insoluble debris, and supernatants were
recovered. Then, the homogenate was divided into two aliquots, one of which was placed
for 10 min in an ultrasonic bath, whereas the second one was not sonicated.

2.3. Protein Assays

Three methods were considered and compared to determine the total protein content:

1. Lowry’s method [16].

Mixing 25 µL of sample with 2375 µL solution A (dH2O, Na2CO3 1M, NaOH 0.25M,
Na-K tartrate 0.2%, CuSO4 0.1%) and incubating for 10 min, adding 1:4 (v/v) Folin reagent,
mixing, incubating for 10 min in darkness, and reading the absorbance at 700 nm.

2. Bradford’s method [17].

20 µL of sample was mixed with 1 mL of solution B (dH2O and Bradford reagent),
and then the absorbance was read at 595 nm.

3. BCA method [18].

Mixing 25 µL of sample with 500 µL of working reagents (50 parts of BCA reagent A
with 1 part of BCA reagent B from Pierce BCA protein assay kit), incubating for 2 h and
reading the absorbance at 565 nm.

Blanks (i.e., buffered solutions without A. lessonii individuals) were also carried out.

2.4. Statistical Analysis

Differences in mean values of protein content among treatments (i.e., lysis buffer, ul-
trasound, and assay) were analyzed by one-way analysis of variance (ANOVA). Data were
square-root transformed to meet ANOVA assumptions. Post-hoc analysis was performed
using Tukey’s honestly significant difference (HSD) tests. The significance level adopted
was 95% (α = 0.05).

2.5. SDS-PAGE

Gel electrophoresis was carried out on polyacrylamide (with an acrylamide/Bis ratio
of 30:1) slab gels (60 × 80 × 1 mm3) using the discontinuous buffer system of Laemmli.
The separating gel of 10% polyacrylamide was underlain with 4% stacking gel, and the
running buffer consisted of 0.025 M Tris, 0.2 M glycine, and 0.1% SDS. Gels were run in a
Mini-Protein II dual slab cell (Bio-Rad) at a constant current of 10 mA per slab gel using a
Power PAC 300 (Bio-Rad). Samples were mixed 1:1 (vol/vol) with sample buffer (0.5 M
Tris·HCl, pH 6.8, 2% SDS, 10% glycerol, 4% 2-mercaptoethanol, and 0.05% bromophenol
blue), and the samples (normalized for protein content before they were loaded to 20 µg of
protein) were resolved.

2.6. Protein Staining

All working solutions for staining were prepared just before their use, and all steps
were carried out at room temperature with shaking.

1. Silver Stain

This staining method was essentially according to [19]. For staining with silver, pro-
teins were fixed in 40% methanol/10% acetic acid (v/v) for 30 min and in 10% ethanol/5%
acetic acid (v/v) for 30 min and then oxidized for 5 min in a Bio-Rad Oxidizer (1:10 in
dH2O), washed in dH2O for 15 min, incubated with silver reagent (1:10 in dH2O) for 20
min, washed in dH2O for 1 min, developed for 10 min with Developer Bio-Rad (32 g of
developer per L of deionized water), and stopped in 5% acetic acid (v/v).

2. Coomassie Stain
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Coomassie brilliant blue R250, an anionic dye, is the most popular stain for detecting
proteins resolved in SDS-PAGE gels. The stain was prepared by dissolving 0.12% (w/v) dye
in 50% (v/v) methanol and 10% (v/v) acetic acid. SDS-PAGE gels were stained for 2 h and
de-stained with two changes every 2 h of 20% (v/v) methanol and 10% (v/v) acetic acid.

3. Results

Figure 1 shows the standard curves related to the three protein assays (i.e., Lowry,
BCA, and Bradford) using a series of bovine serum albumin (BSA) standards in the 0 to
1 mg/mL range. The absorbance was measured at 700 (Lowry), 562 (BCA), and 595 nm
(Bradford) and plotted against BSA. Linearity was checked with a linear regression analysis;
the correlation coefficient and calibration curve equation were then calculated (Table 1).
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Figure 1. Standard curves: absorbance vs. protein content based on a BSA range of 0 to 1 mg/mL
for different considered protein assays (i.e., Lowry, BCA, and Bradford). Data are expressed as
mean ± standard deviation.

Table 1. Correlation coefficient and calibration curve equation for the considered protein assays (i.e., Lowry, BCA,
and Bradford).

Lowry BCA Bradford

R2 0.97 0.96 0.96
Calibration curve equation y = 0.1829x − 0.03347 y = 0.1634x − 0.03222 y = 0.1607x − 0.004233

The protein yield ranged from 0.23 to 0.85 mg/mL (Figure 2; Table 2). Marked
variations in the protein yield were associated with the different considered methodologies,
namely (a) lysis buffer, (b) protein assays, and (c) ultrasonic bath treatment (Figure 2;
Table 2).

Table 2. Protein content (mg/mL) data per different treatments: lysis buffer: homemade (HM) and
RIPA; assays: Lowry, BCA, and Bradford and ultrasonic bath treatment (US).

Ultrasound
Lysis Assay

Buffers Lowry BCA Bradford

With
HM [mg/mL] 0.85 ± 0.06 0.85 ± 0.03 0.37 ± 0.05

RIPA [mg/mL] 0.51 ± 0.06 0.49 ± 0.05 0.27 ± 0.06

Without
HM [mg/mL] 0.61 ± 0.04 0.59 ± 0.03 0.31 ± 0.05

RIPA [mg/mL] 0.39 ± 0.02 0.38 ± 0.01 0.23 ± 0.02
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The homemade lysis buffer extracts from 0.31 ± 0.05 to 0.85 mg/mL ± 0.06
(0.597 mg/mL, on average) were comparatively and significantly (F1,34 = 14.89, p = 0.0005)
higher than the RIPA (0.23± 0.02–0.51± 0.06 mg/mL; 0.378 mg/mL, on average). The high-
est yield was found with the Lowry methods (0.39± 0.02–0.85± 0.06 mg/mL; 0.59 mg/mL,
on average), although the BCA method provided a very similar but slightly lower yield
(0.38 ± 0.01–0.85 ± 0.03 mg/mL; 0.58 mg/mL on average) (Figure 2; Table 2). On the
other hand, the Bradford method consistently led to a much lower yield (0.23 ± 0.02–
0.37 ± 0.05 mg/mL; 0.295 mg/mL on average) (Figure 2; Table 2).

There was a significant assay effect on protein yield (F2,33 = 13.718, p = 0.00005).
Tukey’s HSD post hoc test revealed a significant decrease in protein yield with the Bradford
method (p < 0.01) compared to the Lowry and BCA methods, but no difference was found
between these two latter methods. The homogenates placed in ultrasonic bath had a signifi-
cantly (F1,34 = 4.36, p = 0.04) higher yield (0.27± 0.06–0.85± 0.06 mg/mL; 0.557 mg/mL on
average) than those without it (0.23 ± 0.02–0.61 ± 0.04 mg/mL; 0.418 mg/mL on average).

Life 2021, 11, x FOR PEER REVIEW 11 of 11 
 

 

Table 2. Protein content (mg/mL) data per different treatments: lysis buffer: homemade (HM) and 
RIPA; assays: Lowry, BCA, and Bradford and ultrasonic bath treatment (US). 

Ultrasound 
Lysis  Assay 

buffers Lowry BCA Bradford 

With 
HM [mg/mL] 0.85 ± 0.06 0.85 ± 0.03 0.37 ± 0.05 

RIPA [mg/mL] 0.51 ± 0.06 0.49 ± 0.05 0.27 ± 0.06 

Without  
HM [mg/mL] 0.61 ± 0.04 0.59 ± 0.03 0.31 ± 0.05 

RIPA [mg/mL] 0.39 ± 0.02 0.38 ± 0.01 0.23 ± 0.02 

There was a significant assay effect on protein yield (F2,33 = 13.718, p = 0.00005). Tuk-
ey's HSD post hoc test revealed a significant decrease in protein yield with the Bradford 
method (p < 0.01) compared to the Lowry and BCA methods, but no difference was found 
between these two latter methods. The homogenates placed in ultrasonic bath had a sig-
nificantly (F1,34 = 4.36, p = 0.04) higher yield (0.27 ± 0.06 – 0.85 ± 0.06 mg/mL; 0.557 mg/mL 
on average) than those without it (0.23 ± 0.02 – 0.61 ± 0.04 mg/mL; 0.418 mg/mL on aver-
age). 

 
Figure 2. Comparison of protein content (mg/mL) per different treatments with and without an 
ultrasonic bath treatment (US): lysis buffer: homemade (HM) and RIPA; assays: Lowry, BCA, and 
Bradford. Data are expressed as mean ± standard deviation. Letters denote significant differences 
(Tukey's HSD post-hoc test) between methods for each treatment (homemade lysis buffer + ultra-
sonic bath treatment, RIPA lysis buffer + ultrasonic bath treatment, homemade lysis buffer, and 
RIPA). 

On the basis of the different methodologies, the highest yield was obtained with the 
homemade lysis buffer, Lowry assay, and ultrasonic bath treatment which, combined, led 
to a total protein content of 6.1 µg per individual, which is slightly higher than the one 
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Figure 2. Comparison of protein content (mg/mL) per different treatments with and without an
ultrasonic bath treatment (US): lysis buffer: homemade (HM) and RIPA; assays: Lowry, BCA, and
Bradford. Data are expressed as mean ± standard deviation. Letters denote significant differences
(Tukey’s HSD post-hoc test) between methods for each treatment (homemade lysis buffer + ultrasonic
bath treatment, RIPA lysis buffer + ultrasonic bath treatment, homemade lysis buffer, and RIPA).

On the basis of the different methodologies, the highest yield was obtained with the
homemade lysis buffer, Lowry assay, and ultrasonic bath treatment which, combined, led
to a total protein content of 6.1 µg per individual, which is slightly higher than the one
with the BCA assay (6 µg per individual). The Coomassie blue stain (Figure 3) appeared to
be less sensitive than the silver stain (Figure 4). This lower sensitivity was found whether
or not the ultrasonic bath treatment was used.

Life 2021, 11, x FOR PEER REVIEW 11 of 11 
 

 

 
Figure 3. SDS PAGE acrylamide gel (12%) Coomassie blue-stained comparison among lysis buff-
ers (homemade vs. RIPA) and ultrasonic bath treatment (20 µg of sample were loaded into each 
well). The SMW (standard molecular weight) is also reported. 

 
Figure 4. SDS PAGE acrylamide gel (10%) silver stain comparison among lysis buffers (homemade 
vs. RIPA) and ultrasonic bath treatment (5 µg of sample were loaded into each well). The SMW 
(standard molecular weight) is also reported. 

4. Discussion 
4.1. Comparison among Methodologies for Protein Assays in Large Benthic Foraminifera  

Different techniques for breaking the foraminiferal cellular membranes have been 
previously considered and include mechanically grinding with tweezers or a plastic pestle 
[10–12,15] and crushing to a fine powder with a mortar and pestle [14]. All these tech-
niques involve the destruction of the foraminiferal tests. Alternatively, osmotic shock 
(with Milli-Q water and micro-filtered tap water), ultrasound (for 2 and 5 s), and NaOH 
treatments were proposed as methods to ensure the foraminiferal test’s preservation [13]. 

Figure 3. SDS PAGE acrylamide gel (12%) Coomassie blue-stained comparison among lysis buffers
(homemade vs. RIPA) and ultrasonic bath treatment (20 µg of sample were loaded into each well).
The SMW (standard molecular weight) is also reported.
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4. Discussion
4.1. Comparison among Methodologies for Protein Assays in Large Benthic Foraminifera

Different techniques for breaking the foraminiferal cellular membranes have been
previously considered and include mechanically grinding with tweezers or a plastic pes-
tle [10–12,15] and crushing to a fine powder with a mortar and pestle [14]. All these
techniques involve the destruction of the foraminiferal tests. Alternatively, osmotic shock
(with Milli-Q water and micro-filtered tap water), ultrasound (for 2 and 5 s), and NaOH
treatments were proposed as methods to ensure the foraminiferal test’s preservation [13].
The same authors detailed the best technique following foraminiferal test characteristics
(i.e., dimension of the apertures, foramens, and test robustness). On the basis of our goal of
comparing the performance of the different protein assays, we used a destructive technique
based on foraminiferal crushing with a Teflon needle.

The Thermo Scientific™ RIPA buffer is one of the most reliable buffers for lysing cul-
tured mammalian cells from both plated cells and cells pelleted from suspension cultures.
This buffer enables extraction of the cytoplasmic, membrane, and nuclear proteins and is
compatible with many applications, including reporter assays, protein assays, immunoas-
says, and protein purification. This buffer has already been applied to lyse LBFs [10,11].
Other lysis buffers (i.e., 1) 80 mM potassium acetate, 5 mM magnesium acetate, 20 mM
Hepes pH 7.5 by Heinz et al. [12], 2) 50 mM Tris-HCl (pH 7.8), 150 mM NaCl, 1% SDS and
Complete Mini by Stuhr et al. [15], and 3) 100 mM Tris–HCl (pH 7.4) by Sabbatini et al. [14])
have been previously used on foraminifera. The here-used homemade lysis buffer has been
developed over time by one co-author (MB) by modifying the already-existing protein
extraction buffer to optimize protein extraction in marine organisms such as mussels, clams,
and oysters. A substantially higher yield is associated with the homemade lysis buffer
(0.597 mg/mL, on average) than the RIPA (0.378 mg/mL, on average). The homemade
lysis buffer could, therefore, be used for accurate protein extraction in benthic foraminifera
(i.e., Amphistegina).

No marked differences in protein yield were found between the Lowry and BCA
methods, whereas the Bradford dosage led to a ~50% lower yield. Indeed, the Lowry
and BCA methods also matched well with respect to measured protein and the standard
serial dilutions, whereas the Bradford method underestimated all concentrations. The
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Lowry, BCA, and Bradford methods were all sensitive to microgram-level concentrations
of protein, essential when only a limited amount of biological sample is available. These
differences in protein detection ability among the three methods are ascribed to an overall
underestimation of protein by the Bradford assay [20]. This underestimation by the Brad-
ford method could be explained by its higher sensitivity to BSA than to a diverse pool of
proteins [21]. Indeed, the Bradford dye reagent reacts primarily with arginine residues and
does not equally detect all proteins leading, therefore, to this protein’s underestimation [22].
Of the three assays here discussed, the Lowry and BCA methods would be preferable
over Bradford for invertebrate protein assays because it provides higher estimates of total
protein and is not as affected by protein composition [23]. Both Lowry and BCA methods
may, however, be insensitive to small peptides and amino acids [24]. The Lowry and
BCA methods are, therefore, the most accurate protein measurement approaches in ben-
thic foraminifera (i.e., Amphistegina). These findings are consistent with the outcomes of
Martínez et al. [5] that among all seven tested methodologies involving colorimetric protein
assays (i.e., Rutter, Rutter-SDS, Markwell, BCA, microBCA, Bradford, and microBradford)
on different sizes of marine plankton, a mysid, and a jellyfish species, determined the
BRAD and mBRAD as methods consistently underestimating protein. The same results
were obtained in a wide range of marine organisms, from bacteria to algae [25,26]. To date,
protein content has been quantified on foraminifera by using the Pierce® BCA [10,11] and
Bradford [12] assays, amino acid analysis [15], as well as copper and BCA solutions [13].

Significant differences were also associated with the use of the ultrasonic bath treat-
ment (0.557 mg/mL, on average) compared to those without it (0.418 mg/mL, on average)
(Figure 2, Figure 3). The capability of the ultrasonic bath to extract a higher content (ca.
26.4%) of low-abundance protein has already been pointed out [27]. Moreover, ultra-
sonication has been documented to provide five-fold higher protein yields as compared to
high-pressure homogenization [28]. Ultrasound treatment promotes the formation of voids
(i.e., cavitation bubbles), thereby enhancing solid–liquid extraction [29]. The application of
an ultrasonic bath on foraminifera is here considered a key approach to maximize protein
extraction. This ability can be ascribed to the foraminiferal test, where the cell adheres to.
Differences were also found in the considered staining gels (i.e., Coomassie blue vs. silver
stain). The silver stain has been widely documented to be significantly more sensitive than
Coomassie blue. Despite Coomassie blue being the most widely used gel, it can commonly
detect 50 ng protein bands, whereas the silver stain has a sensitivity of 10 to 100 fold [30].
Different protein staining approaches have been used on foraminifera, including SYPRO®

Ruby (Invitrogen) [10,11], a staining solution (1 mM 4-chloro(1)naphthol and 0.015% H2O2
in 30 mM Tris pH 8.5 containing 6% methanol) [12], and silver nitrate [14].

4.2. Developing and Detailing a Protocol for Protein Assays
4.2.1. Pre-Treatment

1. Preparations of all working reagents, solutions, and buffers.
2. Accurate selection of living foraminifera based on the presence of pseudopodial activity.
3. Clean foraminiferal tests with a brush and filtered seawater to remove all particles

over the test.

4.2.2. Extraction Buffer

1. Homogenization of LBFs by mechanically crushing foraminiferal tests until pulver-
ized with Teflon in 1.5 mL Eppendorf vials containing 0.5 mL ice-cold homemade lysis
buffer [50 mM Tris·HCl, pH 7.8, 0.25 M sucrose, 1% (wt/vol) SDS, 1 µg/mL pepstatin,
10 µg/ml leupeptin, 2 mM sodium orthovanadate, 10 mM NaF, 5 mM EDTA, 5 mM
N-ethylmaleimide, 40 µg/mL PMSF, and 0.1% Nonidet P-40]. All manipulations are
performed on ice to prevent protein degradation.

2. Sonication for 45 s at 100 W in ice.
3. Boil samples for 10 min.
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4. Centrifuge for 20 min at 14,000× g to remove insoluble debris; supernatants
were recovered.

5. Transfer the supernatant into a new 1.5 mL tube and preserve it at −80 ◦C.

4.2.3. Protein Assay

1. Defrost the supernatant.
2. Prepare the standards (i.e., bovine serum albumin (BSA) protein standards in a

solution of 1 mg/mL of H2O) only).
3. Sample preparation

(a) Lowry’s method
(a1) Mix 25 µL of sample with 2375 µL of solution A (dH2O, Na2CO3 1M, NaOH

0.25M, Na-K tartrate 0.2%, CuSO4 0.1%) and incubate for 10 min.
(a2) Add 1:4 (v/v) Folin reagent, mix, and incubate for 10 min in darkness.
(a3) Read the absorbance with a spectrophotometer at 700 nm.
(a4) Standard curve between BSA and absorbance at 700 nm.
(a5) Determine the protein concentrations from absorbance values.
(b) Bradford’s method (Bradford, 1976) [17]
(b1) Mix 20 µL of sample with 1 mL of solution B (dH2O and Bradford reagent).
(b2) Read the absorbance with a spectrophotometer at 565 nm.
(b3) Standard curve between BSA and absorbance at 565 nm
(b4) Determine the protein concentrations from absorbance values.

4.2.4. SDS-PAGE

1. Perform gel electrophoresis on polyacrylamide (with an acrylamide/Bis ratio of 30:1)
slab gels (60 × 80 × 1 mm3) using the discontinuous buffer system of Laemmli.

2. The separating gel of 10% polyacrylamide is underlain with 4% stacking gel, and the
running buffer consisted of 0.025 M Tris, 0.2 M glycine, and 0.1% SDS.

3. Run gels on a Mini-Protein II dual slab cell (Bio-Rad) at a constant current of 10 mA
per slab gel using a Power PAC 300 (Bio-Rad).

4. Mix samples 1:1 (vol/vol) with sample buffer (0.5 M Tris·HCl, pH 6.8, 2% SDS, 10%
glycerol, 4% 2-mercaptoethanol, and 0.05% bromophenol blue).

5. Normalize samples for protein content before loading to 20 µg of protein.
6. Boil all samples with sample buffer for 5 min to denature proteins.

4.2.5. Silver Stain

1. Prepare protein staining just before use.
2. All steps are at room temperature with shaking with clean glass materials.
3. Fix protein in 40% methanol/10% acetic acid (v/v) for 30 min and in 10% ethanol/5%

acetic acid (v/v) for 30 min.
4. Oxidize for 5 min in a Bio-Rad Oxidizer (1:10 in dH2O).
5. Wash in dH2O for 15 min and incubate with Silver reagent (1:10 in dH2O) for 20 min.
6. Wash in dH2O for 1 min and develop for 10 min with Developer Bio-Rad (32 grams

of developer per liter of deionized water) and stop in 5% acetic acid (v/v).

4.3. Chemicals

Coomassie brilliant blue R250, sodium dodecyl sulfate (SDS), bromophenol blue,
N′,N′,N′,N′-tetramethylethylenediamine (TEMED), β-mercaptoethanol, disodium ethylene-
diaminetetraacetic acid (Na2EDTA), Tris·HCl, sucrose, pepstatin, leupeptin, sodium ortho-
vanadate, NaF, N-ethylmaleimide, PMSF, Nonidet P-40, Folin–Ciocalteu, Na2CO3, NaOH,
Na-K tartrate, and CuSO4 were purchased from Sigma-Aldrich–Fluka (Steinheim, Ger-
many). Acrylamide, Bis-acrylamide, Silver stain kit, and Bradford reagent were purchased
from Bio-Rad Laboratories Srl. (Milan, Italy). Pierce™ BCA Protein Assay Kit and complete
RIPA lysis buffer (#89900, #87786) were obtained from Thermo Fisher Scientific (Waltham,
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MA, USA). Contents (1 mL): 25 mM Tris-HCl,150 mM NaCl, 1%NP-40, 1% sodium deoxy-
cholate, 0.1% SDS, 1 mM AEBSF, 800 nM Aprotinin, 50 µM Bestatin, 15 µM E64, 20 µM
Leupeptin, 10 µM Pepstatin A, and 5 mM EDTA.

5. Conclusions

In this study, we considered and compared a variety of methodologies and treatments
for the quantification of proteins in LBFs. These approaches included (a) lysis buffer
(homemade vs. RIPA), (b) protein assays (Lowry, BCA, and Bradford), (c) ultrasonic bath
treatment, and (d) protein staining (silver staining and Coomassie Blue). On the basis of the
comparative outcome, we suggest using the homemade lysis buffer, BCA, or alternatively
the Lowry assay, ultrasonic bath treatment, and silver stain to maximize the extraction and
characterization of protein for A. lessonii. This protocol might be suitable and extended
to other benthic foraminiferal species, including the smaller ones and, more importantly,
represents a baseline approach to be considered if A. lessonii is to be used as a biomarker.
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