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Abstract Security-by-contract is a paradigm proposed

for the secure installation, usage, and monitoring of

apps into mobile devices, with the aim of establishing,

controlling, and, if necessary, enforcing, security-critical

behaviors. In this paper, we extend this paradigm with

new functionalities allowing for a quantitative estima-

tion of such behaviors, in order to reveal in real-time

the more and more challenging subtleties of new genera-

tion malware and repackaged apps. The novel paradigm

is based on formal means and techniques ranging from

statistical analysis to probabilistic model checking. The

framework, deployed in the Android environment, is

evaluated by examining both its effectiveness with re-

spect to a benchmark of real-world malware and its

effect on the execution of genuine, secure apps.

Keywords security-by-contract · Android · statistical

analysis · probabilistic model checking

1 Introduction

The exponential increase in popularity and computa-

tional power of mobile devices such as smartphones,

tablets, and wearables, has rapidly driven the atten-

tion of application developers. The number of mobile
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applications (apps) available in digital markets has al-

ready passed the one million threshold [12] and cur-

rently they cover almost all the applicative categories.

The two main target Operating Systems (OS) for mo-

bile apps are Android and iOS. In particular, starting

from 2012, Android is the most popular OS [12] for mo-

bile devices and thus, it has both the largest number of

available apps and the highest number of users to be

reached by them.

Security represents a critical issue for the market of

mobile apps, which are exposed to many types of cyber-

attacks. Malicious developers strive to design mobile

apps able to damage both users and devices, by using,

e.g., Trojan horses, which may cause corporate (or per-

sonal) data (or money) theft and leakage [40]. Moreover,

genuine applications often expose vulnerabilities, due

to programming mistakes, permission overdeclaration

and unprotected interfaces [19,24]. A recent study spon-

sored by IBM [37] reveals that companies test less than

50% of the mobile apps they build, while a company out

of three does not conduct security tests before the app

deployment at all. On the other hand, paradigms like

the Bring-Your-Own-Device are adopted by an increas-

ing number of companies that allow employees to use

business apps on their personal devices, thus challeng-

ing the traditional security perimeters and risk manage-

ment systems [7]. Similarly, nowadays a large amount of

users feel confident in downloading and using apps that

manage their credentials and personal information, like

financial data or patient records, without paying at-

tention to the risks deriving from the use of potential

repackaged apps [24].

In this setting, it is standard to use security mod-

els based on the specification of contracts establishing

the kind of actions the app can execute [34]. The un-

derlying semantics is either based upon trust relation-

ships or upon statements of purpose. In the former case,

the users run a mobile app because they trust the app

provider, essentially leading to a security model based

on the “all or nothing” policy, that is either the app

is trusted and, therefore, allowed to do anything, oth-

erwise it is not installed [24]. In the latter case, the

app provider declares the security relevant actions that

could be performed by the app, so that the users can de-

cide whether to run the app or not, by possibly restrict-

ing the app access rights. However, in such a case typ-

ically the semantics is too coarse-grained and scarcely

user-friendly, as it happens in Android, where rights to

perform security relevant actions are declared through

permissions [18].

For these reasons, fully automated, contract-based

intrusion detection systems are proposed to facilitate

and make flexible the task of controlling the behavior
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of installed mobile apps. In particular, the Security-

By-Contract (S×C) approach [21] is based on a mobile,

formal notion of contract that accompanies the app and

has a twofold objective. On one hand, it is used to es-

tablish whether the app behavior is compliant with the

declared scope as targeted by the app builder. On the

other hand, it represents the base for checking whether

the app is secure with respect to specified policies. The

validation of such a twofold compliance check is strictly

related to the completeness and exactness of all the pa-

rameters at hand: the actual observations stating the

app behavior, the statements describing the respected

contract, and the specification of the security policies.

However, in real-world scenarios, it can be difficult to

estimate precisely some of these parameters while, at

the same time, fluctuations of non-functional features

may have an effect upon the compliance results, thus

requiring approximation techniques.

In this paper, we present an improvement to the

Security-By-Contract paradigm, called Security by Con-

tract with Probability (S×C×P), which extends conser-

vatively the logical architecture of the standard S×C

model. The extension is based on a quantitative model

to specify probabilistic behaviors of the applications

and to define and enforce probabilistic policies. In par-

ticular, two alternative probabilistic models are con-

sidered for the verification of action-based policies and

of history-based policies, respectively, where the latter

turns out to be more expressive than the former. On

one hand, action-based conditions refer to relative prob-

abilities of observed events, while, on the other hand,

history-based conditions are related to the probability

distributions of sequences of actions, thus reasoning at

the level of event consequentiality. The verification con-

ducted through this twofold approach exploits a mech-

anism to intercept at run-time critical security-relevant

actions, by evaluating application compliance in order

to ensure policy matching for the protection of the ex-

ecution environment.

Even if the framework is general enough to be virtu-

ally used in any application environment, in this paper

we present an implementation for Android devices, dis-

cussing a set of policies for tackling actions of popular

malware and limiting unwanted behavior of both ma-

licious and genuine apps. The resulting policies prove

to be expressive enough to effectively stop the action of

two malware classes, namely Spyware and SMS trojan,

without limiting critical operations of genuine apps.

This paper extends previous work [33] with the fol-

lowing new contributions:

– an approach, called history-based, to the probabilis-

tic modeling and verification of policies, which is

compared to the standard action-based one;

– the details of the implementation of the S×C×P

framework about the methods and tools used for

policy evaluation and enforcement;

– a new set of experiments to validate and compare

from the expressiveness standpoint the two proba-

bilistic approaches;

– a comprehensive evaluation and discussion of per-

formance overhead for both approaches;

– an extended and up-to-date review of the state of

the art.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the state of the art. Section 3 introduces

the logical model of the proposed framework, including

the related components and workflow. At first, we de-

scribe the basic S×C model and then introduce the ex-

tension for action-based and history-based probabilis-

tic policy and contract definition. Then, Section 4 de-

scribes formally the methodology underlying the prob-

abilistic compliance operations, both for action-based

and history-based approaches. Hence, the implementa-

tion of the S×C×P framework as an app for Android

devices is detailed in Section 5, which also introduces

the security relevant actions considered in this specific

implementation. Section 6 describes the experiments

conducted on malicious and genuine applications, also

reporting a performance analysis. More precisely, both

action-based and history-based policies are designed to

counteract the misbehavior of samples belonging to sev-

eral well-known Android malware families. The effect of

such policies on a set of genuine apps is tested, and the

expressiveness comparison between the two approaches

is considered. The section includes also a set of exper-

iments to measure the effectiveness of run-time policy
enforcement and to measure the system performance.

Finally, Section 7 briefly concludes by proposing some

future extensions.

2 Related Work

From the quantitative standpoint, the problem of find-

ing an optimal control strategy is considered firstly in

[22] in the context of software monitoring. In this set-

ting, the system is represented as a Directed Acyclic

Graph, while rewards and penalties with correcting ac-

tions are employed dynamically to find the optimal so-

lution. Similarly, an encoding of access control mech-

anisms using Probabilistic Decision Processes is pro-

posed in [36], where the optimal policy can be derived

by solving the corresponding optimization problem.

From a different perspective, [11] proposes a notion

of distance among traces representing the system be-

havior. If a trace is not secure, then it should be edited
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to a secure trace close to the non-secure one, where

closeness is estimated in terms of the distance met-

ric, thus characterizing an enforcement strategy. An ap-

proach for dynamic building of probabilistic contracts

based on the observation of executable traces for An-

droid applications is presented in [6]. The authors in

this work focus on a different concept where frequent

sequences of system calls are grouped in macro-nodes

of a labeled graph of actions. Differently from our ap-

proach, the framework presented in this work performs

analysis at system call level and does not offer enforce-

ment tools. An approach for detection of non-compliant

applications through the analysis of the system calls is

proposed in [20] by using machine learning techniques

to distinguish between standard behaviors and mali-

cious ones. This work does not consider enforcement

mechanisms, and the analysis is based on statistical

concepts instead of probabilistic ones. In [28], a scheme

for intrusion detection using probabilistic automata is

proposed. This system exploits system calls and hidden

Markov models and is able to detect efficiently denial

of service attacks. In [32], a system based upon system

calls and Markov models is proposed to detect intru-

sions. This system analyzes the arguments of the sys-

tem calls but is oblivious of the system call sequence.

System call sequences and deterministic automata have

been used in [29] to detect anomalies whenever the sys-

tem call sequences differ from an execution trace known

to be acceptable. This approach might suffer from high

false alarm rates, since any trace different from a known

one is considered as malicious. Our approach relaxes

this condition, allowing the definition of more com-

plex and flexible policies. Alterdroid [41] is a tool that

compares the behavioral differences between an origi-

nal app and an automatically generated version that

contains modifications (faults) to detect hidden mal-

ware. The method of [26] proposes malware detection

based on embeddings of function call graphs in a vector

space capturing structural relationships. This represen-

tation is used to detect Android malware using ma-

chine learning techniques. The present work is not nec-

essarily focused on malicious apps, and potentially any

kind of policy can be applied. Similarly, [43] classifies

Android malware via dependency graphs by extracting

a weighted contextual API dependency graph as pro-

gram semantics to construct feature sets. A framework

that allows the definition of security policies mainly in-

tended to control the flow of information in the Android

OS is TaintDroid, presented in [23]. Similarly as the

S×C×P framework, TaintDroid performs the enforce-

ment at runtime, still does not consider probabilistic

conditions, nor enforces action related policies. More-

over, it requires a modification of the operating system.

In [39], a framework is proposed for Android to enforce

dynamically policies aimed at reducing the amount of

traffic generated by Android apps. Differently from this

work, the policies are very specific and do not consider

probabilistic aspects. Another tool for the definition of

policies and the analysis of Android applications is pre-

sented in [8]. The proposed framework, named R-Droid,

performs static analysis, not at runtime, and does not

consider probabilistic conditions. The authors of [42]

present a framework named SPOKE for runtime anal-

ysis of security policies in Android applications, in or-

der to find vulnerabilities and possible data disclosures.

The SPOKE framework is not focused on enforcement

aspects, mainly targeting the app vulnerabilities, in-

stead of malicious and unwanted behaviors, which are

instead the intended targets for the S×C×P framework.

A framework that performs hybrid/static dynamic se-

curity policy enforcement on Android devices is pre-

sented in [35]. The framework has been specifically de-

signed to tackle Android malware, targeting API calls

related to specific misbehaviors. Differently from our

approach, this framework mainly operates on classifi-

cation and heuristics, and does not allow the definition

of complex policies.

Referring to probabilistic models, probabilistic con-

tracts have been firstly introduced in [16], where the

contract generation is based on the analysis of the oc-

currences of system calls. The basic model relies on

the Assume/Guarantee paradigm for stochastic systems

and the goal of verification is to analyze both reliabil-

ity and availability aspects of such systems. The ap-

proach we propose is intended to extend the Security-

by-Contract model in the probabilistic framework, in

order to assess quantitatively the constraints behind the

adoption of enforcement strategies at execution time.

3 A Formal Approach to Security By Contract

In this section, we first recall the nondeterministic secu-

rity-by-contract approach, and then we present the log-

ical models of the proposed probabilistic framework.

3.1 Security By Contract

The Security-by-Contract (S×C) model [21] is based

on three cornerstone elements: the app code A, the app

contract C, and the client policy P . Given an app, its

contract is a formal specification of the security rele-

vant behavior that the app can exhibit during its exe-

cution. Such a behavior is related, e.g., to the security

virtual machine API calls or the critical system calls
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Fig. 1 Security-by-Contract components and workflow.

performed by the app. A policy is a formal specifica-

tion of the acceptable security relevant behavior that

the app is allowed to execute on the device in which

it is installed. The basic idea of the contract-based ap-

proach consists in employing the contract to verify that

the security conditions imposed by the policy are actu-

ally satisfied by the app. More precisely, denoted with

� the compliance relation between any pair of elements

of the S×C model, the contract-based approach is based

on the satisfaction of the following transitive relation:

A � C � P ⇒ A � P (1)

Figure 1 reports the S×C components and workflow,

which can be described as follows. As a first step, it is

verified whether the contract and the app match, i.e.,

if the contract is really representative of the app be-

havior (A � C). This operation is named App-Contract

Matching and can be based on several methodologies,

depending on the adopted contract model, and span-

ning from proof-carrying code to the application of trust

relations towards either the application developer or the

certification authority issuing the contract. Assumed

that app and contract are matched, S×C verifies if con-

tract and security policy defined by the system adminis-

trator match as well (C � P ). If both contract and pol-

icy are expressed formally through compatible models,

this operation, named Contract-Policy Matching, can

employ automatic formal verification techniques, like

model checking or equivalence checking. If the match is

verified, the app can be executed safely, because, based

on the previous checks, it is demonstrated that the app

behavior respects the policy (A � P ). If either the

App-Contract Matching or the Contract-Policy Match-

ing fail, the desired relation (1) cannot be verified. In

such a case, the app could be still executed. However, a

monitor is attached to the app with the aim of check-

ing that the app execution is matching step-by-step the

specified policy. In particular, if the app is violating a

policy by proposing the execution of a specific action,

then the monitor enforces the policy by stopping the ex-

ecution of such an action. On the implementation side,

Fig. 2 Security-by-Contract-with-Probability components
and workflow.

this enforcement brings overhead, which is completely

avoided in the case of safe execution.

3.2 Probabilistic Security by Contract

The basic idea of the probabilistic security by contract

(S×C×P) is to loosen the rough constraints of the stan-

dard S×C model, where a policy may only express if an

action should or should not be executed. The S×C×P

model extends the app contract with probabilistic in-

formation and allows for the definition of more flexi-

ble policies, where security relevant behaviors are inte-

grated with conditions concerning the execution prob-

ability of actions. Figure 2 depicts the architecture and

workflow of the S×C×P model, which extend conser-

vatively those described in Figure 1.

On one hand, it is well-known that enriching the

system verification with quantitative information al-

lows for capturing behaviors that cannot be analyzed in

a purely nondeterministic setting, thus increasing the

expressive power of the detection mechanism. On the

other hand, estimations of the difference between the

monitored, detected behavior and the ideal one allow

for refining and relaxing the classical binary approach

of the possibilistic framework. These general consider-

ations apply also to the specific setting of mobile apps,

whose complex execution may require policies that are

not as plain as those modeled in terms of boolean con-

ditions only, which turn out to be too simplistic – i.e.,

unable to detect potential malicious behaviors – and,

at the same time, too restrictive – i.e., unable to ap-

proximate in order to recognize that behaviors that are

close enough to the ideal one can be permitted.

Therefore, the goal of the S×C×P framework is to

provide a quantitative, conservative extension of the

standard S×C approach enabling approximate security

analysis. Obviously, such an extension requires the se-

mantic redefinition of the main S×C control operations.
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To this aim, we introduce two alternative behavioral

models.

3.2.1 Action-based Contract

In the first approach, the model describes the probabil-

ity distribution associated to the execution of the secu-

rity relevant actions. By extending the nondeterminis-

tic approach, in which actions are either permitted or

not by the policy, in the probabilistic setting we ideally

consider any intermediate scenario between these two

limiting cases. The intuitive motivation is that actions

that are considered unlikely (resp., likely) from a secu-

rity perspective shall be executed with low (resp., high)

frequency by a compliant app. The quantitative formal-

ization of these checks depends on factors like, e.g., the

probability distribution associated to security relevant

events and the tolerance thresholds that parameterize

the analysis at execution time.

Informally, a probabilistic contract is a document

specifying all the security relevant actions that the app

can perform together with the related, expected exe-

cution probability. Thus, the probabilistic contract de-

scribes quantitatively the expected behavior for the app

and represents a generalization of a standard contract.

In fact, an action with null probability corresponds to

an action that cannot be executed in the standard S×C

model, whilst every action with a probability greater

than 0 represents an enabled action for the S×C model.

With respect to the S×C model, it may be not suf-

ficient to examine statically the control flow graph of

the app to build a probabilistic contract. The execution

probabilities can be either manually estimated by the

entity building the contract (certification authorities or

the developer), or they can be generated dynamically,

i.e., by observing a sufficiently large number of exe-

cution runs of the app, e.g. in a safe environment, to

obtain estimations of its probabilistic behavior at the

desired level of precision. For instance, an automatic,

tool-supported methodology to build probabilistic con-

tracts from observed execution traces is presented in [6].

On the architectural side, the Probabilistic App-Con-

tract Matching checks whether the real, observed be-

havior of the app effectively matches the contract. This

is done by characterizing quantitatively the run-time

app behavior and then comparing the obtained esti-

mation with the probabilistic contract. Because of the

unpredictable, nondeterministic effect of behaviors that

are not dependent from the app, such a characterization

represents an approximation of the quantitative behav-

ior of the app expected by the contract, so that toler-

ance thresholds, determined through classical statistical

inference analysis, are used to govern the comparison.

The Probabilistic Contract-Policy Matching checks

whether the probability distribution expressed in the

contract does not violate any condition specified in the

policy, e.g., if no action is supposed to be more/less

frequent than specific policy values. The requirements

can be either strict, i.e., the probability values specified

in the policies must be matched exactly, or can be ap-

proximated, by allowing a deviation depending on con-

figurable thresholds. The rationale behind this relaxed

compliance verification is again to favour approximate,

flexible analysis dealing with the unpredictability of cer-

tain app executions, without compromizing the result

of the security check.

Analogously, if the policy enforcement is needed, the

related mechanism takes into account probabilistic in-

formation and tolerance thresholds to decide whether

an action is to be stopped or not, at the desired level

of approximation.

3.2.2 History-based Contract

The previous approach extends in a natural way the

S×C model by adding information and conditions about

the probability distribution of the actions represent-

ing the app security relevant behavior. Such an action-

based extension relies on an absolute criterium abstract-

ing from the evolution of the app execution and, there-

fore, the history of its behavior. However, in certain

cases, the behavior of the app may change from time

to time, depending on the past history of events. To

take into account such a dependence, we propose also a

more expressive behavioral model encoding the history

of activities performed by the app. To this aim, the

history-based model is not simply represented by an

absolute probability distribution associated to the do-

main of security-relevant actions. Instead, it is given by

a probabilistic labeled transition system used to model

both the probabilistic behavior of the app and its con-

tract. Analogously, a policy is not simply an expected,

theoretical distribution, but it is described in terms of

a logic formula expressing a property that is to be sat-

isfied by the model. Hence, as we will see, the con-

trol operations of Eq. (1) are conducted accordingly.

More precisely, the Probabilistic App-Contract Match-

ing performs a similarity check between the probabilis-

tic models describing the app behavior and the app con-

tract, while the Probabilistic Contract-Policy Matching

performs model checking to verify whether the con-

tract model satisfies the formula representing the pol-

icy. Analogously, in the case of enforcement, the model

checking based control is applied to the model of the

app behavior against the policy formula. As in the pre-
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vious approach, approximation techniques are consid-

ered to relax the conditions of each control operation.

To illustrate the difference between the two behav-

ioral models, we show their graphical interpretation in

Figure 3. On the left side, we observe the action-based

model of a contract including four security relevant

events, each one equipped with the related execution

probability. A policy in such a model represents a con-

straint over these probability values, as shown in the il-

lustrating example, describing a condition stating that

the (absolute) execution probability of the event d must

be less than 0.1. Notice that the action-based model

abstracts from the history of events characterizing the

app behavior. On the right side, we observe the history-

based specification of a contract, which is given by a

probabilistic state-transition model where the same se-

curity relevant events of the previous example are rep-

resented by certain transitions. Notice that the model

describes the (branching) structure of the potential app

behaviors and is probabilistic, as the choice among al-

ternative transitions is probabilistic and governed by

the normalized weights labeling the transitions. In such

a model, a policy is a probabilistic temporal logic for-

mula. For instance, the policy shown in the example

states that the probability of reaching a state enabling

the event d must be less than 0.1.

4 Probabilistic compliance

This section provides a formal description of the three

operations of the S×C×P framework, namely A � C,

C � P and A � P , in the probabilistic setting, both

for the action-based and history-based approaches.

4.1 Action-based Approach

We start by presenting a simple, action-based model for

the S×C×P framework with the aim of formalizing the

notion of (approximated) probabilistic compliance and,

as a consequence, extending in a quantitative setting

the purely functional relation �.

As explained in the previous section, the app con-

tract C is equipped with a model of the quantitative ex-

pected behavior of the app A. Formally, such a model

is given in the form of a theoretical estimated (sub-

)probability distribution π associated to the domain of

(relevant) actions Act . More precisely, function π, de-

fined from a nonempty, at most countable set Act to

R[0,1], is a discrete probability distribution over Act if∑
a∈Act π(a) = 1. Intuitively, the contract C specifies

that at each step of the app run the action a ∈ Act

is chosen with probability π(a). Notice that, consid-

ering sub-probability distributions (such that, i.e., the

summation above is ≤ 1) permits to ignore irrelevant

actions, which are excluded from Act but have non-zero

probability. Even in such a relaxed setting, the follow-

ing theory can be applied with no restrictions.

The policy P is described in terms of quantitative

conditions over the execution frequency associated to

the allowed security relevant actions. For instance, “the

probability of action a must be between 0 and 0.1”

could be one such requirements, which, generally speak-

ing, are defined to restrict the values that certain execu-

tion frequencies can assume at run time. Formally, the

specification of P is represented by a constraint sat-

isfaction problem, see, e.g., [38] for the mathematical

details.

In the following, we show how to employ the quan-

titative models surveyed above to relate app behavior,

contract, and policy. Such relations are used to estab-

lish the probabilistic application compliance.

4.1.1 Estimating A � C

Firstly, the compliance of the app with respect to the

contract (A � C in the non-probabilistic case) cannot

be checked statically through the application of some

metric. In fact, we need to evaluate the quantitative

run-time behavior of A. To this aim, notice that the se-

quence of actions observed during execution defines an

actual discrete probability distribution. Such a quanti-

tative characterization of the observed sequence is ex-

pected to represent an experimental approximation of

π, with a precision that depends on the run length and

other parameters, like, e.g., the estimated level of confi-

dence. Hence, the aim is to compare, at each trial of the

execution run, the actual distribution observed at run

time against the theoretical distribution π, in order to

verify whether the app behavior is compliant with the

contract from a quantitative perspective.

In the following, we show how to apply classical

statistical inference analysis to the estimation of such

a compliance check directly at run time. The reader

interested in the mathematical background can refer

to [27, 31]. We first recall that, by the Central Limit

Theorem, in the long run the actual monitored behav-

ior of the app shall estimate correctly the quantitative

expected behavior described by π. However, if the app

does not respect the contract, such a convergence will

not be achieved and the challenge is to realize as soon

as possible that the compliance cannot be satisfied.

The core idea is that for each action a ∈ Act , we

consider a Bernoulli trials process with estimated prob-

ability π(a) for success on each trial, and such that
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Fig. 3 Behavioral models comparison.

Xi = 1 if the i-th outcome is actually a success, and

Xi = 0 otherwise. Therefore, the actual estimation for

action a after a trials run of length n is given by:

ρn(a) =

∑n
i=1Xi

n
.

By virtue of the Central Limit Theorem, ρn(a) is ap-

proximately normally distributed with mean π(a) and

standard deviation:

sdn(a) =

√
π(a)(1− π(a))

n
.

Hence, it is possible to employ the classical confidence

levels estimated for the standard normal distribution.

In particular, we recall that the standard scores (called

Z-scores) of the standard normal distribution are de-

fined as:

Z = (X − µ)/σ (2)

where X is the approximating random variable, µ is its

mean, and σ is its standard deviation. In our frame-

work, they are represented by ρn(a), π(a), and sdn(a),

respectively. Therefore, since the Z-scores are known

from the standard normal distribution table, it is worth

expressing (2) as E = Z · σ, where the error E rep-

resents | X − µ |. In our framework, the error, which

depends on the action a, the confidence level l, and

the length n of the execution run, can be expressed

as: Eln(a) = Z · sdn(a). Then, since the aim is to ver-

ify whether the actual estimate ρn(a) measured at run

time is compliant with the estimated probability π(a),

we evaluate the disequality:

|ρn(a)− π(a) | ≤ Eln(a). (3)

Notice that the tolerance factor is inversely propor-

tional to the length of the execution run and depends

on the desired confidence level.

Example 1 Let us compute the maximum expected er-

ror E for π(a) = 0.2 and level of confidence equal to

95% (i.e., Z = 1.9599). Hence, for n trials we have the

following error estimations:

n E

1 0.7839

5 0.3505

10 0.2479

100 0.0783

Now assume, for instance, to observe an experimental

run of length 100, during which the action a has been

observed 11 times. Then 0.2 − 0.11 = 0.09 > 0.0783,

from which we can deduce with a 95% confidence level

that the probabilistic observed behavior is not fair with

respect to the theoretical estimated probability. In fact,

the 95% based confidence interval means that if we run

the experiment several times, in 95% of them the ob-

tained confidence interval shall contain the theoretical

estimated probability.

Definition 1 Given the confidence level l, A matches

C after n execution steps (A �ln C) if for all a ∈ Act it

holds that (3) is satisfied.

The above definition can be extended to apply the

compliance check at each step of an execution run of

length m.

Definition 2 Given the confidence level l and the ex-

ecution run ν of length m, A matches C on ν if for all

1 ≤ n ≤ m it holds that A �ln C.
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Hence, contract compliance of the observed behav-

ior of the app (represented by a sequence ν of actions)

can be verified by checking whether A matches C on ν.

With respect to the proposed approach, there is

some analogy with formal methods applied to the com-

parison of the quantitative behavior of systems, like,

e.g., in the formal setting of process algebra and be-

havioral equivalences [10]. The system behaviors asso-

ciated to two probability distributions π and ρn can be

described, e.g., by the probabilistic process algebraic

terms:

S ,
∑
a∈Act

a[π(a)].S and On ,
∑
a∈Act

a[ρn(a)].On

representing the theoretical estimated specification of

the system and the experimental run-time observation,

respectively. In both cases, the summations express the

external choice among the several different events, which

is governed by a probability distribution. The notation

a[p].P intuitively means that a is executed with prob-

ability p after which the process behaves as P . The

semantics of the two process terms are given by prob-

abilistic labeled transition systems with a unique state

and a self-loop for each a ∈ Act labeled with the action

name a and the probability π(a) (resp., ρn(a)). These

systems obey the generative model of probabilities and

can be compared with each other through an approxi-

mated variant of the classical bisimulation based equiv-

alence check, which we refer as ε-bisimulation. By fol-

lowing such an approach, see, e.g., [3, 4, 17], it turns

out that the two systems behave approximately the

same up to a tolerance threshold computed as ε =

maxa∈Act( | π(a) − ρn(a) | ), similarly as demonstrated

through the statistical inference check. However, differ-

ently from these approaches, which limit their contri-

bution to the computation of such an ε, in the setting of

statistical inference analysis ε is given a reliability inter-

pretation with respect to the desired confidence level.

This interpretation is necessary to trade n (the length

of the experiment), the error estimation ε, and the risk-

related probability (provided by the confidence level) of

guessing a (statistically significant) difference between

the estimated behavior and the monitored behavior.

4.1.2 Estimating C � P

The probabilistic compliance between contract C and

policy P can be easily checked by observing that π

represents an evaluation for the constraint satisfaction

problem modeling the policy. We first notice that, by

definition, π is complete as it includes all the variables

of the constraint satisfaction problem. Hence, it is suf-

ficient to check whether π is also consistent, i.e., no

constraints are violated by π. Indeed, we recall that an

evaluation represents a solution for the problem if it is

both consistent and complete [38].

Definition 3 We say that C matches P (written C �
P ) if π is a solution of the constraint satisfaction prob-

lem modeling P .

In order to relax the definition above, we add a tol-

erance threshold to the compliance check. Informally,

C approximates P if π is similar to a distribution that

solves the constraint satisfaction problem modeling P .

In analogy with the similarity checks of the previous

section, we use the Chebyshev distance metric [13] to

compare two distributions π and π′:

d(π, π′) = max
a∈Act

( |π(a)− π′(a) | )

based on which we provide the following approximated

version of Def. 3.

Definition 4 C matches P up to ε (C �ε P ) if there

exists a solution π′ of the constraint satisfaction prob-

lem modeling P such that d(π, π′) ≤ ε.

4.1.3 Estimating A � P

Relation �ε can be applied also to relate A and P , in

which case the distribution to consider is ρn instead of

π. With this consideration in view, the following com-

pliance result between A and P can be derived by com-

bining linearly the two checks based on relations �ln
and � previously discussed.

Theorem 1 If A �ln C, with ε = maxa∈Act E
l
n(a), and

C � P , then it holds that A �ε P with confidence level

l.

The proof is a straightforward consequence of Defs. 1

and 3. The interpretation is as follows. Assume that the

monitored behavior of the app statistically matches the

contract with respect to the desired confidence level,

and that the contract matches the quantitative require-

ments of the policy. Then, the app satisfies the policy

with a margin dependent on the statistical error.

By replacing C � P with C �ε P we obtain an

extension of the previous result showing that the level

of approximation relating A and P is the sum of the

margin errors introduced by each of the two compliance

checks.

Theorem 2 If A �ln C, with ε1 = maxa∈Act E
l
n(a),

and C �ε2 P , then A �ε1+ε2 P with confidence level l.
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4.1.4 Enforcing A � P

It may be that the contract C does not match the pol-

icy P neither precisely nor approximately (see Defs. 3

and 4). Therefore, it would not be meaningful to check

the compliance of the app A with respect to the con-

tract in order to estimate A � P . Analogously, it is not

possible to derive transitively the compliance of A with

respect to P whenever A does not match the contract

(i.e., the hypothesis A �ln C of the previous theorems is

not satisfied). In such cases, A can be still executed and

checked step-by-step against the policy P , possibly en-

abling the enforcement mechanism every time the app

does not respect the conditions of the policy, up to the

desired tolerance. Formally, the compliance of A with

respect to P is defined as a variant of Def. 1 in which

we replace the distribution modeling the contract with

a distribution solving the constraint satisfaction prob-

lem modeling P .

Definition 5 Given the confidence level l, A matches

P after n execution steps (A �ln P ) if there exists a so-

lution π of the constraint satisfaction problem modeling

P such that for all a ∈ Act it holds that:

|ρn(a)− π(a) | ≤ Eln(a).

We can argue similarly to define the corresponding

variant of Def. 2. In practice, the check above is to be

satisfied at each step n of the execution run, otherwise

the enforcement mechanism is activated.

4.2 History-based Approach

As discussed above, in order to refine the action-based

approach, it is worth considering the history of events

and security conditions based on such histories. To this

aim, the history-based contract and policies must be

able to model complex behaviors and conditions, which

consider sequences of actions, their branching structure,

and the probability of each sequence. To reach such a

level of expressiveness, we rely on probabilistic labeled

transition systems to represent contract and app be-

havior and on probabilistic temporal logics to specify

policies. We start by defining the following functional

model.

Definition 6 Let AP be a set of atomic propositions.

A labeled multidigraph of states (LMS) is a tuple (V, I,

E, s, t, L), where V is the finite set of states, I ⊆ V

is the set of initial states, E is the finite set of edges,

s : E → V is a mapping indicating the source state

of each edge, t : E → V is a mapping indicating the

target state of each edge, and L : V → 2AP is a function

relating each state to the set of atomic propositions that

are true in the state.

In our framework, AP represents a set of boolean

conditions identifying the status of specific device’s dy-

namic features, like, e.g., the fact that the device screen

is either ON (true, 1) or OFF (false, 0). Assuming that

the status of the device is defined by n boolean vari-

ables, L(i) for a state i can be given as a n-length vector

of boolean values. Hence, a transition from state i to

another state j, defined as a directed edge on the LMS

from i to j, represents an event (caused either by app

operations, or system and user behaviors) that implies

the flipping of some boolean value. The atomic propo-

sitions can be global, i.e., related to the user, device or

OS activities, and app-specific, i.e., related to the be-

havior of the specifically monitored app. Hence, a LMS

with the same set of states can be instantiated for every

monitored app.

The LMS modeling the behavior of an app is gener-

ated by observing the sequence of events at execution

time, as shown in Figure 4. On the left, we have a list of

updates of the vector of boolean values expressing the

device status (n = 3) and caused by the monitored ac-

tivities. On the right, we have the corresponding LMS,

where each state is associated to a different vector and

each edge refers to a vector update. For the sake of

readability, the edges are numbered to emphasize the

execution order of the events. As shown, it is possible

to have multiple edges insisting on the same state tran-

sition (3,5 and 4,6), and self-loops, i.e., edges having

the same state as source and target (2).

Multiplicities of edges are exploited to turn the LMS

into a probabilistic labeled transition system containing

the same states of the LMS and transitions deriving

from the edges of the LMS.

Definition 7 Let AP be a set of atomic propositions.

A probabilistic labeled transition system (PLTS) is a

tuple (V, I, P, L), where V is the finite set of states,

I ⊆ V is the set of initial states, P : V × V → [0, 1] is

the probabilistic transition function satisfying ∀i ∈ V :∑
j∈V P (i, j) = 1, and L : V → 2AP is a function re-

lating each state to the set of atomic propositions that

are true in the state.

From the LMS (V, I, E, s, t, L), the corresponding

PLTS (V, I, P, L) is derived by defining P as follows:

P (i, j) =

{
mul(i,j)
mul(i) if ∃e ∈ E : s(e) = i ∧ t(e) = j

0 otherwise

where mul(i, j) is the multiplicity of the edges from i

to j in E and mul(i) is the number of outgoing edges

from i in E. Notice that such a transformation induces
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Fig. 4 Example of an execution trace and the related LMS.

a probability distribution for each state, as required by

Def. 7.

As an example, consider Figure 5. On the up side, we

have a LMS similar to that described in Figure 4 and, on

the down side, we have the corresponding PLTS, which

is computed by applying the transformation above.

For the verification of PLTSs, we rely on model

checking of probabilistic temporal logic formulas [14,

30]. To this aim, since we are interested in modeling

(probabilistic) history based policies, we use the logic

PCTL to express policy conditions. The syntax of PCTL

is as follows:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P./p(ψ)

ψ ::= ΦU Φ | ΦU≤k Φ

where a ∈ AP , p ∈ [0, 1], ./ stands for usual compar-

ison arithmetic operators, and k is a natural number.

Informally, a state i satisfies the atomic formula a if

Fig. 5 Example of generation of a PLTS from a LMS.

a ∈ L(i). The semantics of the propositional logic frag-

ment of PCTL derives directly from CTL semantics,

while the probabilistic operator P expresses that the

probability that paths fulfill the path formula ψ is ./ p.

The classical until path formula ΦU Φ′, which can be

indexed by k, expresses that Φ holds along the path

until Φ′ holds (within k steps in the step-bounded vari-

ant). For a comprehensive explanation of the formal

semantics and of the model checking algorithms, the

interested reader is referred to, e.g., [9]. In our frame-

work, it is worth specifying that a PLTS (V, I, P, L)

satisfies a formula Φ if every state in I satisfies Φ.

In the following, we show how to employ these mod-

els to relate app behavior, contract, and policy similarly

as done for the action-based approach.

4.2.1 Estimating A � C

Checking the compliance of the behavior of an app A

with respect to the related contract C, formally de-

scribed as labeled transition systems, is not a novelty in

the literature. For instance, in the probabilistic setting,

an approach based on probabilistic labeled transition

systems and on statistical tests is proposed in [5]. The

underlying idea is similar to that exposed in the action-

based setting and consists in comparing a certain prob-

ability distribution of the execution traces extracted

from the probabilistic labeled transition system model-

ing the contract and an analogous probability distribu-

tion extracted from the probabilistic labeled transition

system that is generated on-the-fly at the app run-time.

The comparison is estimated by means of similarity or

distance metrics [13].

By employing classical formal methods, the compli-

ance between A and C can be also evaluated through

bisimulation-based equivalence checking, which can be

generalized to the use of ε-bisimulation in the case of

approximate verification.
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These approaches, which can be applied in our frame-

work as they are, turn out to be feasible provided that

whenever the app behavior is monitored, a formal speci-

fication of the contract is available. On the other hand,

the compliance is ensured by construction if the con-

tract is generated through direct observations of the

app execution.

4.2.2 Estimating C � P

The probabilistic compliance between a contract C mod-

eled as a probabilistic labeled transition system and a

policy P modeled as a PCTL formula is verified by

model checking C with respect to P . More precisely,

C � P holds if the PLTS expressing C satisfies the

PCTL formula expressing P .

In order to relax quantitatively the analysis when-

ever the check is negative, it is possible to introduce a

tolerance threshold to the verification of conditions of

the form ./ p occurring in the probabilistic operator of

PCTL.

Definition 8 Given the policy P given as the PCTL

formula P./pψ and the tolerance threshold ε ∈ [0, 1], it

holds that C matches P up to ε (C �ε P ) if C satisfies

P./rψ, where |r − p| ≤ ε.

4.2.3 Estimating A � P

The transitive compliance of A with respect to P via

C in the non-trivial case in which A and C are differ-

ent, can be inferred depending on the techniques used

to check A � C and C � P . In particular, since C � P
is estimated through PCTL based model checking, it is

necessary to base the verification of A � C on compari-

son techniques preserving satisfiability of PCTL formu-

las. This is the case if the compliance between A and

C is conducted by using the probabilistic bisimulation

semantics, which coincides with PCTL based equiv-

alence [9]. Analogous considerations hold in the ap-

proximate setting of ε-bisimulation and related pseudo-

metrics.

On the other hand, if A � C is based on the sta-

tistical tests of [5], depending on the distance metric

adopted, the measure of the similarity between A and C

provides just a rough estimation of the tolerance thresh-

old that allows A to approximately satisfy P . In order

to overcome such a limitation, in the next section we

discuss an alternative approach based on model check-

ing and on the same statistical analysis of Section 4.1

that, moreover, turns out to be more efficient than the

equivalence-based methods.

4.2.4 Enforcing A � P

The enforcement of A � P may be necessary for sev-

eral reasons, either by virtue of the considerations of the

previous section, or, e.g., because the relation A � P

cannot be deduced transitively through C for the same

motivations surveyed in Section 4.1.4. In these situa-

tions, in order to ensure a secure execution of the app,

it is worth enforcing A � P at run-time. To this aim,

in this section we propose a naive approach inspired by

the statistical check presented in Section 4.1.

As discussed in Section 4.2.1, the probabilistic la-

beled transition system describing the app behavior can

be generated and updated on-the-fly during the app ex-

ecution. Then, the goal is to verify at each step if such

a model meets the policy, up to some tolerance in the

case of probabilistic conditions. More precisely, we as-

sume to deal with probabilistic policies represented by

formulas of the form P=pψ, where ψ is a path condition

over the interval [ts; te]. As an example, in the trivial

case in which the unique occurrence of the until oper-

ator in ψ is of the form ΦU≤k Φ, then the considered

interval is [0; k].

Starting from the beginning of the app execution,

the PLTS is updated step by step, and in the interval

[ts; te] it is model checked against P=?ψ in order to es-

timate the actual probability r associated with paths

satisfying the property ψ [30]. By rephrasing the statis-

tical approach of Section 4.1, the theoretical parameter

p assumed by the policy and the actual parameter r

obtained through model checking are compared, simi-

larly as done in the case of Eq. 3 and related definitions.

In particular, assuming that r is estimated at the step

ti ∈ [ts; te], and given n = ti− ts+1 and the confidence
level l, the error expressing the tolerated difference be-

tween p and r is given by:

Eln = Z ·
√
p(1− p)

n

and, therefore, the expected condition to meet is:

|r − p | ≤ Eln.

Hence, as the execution proceeds the tolerance dimin-

ishes and r must converge to p. Based on such an esti-

mation of the tolerance threshold, we have the following

notion of compliance.

Definition 9 Given the confidence level l and the pol-

icy P represented by the PCTL formula P=pψ, with

ψ defined over the interval [ts; te], A matches P after

ti ∈ [ts; te] execution steps, with n = ti−ts+1, denoted

A �ln P , if the PLTS generated after ti observations of

the behavior of A satisfies P=rψ and:

|r − p | ≤ Eln.
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The check above is tested at each step of the inter-

val of interest, and whenever it is not met by the app

the enforcement mechanism is activated. An analogous

verification is straightforwardly applied to the general

case of probabilistic formulas of the form P./pψ. In such

a case, the check | r − p | ≤ Eln is to be verified only

whenever r ./ p is not satisfied.

5 Enforcement Architecture

In this section, we describe the implemented architec-

ture that can be exploited for both dynamic contract

generation and policy enforcement. The proposed im-

plementation has been designed for Android systems.

Thus, the S×C×P framework comes as an Android app,

which is able to perform the operations previously dis-

cussed, directly on the device. Henceforth, the app will

be referred as S×C×P-App.

The S×C×P-App is able to control actions per-

formed by any other app on the device, together with

a set of global actions performed by the operating sys-

tem, such as controlling the light of the screen. The

control of an action is performed by means of the hook-

ing operation, i.e., putting a callback on the method

invocation related to the action that has to be con-

trolled. Once hooked, it is possible to control a method,

by performing actions before it is executed or immedi-

ately after. To this end, the proposed system exploits

the Xposed-Framework [1], a toolkit for methods hook-

ing available for Android. The Xposed Framework (or

simply Xposed) is an advanced custom developer tool

designed to give a much greater control on the An-

droid system and on the running apps, compared to

the one granted by the Android available APIs. The

Xposed Framework can be installed on any Android

device and release, however it requires the target de-

vice to be rooted (jailbroken), which may constitute

a limitation for distribution. However, we argue that

the S×C×P framework is not designed, for now, to be

largely distributed among average users. Instead, it has

to be considered as an advanced research tool for policy

enforcement, which is ready to be integrated in specific

environments where a single entity controls several de-

vices (e.g., as in the case of a company that gives a

business mobile phone to the employees).

The S×C×P-App can be configured to work in two

modes: (i) Logging Mode, which records every time an

hooked action is invoked, and (ii) Enforcement Mode,

which verifies if the hooked action is compliant with

the policy when it is invoked, by stopping the behav-

ior (enforcement-by-truncation) or modifying the out-

come (enforcement-by-obligation) if the policy is not

matched.

The enforcement of history-based policies puts addi-

tional challenges, since the probabilities of the current

execution traces have to be matched continuously with

the policy. This task is demanded, as for the contract-

policy verification, to the evaluation engine of the model

checker PRISM, which is part of the S×C×P-App. How-

ever, the execution to be checked cannot be recorded

directly by the S×C×P-App, since the Xposed frame-

work hooks actions directly from the hijacked app, be-

ing thus able to see only its memory space, not shared

with the one of the S×C×P-App. To reduce the perfor-

mance overhead that would be caused by writing in the

external memory, and to overcome the issues related to

missing permissions, the S×C×P-App and the hijacked

apps communicate by means of the shared-preferences

buffer. A schematic representation of the implementa-

tion is presented in Figure 6.

Whenever a new app is installed on the device, the

S×C×P-App intercepts the event and checks if a con-

tract is available for it. The contract can be provided as

an extension of the original AndroidManifest.xml file,

or can be made available through an external reposi-

tory. In the following, for the sake of simplicity we as-

sume that the probabilistic App-Contract Matching is

the only task that is not performed directly on the de-

vice at execution time. Such a validity check is, in fact,

proven before the app execution on the mobile device.

To this end, it is possible to assume that all the related

operations, which must be conducted dynamically, are

performed by running the app in a protected environ-

ment (such as a sandbox). As an alternative, contract

and compliance check can be provided directly by the

developer in such a way that the App-Contract Match-

ing reduces to be an operation based on trust, using for

example the same model proposed in [15].

The actions controlled by the S×C×P-App are:

– Outgoing SMS Messages: functions related to

sending text messages, controlled to verify if the

message is directed toward a number that is present

in the contact list, or toward an unknown number.

– Activity.onResume/Activity.onPause: functions

related to the execution of the application either in

foreground or in background.

– Opening Contact List: functions related to the

opening and selection of contacts from the contact

list.

– HTTP connections: functions related to the open-

ing of connections toward external servers.

– WebView opening: functions related to the cre-

ation of a WebView to show an online content.

– User Present and Screen On/Off : functions re-

lated to the interactions of the user with the device.
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Fig. 6 Implementation of the SxCxP in real devices.

6 Experimental Results

In this section, we show the application of the S×C×P

framework to the analysis of the security critical func-

tionalities of several Android apps. In particular, we

consider its effectiveness against 270 malware samples

divided into 8 malware families belonging to the Spy-

ware and SMS-Trojan classes. These two malware classes

include the most dangerous malware samples, since their

malicious behavior affects both user money and privacy.

We check also the transparency of the S×C×P frame-

work with respect to the execution of genuine apps that

do not include any malicious behavior. The verification

is conducted through the action-based and the history-

based approaches in order to illustrate their different

expressiveness and overhead.

6.1 Action-based verification

6.1.1 Contract generation and A � C compliance

The contract for each malware sample is extracted dy-

namically, by executing the software in a protected sand-

box, i.e., a controlled Android emulator, where the app

could not cause any real damage. To this end, the log-

ging mode of the S×C×P-App has been used, by col-

lecting 10 traces of variable length for each sample,

which are then used to generate the app contract. The

used principle is that, with respect to the estimation

of A � C (see Section 4.1.1), contract compliance of

the observed app behavior derives by construction of

the contract and is guaranteed with a 95% confidence

level.

The same approach is used to generate the contract

for a set of genuine apps downloaded from Google Play,

the official Android market.

6.1.2 Checking C � P

By following Def. 3, the contract is matched against a

set of probabilistic policies with configurable probabil-

ities to control malicious text messages and undesired

data connections. The policies are as follows:

– Policy 1 The app is allowed to send a SMS message

with probability not greater than p.

– Policy 2 The app is allowed to perform a http con-

nection with probability not greater than p.

– Policy 3 The app is allowed to send a SMS message

toward a number that is not in the contact list with

a probability not greater than p.

– Policy 4 The app is allowed to perform a http con-

nection toward a numerical IP address (i.e., not to-

ward a domain name) with probability not greater

than p.

Policies 1 and 3 are used to control outgoing text

messages with different specifications about the recipi-

ent number. By comparing the two policies, notice that

Policy 1 is more adequate to control apps that are not

supposed to send text messages to any contact, while

Policy 3 is more suitable to control the behavior of apps

that can use text messages, such as messaging apps, or

SMS managers. However, in the normal usage of such

a kind of apps it is much more likely that a text mes-

sage is sent to a known number, i.e., in the contact

list, rather than to an unknown one. Still, through the

usage of probabilistic policies it is possible to allow un-

likely operations, by tuning the related probability ex-

ecution. Analogously, Policies 2 and 4 are designed to

control the outgoing data traffic, by monitoring the con-

nections opened by specific apps. In particular, notice

that opening a connection toward an IP address in the

inet format, i.e., not toward a domain name, is typical

of malware sending information to servers controlled

by attackers (spyware). Thus, with respect to Policy 2,
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Policy 4 performs a fine-grained control on outgoing

traffic, filtering only the suspicious one.

The results of the C � P check against the 270 sam-

ples belonging to the 8 malware families are reported in

Table 1. All malware samples violate one or more of the

four security policies. Each SMS Trojan, but DogoWar,

violates both Policies 1 and 3. Spyware apps, instead,

do not satisfy Policy 2 since they do not perform any

connection to IP-based addresses. Hence, all analyzed

spyware samples send traffic directly to domains con-

trolled by the attackers. The severity of the violation is

estimated by tuning the policy configuration parameter

p. The threshold column of Table 1 reports the highest

value of p that causes the contract-policy mismatch.

The trace length column of Table 1 reports the aver-

age global number of critical operations collected per

trace in order to build the sample contract. As shown,

some apps have a limited trace length, in particular

FakePlayer and Kmin. This is representative of the re-

duced interactions of some malicious apps, which do not

trigger any of the critical actions monitored, except for

those revealing the malicious behavior.

Similarly as done for the previous experiment, Ta-

ble 2 reports the results for C � P compliance for the

set of genuine apps. The majority of the tested apps

have a contract that does not match Policy 2, which is

related to data usage. However, the use of thresholds

here clarifies the additional contribution of the quan-

titative approach with respect to the nondeterministic

one. Indeed, by tuning the parameters it is possible to

relax (or to restrict) the conditions of the compliance

check, thus enabling the desired level of flexibility.

By analyzing the threshold p, it is worth noticing the

strong network interactions of games like CrossyRoad,

which is supposed to be a offline videogame (i.e., work-

ing even if the device is not connected to the network),

but, in spite of this, spends about 50% of the monitored

actions in performing network activities. Even if it is

not by itself a security criticality, the S×C×P frame-

work could also be exploited to enforce usage policies

that are able to improve the user experience, reducing

the overhead generated by apps. Another interesting

case is represented by Whatsapp, which sends a single

text message at the very first start-up to register the

user. Then, the overall relative probability of such a se-

curity relevant event is negligible, thus making the app

contract compliant with respect to any of the consid-

ered probabilistic policies, except for the case in which

no SMS is allowed at all. In a purely functional set-

ting, Whatsapp does not pass the compliance test of

the standard S×C control if outgoing SMS messages

are not allowed by the policy. On the other hand, the

S×C check is not meaningful at all if outgoing messages

are allowed by the policy.

Finally, observing the trace length column, it is pos-

sible to notice the difference in the amount of actions

with respect to Table 1. Genuine and popular apps are

highly interactive, especially for games. Still, control-

ling the number of actions is not enough to differentiate

between malicious apps and genuine ones, since mali-

cious code can also hide behind popular apps that are

repackaged [6].

6.1.3 Enforcing A � P

The apps that do not satisfy a policy can be either re-

moved or executed under the control of the enforcer

described in the previous section. Table 3 reports the

results concerning the enforcement of the four policies

on the monitored apps, by applying the method of Sec-

tion 4.1.4 (app-policy matching is based on 95% con-

fidence level) on a set of traces different from those

used to generate the contracts. Both malware and gen-

uine apps are considered, in order to estimate the effec-

tiveness of the enforcement in the former case and its

transparency with respect to the app execution in the

latter case. As in the previous tables, the probabilistic

parameter of Table 3 represents the highest value caus-

ing the enforcement of the policy (N.E. stands for not

enforced).

For the malicious apps, the policies that are enforced

are representatives of the malware type and are fully

consistent with the numerical results of Table 1, thus

revealing the adequacy of the statistical approach of

Section 4.1 followed to estimate the compliance check.

Once more, notice that the malware OpFake violates

three policies: the two SMS related policies and Pol-

icy 2 about http connections. In fact, OpFake shows an

hybrid behavior, by sending at first SMS messages for

registration to premium services, and then by sending

device information, such as the IMEI code, to a domain

controlled by the attacker. Both malicious behaviors are

detected and trigger the enforcement.

Analogous comments hold in the case of the genuine

apps, for which we point out that the enforcement does

not negatively affect the user experience, still preserving

all the desired app functionalities. The reason is that

several genuine apps mainly use http connections to

provide in-app advertisement, which is not effectively

necessary to the correct execution of the app, providing

instead an undesired overhead for the user. Hence, in

such cases, the policy enforcement represents a way to

keep under control such an overhead.

Notice that the major degree of severity of WhatsApp

enforcement with respect to the C � P verification de-
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Table 1 Action-based verification: Contract-Policy matching for malware families.

Family Name Class Samples Violated Policy Threshold Trace Length
DogoWar SMS-Trojan 7 1 50% 20
FakePlayer SMS-Trojan 17 1,3 50% 17
HippoSMS SMS-Trojan 15 1,3 10% 285
Kmin Spyware 52 2 20% 18
Mania SMS-Trojan 12 1,3 30% 27
OpFake SMSTrojan/Spyware 14 1,3 - 2 30% - 10% 20
Raden SMS-Trojan 19 1,3 10% 41
Vidro Spwyare 39 2 35% 41

Table 2 Action-based verification: Contract-Policy matching for genuine apps.

App Name Type Violated Policy Threshold Trace Length
AngryBirds Game 2 30% 322
Browser Web Browser 2,4 40% 316
CrossyRoad Game 2 50% 251
CustomSMSManager Communication 1,3 30% 156
Firefox Web Browser 2,4 40% 327
Flow Game 2 20% 158
FruitNinja Game 2 10% 537
Google Earth Navigation 2 50% 417
Google Maps Navigation 2 50% 409
KingCalculator Calculator 2 10% 144
SMS Manager Communication 1,3 20% 179
WhatsApp Communication 1,3 - 2 < 1% - 40% 242
YouTube Streaming 2 50% 273

pends on the fact that the behavior violating the poli-

cies occurs immediately at the beginning of the app ex-

ecution, thus altering significantly the probabilistic se-

curity critical behavior of the app. However, the result

is still acceptable and allows WhatsApp to be executed

without restrictions by applying threshold values that,

on the other hand, are sufficient to detect any kind of

malware. In general, the enforcement of genuine apps

is less restrictive than the C � P verification and can

be kept under control by acting on the parameters.

6.2 History-based verification

We now investigate policies that cannot be expressed

through the action-based approach. Formally, by fol-

lowing Def. 4.2.2, the PLTS expressing the contract is

matched against a set of parameterized PCTL formu-

las of the form P./pψ, where ψ formalizes the following

reachability conditions:

– Policy SMS-H The app is allowed to send a SMS

message in an interval [ts, te] without having se-

lected the message recipient from the contact list

in the last d steps, with a probability not greater

than p.

– Policy HTTP-H The app is allowed to perform a

http connection in an interval [ts, te] without hav-

ing opened a webView in the last d steps, with a

probability not greater than p.

The aim of these history-based policies is to refine

Policies 1-4 of the action-based verification. Indeed, as

shown in Figure 7, these policies consider two related

events, e1 and e2, such that e2 occurs in the interval

[ts, te] and must be preceded by the occurrence of e1,

such that the number of events (steps) separating the

two events should not be larger than d. The use of a

temporal window parameterized by d is necessary to

avoid relationships between events that are too much

distant in time. The role of the probabilistic parameter

p is to introduce a tolerance factor that is necessary to

relax conditions that, for real-world apps, could be too

precise, restrictive, and hard to satisfy.

Policy SMS-H states that the app is allowed to send

text messages mainly as a consequence of an active user

action, i.e., the explicit opening of the contact list to se-

lect the message recipient. In fact, the policy specifies

that an app has a low probability of sending directly an

SMS message without allowing the user to choose the

recipient from the contact list. Notice that Policy 3 was

Fig. 7 Example of timeline for the two history-based poli-
cies.
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Table 3 Action-based verification: Enforcement results.

App Name Type Policy 1 Policy 3 Policy 2 Policy 4

DogoWar Malicious 30% N.E. N.E. N.E.
FakePlayer Malicious 50% 50% N.E. N.E.
HippoSMS Malicious 10% 10% N.E. N.E.
Kmin Malicious N.E. N.E. 20% N.E.
Mania Malicious 30% 30% N.E. N.E.
OpFake Malicious 20% 20% 10% N.E.
Raden Malicious 20% 20% N.E. N.E.
Vidro Malicious N.E. N.E. 30% N.E.

Angry Birds Genuine N.E. N.E. 10% N.E.
Browser Genuine N.E. N.E. 30% 10%
CrossyRoad Genuine N.E. N.E. 40% N.E.
CustomSMSManager Genuine 30% 10% N.E. N.E.
Firefox Genuine N.E. N.E. 30% N.E.
Flow Genuine N.E. N.E. 30% N.E.
FruitNinja Genuine N.E. N.E. 10% N.E.
Google Earth Genuine N.E. N.E. 40% N.E.
Google Maps Genuine N.E. N.E. 40% N.E.
KingCalculator Genuine N.E. N.E. 20% N.E.
SMS Manager Genuine 40% 10% N.E. N.E.
WhatsApp Genuine 10% 10% 50% N.E.
YouTube Genuine N.E. N.E. 50% N.E.

not able to detect such a causality. We can argue sim-

ilarly for Policy HTTP-H, stating that with a certain

probability the opening of a webView by the user is an

event expected before performing a http connection.

The definition of causality relations and, more in

general, history-based policies increases the expressive-

ness, enabling the specification of conditions that allow

to discern the actions of benign apps from malicious

ones. For example, the Whatsapp app sends an SMS

message for registration to a number that is not in the

contact list, approximately between the fifth and tenth

step of the app execution. Hence, it is possible to shape
a specific policy to allow the SMS related action only

once in this specific time interval.

The verification of the probabilistic history-based

policies is conducted by using the PRISM model checker

[14,30], by setting the values of k and d of Figure 7 to 5.

Tables 4 and 5 report the values for the contracts gener-

ated from the genuine and malicious apps, respectively,

with respect to the two history-based policies.

By analyzing Policy SMS-H, we first observe that

no genuine apps exhibit behaviors that may violate it,

except for Whatsapp, which confirms the behavior pre-

viously discussed. In particular, notice that the genuine

SMS managers, which do not satisfy Policies 1 and 3

(see Table 4) for several threshold values, in the history-

based setting are policy compliant for every p ≥ 0. In

other words, Policies 1 and 3 are too restrictive for gen-

uine apps, while Policy SMS-H is not at all.

In the case of malware apps, the experimental re-

sults reveal the malicious actions of SMS Trojans simi-

larly as done in the action-based setting. However, they

prove to be more effective if compared to the action-

based SMS policies. For instance, the malicious family

DogoWar, which does not violate Policy 3 (see Table 1)

as it sends (spam) messages to contacts only, violates

Policy SMS-H as it sends messages to contacts that are

not selected by the user through the contact list. As

another example, the malicious behavior of the SMS

Trojans can be easily detected with any policy whose

admitted parameter p is lower than 20%, see Table 5.

We can argue similarly in the case of Policy HTTP-

H. Such a policy is aimed at limiting the number of

covert channel connections performed by both genuine

and malicious apps, in particular malware belonging to

the spyware class.

As shown in Table 5, the unexpected connections

of the spyware families KMin and Vidro are easily de-

tected, and the same holds in specific intervals of time

also for OpFake, which attempts to download additional

malicious packages to install on the device [40]. In the

case of Table 4, the analysis has a controversial effect.

In fact, Internet functionalities are embedded in many

applications, even when they are not network-based,

being used to upload or download data and to pro-

vide in-app advertisement. An example of genuine app

that would violate the HTTP-H policy even for high

values of parameter p is given by YouTube, which, be-

ing a streaming application, makes massive use of http

traffic, without actually opening WebViews. However,

the obtained results are still more expressive than the

action-based ones. Indeed, action-based policies would
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Table 4 History-based verification: contract values for policy critical actions.

Family
Policy SMS-H Policy HTTP-H
[ts, te] p [ts, te] p

AngryBirds

1-5 0% 1-5 8%
6-10 0% 6-10 15%
11-15 0% 11-15 16%
16-20 0% 16-20 39%

Browser

1-5 0% 1-5 0%
6-10 0% 6-10 0%
11-15 0% 11-15 0%
16-20 0% 16-20 0%

CustomSMSManager

1-5 0% 1-5 0%
6-10 0% 6-10 0%
11-15 0% 11-15 0%
16-20 0% 16-20 0%

Firefox

1-5 0% 1-5 0%
6-10 0% 6-10 0%
11-15 0% 11-15 0%
16-20 0% 16-20 0%

Google Earth

1-5 0% 1-5 28%
6-10 0% 6-10 71%
11-15 0% 11-15 78%
16-20 0% 16-20 64%

Google Maps

1-5 0% 1-5 21%
6-10 0% 6-10 51%
11-15 0% 11-15 60%
16-20 0% 16-20 54%

SMS Manager

1-5 0% 1-5 0%
6-10 0% 6-10 0%
11-15 0% 11-15 0%
16-20 0% 16-20 0%

WhatsApp

1-5 0% 1-5 19%
6-10 38% 6-10 32%
11-15 0% 11-15 28%
16-20 0% 16-20 25%

You Tube

1-5 0% 1-5 37%
6-10 0% 6-10 71%
11-15 0% 11-15 84%
16-20 0% 16-20 79%

stop connections from the Firefox and native Android

Browser apps. Instead, any history-based policy would

not consider their connections as malicious since they

are always preceded by the opening of a WebView. More-

over, as previously noticed, the effect of blocking con-

nections might be desirable for users, especially when

the blocked connections are related to in-app adver-

tisement. In particular, apps such as games might gen-

erate a considerable amount of data traffic mainly for

providing undesirable contents such as in-app adver-

tisement. The game Angry Birds, considered in our

analysis, falls in this category, generating a consider-

able amount of traffic, partially identifiable through

the results in Table 4, to provide advertisement. In the

history-based scenario such an overhead can be moni-

tored in specific intervals of time, by possibly prevent-

ing peaks that would decrease the quality of experi-

ence. Thus, a mechanism of policy enforcement would

produce an effect similar to the one presented in [39],

where the user has been able to play the game, without

too many interruptions caused by advertisement.

6.3 Discussion

The policy specification language of the history-based

probabilistic security-by-contract approach is a proba-

bilistic logic allowing for the definition of complex and

expressive policies, taking into account probabilistic el-

ements and sequence of events. Such an approach is

supported by an enforcement infrastructure sufficiently

capillar, which is effectively able to capture and control

actions in Android devices at API level performed by

any app running on the device. Powered by these two

elements, the S×C×P-App becomes a complete device

security manager, able to enforce virtually any control

policy and prevent the action of several malware types.

In particular, the enhanced expressiveness of proba-

bilistic policies with respect to standard, determinis-
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Table 5 History-based verification: contract values for policy critical actions.

Family
Policy SMS-H Policy HTTP-H
[ts, te] p [ts, te] p

Dogowar

1-5 23% 1-5 29%
6-10 58% 6-10 2%
11-15 61% 11-15 14%
16-20 64% 16-20 12%

FakePlayer

1-5 34% 1-5 0%
6-10 26% 6-10 0%
11-15 26% 11-15 0%
16-20 23% 16-20 0%

HippoSMS

1-5 15% 1-5 0%
6-10 53% 6-10 0%
11-15 21% 11-15 0%
16-20 18% 16-20 0%

Kmin

1-5 0% 1-5 35%
6-10 0% 6-10 24%
11-15 0% 11-15 21%
16-20 0% 16-20 27%

Mania

1-5 34% 1-5 0%
6-10 61% 6-10 0%
11-15 39% 11-15 0%
16-20 42% 16-20 0%

OpFake

1-5 1.2% 1-5 2.8%
6-10 23% 6-10 61%
11-15 11% 11-15 23%
16-20 18% 16-20 43%

Raden

1-5 12% 1-5 0%
6-10 21% 6-10 0%
11-15 14% 11-15 0%
16-20 20% 16-20 0%

Vidro

1-5 0% 1-5 69%
6-10 0% 6-10 31%
11-15 0% 11-15 47%
16-20 0% 16-20 33%

tic, action-based ones, has been remarked by defining

policies that are effective in controlling the actions of

SMS-Trojans and Spyware, which currently amount at

more than 90% of the existing malware in the wild [25].

However, the same approach, based on the probabilis-

tic formalization of causality relations among actions, is

sufficiently expressive to consider other malware types.

More examples of controlled behaviors are the following

ones:

– Controlling events related to administrator privi-

leges, requiring express consents from the user. In

particular, it is possible to define policies like, e.g.,

“A new device PIN should not be set if the user is

not prompted to insert and choose it ”. This kind

of policy would be effective in blocking the new An-

droid ransomware DoubleLocker1.

– Controlling crypto-library invocations, thus ensur-

ing, e.g., that a file cannot be encrypted by an app

unless the app itself generated such a file. This would

1 https://www.welivesecurity.com/2017/10/13/doublelocker-
innovative-android-malware/

prevent the action of ransomware belonging to the

Cryptolocker families.

– Controlling the event of accessing the SMS message

outbox, where a message, if accessed, should have

the content to be shown to the user. This policy

would be effective in stopping the actions of banking

Trojans such as Zitmo.

6.4 Performance Considerations

As discussed, the operative workflow of the S×C×P

framework is made of two main phases, the Contract-

Policy matching (C � P ) and the Enforcement (A �
P ), which impact differently on the user experience.

The C � P phase has a slight impact at app deploy

time, and is quantified in less than 2 seconds. The de-

ployment is subject to the matching result. In fact, if

the contract is compliant with the policy, the appli-

cation is going to be installed without further delay,

otherwise the user will be asked to remove the app,

or to enforce the policy dynamically. The enforcement

(A � P ) brings a more consistent overhead, related
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Table 6 Performance overhead measures.

Action-based History-based
C � P 0.7s 2.7s
A � P 0.5s 2.2s

CPU overhead 4% 16%
Memory Overhead 12% 18%

I/O 0,7% 13%
Battery Depletion 14% 65%

to the hijacking of critical API calls and continuous

policy reevaluation. This overhead is however limited

and differs for the two approaches, i.e., action-based

and history-based. For action-based enforcement, the

evaluation is not dependent from the execution of the

PRISM model checker, hence provides a quite limited

overhead. On the other hand, the history-based enforce-

ment does require continuous verification through the

PRISM evaluation tool. This introduces a noticeable

overhead, related both to execution delay and energy

consumption.

Table 6 summarizes the registered overhead intro-

duced by the S×C×P framework when operating in

the action-based or the history-based modes. The ex-

periments have been performed on a Samsung Galaxy

Nexus with the same configuration of those performed

on apps, averaging five set of experiments repeated in

the same conditions. The first row of Table 6 reports

the time needed to perform a contract-policy analysis

on the AngryBirds app. The second line instead reports

the mean time needed to verify a single critical action.

Hence, this reports the effective delay in the perfor-

mance of an operation, representing thus the effective

delay that might be experienced by the user even if the

action is allowed. As anticipated, this overhead is man-

ageable for the action-based verification, instead it im-

pacts on the user experience for the history-based one.

The parameters on overhead for CPU, Memory and I/O

have been extracted by using the Quadrant app, com-

puting the performance difference with the S×C×P-

App active and inactive while performing policy en-

forcement. As expected, the overhead is higher for the

history-based mode, especially for what concerns CPU

overhead and I/O, mainly due to the continuous write

and read operations in the shared-preference buffer.

Finally, Table 6 reports the impact on battery dura-

tion, by measuring and averaging five discharge cycles

both with the S×C×P-App active and inactive, while

a user is actively interacting with a monitored app.

As expected the enforcement overhead is consistent,

noticeably shortening the battery duration, especially

in the case of history-based enforcement, which more

than halves the battery duration. Therefore, the two ap-

proaches have both advantages and disadvantages. The

history-based approach is, in fact, more expressive and

allows the enforcement of more complex policies, which

brings the benefits previously discussed. However, the

enforcement of the history-based approach imposes an

overhead that might make the solution non-practical

for commercial use. A possible trade-off would consist

of using the history-based approach in the C � P phase

and then, if the contract is not compliant, the policy

would effectively be enforced by using the action-based

approach, thus guaranteeing a more manageable over-

head.

It is worth pointing out that the current implemen-

tation of the S×C×P has to be considered as a proof

of concept, mainly intended for research uses related

to application behavioral analysis. A noticeable perfor-

mance improvement can derive from the integration of

the action hijacking mechanism naively in the Android

OS. Such an integration would make unnecessary the

usage of the shared preference buffer, which is respon-

sible for the most consistent part of the history-based

approach overhead. In particular, in a proof-of-concept

implementation of modified Android OS, tested on the

native Android emulator, the overall overhead has been

reduced of 70% with respect to the shared-preference-

based approach.

7 Conclusion

Verifying the compliance of Android app behaviors with

security policies is a challenging task, which requires

expressive formalisms and effective enforcement mech-

anisms. In this paper, we have described the S×C×P

framework for Android app security, a system which

allows the definition and enforcement of probabilistic

history-based security policies directly on device. The

proposed framework is designed to be applied in differ-

ent environments, to enforce policies related to private

user security, BYOD and business related use cases.

In fact, though in the current implementation we have

only considered a small set of actions, the approach can

be extended to any Android API, allowing thus the en-

forcement of virtually every policy. The probabilistic

model introduces the possibility of having more flexible

policies, useful to ensure security without limiting the

genuine still complex activity of good applications [2].

We have reported a set of experiments to show the effec-

tiveness in tackling malicious and unwanted behavior,

for both malware and genuine apps.

Future work stemming from this research are in-

tegration of additional APIs for more domain specific

policies, such as BYOD, driver safety and e-health. Fur-

thermore, it should be investigated the integration of
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the S×C×P framework directly in the OS, both for An-

droid and other systems, such as desktop environments,

Internet of Things settings, or SCADA systems.
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