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ABSTRACT Mobile crowdsensing (MCS) is a well-established paradigm that leverages mobile devices’
ubiquitous nature and processing capabilities for large-scale data collection to monitor phenomena of
common interest. Crowd-powered data collection is significantly faster and more cost-effective than tra-
ditional methods. However, it poses challenges in assessing the accuracy and extracting information from
large volumes of user-generated data. SmartRoadSense (SRS) is an MCS technology that utilises sensors
embedded in mobile phones to monitor the quality of road surfaces by computing a crowdsensed road
roughness index (referred to as PPE ). The present work performs statistical modelling of PPE to analyse its
distribution across the road network and elucidate how it can be efficiently analysed and interpreted. Joint
statistical analysis of open datasets is then carried out to investigate the effect of both internal and external
road features on PPE . Several road properties affecting PPE as predicted are identified, providing evidence
that SRS can be effectively applied to assess road quality conditions. Finally, the effect of road category
and the speed limit on the mean and standard deviation of PPE is evaluated, incorporating previous results
on the relationship between vehicle speed and PPE . These results enable more effective and confident use of
the SRS platform and its data to help inform road construction and renovation decisions, especially where a
lack of resources limits the use of conventional approaches. The work also exemplifies how crowdsensing
technologies can benefit from open data integration and highlights the importance of making coherent,
comprehensive, and well-structured open datasets available to the public.

INDEX TERMS Collective intelligence, large-scale assessment, mobile crowdsensing, open data.

I. INTRODUCTION
Mobile crowdsensing (MCS) is a well-established paradigm
of large-scale data collection for measuring and mapping
phenomena of common interest for society.MCS applications
are generally deployed on personal mobile devices and use
the device’s sensors and processing capabilities to measure,
compute, and provide data to an application server, where col-
lected data is further processed to gain insights and make pre-
dictions on the phenomenon under study. MCS has enabled
a broad range of applications, including environment quality
monitoring, noise pollution assessment, traffic planning, and
public safety [1]. MCS applications have also been actively
developed in road quality monitoring because of the road
infrastructure’s pivotal role in a country’s socio-economic
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development and the inability of traditional methods to pro-
vide a network-wide, frequent and reliable assessment of the
road conditions.

Inadequate road infrastructure affects society in ways
beyond economic considerations, especially in rural areas
and developing countries, where it can limit the population’s
access to water, medical services, and education [2]. Poor
road conditions are known to increase the fuel consump-
tion and emissions of vehicles and adversely affect their
suspension systems and other mechanical components [3].
Several studies have also demonstrated the influence of
road-pavement surface conditions on driving safety and
comfort [4].

Estimating a road lifespan is challenging because internal
factors, namely materials used and construction methods,
and external factors, such as weather conditions and traffic
volume, can significantly affect the road integrity, sometimes
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unpredictably. Timely and regular interventions can extend
the life of a road by several years and drastically reduce its
overall servicing cost because maintenance becomes more
expensive as the quality of the road declines. Hence, being
able to monitor road quality across an entire network and
identify road sections that require urgent maintenance would
result in lower costs, reduced pollution, increased safety and
comfort for drivers [4].

Informed maintenance decisions need evaluating road con-
ditions in a reproducible manner and on a sufficiently fre-
quent basis across the entire network. Most road agencies do
not dispose of sufficient resources and tend to prioritise main-
tenance based on expected economic returns [5]. Hence, pre-
ventive maintenance actions are disproportionately directed
toward urban districts rather than rural areas. Accordingly,
several low-cost solutions based on the MCS paradigm have
been developed to address this lack of resources.

SmartRoadSense (SRS) is an MCS that utilises sen-
sors embedded in mobile phones to monitor the quality of
road surfaces by calculating a road roughness index (also
referred to as PPE ). The SRS automatic and continuous
road-monitoring system provides a regularly updated and
detailed picture of the surface conditions. The open availabil-
ity of SRS data is a significant resource for public managers
of road infrastructures for road monitoring and maintenance
planning. The main objection to the SRS methodology has
been the lack of a clear relationship with more established
indices, such as IRI and PCI. However, while weak correla-
tions are likely to appear, a formula to convert among indices
with precision is not to be expected. Other studies attempting
to calculate such relationships, for instance, between IRI
and PCI, rarely achieved conclusive results because of the
radically different ways they are calculated. Thus, alternative
methods are needed to test the validity of newly introduced
road roughness metrics without relying on comparisons with
other indices.

Crowd-powered data collection in MCS is significantly
faster and more cost-effective than traditional methods. Still,
it is inherently subject to more sources of variability, requir-
ing strategies to assess and improve the accuracy of collected
data. MSC’s validation strategies are generally performed on
a small scale and in a controlled environment, so they cannot
evaluate the quality of massive datasets. Methods aimed at
improving accuracy generally focus on outlier identification
and filtering, inconsistency resolution, or reputation sys-
tems to identify improper contributions; hence they mainly
address the accuracy problem at the level of themeasurement,
user or device. These methods also suffer scalability and
computational cost limitations and cannot be systematically
implemented.

This study addresses the need for efficient and versatile
approaches to analysing and validating large crowdsourced
data datasets. Firstly, statistical modelling of PPE by the
log-normal distribution under the law of proportional effects
offers valuable insights on how to analyse and interpret this
type of data correctly. Secondly, the integration of SRS data

with independently-sourced open datasets provides a sta-
tistical description of PPE across the Italian road network
and characterises the effect of various road qualities on the
measured PPE , which can help inform road construction and
renovation decisions. Thirdly, the effectiveness of SRS is
evaluated using known relationships between road features
and pavement roughness. The adopted approach groups road
sections in classes of predicted performance based on road
features and confirms that the measured PPE agrees with
those assumptions, essentially replicating on a large scale
what previous validation experiments have accomplished at a
local level. It only addresses accuracy at the aggregate level,
so its complexity, unlike most available methods, is indepen-
dent of the number of user contributions. Finally, the work
highlights the value of data integration in a crowdsensing
platform and the importance of making data available to
the public in a coherent, comprehensive and well-structured
manner. Overall, the presented work aims at removing the
obstacles to the correct and systematic use of SRS and other
open crowdsensing platforms.

The remainder of the article is structured as follows:
Section II revises relevant literature related to the topic,
Section III outlines the proposed approach and describes the
datasets analysed, Section IV presents and discusses the anal-
ysis results, and finally, Section V draws conclusions and
discusses future work.

II. BACKGROUND AND PREVIOUS WORK
A. ROAD MONITORING TECHNOLOGIES
Pavement Roughness is widely considered the most suitable
indicator of road condition and quality of travel. A tradi-
tional method based on visual inspections quantifies road
roughness in terms of a pavement condition index (PCI).
The U.S. Army Corps of Engineers developed this index
as a numerical indicator of the surface condition of asphalt
and concrete pavements with a value range of 0–100 [6].
PCI does not reflect structural properties of the road
(e.g. capacity, resistance or roughness) but provides an objec-
tive basis for settingmaintenance and repair requirements and
priorities.

Previous studies have modelled the road elevation profile
with impulsive functions, triangular waves, and sinusoidal
signals [7], as the sum of randomly generated sinusoidal
functions [8], or using stochastic models with low-pass char-
acteristics [9]. Based on this work, systems gauging the
road roughness by taking physical measurements of the road
irregularities have been actively developed in the follow-
ing decades. These methods fall into three main categories:
i) methods using laser measurements, ii) methods calculating
vehicle vibration, iii) methods applying image recognition
techniques [10].

Laser measurement-based detection is a consolidated
approach that entails adopting sophisticated equipment
installed on separate inspection vehicles, such as laser pro-
filers and data acquisition systems, to convert the road
surface into a three-dimensional object in a coordinate
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system [11], [12]. These methods use the ‘‘international
roughness index’’ (IRI), proposed by Sayers et al. [13] and
adopted worldwide as the standard index for road roughness
estimation. Calculating IRI is challenging because it consid-
ers the vehicle’s characteristics in addition to the conditions of
the road. Laser measurement-based approaches are still con-
sidered the most accurate in evaluating the road-surface con-
dition. However, they pose a considerable expense (including
machinery, installation and calibration) and generally cannot
process road data in real-time.

Vibration-based methods detect road-surface anomalies
by measuring the vehicle oscillations using autonomous
accelerometers or accelerometers incorporated in mobile
devices. The rapid development of mobile sensing technol-
ogy has empowered vehicles owned by the general pub-
lic with the ability to collect vibration measurements and
contribute to road monitoring. Erikson et al. [14] introduced
a system named the ‘‘Pothole Patrol’’ that used a set of
high-frequency accelerometers and Global Positioning Sys-
tem (GPS) receivers deployed in embedded computers in
vehicles. Mohan et al. [15] introduced ‘‘Nericell’’, the first
road and traffic monitoring system using sensors found in
smartphones. ‘‘SmartRoadSense’’ [16] embraces a simi-
lar technical approach, utilising accelerometers and GPS
receivers in mobile devices, but has the broader scope
of quantifying road quality across the entire road net-
work. Chen et al. [17] used hardware modules equipped
with low-end accelerometers and GPS receivers mounted
on distributed vehicles, together with a lightweight data
mining algorithm to detect road potholes. Yi et al. [18]
proposed a signal processing technique to calculate the
vertical component (VC) of acceleration and a sensing
algorithm to detect potholes and bumps based on VC.
Mohamed et al. [19] proposed a road condition monitoring
framework that senses road anomalies using the gyroscope
around gravity rotation combined with the accelerometer
as a cross-validation method. Bhatt et al. [20] developed a
mobile application that uses a support vector machine (SVM)
classifier to detect potholes and assess road conditions in real-
time. Allouch et al. [21] developed the ‘‘RoadSense’’, which
applies a decision tree classifier to tri-axial accelerometer and
gyroscope data from mobile devices to predict road qual-
ity automatically. The method proposed by Jang et al. [22]
comprises a vehicle client which measures vibrations and
performs a preliminary defect detection and a back-end
server collecting and analysing data by supervised machine
learning technique and a trajectory clustering algorithm.
Nunes and Mota [23] proposed a framework for participatory
road monitoring named ‘‘Streetcheck’’ that gathers sensor
data from mobile devices together with users’ ratings on
road surface quality and employs supervised learning algo-
rithms to classify road surface quality. All vibration-based
approaches require filtering steps to extract only vibra-
tions associated with road anomalies. They are suitable for
real-time evaluation of road-surface conditions at a reduced
cost. However, they cannot assess pavement anomalies in

areas other than the vehicle wheel paths, thus requiring a large
number of measurements to quantify the road-surface dam-
age. Moreover, due to data privacy laws, most crowdsourced
vehicular vibration data do not contain user information, such
as vehicle type, model, physical parameters; hence traditional
IRI-estimation models cannot be directly applied.

Finally, Image Recognition (IR)-based detection tech-
niques use IR methods, such as deep neural networks
(DNNs), to capture images and detect road damages in real-
time. This approach has recently attracted attention as it can
analyse road-surface conditions over a wide area at a rea-
sonable cost. However, large and accurately labelled image
datasets of the road-surface conditions are required to train
a DNN, and the effect of various factors ( e.g. road-surface
colour, illumination, weather,..) on recognition rate is still
unclear [10].

B. SmartRoadSense
This section provides an overview of the work conducted
within the SRS project. It is structured as follows: the signal
processing algorithm employed and the mathematical model
upon which it was developed are described in II-B1, the sys-
tem architecture and data aggregation techniques are outlined
in II-B2, validation experiments are summarised in II-B3,
and previous studies of the relationship between the road
roughness index and the vehicle speed are shown in II-B4.

1) MATHEMATICAL MODEL
Gillespie [8] showed that the typical Power Spectral Den-
sity (PSD) of the road vertical profile had a low-pass char-
acteristic that decreased with increasing spatial frequency.
Thus, the road surface could be modelled as a white Gaussian
noise filtered by a first-order low-pass filter. The white gaus-
sian noise has autocorrelation function pww = qδ(x), where
q is the PSD magnitude, and δ(x) is the Dirac delta function.
PSD is defined as Sww(3) = q, where 3 is the spatial
frequency expressed in cycles. The frequency response of the
low-pass filter is

H (3) =
1

p+ j2π3
(1)

so that the PSD of the road elevation profile Srr (3) becomes

Srr (3) = Sww(3)|H (3)|2 = q|
1

p+ j2π3
|
2 (2)

where the statistical properties of the road profile are com-
pletely characterised by parameters p and q. From equation 2
it can be derived that the same p and q road parameters can
be obtained by analysing the PSD of the vertical accelera-
tion of a point closely following the road profile [8], [24].
In real applications, an accelerometer senses the road through
tires, suspensions, and themechanical coupling to the vehicle,
combined with the accelerations provided by gravity, vehicle
speed changes, centrifugal acceleration at curves, and engine
vibrations. Thus, the accelerometer senses and samples the
PSD of the acceleration filtered by an unknown transfer
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function modelling the effect of undesired contributions, pro-
ducing a discrete-time vector signal composed of the triaxial
components. Because most of these unwanted accelerations
have a constant or periodic spectral content, a prediction filter
can remove them [25], isolating accelerations attributable to
irregularities in the road surface. SRS utilises Linear Pre-
dictive Coding (LPC) analysis, a signal processing technique
that estimates the current value of a sample a(n) as a linear
function of its past values [26]:

e(n) = a(n)
N∑
i=1

λia(n− i), (3)

where N is the filter memory length, λi with i = 1, ..N are
the LPC coefficients, and e(n) is the residual prediction error.
The prediction filter is computed with the Levinson-Durbin
recursion, and the error is calculated on signal segments of
length M . The prediction error e(n) retains the information
on the road parameter q, while the parameter p is filtered out.
A parameter proportional to q is obtained by estimating the
power of the prediction error (PPE ) on each segment:

PPE =
1
N

M−1∑
n=1

e(n)2. (4)

Finally, an index of the road roughness is calculated by
averaging the PPE for the three axial components:

PPE =
1
3
(PPEx + PPEy + PPE z). (5)

2) SYSTEM ARCHITECTURE
The SmartRoadSense architecture comprises three major
components:
• a mobile application at the user level that processes
raw data from the embedded accelerometers and trans-
mits the result and the geographic localisation data to a
server;

• a cloud-based back-end where georeferenced data are
mapped, aggregated, and stored;

• a web-based graphical front-end for data
visualisation [16].

SmartRoadSense employs mechanisms of reduction and
aggregation of geo-localised data to mitigate the impact
of the large volumes of data continuously produced by
the sensing devices, facilitating data analysis and visuali-
sation while retaining relevant information. Spatial aggre-
gation is performed in the cloud by mapping the points
received by the back-end onto a map database and aggre-
gating them according to given spatial constraints. Data
falling within an area of fixed radius are reduced to a single
value, smoothing the effect of possible outliers. Temporal
aggregation of these quantities is achieved by periodically
calculating the weighted average of points over time, incre-
mentally down-weighting older data [27]. SmartRoadSense
also implements efficient algorithms that detect and correct
mapping artefacts and significantly enhance the accuracy of

map-matching of user-supplied geospatial data in crowdsens-
ing applications [28].

3) VALIDATION APPROACHES
Several approaches for data validation have been adopted
during the development of SRS to verify the quality of
the collected data and, when possible, its correlation with
ground-truth data [2]. First, visual inspection data gathered
by road maintenance experts were compared with the SRS
aggregated data on regional roads. Then, defect reports and
visual inspection data on selected sections of the highway
network were compared to the corresponding SRS. Finally,
in the Mantova pilot, a road technician visually inspected the
complete network of the municipal area, annotating signifi-
cant events, while a software application recorded pictures of
the road, and SRS calculated the road roughness index [2].

A recent study compared SRS data mapped on Provin-
cial Road 2 (SP2) in Salerno with the Distress Cadastre
data and PCI assessments for the same highway and found
that, although the effectiveness varies with the distress type,
SRS is efficient in monitoring the most critical road fail-
ures [29]. In particular, SRS proved accurate in identifying
distresses characterised by vertical thicknesses while less
sensitive toward superficial damages. However, an exact cor-
respondence between the two indices is not to be expected
given the different ways in which they are calculated: PCI is
based on inspection and better characterises visible damages,
while PPE is prone to filter out constant roughness but is
better equipped to detect unforeseen road events which might
not be visible.

4) VEHICLE SPEED
A study aimed at modelling the influence of vehicle speed
on the measurement suggested that the SRS roughness index
depends to a certain degree on the vehicle speed. Controlled
studies showed that the value of PPE computed on a sin-
gle device attached to a specific vehicle travelling on the
same road depends on the speed of the car according to a
gamma law, with parameter γ ∈ [0,2] and with γ tending
to decrease for increasing values of the vehicle speed. Per-
forming the same analysis on data grouped by type of road
(motorway, trunk primary, secondary), they found that each
cluster showed a degree of dependency of the PPE from the
vehicle speed that could be modelled with a gamma law [30].

C. ASSESSING QUALITY OF CROWDSENSED DATA
MCS systems require the participation of a multitude of users
to be effective. Scalability is always a key factor to consider
when designing solutions for MCS platforms, as they are
expected to handle large amounts of data [31]. The ubiquitous
and open nature of the crowdsensing paradigm allows for
the fast and cost-effective collection of a vast amount of
data but also exposes the system to malicious or erroneous
contributions. Hence, mechanisms to evaluate data trustwor-
thiness are required to guarantee the quality and reliability of
service. Three main types of deleterious data affect MCSs,
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which require individual consideration and the appropriate
corrective action: missing data (e.g. data lost or not volun-
teered), unreliable data (e.g. due to noise or faulty sensors),
and manipulated data (e.g. to increase the user’s data utility
in the system). The problem of ensuring trustworthiness in
MCSs is of great importance but remains open [31].

Missing data can be detected and corrected using com-
pressive sensing, a technology that reconstructs a signal and
recovers incomplete data sets by sampling sparse signals
under the sub-Nyquist rate and applying computationally
intensive algorithms [32]. This technique requires that mul-
tiple observations exist and that trusted users would never
contribute faulty data [33]. Quality of contributed data can
be evaluated by modelling evidence from (i) ground truth,
(ii) similarity-based outlier detection, (iii) prior reputation
context, and (v) rating feedback mechanism [34]. Ground
truth data is often unavailable, and acquiring it entails
investing dedicated resources, invalidating the benefits of
crowdsensing. Similarity-based methods filter improper con-
tribution by awarding higher trust to measures that are closest
to data already collected [35]. However, multiple similar
erroneous contributions, either intentional (e.g. Sybil attacks)
or non-intentional (e.g. sensor defect), can impair future
quality assessments. Reputation methods assign a trust score
based on previous user activity but assume the existence of
prior and reliable reputation scores [35]. They are particularly
suitable to be applied in social participatory sensing plat-
forms, but the complexity of the reputation algorithm, such as
PageRank, is at least as high as the number of nodes and edges
of the network, limiting the size of the social network and
the scalability of the approach. Additionally, changes in user
behaviour and cold start, i.e. lack of initial reputation values,
are not adequately addressed. In rating feedbackmechanisms,
other agents evaluate the information contributed by the
users. This approach is simple, fast and cost-effective but is
susceptible to other threats and is not suitable to assess certain
types of data, such as sensor data [34].

A versatile method for estimating crowdsensed data accu-
racy which does not make assumptions on the statistical
distribution nor requires additional information (e.g. ground
truth data or reputation scores) combines statistical bootstrap
with uncertainty propagation [36]. This method was validated
on a short section of SmartRoadSense data but cannot be sys-
tematically implemented due to the algorithm’s complexity,
which resamples at least 104 times in each sample at each
cycle. In conclusion, the discussed methods raise concerns
regarding scalability and applicability, motivating the search
for alternative approaches.

III. VALIDATION APPROACH
A. OPEN DATA INTEGRATION
This study investigates the effect of various aspects of a road
setting, such as construction materials, population density,
presence of a bridge, road ranking and speed limit, on the
value ofPPE measured on that road. The effect on road quality
and performance is known for some of these features and can

be used to test SRS’s ability to capture road performance,
hence evaluating the overall trustworthiness and truthfulness
of the data under study. The adopted approach integrates data
from multiple open datasets to enrich the original dataset
with additional features, then isolates roads with characteris-
tics commonly associated with higher surface roughness and
verifies that PPE computed on those roads agrees with these
assumptions.

Themethodology applied is, in fact, a large scale version of
that employed to validate the SRS method, where a series of
experiments classified road sections into performance groups
and compared road roughness metrics calculated for each
group [2]. However, these experiments were expensive and
time-consuming, as they relied on specialised software, visual
inspections, geo-referenced annotations and the feedback of
road technicians and professionals, thus not applicable on a
large scale. Conversely, the proposed approach is scalable and
versatile, as it relies on readily available independent open
data. It can be readily applied to any crowdsensed dataset for
which reasonable assumptions can be made and constitutes a
valid alternative when collecting additional data, employing
specialised equipment or consulting experts is not applicable.
However, the method’s applicability and efficacy strongly
depend on the availability of data related to the phenomenon
under study, highlighting the importance of open data.

The chosen approach only addresses accuracy at the aggre-
gate level, whereas most available methods focus on individ-
ual measurements, devices, locations or users. It is argued
here that, in crowdsourcing systems, accuracy should only
be relevant at the aggregated level. Crowdsourced data is
inherently prone to variability and cannot reach the accuracy
standards of controlled experiments. On the other hand, this
is not necessary because the ‘‘wisdom of the crowd’’ princi-
ple [37] exploited in this paradigm attests that the cumulative
effect of all measures can capture the underlying information
even where the individual measurement fails to do so [38].

B. OPEN DATA SETS
The SRS dataset, whose structure is outlined in Table 1,
was retrieved from the SmartRoadSense project Open Data
section in March 2021 [39]. The vast majority of points
are mapped in Italy (75.1% points), motivating the choice to
limit the analysis to the Italian road network. Values of PPE
below 0.001 or above 4.0 were removed from the dataset as
recommended in [16].

Boundaries of Italian territories, population and urbanisa-
tion level data for each Italian city were obtained from the
Italian National Institute of Statistics (ISTAT) [40] and added
to the SRS dataset. The urbanisation level measures demo-
graphic density calculated using one sq. km grids and can
assume three values (1,2,3) expressing decreasing population
density.

OpenStreetMap (OSM) data mapped on the Italian ter-
ritory was downloaded in PFB format from the Geofab-
rik server [41]. Relevant OSM tags were copied using an
OSMHandler based on Osmium (a data processing Python
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TABLE 1. SmartRoadSense dataset structure.

library for OSM data) and added to the SRS data set. Given
the many tag values associated with only a handful of points
in the SRS dataset, only ‘‘surface’’ and ‘‘bridge’’ tag values
with at least 100 points were considered. Similarly, only the
most frequent speed limits were included in the analysis: 90,
110 and 130 for motorways, 30, 50, 70, 90 for the other roads.
Unspecific ‘‘surface’’ tags such as ‘‘paved,’’ ‘‘unpaved’’, and
‘‘gravel’’ were also excluded.

IV. RESULTS
The results of the investigation are presented as follows:
Section IV-A offers theoretical and empirical evidence to the
claim that PPE is best modelled by the log-normal distribu-
tion, Section IV-B describes and discusses the relationship
between a variety of road feature and the corresponding PPE ,
and finally, Section IV-C evaluates the coherence of these
results with previous work on the relationship between PPE
and vehicle speed.

A. STATISTICAL MODELLING OF PPE
1) THEORETICAL CONSIDERATION
An adequate description of the variability of a quantity is a
prerequisite for studying its patterns and estimating variance
components. The Gaussian distribution is generally the first
choice whenmodelling a real-valued variable affected by ran-
dom variation, but it is not the most suitable distribution in a
variety of circumstances [42]. Arithmetic mean and standard
deviation are unsuitable statistics for skewed distributions,
which are better characterised by the geometric counterpart
or in terms of a transformed variable that distributes normally.
For right-skewed variables that only take positive values, the
log-normal distribution fits the data better than the normal,
with the advantage of linking back to a normal distribution
applying a simple logarithmic transformation.

A random variable X is said to be log-normally dis-
tributed if log(X) is normally distributed. Let Z be a stan-
dard normal variable and µ, and σ be two real numbers.
Then, the distribution of the random variable X =

exp (µ+ σ ∗ Z ) is the log-normal distributionwith parameter
µ and σ . The probability density function for the log-normal

distribution is:

p(x) =
1

σx
√
2π

exp (−
(ln x − µ)2

2σ 2 ) (6)

where µ is the mean and σ is the standard deviation of
the normally distributed logarithm of the variable. A log-
normal distribution is often specified in terms of its geometric
mean µ∗ and standard deviation σ∗, which can be easily
computed from µ and σ as

µ∗ = eµ, σ∗ = eσ (7)

Notably, µ∗ is also the median of the distribution since µ is
the median of the transformed variable. Fig. 1 exemplifies
how the parameter σ∗ defines the shape of the distribution,
while the median µ∗ affects the horizontal and vertical scal-
ing leaving the shape unchanged.

FIGURE 1. Density functions of log-normal distributions having (a) µ∗ =

100 and different values σ∗, (b) σ = 0.2 and different values of µ∗.

Log-normally distributed data are frequently, but incor-
rectly, described in terms of the arithmetic mean x and stan-
dard deviation s. Estimates of their geometric counterparts
can be obtained from equations (8) so that more informative
statistics can be derived once the log-normal trend is identi-
fied [43]. Moreover, the geometric mean is always less than
or equal to the arithmetic mean due to the AM–GM inequality
and the logarithm being a concave function. Failing to recog-
nise the log-normal trend could overestimate the sample’s

54686 VOLUME 10, 2022



C. Sirocchi et al.: Large-Scale Assessment of Mobile Crowdsensed Data: Case Study

central value.

µ∗ =
x

1+ s
x
2 , σ∗ = exp

√
ln 1+

s
x

2
(8)

The Central Limit Theorem in the log domain states that
a log-normal process is the statistical realisation of the mul-
tiplicative product of many independent positive random
variables, as opposed to its primary formulation, where the
sum ofmany independent identically distributed random vari-
ables approximates the normal distribution. Thus, normal and
log-normal distributions both describe forms of variability
based on many forces acting independently of one another
but of additive and multiplicative nature, respectively.

The log-normal distribution may also be seen as a par-
ticular outcome of Gibrat’s law, also known as the law of
proportionate effect. In a growth process, Gibrat’s law states
that the probability of a given growth rate for a particular
entity is independent of its size, so that growth in proportion
to size is a random variable [44]. Given an entity of size X0,
at each step j, the entity may change in size according to a
random variable Fj, so that

Xj = FjXj−1. (9)

Considering the expression in the log domain,

lnXj = lnX0 +
j∑

k=1

lnFk (10)

if the lnFj are identically distributed random variable, accord-
ing to the Central Limit Theorem

∑j
k=1 lnFk converges to a

normal distribution and for sufficiently large j, Xj approaches
a log-normal distribution [45].

The log-normal model can be theoretically derived under
assumptions matching several failure degradation processes,
such as corrosion, diffusion, migration, crack growth, elec-
tromigration. It is frequently used to model failure of a
fatigue-stress nature under the ‘‘multiplicative degradation
argument’’, which reformulates the law of proportional effect
for failure and degradation processes [46].

2) EMPIRICAL EVIDENCE
The data under study already fulfil the main requirements for
rejecting the normality assumption and considering the log-
normal trend: it can only assume positive values and is right-
skewed. The best-fit normal distribution for PPE , calculated
with Maximum Likelihood Estimator (MLE), assigns 99.7%
of the values (3 standard deviations from the mean) in the
range [−0.629, 1.067] (Fig. 2 a, b), with a 20% probability
assigned to negative values. The data is positively skewed,
with skewness = 4.248. The arithmetic mean (µ = 0.219)
and standard deviation (σ = 0.282) of PPE showed that
µ ± σ interval [−0.063, 0.502] contains 90.6% of data
instead of 68.2%, that 69.1% points fall below µ instead
of 50%, and that data below the mean are found exclu-
sively within one standard deviation (Fig. 2 c). Conversely,
the [µ*/σ*, µ* × σ*] interval (1 standard deviation from

FIGURE 2. (a) Probability density function and (b) cumulative distribution
function of PPE and the corresponding best-fit normal distribution;
(c) the arithmetic mean and standard deviation of PPE , and (d) the
geometric mean and standard deviation in the transformed domain;
(e) ln(PPE ) observed bin size compared to expected bin size, and
(f) Kolmogorov-Smirnov test for normality.

the mean) contains 68.8% data, the [µ* / (σ∗)2, µ* ×
(σ∗)2] interval (2 standard deviations from the mean) con-
tains 95.0%, the interval [µ*/(σ∗)3, µ* × (σ∗)3] con-
tains 99.9%, and 49,2% points fall below µ*, suggesting
that the geometric mean and standard deviation are
far more useful in characterising the data under study
(Fig. 2 d). The log-transformed data is symmetrical and has
skewness = − 0.113. The Kolmogorov–Smirnov test was
used to compare random samples from the transformed data
with the best fit normal distribution. It consistently returned
p-values greater than 0.05, i.e. the null hypothesis that the
two distributions are identical cannot be rejected (Fig. 2 e, f).
These results were also confirmed in road-specific data.

The log-normal nature of SRS data can be seen as the
realisation of the law of proportionate effect. Under this
assumption, the road roughness index measured by SRS
results from the multiplicative effect of many independent
positive random variables. This index, as an indicator of the
structural stability of the road pavement, can also bemodelled
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under the ‘‘multiplicative degradation argument’’, meaning
that, at any given time, the road degradation rate is inde-
pendent of its current level of degradation but proportionate
to it by a random factor. Notably, failure mechanisms like
crack growth and propagation, which are primarily involved
in the road degradation process, have already been modelled
according to the law of proportionate effect [47]. This model
is based on a stochastic process and is not concerned with
specifying the effects of identifiable growth influences. In the
study of city growth, Gibrat argued that the very nature of the
problems under study is so complex that such an approach
is appropriate. Similarly, the factors affecting the road sur-
face conditions and their interactions are so complex that
the model can be applied without the need to identify its
underlying factors [44].

B. LARGE-SCALE ASSESSMENT OF SmartRoadSense DATA
This section investigates the relationship between road fea-
tures (construction materials, population density, expansion
joints, road rank and the speed limit) and the road rough-
ness index computed by SRS. Assumptions on the effect of
some of these road features were formulated based on results
of small-scale validation experiments performed within the
SRS project, the literature on road performance and the
common understanding of the subject. The investigation
showed complete coherence between the road roughness
crowdsensed data collected through the SRS platform and
the road structural data contributed in OSM by a multi-
tude of users. Features that are known to increase road
roughness, such as expansion joints and certain construc-
tion materials, were consistently associated with higher val-
ues of PPE , supporting the claim that SRS can accurately
detect road roughness on a large scale. The study of these
and other features (e.g. road ranking and speed limit) offers
insights into the pavement conditions across the entire net-
work and can help inform road construction and renovation
decisions.

1) PRESENCE OF A BRIDGE
Expansion joints are commonly found in bridges and viaducts
to guarantee their structural integrity all year. These joints
are expected to cause mechanical solicitations on the trav-
elling vehicle, which are detected by the SRS system and
reflected in a higher PPE value. Roads passing on a bridge
(such as viaducts and overpasses) were identified using the
‘bridge=*’ tag in OSM. Its most frequent tag values are listed
in Table 2. As expected, the geometric mean of PPE mapped
on roads having the bridge tag was 20 to 35% higher than that
of points mapped on other roads (Fig. 3 a). The independent
T-test found these differences significant (p-value = 0.000)
for each road type. Fig. 3 b compares in the transformed
domain two same-sized samples of motorway points, the
first from roads not tagged with the bridge feature and the
second from bridge roads. The distribution of bridge points
deviates from normality and has a skewness value three
times higher than the other group. The Kolmogorov–Smirnov

TABLE 2. Most frequent tag values for ‘‘bridge’’ in OSM.

FIGURE 3. Comparison of (a) the geometric mean of PPE and (b) the
distribution of ln(PPE ) in roads on a bridge and not on a bridge.

test applied to both samples found that the subset of bridge
points does not belong to the best-fit normal distribution
(p-value = 0.000). The loss of normality is coherent with
the modelling of PPE as the realisation of the Central Limit
Theorem, according to which the contribution of each factor
should be equal and infinitesimal to observe normality in the
transformed domain.
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FIGURE 4. Geometric mean of PPE with in roads grouped by
(a) construction material (b) and also road category.

2) CONSTRUCTION MATERIALS
Materials and construction methods affect the smoothness,
homogeneity, and overall quality of roads. Asphalt and
concrete are the first two choices when building high-
performance roads; hence they are expected to measure a
lower PPE compared to other materials. Compacted roads
are considered the next best material for road construction
because of their stability and grip and are expected to record
a relatively good average PPE . Similarly, roads made of
large blocks separated by very narrow gaps (paving stones)
should provide a lower PPE compared to those made of
smaller bricks with wider gaps (sett, cobblestone). SRS data
were grouped based on the construction material of the

TABLE 3. Most frequent tag values for ‘‘surface’’ in OSM.

corresponding road using OSM ‘‘surface=*’’ tag, whose
most relevant values are listed in Table 3. The geometric
mean and 95% confidence interval were calculated for each
group, confirming that PPE positively correlates with the
paving material performance. The most performing road
paving materials, asphalt and concrete, had the lowest aver-
age PPE , followed by paving stones, compacted (the best
choice material after asphalt, concrete and paving stones
according to OSM), sett and cobblestone, and finally con-
crete plates (Fig. 4. The non-parametric Kruskal-Wallis
H-test found the means to be different (p-value = 0.000).
Post hoc comparisons between groups showed that each
pair of subsets is significantly different apart from sett +
cobblestone (p-value = 0.498), concrete + paving stones
(p-value = 0.085), asphalt + concrete (p-value = 0.966),
confirming that materials with similar properties record
comparable road roughness values. PPE values tend to be
consistent for a particular material across different road
types. Asphalt roads, for example, produce consistently
low PPE values across the entire road network, while
concrete plates are consistently associated with very high
PPE values (Fig. 4 b). These results suggest that SRS
can detect material-related irregularities and quantify their
magnitude.
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FIGURE 5. Geometric mean of PPE per (a) population size and (b) urbanisation level of the afferent city. (c) PPE measured in the
most trafficked Italian highway and (d) its distribution in the transformed domain.

3) POPULATION DENSITY AND TRAFFIC FLOW
Roads affected by heavy traffic and frequent heavy trucks
are expected to get damaged faster and are generally
scheduled to receive maintenance every few years. Given the
lack of annual average daily traffic data (AADT) for Italy
or other network-wide open traffic datasets, population data
from ISTAT was used to approximate the traffic flow. SRS
data were binned according to the population and urbani-
sation level of the afferent city, and relevant statistics were
calculated for each group. Cities with more than 0.5 mil-
lion inhabitants, which generally have the role of regional
capitals, have the highest PPE values across all road types,
indicating that densely populated areas have the lowest road
quality. Conversely, medium-large cities, which are generally

province capitals, have the lowest PPE values and the best
road performance (Fig. 5 a), possibly because their essential
administrative role grants them more frequent road improve-
ments while suffering only moderate traffic flow. Similarly,
cities having a medium urbanisation level recorded in aver-
age the lowest PPE (Fig. 5 b). Independent T-test found the
differences between groups to be significant.

The relationship between traffic flow and PPE can be
appreciated on the busiest motorway in Italy, the ‘‘Grande
Raccordo Anulare’’ in Rome (OSM Relation: Grande Rac-
cordo Anulare, osm_id: 1331370), which counts up to
165.000 vehicles per day according to ANAS, the National
Autonomous Roads Corporation. The geometric mean calcu-
lated on this road is 0.17, 30% higher than that calculated on
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FIGURE 6. Distribution of speed limit per road ranking in the Italian road
network.

all motorways (Fig. 5 c). The distribution of the transformed
PPE visually displays a degree of deviation from normality
and differs significantly from the best-fit normal distribution
for motorways (Fig. 5 d), suggesting predominant factors at
play.

4) ROAD RANKING
The role of a road within a road network is its most defining
feature. Motorways and trunks make up the backbone of the
transport infrastructure and conduct most long-distance traf-
fic. Primary, secondary, tertiary and unclassified roads lead
medium-distance traffic and connect progressively smaller
settlements, while residential roads provide access to housing
within settlements. Each of these road categories is charac-
terised by a speed limit, an average vehicle speed, a road type
(urban, extra-urban or both), preferred constructionmaterials,
traffic intensity, standards of quality, etc. OSM defines a clear
road hierarchy, outlined in Table 4, which is why this compos-
ite attribute is renamed here as ‘‘road ranking’’. It is not pos-
sible to safely make assumptions on the effect of this attribute
on PPE due to several concurring factors. More important
roads are built with better performingmaterials and according
to higher quality requirements, so they are expected to record
lower PPE . However, vehicles travel on these roads at a much
higher speed, a parameter known to affect road roughness
measurement in all vibration-based methods. In Fig. 6, the
speed limit distribution per road category shows how more
important roads tend to have higher speed limits.

The road ranking does not show a direct correlation with
the mean of the corresponding best-fit normal distribution
(Fig. 7 a). However, when including the type parameter,
the model could explain 89% of the variability in the data
(R-squared = 0.89) with both variables having significant
explanatory power (p-value < 0.05). In urban roads (pri-
mary, secondary, tertiary, unclassified, residential) with a
speed limit of 50 Km/h and 40 km/h, a linear relationship
with the mean is found in both groups with R-squared =
0.863, p-value = 0.022 at 50km/h speed limit (Fig. 7 b) and

FIGURE 7. Relationship between road ranking and the mean of ln(PPE ) in
(a) all roads, (b) urban roads with speed limit of 50 km/h and (c) urban
roads with speed limit of 40 km/h.

R-squared = 0.816, p-value = 0.036 at 40km/h speed limit
(Fig. 7 c). Hence, PPE correlates with the road ranking,
as one would expect, when controlling for vehicle speed or
road type. A strong linear correlation was found between the
road ranking and the standard deviation of ln(PPE ), with an
R-squared value of 0.937 and p-value= 0.000 which persists
within individual regions across the country (Fig. 8). This
analysis was limited to urban roads, for which 50 km/h is
the speed limit across all road categories 4, and 40 km/h is
generally associated with good quality roads. It could not be
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FIGURE 8. Relationship between road ranking and the standard deviation
of ln(PPE ) in Italy and selected regions.

performed on extra-urban roads where the road categories
are characterised by different maximum speed limits and
cannot be directly compared. For instance, a speed limit of
90km/h has a different connotation in a primary road and
a motorway. The former would have the maximum speed
limit allowed for its road type, while the latter would have
a significantly lower limit, suggesting differences in road
performance, as explained in the following section.

In conclusion, the degree of variability of the road rough-
ness index calculated on a given road is inversely proportional
to the importance of that road in the network. This statistic
appears to be less sensitive to vehicle speed. It should be
regarded as a critical road quality indicator, as it relates to
the structural uniformity of the road that strongly reflects on
the perceived comfort of the traveller.

5) SPEED LIMIT
The maximum speed travelled on a particular type of road is
dictated by each country, and the Italian speed limits currently

FIGURE 9. (a) Geometric mean of PPE and (b) distribution of ln(PPE ) in
motorways at different speed limits.

in force are listed in Table 4. While most streets adopt the
recommended speed limit, in many roads, authorities have
lowered the speed limit to account for various circumstances
(pavement conditions, geographical constraints, number of
lanes, level of traffic, presence of bridges or tunnels, curvature
of the road). A comparison between the geometric mean of
PPE at different speed limits shows that PPE increases as the
speed limit decreases in motorways (Fig. 9 a) and other road
types. Independent T-test confirmed the differences observed
at different speed limits to be significant for each road type
(p-value = 0.000). Moreover, ln(PPE ) mapped on roads with
maximum speed limits distributes normally, whereas roads
with a lowered limit show a significant degree of variation
from normality (Fig. 9 b), again suggesting the presence of a
predominant factor. Most of these routes are in Trentino-Alto
Adige and Liguria, mainly due to natural constraints and
the presence of many viaducts. In these regions, points with
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FIGURE 10. Comparison between PPE and speed limit in (a) Trentino-Alto Adige and (b) Liguria. (c) PPE distribution and geometric
mean for different speed limits in these regions.

elevated PPE are found almost exclusively on roads with
reduced speed limits, while those with maximum speed limit
have a consistently low PPE (Fig. 9 a, b, c). A reason-
able interpretation for this outcome is in the safety practice
of reducing the speed limit when travelling conditions are
sub-optimal.

C. COHERENCE WITH PREVIOUS WORK
Previous studies on the relationship between the vehicle
speed and PPE showed that the value of PPE depends on the
speed of the vehicle according to a gamma law, with param-
eter γ ∈ [0, 2] and with γ tending to decrease for increasing
values of the vehicle speed [30]. The derived coefficient of
fitting parameters P(v) = q̂× vγ and the corresponding 95%

confidence bounds for motorway roads are q̂ = 16.89 ×
10−3(15.78×10−3, 18.01×10−3) and γ = 0.76(0.74, 0.78).
More precisely, the study suggests that a vehicle travelling on
a motorway at a steady speed of 90 km/h and measuring a
certain PPE value would produce a value that is 16% higher
if it was travelling at 110 km/h, 32% higher if travelling at
130 km/h. The assumption that each vehicle has a stable speed
along its journey is reasonable in motorways, where cars
travel at the maximum speed allowed. Under this assumption,
the recommended gamma law normalisation of PPE was
applied in motorways to compare PPE values as if they had
been measured at the same vehicle speed. Motorways with
a 90 and 110 km/h speed limit, that measured on average a
higher PPE than those with a maximum speed limit, recorded
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TABLE 4. OSM road categories with corresponding Italian speed limits.

FIGURE 11. Distribution of PPE in motorways (a) before and (b) after
vehicle speed normalisation.

an even higher PPE after normalisation (Fig. 11). Thus, the
findings on the relationship between the speed limit and PPE
persist and are, in fact, amplified when considering previous
results of controlled experiments within the SRS project.

V. CONCLUSION AND PROSPECT
The statistical modelling of PPE offers several insights on
how to analyse and interpret SRS data. The log-normal nature

of the PPE implies that it should always be described in terms
of its geometric mean and standard deviation or its normally
distributed transformed variable. The arithmetic mean of the
variable misrepresents the sample as it tends to overestimate
its central value (due to the AM-GM theorem). All statistical
tests assuming additive effects, e.g. linear regression and
ANOVA, should be performed in the transformed domain to
be valid. The log-normal trend also indicates that a minimal
increase in PPE could represent a substantial loss in road
performance, suggesting thatPPE should be continuously and
closely monitored, as already done by SRS. The geometric
standard deviation, which defines the shape of the distribu-
tion, appears to be the most informative and characterising
statistics for this distribution, as observed in other log-normal
variables [43]. In fact, the shape parameter was less sensitive
to vehicle speed in the study of the effect of road ranking
on PPE . Modelling PPE under the law of proportionate effect
offers insights into the type of degradation experienced by
the road. In the bridge and traffic scenarios, PPE in streets
where one ormore predominant factors are responsible for the
degradation tend to deviate from the expected trend. In con-
trast, roads with a more homogeneous and ‘‘physiological’’
degradation tend to retain a normal distribution, be it shifted
to the right.

The joint statistical analysis of SRS with selected open
datasets unveiled the relationship between PPE and vari-
ous road features. The study was made possible by the
open availability of SRS data and greatly facilitated by
having PPE values already mapped onto OSM maps. As a
result, SRS data can be easily integrated with OSM datasets
and the ever-growing number of open-source applications
based on OSM. Open data integration is a valuable tool
for dataset-wide exploration and should be considered when
designing crowdsensing architectures and possibly included
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in the data analysis pipeline. In this investigation, the pre-
dicted tendency of PPE in relation to bridge, population
density, construction materials and road categories was con-
firmed, providing evidence that PPE reflects road perfor-
mance. Further proof can be gained by investigating other
factors known to negatively affect road performance, such
as weather conditions and geographic constraints, upon the
availability of suitable network-wide datasets. The study of
the combined effect of multiple factors could also support
road management by improving road-lifespan estimates and
scheduling of road interventions.
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