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Abstract
Using an approach, inspired by our modernisation of Lemoine’s Geometrography, this paper
proposes a new readability criterion for formal proofs producedby automated theoremprovers
for geometry. We analyse two criteria to measure the readability of a proof: the criterion
given by Chou et al. and the one given by Wiedijk. After discussing the limitations of these
two criteria, we introduce a novel approach, which provides a new criterion. We conclude
discussing some future work.

Keywords Readability · Formal proof · Automated deduction in geometry ·
Geometrography

Mathematics Subject Classification 51A05 · 68T15

1 Introduction

An important feature of a text is its readability. Readability is the ease with which a reader
can understand a written text. The readability of a text is determined by many factors and
plays an important role in many areas of interest. For example, it might depend both on the
content of the text, i.e., the complexity of the vocabulary and syntax, and on the layout of the
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text, e.g. its typographical aspects. Readability has to be distinguished from legibility that is
the ease with which a reader can recognise individual characters in a text.

In order to quantify the readability of a text, various formulas have been defined [5].
In this paper we will deal with the readability of geometric proofs produced by automatic
theorem provers. A potential approach that has been followed in the past is to take formulas
that were developed for applications to non-scientific texts and apply them to mathematical
texts [13]. However, this sort of approach has not been extended in a proper way to measure
the readability of proofs produced by automatic theorem provers and much more work needs
to be done1 [6, 12, 19, 22, 26].

A mathematical text is composed of many elements: descriptions in natural language,
formulas and diagrams; thus, it is much more difficult to quantify its readability through
formulas, then in the case of regular text. Evenmore complex is the problem of the readability
of mathematical proofs produced by automatic provers that are often presented in a form that
can only be read by experts.

In this paper, we will introduce both a language to formulate readability criteria for
formal proofs produced by automated theorem provers for geometry, based on the area
method [2, 10] (see Appendix 1), and a novel criterion based on our modernisation of
Lemoine’s Geometrography [14, 22, 24]. We will show how this new criterion is consis-
tent with the results of the other already existing criteria, but that it is also more general and
expressive compared to the others.

The proposed language allows for an easy formulation of new readability criteria aswell as
for an easy implementation of those criteria in repositories such as theThousand of Geometric
problems for geometric Theorem Provers (TGTP),2 thereby collecting data relevant to the
further development of the area of automated theorem proving in geometry. The data will
help strengthen the use of automatic tools not only in research but also in applications
like in mathematics education, where the use of automated deduction is already making its
way [7, 23]. Therefore, as in the Automath project, the formulation of a readability criterion
will allow the definition of a threshold below which “people will start using them (the proofs
produced by automated theorem provers3) for serious work” (see §2.22.2).
Overview of the paper. The paper is organised as follows: first, in §2, the known readability
criteria will be discussed. In §3, Lemoine’s Geometrography, its modernisation and a formal
language employed to study readability of formal proofs produced by automated theorem
provers for geometry, based on the area method, will be analysed. In §4, a new readability
criterion that uses Geometrography will be presented, providing also some examples of its
application. In §5 conclusions are drawn and future work will be discussed.

2 Criteria of Readability (by Experts)

To the best of our knowledge there are two precise proposals to measure the readability of
a proof. The first one is that proposed by Chou et al. [1, p. 452], while the second is that
proposed by Freek Wiedijk and is known as the de Bruijn factor [4, 27].

1 We will not consider here the problem of the readability of geometric proofs from the Mathematics Educa-
tions point of view. We will address some issues related to that context in the conclusions.
2 http://hilbert.mat.uc.pt/TGTP/index.php.
3 In the original sentence, “Automath like Systems”.
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Fig. 1 Geometric Construction,
Ceva’s Theorem

2.1 Maxt-Lems Criterion

Chou et al. [1, p. 452] proposed a way to measure how difficult it is to read a formal proof,
obtained by using an automated theorem prover for geometry (GATP) implementing the area
method. The Maxt-Lems (ML) criterion considered the following pair (maxt, lems), where:

– maxt is the number of terms of the maximal polynomial occurring in the machine’s proof.
Thus, maxt measures the number of computations needed in the proof;

– lems is the number of elimination lemmas used to eliminate points from geometric quan-
tities. In other words, lems indicates the number of deduction steps in the proof.

Using those two elements and analysing all the proofs done by their GATP, they managed
to determine an indicative threshold for readability. According to [1, p. 452] a formal proof,
which employs the area method, is considered readable if one of the following conditions
holds:

– the maximal term in the proof is less than or equal to 5;
– the number of deduction steps of the proof is less than or equal to 10;
– the maximal term in the proof is less than or equal to 10 and the deduction steps are less

than or equal to 20.

It is interesting that according to their corpus:4 66.9% of the proofs have maxt ≤ 5, 42.6%
have lems ≤ 10 and 73.2% have lems ≤ 20.

Let us consider, for example, the Thousand of Geometric problems for geometric Theorem
Provers (TGTP) repository, specifically, problem GEO0001, the Ceva’s Theorem.

Theorem 1 (Ceva’s Theorem) Let �ABC be a triangle and P be any point in the plane. Let

D = AP ∩ C B, E = B P ∩ AC, and F = C P ∩ AB. Show that: AF
F B

× B D
DC

× C E
E A

= 1.
P should not be in the lines parallel to AC, AB and BC and passing through B, C and A
respectively [10].

With respect to the ML criterion, considering the proof made by the Geometry Construc-
tions LATEX Converter (GCLC) [11] GATP (see Appendix 1), the values are: maxterm = 1,
and lems = 3. Therefore, this would be considered a readable proof.

4 They considered 478 machine solved geometry problems.
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Table 1 Ceva’s Theorem Proof
by GCLC Area Method GATP, de
Bruijn factor

Informal Formal de Bruijn factor

Uncompressed 125KB 137KB 1.09

Compressed 124KB 136KB 1.09

2.2 The de Bruijn Factor

The Automath project had the goal of developing a system that would allow to write entire
mathematical theories in such a precise fashion that verification of the correctness of theo-
rems in such theories could have been carried out by formal (mechanical) operations applied
directly to the text [4]. This was a first effort in the direction of the Formalisation of Mathe-
matics that is now pursued by researchers working in systems like Coq, Isabelle and Mizar.5

In “A Survey of Project Automath”, de Bruijn introduced the loss factor between the size
of an ordinary mathematical exposition and its full formal translation inside a computer. The
loss factor expresses what someone loses, in terms of shortness, when translating informal
mathematics into Automath. Wiedjk developed the concept and called it the de Bruijn factor.
The de Bruijn factor was developed for a situation where a proof is entered in a computer in
full detail in such a way that the computer can check its correctness, e.g, when an existing
informal mathematical text is taken and it is translated into a computer representation (using
a system like Automath). So the de Bruijn factor measures how efficient a system is [27].
Wiedijk noted that non-meaningful questions about formatting could affect the calculus of
the loss factor, for example: if indentation is performed employing the tab key, then such
indentation can be eight times smaller compared to situations in which the indentation is done
using the space key; also the TEX macro name for the ’⇔’ symbol uses 15 characters, while
an encoding like “<=>” uses only 3. To further smooth formatting choices,Wiedjk proposed
to compress the files before calculating the ratios of their sizes. Wiedijk calls the ratio of the
uncompressed file sizes the apparent de Bruijn factor, and the ratio of the compressed file
sizes the intrinsic de Bruijn factor [27].

We claim that the de Bruijn factor can be used, in a broader sense, to measure the effi-
ciency of an automated theorem prover and a given axiomatisation. Whenever a informal
proof is known for a given theorem, it can be compared with the formal proof produced by
the automated theorem prover, using a specified axiomatisation. This is particularly true in
geometry where a given informal geometric proof can be compared with an, also geometric,
formal proof produced by a geometric automated theorem prover.

Using again the Ceva’s Theorem as an example, the readability of its formal proof, with
respect to the de Bruijn factor can be calculated6 (see Table 1).

Wiedijk also introduced the de Bruijn threshold, i.e., a limit below which “the people will
start using them (Automath like system) for serious work”. We will consider the value of 2 as
a readability threshold. Further studies are needed in order to establish a readability threshold
for automated proofs, using the de Bruijn factor. Moreover, a broader comparison between
formal proofs and informal proofs is needed.

Considering the quotient of the size of the compressed formal proof (area method) and the
size of the informal proof, the de Bruijn factor of Ceva’s Theorem is 1.09. It would therefore
be sensible to consider the GCLC area method proof, readable.

5 https://coq.inria.fr/, https://isabelle.in.tum.de/, http://mizar.org/.
6 We used the proof found in https://artofproblemsolving.com/wiki/index.php/Ceva’s_theorem as source for
the informal proof.
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2.3 ML and de Bruijn Factor’s Limits

Analysing the previous criteria, we can note a first limit for both the ML criterion and the
de Bruijn factor: they assume that readability by expert is being considered, i.e., a geometer
expert in the language of the prover that produces the proof.

A second limit emerges when the following [22] classification of formal geometric proofs
produced by GATPs is taken into consideration:7

1. no readable proof, only a proved/not proved output;
2. non-synthetic proof (i.e., a proof without a corresponding geometric description, e.g.

algebraic methods);
3. semi-synthetic proof with a corresponding prover’s language rendering;
4. (semi-)synthetic proof with a corresponding natural language rendering;
5. (semi-)synthetic proof with a corresponding natural language and visual rendering;

Relating the ML criterion with this classification, we can note that such criterion only
allows the definition of a threshold for semi-synthetic proofs that employ the area method
(level 3). The direct applicability of the ML criterion to other synthetic methods, e.g. full-
angle methods or the deductive database method [3, 28], would be possible, considering the
number of deduction steps of the proofs and adapting the condition regarding the maximal
term in the proofs.

The de Bruijn factor can be used directly in all levels above 1, although it is more mean-
ingful on levels greater or equal than 2.3. Considering the (GCLC) and its integrated GATPs
based on the area method, Wu’s method and Gröbner Basis method [9], it is possible to cal-
culate the readability of the proofs developed using the different GATPs. It is indeed possible
to imagine, extrapolating from the results with the area method, that all those proofs would
be readable, and this would hold even though the de Bruijn factor requires informal proofs
to be provided.8

The two criteria analysed are very different, the first is very specific while the second
is very generic, although both criteria require readability by experts. We can therefore ask
ourselves if it is possible to define a new criterion which does not require readability by
experts, which is also more natural and expressive than the previous ones, and which can be
generalised to various proof methods.

3 Looking for a More Natural Readability Criterion

The new criterion that we want to propose is based on our modernisation of Lemoine’s
Geometrography [14, 22, 24]. We will begin by explaining what Geometrography is and
what its modernisation consists of.

Geometrography, “alias the art of geometric constructions”, aims at providing a tool:
(i) to designate every geometric construction by a symbol that manifests its simplicity and

7 GATPs can be of two major types: algebraic, the proof, if it exist, is done recurring to an algebraic reasoning
(e.g. Gröbner basis); geometric (synthetic), the proof, if it exist, is done recurring a set of axioms and inference
rules of geometry, without the use of coordinates. Semi-synthetic methods, e.g. the area method, use also the
axioms of a field of characteristic different from 2.
8 The Wu’s method and the Gröbner basis method are both algebraic methods, from the geometric point of
view their proofs are unreadable (level 2).
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exactitude;9 (ii) to teach the simplest way to execute an assigned construction; (iii) to discuss
a known solution to a problem and eventually replacing it with a better solution; (iv) to
compare different solutions for a problem, by deciding which is the most exact and the
simplest solution from the point of view of Geometrography [14–17, 20, 22, 24].

3.1 Classical Geometrography

In Lemoine’s Geometrography two coefficients are defined to measure the relative difficulty
to perform some geometric constructions. The approach is applied to ruler and compass
geometry, i.e., geometric constructions made only with the help of a ruler and a compass.
Considering the modifications proposed by Mackay [16], the following Ruler and Compass
constructions and the corresponding coefficients can be analysed.

To place the edge of the ruler in coincidence with one point . . . . . . . . . . . . . . R1

To place the edge of the ruler in coincidence with two points . . . . . . . . . . . . 2R1

To draw a straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R2

To put one point of the compasses on a determinate point . . . . . . . . . . . . . . . C1

To put the points of the compasses on two determinate points . . . . . . . . . . 2C1

To describe a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2

Then a given construction is measured against the number of uses of those elementary
steps. For a given construction expressed by the equation:

l1R1 + l2R2 + m1C1 + m2C2

where li and m j are coefficients denoting the number of times any particular operation is
performed. The number (l1 + l2 + m1 + m2) is called the coefficient of simplicity (cs) of the
construction, and it denotes the total number of operations performed. The number (l1 +m1)

is called the coefficient of exactitude (ce) of the construction, and it denotes the number of
preparatory operations on which the exactitude of the construction (made with the help of
physical, inaccurate, tools) depends [16, 17].

3.2 Geometrography in Dynamic Geometry

Classical Geometrography applies to geometric constructions made with the help of a ruler
and a compass. Itsmodernisation, proposed in [22, 24] uses the tools of the dynamic geometry
systems (DGS). In [22] it was shown how to modernise Geometrography using GCLC, in
[24] the generality of the approach is shown, using GeoGebra [8].

Considering the operations: define a point, anywhere in the plane, D and define a given
object, using other objects, C , the following values for the GCLC basic constructions are
obtained:

point – fix a point in the plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D
line – uses two points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2C
circle – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
intersec – uses two lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
intersec – uses four points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4C
intersec2 – uses a circle and a circle or line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

9 Exactitude, or the lack of it, in this context refer to the possible inaccuracy introduced by physical tools
such as ruler and compass.
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Fig. 2 Geometric Construction,
TGTP problem GEO0369

midpoint – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
med – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
bis – uses three points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3C
perp – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
foot – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
parallel – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
onsegment – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
online – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
oncircle – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

In the modernisation (extrapolation) of the Geometrography, considering the “tools” of
dynamic geometry systems, the coefficient of exactitude loses its meaning, the constructions
will be executed by the DGS, so they are accurate (exact). However, the coefficient of simplic-
ity of the constructions can still be useful, it can be used to classify constructions by levels
of simplicity. A new dimension can also be added, the coefficient of freedom (cf), given by
the degree of freedom a given geometric object has, e.g. “a point in a line” has one degree of
freedom, a point in the plane has two degrees of freedom, etc. This new coefficient will give
a value to the dynamism of the geometric construction. The degrees of freedom are mea-
sured against the point definitions. The point definition, defines a point with two degrees
of freedom, the onsegment, online and oncircle constructions, define points with
one degree of freedom. For the GCLC constructions contained in TGTP an average value of
simplicity (CSgcl) of 20.8 was obtained. Using the k-means clustering function implemented
in the statistics package of Octave,10 three classes of geometric constructions describing an
increasing level of complexity were defined: simple constructions, 1 ≤ CSgcl ≤ 18; average
complexity constructions, 18 < CSgcl ≤ 28; complex constructions, CSgcl > 28.

TGTP contain 71 simple constructions; 81 average complexity constructions; 28 complex
constructions.

For example (TGTP problem’s GEO0369): “In triangle �ABC , let F be the midpoint
of the side BC , and D and E the feet of the altitudes on AB and AC , respectively. FG is
perpendicular to DE at G. Show that G is the midpoint of DE”, has a geometric construction
with coefficient of simplicity 19 (see Fig. 2), so an average complexity construction. The value

10 GNU Octave, version 6.1.1, package octave-statistics, function kmeans https://octave.sourceforge.io/
statistics/function/kmeans.html.
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of 6 for its coefficient of freedom is given by the fact that only the three points A, B, and C
are free in the plane, while all the other points are completely bind, by construction.

3.3 Geometrography in Automatic Theorem Proving

The same approach can be (again) extrapolated to take into consideration synthetic geometric
proofs, i.e., proofs based on a geometric axiomatic theory, using geometric inference rules.

Considering the proofs produced by the GATP GCLC, implementing the area method
[9, 10],11 the coefficient of simplicity for all the axioms and lemmas of the theory can be
calculated.

Apart from the geometric constructions in which the proof is based (with coefficient of
simplicity nCnst), there are other steps to be considered.

(Elementary) Algebraic Simplification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (AS)
(Elementary) Geometric Simplification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GS)
Application of the Area Method Lemma n. . . . . . . . . . . . . . . . . . . . . . . . . . . (AMLn)

A given proof can thus be measured against the number of those steps.12 For a given proof
expressed by the equation:

n1Cnst + n2 × AS + n3 × GS +
lk∑

j=l1

AMLj

where n1 is the coefficient of simplicity of the geometric construction, n2 is the number of
algebraic simplifications and n3 is the number of geometric simplifications.

The coefficient of simplicity for the proof would be:

CSproof = n1 + n2 + n3 +
lk∑

j=l1

CSproof(AMLj)

The coefficient of freedom has no meaning in this setting.
Each lemma of the area method, AMLj, has a corresponding simplicity coefficient, the

term,
∑lk

j=l1
CSproof (AMLj), is the sum of all those values, for all the lemmas used in

the proof. In order to achieve this for each lemma of the area method the corresponding
coefficients of simplicity were calculated [21].

For example, the proof of Lemma 9 will have the following coefficient of simplicity,
CSproof (AML9) = 74.

Lemma 1 (AML9) Let R be a point on the line P Q. Then for any two points A and B it

holds that SR AB = P R
P Q

SQ AB + RQ
P Q

SP AB.

11 The proofs developed by GATPs based on the Area Method are formal proofs. The method itself was
formalised, and proved sound, using the Coq proof assistant. The GATP developed by J. Narboux, as a Coq
tactic, can have the proofs verified by Coq. The GCLC area method, do not have, explicitly, that possibility,
but, it would be a matter of developing a filter from the GCLC language to the Coq language (see Appendix 1).
12 By elementary algebraic simplification it is understood the basic algebraic operations: addition, subtraction,
multiplication, division, and their properties of commutativity, associativity and distributivity. By elementary
geometric simplification it is understood the direct application of the definition of the area method quantities.
We call them trivial steps.
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The following is a shorter version of its proof with the elementary algebraic and geometric
simplifications condensed (the expanded version can be see in [21]).
Geometrography of Lemma 9 (AML9)

A B

P

Q

R

CSgcl = 22 = 4D + 18C

CFgcl = 8

– s = SAB P Q , initial construction;
– 1 × GS, areas of triangles with the same orientation, SR AB = s − SARQ − SB P R ;

– 1 × AML14, lemma 14, P R
P Q

= r (AML14 = 8);

– 1 × AML5, lemma 5, SARQ
SAP Q

= RQ
P Q

(AML5 = 18);

– 1 × GS, segments with the same orientation, RQ
P Q

= P Q−P R
P Q

;

– 2 × AS, algebraic simplifications, P Q−P R
P Q

= (1 − r) and SARQ = (1 − r)SAP Q ;

– 1 × AML5, lemma 5, SB P R
SB P Q

= P R
P Q

(AML5 = 11);

– 2 × AS, algebraic simplifications, SB P R = rSB P Q and SR AB = s − (1 − r)SAP Q −
rSB P Q ;

– 2×GS, areas of triangles with the same orientation, SR AB = s − (1− r)(s − SP AB) −
r(s − SQ AB);

– 7×AS, algebraic simplification, SR AB = s − s + rs + SP AB − rSP AB − rs + rSQ AB ,

SR AB = rSQ AB + (1 − r)SP AB and SR AB = P R
P Q

SQ AB + RQ
P Q

SP AB .

Geometrography for the demonstration: 4D+18C+4GS+11AS+1AML14 +2AML5

AML9

{
CSproof = 74 = 22 + 4 + 11 + 8 + (18 + 11)
CSgcl = 22

withAML14 = 8 andAML5 = 18 (first application) andAML5 = 11 (second application).
It is considered that, from the second application of a lemma onward, its proof is accepted,

so, only its adaptation to the new configuration is needed, i.e., the pattern matching of the
lemma configuration to a new setting. For that reason, in any second, third, etc. application
of a lemma, only the CSgcl coefficient values are considered.

Given that a mathematical proof is a sequence of steps, in addition to the coefficient of
simplicity, it would be useful to have other coefficients: e.g., the total number of steps in the
proof; the value of the most difficult step in the proof; the number of different steps of high
difficulty in the proof; the number of different types of steps (lemmas) in the proof; a proof
script; a numerical description of the proof; and a corresponding line chart or proof trace.

Therefore, to fully characterise a formal synthetic proof produced by a GATP, we can
define and consider the following coefficients:

– CSproof , the simplicity coefficient (as above), it gives the simplicity coefficient for the
overall proof;
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– CTproof , the total number of steps in the proof;
– CSproofmax, the highest simplicity coefficient of the lemmas/definitions applications, it

gives the simplicity coefficient for the most difficult step of the proof;
– CDtypeproof , the number of different types of lemmas used in the proof;
– CDhighproof , the number of different steps of high difficulty in the proof;
– The proof script, as defined above;
– The corresponding line chart or proof trace in tikz format.13

It is important to note that to obtain the coefficientCDhighproof (hp) the areamethod lemmas
implemented in the GATP GCLC were analysed, and, using the k-means clustering function
implemented in the statistics package of Octave, divided into three categories: low difficulty
(hp < 284), medium difficulty (284 ≤ hp < 1848) and high difficulty (hp ≥ 1848).

Using the defined coefficients above, we have the following values for the proof ofAML9:

AML9

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CSproof = 74 = 22 + 4 + 11 + 8 + (18 + 11)
CSgcl = 22

CTproof = 19
CSproofmax = 18
CDtypeproof = 2
CDhighproof = 0

The GATP GCLC implementation of the area method [9, 10] is able to produce proof
scripts. Using the command prooflevel it is possible to have control over the level of
detail of the proof script. Two programs14 were implemented to calculate the Geometrogra-
phy of the proofs. The Geometrography of the construction is calculated by a bash script,
gclcGeometrography.bash, that analyses theGCLC geometric construction (not con-
sidering all the rendering commands). The Geometrography of the proof script (minus the
geometric construction) is calculated by, csproof, a parser that analyse the proof script
counting the algebraic steps and the geometric steps in sequence and also the lemmas and
definitions of the area method with the respective coefficient of simplicity.

Using the program csproof on an arbitrary geometric proof, it can be obtained: a CSV
file15 with the values regarding the Geometrographic Readability Coefficient of Proofs (see
Sect. 4); a file with the coefficient of simplicity of the geometric construction; a file with a
line chart, a graphical representation of the proof done by the GATP GCLC.

To better understand somedetails, let’s consider again theCeva’s theorem (seeTheorem1).
Using the GATP GCLC, with the full level of detail, the proof script of Ceva’s theorem
has all the details explained and it fills two pages, almost three pages, if the notes about
the non-degeneracy conditions and about the proof itself are taken into consideration (see
Appendix 1). The line chart is shown in Fig. 3. In it, the sequences of algebraic, or geometric,
simplifications are condensed in only one step (for a more condensed view of the graph).

13 https://ftp.eq.uc.pt/software/TeX/graphics/pgf/base/doc/pgfmanual.pdf.
14 The open source codes are available in the GitHub project https://github.com/GeoTiles/Geometrography/
tree/master/GeometrographyProofs.
15 Comma Separated Values format.
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Fig. 3 Ceva’s Theorem, Geometrography Proof Trace

Therefore, the Geometrography of Ceva’s Theorem Proof is the following: 4D + 18C +
23AS + 3AML1 + 3AML8 + 3AML10.

Ceva′s Theorem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CSproof = 220
CSgcl = 22

CTproof = 32
CSproofmax = 84
CDtypeproof = 3
CDhighproof = 0

4 A Geometrographic Criterion

It is interesting to note how the Geometrographic coefficients highlight many salient aspects
of the proof, aspects that could be used to analyse the readability of such proofs. Furthermore,
it is interesting to stress how the proof trace constitutes a sort of electroencephalogram of
the machine while proving the theorem. Just as an electroencephalogram can be useful for
measuring a brain’s electrical activity, the line chart helps to understand some features of the
proof by looking at its trace.

Applying the Geometrography to the area method proofs contained in the repository
TGTP, using the GATP GCLC with the full level of detail, and using the geometrographic
coefficients we can argue in favour of the following new readability coefficient:
Geometrographic Readability Coefficient of Proofs (GRCP)

G RC P = ((CSproof − CTproof) × (CDhighproof + CDtypeproof ))

This coefficient relates four quantities: the simplicity coefficient of the proof, the total
number of steps in the proof, the number of different steps with high-difficulty in the proof,
the number of different lemmas used in the proof.

The first factor, (CSproof − CTproof), gives an approximation to the overall coefficient
of simplicity of the non-trivial steps in the proof. Note that CTproof count the number of
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steps rather than the coefficient of simplicity of each step. By contrast, in CSproof , it is the
coefficient of simplicity that counts. Each trivial step has a coefficient of simplicity equal to
one, and the coefficients of simplicity for non-trivial steps, such as the construction and the
lemmas, are much greater than one. In the light of this, it can be concluded that the difference
between CSproof and CTproof emphasises the complexity of the proof, disregarding its length.

The second factor, (CDhighproof + CDtypeproof ), gives an account of the difficult steps.
Steps that, potentiality, make the proof much harder to follow, steps where the normal flow of
the proof would be interrupted to jump to the proof of the lemma, resuming after completing
the lemma’s proof. The addition of the number of high-difficulty steps with the number of
different lemmas used in the proof, gave a multiplying factor for the overall complexity of
the proof. A final note about this second factor: a high-difficulty step is, for sure, a lemma
application, nevertheless we felt that the high-difficulty nature of the lemma is a sufficient
reason for this double counting.

Multiplying these factors, the approximation for the overall simplicity coefficient and
the number difficult steps—both elements that we believe characterise the readability of a
proof—we obtain a readability coefficient of a proof.

Therefore, considering 71 theorems and their area method proofs, from the TGTP
repository and using, again, the k-means clustering function from Octave, the proofs
can be divided into the following classes of Geometrographic readability:16 readable
(high − readabili t y), GRCP ≤ 48000; medium-readability 48000 < GRCP ≤ 135000;
low-readability, GRCP > 135000.

The GRCP for GEO0001, Ceva’s proofs is: GRCPGEO0001 = (220 − 32) × (0 + 3) =
564 ≤ 48000, so a readable (high-readability) proof.
GRCP Medium-readability Example.

TGTP problem’s GEO0021:

Theorem 2 (Circumcenter of a Triangle) The circumcenter of a triangle can be found as the
intersection of the three perpendicular bisectors

has the following values for the different coefficients.

GEO0021

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CSproof = 8554
CSgcl = 11

CTproof = 591
CSproofmax = 2807
CDtypeproof = 13
CDhighproof = 3

48000 < G RC P = 127408 ≤ 135000

By the GRCP criterion, this is a medium-readability problem. It can be seen that it has 13
different lemmas, 3 high-difficulty step, a long proof with a significant difference between
the CSproof and the number of steps of the proof (see Figs. 4 and 6).

4.1 GRCP low-readability Example.

TGTP problem’s GEO0020:

Theorem 3 (Distance of a line containing the centroid to the vertices) Given a triangle ABC
and a point X, the sum of the distances of the line XG, where G is the centroid of ABC, to

16 The actual values were rounded for better readability.
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Fig. 4 TGTP, GEO0021, Circumcenter of a Triangle

the two vertices of the triangle situated on the same side of the line is equal to the distance
of the line from the third vertex.

has the following values for the different coefficients:

GEO0020

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CSproof = 19989
CSgcl = 26

CTproof = 4119
CSproofmax = 2807
CDtypeproof = 13
CDhighproof = 4

G RC P = 269790 > 135000, so a low-readability problem. It can be seen that it has 13
different lemmas, 4 high-difficulty step, a long proof, with a very high value of overall
complexity (see Figs. 5 and 7).

4.2 Comparing the Different Criteria

The Geometrography Readability Coefficient of Proofs criterion takes into consideration
all the significant aspects of a formal proof, its overall difficulty, its number of steps, the
number of difficult steps and the number of different lemmas that must be applied. The other
criteria consider fewer aspects. The de Bruijn criterion, given its different goal, takes only in
consideration the size of the proof and it needs to have an informal proof to compare with.
The ML criterion considers the number of different lemmas applied and uses the number of
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Fig. 5 TGTP, GEO0020, Distance of a line containing the centroid to the vertices

terms of the maximal polynomial as a way to have an approximation to the complexity of
the proof.

Alongside the ML criterion, in the GRCP criterion, the number of lemmas in the proof is
considered: in the GRCP criterion as a multiplicative factor, in the ML criterion as one of the
conditions for readability. In theML criterion the number of terms in themaximal polynomial
are considered, but, as its authors remarked, thismeasures the number of computations needed
in the proof, not its readability. This is weakly related to the number of steps in the proof. It
approaches the number of steps needed to decompose those long polynomials occurring in
the proof to a simple expression.

Regardless of this criteria comparison, we want to emphasise that the Geometrographic
view proposed in this paper has a more general scope. Although the GRCP criterion is a
reasonable proposal, the elementary quality of the Geometrographic approach, through the
analysis of various coefficients of the proofs, the proof scripts and the proof traces, makes it
possible to have a language or a tool that can be used by non-experts to formulate other criteria
weaker or stronger than the onewepropose. The contribution of this paper is therefore not only
that of a Geometrographic criterion, but of a Geometrographic approach to the problem of
measuring the readability of formal proofs in automated deduction in geometry, an approach
that offer an environment in which to analyse the proofs in detail by proposing and test
readability criteria. To the best of our knowledge, it is the first time that the community
has access to such a general tool to formulate and to study the readability of formal proofs
in automated deduction in geometry. It is also interesting to note that our criterion offers a
classification of proofs that is in line, when the fundamental points are considered, with the
classifications given by the other two criteria. i.e., proofs that are classified as difficult to read
according to the new criterion are also classified as difficult to read for the others, and the
same applies to proofs that are easy to read (Table 2).
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Table 2 Comparison of the three criteria

TGTP ML de Bruijn GRCP

GEO0001 3 < 5, deduction steps easy 1.6 < 2 easy 564 ≤ 48000
easy(high)

GEO0021 13 > 5 deduction steps &
number of terms > 5
difficult

37.63 > 2 difficult 127408 ≤ 135000
difficult(medium)

GEO0020 13 > 5 deduction steps &
number of terms > 5
difficult

47.31 > 2 difficult 269790 > 135000
difficult(low)

Finally, we have to say that all the criteria proposed here have no empirical validation
through the submission of tests to students, experts, etc. Nevertheless, the great advantage
that our approach offers is that it allows to formulate criteria that can be implemented in
repositories such as TGTP and can be evaluated experimentally in a very simple way.

5 Conclusions

In this paper we have analysed the problem of measuring the readability of formal proofs in
automated deduction in geometry. We have introduced two known criteria and highlighted
some of their limitations. We have then introduced a third criterion that seems to overcome
the problem of readability by expert, therefore being more natural than the previous ones,
and seems to be easily generalised. One possible generalisation is given by the possibility
to formulate weaker, or stronger, criteria, using the proposed language. Another possible
avenue is given by the generalisation of our approach to other GATPs (e.g. the JGEx inte-
grated GATPs, area method, full-angle method and deductive databases method [3, 28, 29],
ArgoCLP, coherent logic prover [25]) and any other ATP that has a proof script based on
axioms, lemmas applications and, eventually, elementary steps (algebraic, geometric, etc.).
It is a matter of calculation of the coefficients of simplicity for the axioms and lemmas of the
base theory in consideration.

Aswe pointed out, the great advantage that our approach offers is that it allows to formulate
criteria that can be implemented in repositories such as TGTP and evaluated experimentally.
For this reason, an important work that we are planning is an experiment to be submitted
to mathematicians, computer scientists, educationalists and students providing an adequate
empirical test for our Geometrographic criterion.
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Appendix

A Ceva’s Theorem,GCLC AreaMethod Proof

The area method for Euclidean constructive geometry was proposed by Chou, Gao and
Zhang in the early 1990’s [2]. The method can efficiently prove many non-trivial geometry
theorems and is one of the most interesting and most successful methods for automated
theorem proving in geometry. In [10] a variant of the original axiom system was presented,
based on that axiomatisation all the lemmas needed by the method were formally proved and
the soundness of the method was established, using the Coq proof assistant [18].17

The GCLC implementation of the area method is able to produce formal proofs. If the
highest level of details is chosen, prooflevel 7, it would be possible to (an appropriated
filter has to be built) formally verify those proofs using a proof assistant, e.g. Coq. The LATEX
proof scripts that GCLC produces (by default, at prooflevel 2) are a natural language
rendering, to be read by mathematicians.

The area method axiomatic system for Euclidean plane geometry (within first order logic
with equality), has just one primitive type of geometrical objects: points. Variables can also
range over a field (F,+, ·, 0, 1), where F is any field of characteristic different from 2. The
axioms of the theory of fields used in GCLC area method proofs, are standard.

The Ceva’s proof presented below is a LATEX proof script produced by GCLC, at
prooflevel 7, edited to include the GRCP values.

GCLC Prover Output for conjecture “cevaGEO0001”, Area method used

((−→
AF
−→
F B

·
−→
B D
−→
DC

)
·
−→
C E
−→
E A

)
= 1 by the statement

22 = 4 × D + 18 × C
(0)

(((
−1 ·

−→
AF
−→
B F

)
·
−→
B D
−→
DC

)
·
−→
C E
−→
E A

)
= 1

by Lemma 10
AML10 = 13 (1)

((
−1 ·

−→
AF
−→
B F

)
·
(−→

B D
−→
DC

·
−→
C E
−→
E A

))
= 1 by right association

1 × AS
(2)

(
−1 ·

(−→
AF
−→
B F

·
(−→

B D
−→
DC

·
−→
C E
−→
E A

)))
= 1 by right association

1 × AS
(3)

(
−1 ·

(
SAPC

SB PC
·
(−→

B D
−→
DC

·
−→
C E
−→
E A

)))
= 1

by Lemma 8 (point
F eliminated)
AML8 = 84

(4)

(
−1 ·

(
SAPC

SB PC
·
(−→

B D
−→
DC

·
(

−1 ·
−→
C E
−→
AE

))))
= 1

by Lemma 10
AML10 = 13 (5)

⎛

⎜⎜⎝−1 ·

(
SAPC ·

(−→
B D−→
DC

·
(

−1 ·
−→
C E−→
AE

)))

SB PC

⎞

⎟⎟⎠ = 1 by multiplication of frac-
tions 1 × AS

(6)

17 Narboux, J.: Formalization of the area method. Coq user contribution (2009). http://dpt-info.u-strasbg.fr/
~narboux/area_method.html.
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(
−1 ·

(
SAPC ·

(−→
B D−→
DC

·
(

−1 ·
−→
C E−→
AE

))))

SB PC
= 1 by multiplication of frac-

tions 1 × AS
(7)

(
−1 ·

(
SAPC ·

(
−1 ·

(−→
B D−→
DC

·
−→
C E−→
AE

))))

SB PC
= 1

by associativity and com-
mutativity 1 × AS (8)

(
−1 ·

(
−1 ·

(
SAPC ·

(−→
B D−→
DC

·
−→
C E−→
AE

))))

SB PC
= 1

by associativity and com-
mutativity 1 × AS (9)

(
1 ·

(
SAPC ·

(−→
B D−→
DC

·
−→
C E−→
AE

)))

SB PC
= 1 by multiplication of con-

stants 1 × AS
(10)

(
SAPC ·

(−→
B D−→
DC

·
−→
C E−→
AE

))

SB PC
= 1 by multiplication by 1

1 × AS
(11)

(
SAPC ·

(−→
B D−→
DC

· SC P B
SAP B

))

SB PC
= 1

by Lemma 8 (point
E eliminated)
AML8 = 14

(12)

(
SAPC ·

(−→
B D−→
DC

· SC P B
SAP B

))

(−1 · SC P B )
= 1

by Lemma 1
AML1 = 10 (13)

(
SAPC ·

((
−1 ·

−→
B D−→
C D

)
· SC P B

SAP B

))

(−1 · SC P B )
= 1

by Lemma 10
AML10 = 11 (14)

(
SAPC ·

((
1 ·

−→
B D−→
C D

)
· SC P B

SAP B

))

(1 · SC P B )
= 1 by ratio cancellation

1 × AS
(15)

(
SAPC ·

(−→
B D−→
C D

· SC P B
SAP B

))

(1 · SC P B )
= 1 by multiplication by 1

1 × AS
(16)

(
SAPC ·

(−→
B D−→
C D

· SC P B
SAP B

))

SC P B
= 1 by multiplication by 1

1 × AS
(17)

⎛

⎜⎝SAPC ·

( −→
B D−→
C D

·SC P B

)

SAP B

⎞

⎟⎠

SC P B
= 1 by multiplication of frac-

tions 1 × AS
(18)

(
SAPC ·

( −→
B D−→
C D

·SC P B

))

SAP B

SC P B
= 1 by multiplication of frac-

tions 1 × AS
(19)

(
SAPC ·

(−→
B D−→
C D

· SC P B

))

(SAP B · SC P B )
= 1

by multiple fraction sim-
plification 1 × AS (20)
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(
SAPC ·

(−→
B D−→
C D

· 1
))

(SAP B · 1) = 1 by ratio cancellation
1 × AS

(21)

(
SAPC ·

−→
B D−→
C D

)

(SAP B · 1) = 1 by multiplication by 1
1 × AS

(22)

(
SAPC ·

−→
B D−→
C D

)

SAP B
= 1 by multiplication by 1

1 × AS
(23)

(
SAPC · SB P A

SC P A

)

SAP B
= 1

by Lemma 8 (point
D eliminated)
AML8 = 14

(24)

(
SAPC · SB P A

(−1·SAPC )

)

SAP B
= 1

by Lemma 1
AML1 = 9 (25)

(
SAPC · SB P A

(−1·SAPC )

)

(−1 · SB P A)
= 1

by Lemma 1
AML1 = 9 (26)

(SAPC ·SB P A)
(−1·SAPC )

(−1 · SB P A)
= 1 by multiplication of frac-

tions 1 × AS
(27)

(1·SB P A)
(−1·1)

(−1 · SB P A)
= 1 by ratio cancellation

1 × AS
(28)

SB P A
(−1·1)

(−1 · SB P A)
= 1 by multiplication by 1

1 × AS
(29)

SB P A−1

(−1 · SB P A)
= 1 by multiplication by 1

1 × AS
(30)

(−1 · SB P A)

(−1 · SB P A)
= 1 by fraction with number

denominator 1 × AS
(31)

1 = 1 by ratio cancellation
1 × AS

(32)

Q.E.D

NDG conditions are:

SB P A �= SC P Ai.e.,linesBCand PA are not parallel (construction based assumption)

SAP B �= SC P B i.e., linesACand PB are not parallel (construction based assumption)

SAPC �= SB PC i.e., linesABand PC are not parallel (construction based assumption)

PF B F �= 0i.e., pointsFandBare not identical (conjecture based assumption)
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PDC D �= 0i.e., pointsDandCare not identical (conjecture based assumption)

PE AE �= 0i.e., pointsEandA are not identical (conjecture based assumption)

Number of elimination proof steps: 3

Number of geometric proof steps: 6

Number of algebraic proof steps: 23

Total number of proof steps: 32

Time spent by the prover: 0.001 seconds

Enlarged Proof Traces

TGTP: GEO0021 See Fig. 6.

Fig. 6 Medium-readability—TGTP, GEO0021, the first 146, out of 203, steps of the proof

TGTP: GEO0020 See Fig. 7.
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Fig. 7 Low-readability—TGTP, GEO0020. The first 350, out of 1200, steps of the proof
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