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Abstract 
 
We study different forms of ignorance and their correlations in a bi-modal logical 
language expressing the two modalities of knowledge and belief. In particular, we 
are mainly interested in clarifying which definitions of ignorance and which cir-
cumstances trigger higher-order forms of ignorance, inducing ignorance about ig-
norance and so on. To this aim, three ground conditions concerning knowledge 
and belief are presented, which may be seen as a cause of ignorance and can help 
us to identify the conditions enabling the emergence of higher-order forms of igno-
rance. 
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1. Introduction 

In 1962 Jakko Hintikka published a very influential book for discussions about 
knowledge (and its lack). The title of this seminal book is Knowledge and beliefs: An 
introduction to the logic of the two notions (Hintikka 1962). In this work, Hintikka 
provides a propositional axiomatization of the modal operators K (for knowledge) 
and B (for belief), as well as insights on the meaning of various forms of 
knowledge and lack of knowledge, like, e.g., not knowing whether f (Hintikka 1962: 
3), which is represented by Hintikka as ~Kf Ù ~K~f (Hintikka 1962: 12).1 This 
form of lack of knowledge, which we refer as ignorance whether and will denote in 
the following with I(f), has indeed been widely investigated in several logical 
frameworks focused on ignorance, see, e.g., Fan et al. 2015, Steinsvold 2008, and 
van der Hoek and Lomuscio 2004. 

Such a representation of ignorance might be considered stronger than an-
other classical definition, referred as unknown truth (Fitch 1963). In this alternative 
view, being ignorant of f simply stands for not knowing that f, which is formally 

 
1 We use the symbol Ù for propositional conjunction, ~ for propositional negation, Ú for 
propositional disjunction, and ® for propositional implication. 
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expressed as fÙ~Kf. We will refer to it as ignorance of the fact (or simply, factive 
ignorance), denoted If(f), in order to emphasize that, with respect to I(f), it repre-
sents a factive form of ignorance, satisfying the factivity axiom If(f) ® f, see, e.g., 
Kubyshkina and Petrolo 2021. 

Effects of the (lack of) knowledge of ignorance are investigated both by Fitch 
himself concerning If(f), and recently in the setting of I(f) in Fine 2018. The two 
forms of ignorance are combined together in a disjunctive form of ignorance in 
Fan 2021, and are denoted by the symbol Ñ(f), with the aim of studying their 
correlations. Other logical investigations about ignorance are provided in Fano 
and Graziani 2021, Goranko 2021, Halpern 1997, and Meyer and van der Hoek 
1995. 

With respect to the scenario surveyed above, Fine's work—very recently 
taken up by Fan and in Aldini et al. 2021—provides an exemplary taxonomy of 
various logical forms of ignorance expressed in terms of the K operator, of which 
we summarize the main relationships in Fig. 1, commented as follows. Basically, 
in the figure we can distinguish between first-order forms and higher-order forms 
of ignorance. In this paper, ignorance will always be indicated with a specific or-
der, which denotes the depth of the ignoring phenomenon. First-order ignorance 
refers to the basic situation of being ignorant of something; second-order igno-
rance is about being ignorant of being ignorant, and so forth. As mentioned above, 
Fan's ignorance Ñ(f) is the disjunction of I(f) and If(f), which are the two most 
prominent first-order definitions of Fig. 1. Factive ignorance triggers a loop of igno-
rance, as suggested by If(f) ® ~ K (If(f)), which is a result obtained in Fitch 1963. 
The main result given in Fine 2018 concerns the properties of second-order igno-
rance in the case of I(f), which induces both first-order ignorance and third-order 
ignorance, thus triggering the loop towards higher orders. Moreover, Fine shows 
an alternative characterization of second-order ignorance whether, called Rumsfeld 
ignorance, which implies lack of knowledge on someone's ignorance whether f, 
IR(f) := I(f) Ù ~ K(I(f)). This characterization is analogous to that of factive igno-
rance and captures the laymen interpretation of second-order ignorance. Rumsfeld 
ignorance states that someone is ignorant whether a specific fact holds without 
knowing to be so. As we will show later in the paper, given a suitable logical 
framework, Rumsfeld ignorance and second-order ignorance are equivalent. 

An important achievement of our study is revisiting the forms of ignorance 
of Fig. 1 in a unique logical framework, by adding two novel contributions to such 
a picture: 

(1) the study of the relation between I(f) and If(f) and their common roots; 
(2) the study of conditions that trigger/block the loop of ignorance starting 

from I(f). 

The first point is important especially if we are able to identify ground conditions 
at the base of the notion of ignorance. The second point is particularly interesting 
as both factive ignorance and Rumsfeld ignorance enable higher orders of ignorance, 
while I(f) does not, in principle. Moreover, Fine (2018) proved that once second-
order ignorance is present, all higher-order levels of ignorance collapse, generat-
ing a so-called black hole of ignorance. 

The formal framework we employ for our studies is a bi-modal logical lan-
guage including the operators K and B. In this setting, we will propose three 
ground conditions on own belief and knowledge, which are related to I(f) and 
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If(f) and will help us to interpret the relation between the two forms of ignorance, 
thus achieving our first goal. On the other hand, these conditions will allow us to 
characterize also the passage from first-order ignorance whether to second-order ig-
norance whether, thus achieving our second goal. 

The structure of the paper is organized as follows. In Section 2, an introduc-
tion to the logic of knowledge and belief is provided in which we specify the axi-
oms and rules that we employ in the rest of the paper. In Section 3, we present 
the three ground conditions that are closely connected to factive ignorance and ig-
norance whether. Such conditions will help us to provide insights about the corre-
lation between the two forms of ignorance and results about possible ways igno-
rance can emerge. In Section 4, we investigate the relationship between the vari-
ous orders of ignorance and how they can emerge and propagate. Finally, in Sec-
tion 5 concluding remarks follow. 

This paper is a revised version and extends a previous paper by Aldini et al. 
2021, which focused only on ignorance whether. Additional material concerns the 
discussion on the ignorance taxonomy and on If, and novel technical results about 
the three ground conditions (Section 3), If(f) (Section 3.2) and its relation with 
I(f) (Section 3.3), and the hierarchies of higher-orders of ignorance (Section 4.4).  

 
The proofs of the new results are in the Appendix. 

 
2. Logic for Knowledge and Belief 

The notions of knowledge and belief that we are going to formalize are interpreted 
in the language of propositional modal logic. We will give our presentation by 
abstracting as much as possible from the aspects related to semantics. Such an 
abstraction will allow us to generalize our results, which, as a side effect, will be 
easily understood by various communities interested in the topic of ignorance. 

Definition 1. 
Given a countable set At of atomic propositions, the bi-modal logical language 
𝔏 is defined by the set of all formulas generated by the grammar: 

f := p | ~f | f Ù f | K(f) | B(f) with p in At 
All the other Boolean connectives are defined in the standard way. The main mo-
dalities of the language are K and B, where the knowledge formula K(f) should be 
read as “f is known” and the belief formula B(f) should be read as “f is believed”. 
Ignorance whether (denoted by I) is defined as follows: I(f):= ~K(f)Ù~K(~f). Fac-
tive ignorance (denoted by If) is defined as follows: If(f):= fÙ~K(f). When clear 
from the context, I(f) and If(f) will be simply called ignorance formulas. 
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Moreover, it will be said that a formula f is a first-order ignorance formula, if 
there is only one ignorance operator applied to it, the simplest case being, e.g., 
I(p). Analogously, a formula f is a second-order ignorance formula, if there are at 
least, and no more than, two nested instances of ignorance operators applied to 
f. A simple case is, e.g., I(I(p)). Higher-order instances of ignorance follow simi-
larly. 

Some classical properties of the two notions of knowledge and belief will be 
assumed: 

Definition 2. 
The axioms of knowledge in 𝔏 are: 
K: K(f®y)®(K(f)®K(y)); 
T: K(f)®f; 
4: K(f)®K(K(f)). 
The axioms of belief in 𝔏 are: 
B: B(f®y)®(B(f)®B(y)); 
D: ~(B(f)ÙB(~f)). 
The interaction axiom of knowledge and belief in 𝔏 is: 
Int1: K(f)®B(f). 

As far as the operator K is concerned, we first assume that it distributes over 
implications (logical consequence), usually termed axiom K. Then, we assume 
also that knowledge is factual (termed axiom T) and positively introspective 
(termed axiom 4). The factuality (or truthfulness) of knowledge is straightforward: 
this comes mainly from philosophical reflections on the notion of knowledge, 
which is taken to be a rigorous cognitive phenomenon strongly tied with truth, 
i.e., only true things might be known. In fact, the strength of this axiom is what 
distinguishes proper knowledge from simple belief. Indeed, belief might be false, 
but knowledge never is. The positive introspection (knowing something is known) 
comes from the assumption that agents have a privileged access to their cognitive 
states. Note that assuming those properties defines knowledge in an analogous 
way to the box operator in S4 systems of modal logic (Rendsvig and Symons 
2019). 

For the notion of belief, the operator B distributes over implications (termed 
axiom B) as in the case of knowledge. In addition, we also assume that beliefs are 
consistent (termed axiom D). Consistency of belief means that someone cannot 
believe that a fact is both true and false at the same time. Note that assuming the 
closure under logical consequence and consistency defines belief in an analogous 
way to the box operator in KD systems of modal logic (ibid.). 

Finally, it is assumed that the two notions interact as follows: knowledge 
implies belief (termed axiom Int1). This interaction axiom is commonly derived 
directly from the analysis of knowledge given in Plato's Theatetus: in such an anal-
ysis, knowledge is taken to be justified true belief. Unfortunately, the justification 
component is often neglected in formal frameworks, even though some attempts 
have been made to insert it, see, e.g., Artemov and Fitting 2020. The truth com-
ponent is formalized through axiom T, while the belief component is given ex-
actly by the interaction axiom Int1. Such interaction axiom is studied by various 
authors—see, e.g., Meyer and van der Hoek 1995—and by itself, it is known that 
it does not cause any consistency issues. Since this is the only interaction axiom 
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we assume in our setting, we are guaranteed that the system we are working with 
is indeed consistent. 

These assumptions mean that our bi-modal logic is composed of an S4 sys-
tem for knowledge, plus a KD system for belief and the only interaction axiom 
Int1. 

In addition to the axioms discussed above, we consider also all classical prop-
ositional and modal deduction rules that are assumed in the systems we rely both 
on Meyer and van der Hoek 1995 and van Ditmarsch et al. 2015. 

Another property that will be employed to study the effects of ignorance, but 
will not be assumed as an axiom, is that of negative introspection, often known as 
axiom 5 of epistemic logic. Negative introspection is similar in spirit to positive 
introspection: both axioms attribute to the agents a form of transparency towards 
their cognition. As said above, positive introspection allows an agent to know 
everything s/he knows; on the other hand, negative introspection states that an 
agent always knows what s/he does not know, i.e., ~K(f)®K(~K(f)). This prop-
erty, while often assumed in epistemic logics employed in computer science (see, 
e.g., Halpern et al. 1995), might be too demanding, since it would imply that the 
agent is aware of all the facts s/he does not know.  

Later on, in Section 4, we will show that assuming the presence (or lack) of 
negative introspection has a deep impact on the hierarchies of ignorance. 

Now that all the formal details have been given, it is possible to move on to 
the reflections concerning the interplay among knowledge, belief, and ignorance. 

 
3. Misbelieving, Doubting, and Being Agnostic 

Understanding the origins of ignorance is not easy. The main issue is that igno-
rance is a negative fact, i.e., it is a lack of knowledge, and, therefore, it is difficult 
to identify a specific moment in time when ignorance is generated; it is either there 
the whole time or it is generated by an act of forgetting something. Therefore, this 
difficulty in identifying a precise moment in which ignorance is produced, makes 
it hard for researchers to focus on specific acts or behaviors that can improve our 
understanding of the phenomenon. For this reason, the formal research on the 
notion of ignorance helps to understand what are the constituents of such notion 
and thus which other phenomena are responsible for its emergence and/or exist-
ence. Specifically, three different, alternative conditions2 will be explored (see, 
also, Aldini et al. 2021): misbelieving, doubting, and agnosticism. 

Intuitively, we say that an agent is subject to misbelieving with respect to f 
whenever the agent believes that f holds, while such fact does not actually hold.3 

Definition 3. 
Misbelieving (denoted by M) is defined as: 

M(f) := B(f)Ù~f 

As stated by the following proposition, the agent cannot know that s/he is 
subject to misbelieving with respect to f (⊢𝔏 expresses that a formula holds in 𝔏). 

 
2 With the term “condition” we refer to a cognitive attitude an agent might be subject to. 
Those will be equivalent to logical formulas that explicitly indicate what is the state of 
affair for the agent described. 
3 See Fano and Graziani 2021 for a discussion about different aspects that relate misbeliev-
ing and ignoring. 
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Proposition 1. 
⊢𝔏 ~K(M(f)). 

Intuitively, we say that an agent is subject to doubting with respect to f when-
ever the agent believes f, which actually holds, but s/he does not know that such 
fact truly holds, thus raising the doubt. 

Definition 4. 
Doubting (denoted by D) is defined as: 

D(f) := B(f)ÙfÙ~K(f)4 

As stated by the following proposition, the agent cannot know that s/he is 
subject to doubting with respect to f. 

Proposition 2. 
⊢𝔏 ~K(D(f)). 

As shown above, in general an agent is not in a position to know if s/he is 
misbelieving or s/he is doubting. Interestingly, if the agent is aware of the pos-
sessed belief about f and of the lack of knowledge about f, then s/he knows to be 
subject to either misbelieving or doubting, even though s/he cannot say which 
one. Formally, the hypothesis above, called Socratic, is expressed by the formula: 

S(f) := K(B(f)) Ù K(~ K(f)). 

Then, the intuition above is formalized by the following result. 
Proposition 3. 
⊢𝔏 S(f)®K(M(f)ÚD(f)) 

Finally, intuitively, we say that an agent is subject to agnosticism with respect 
to f whenever the agent neither believes that f is true nor believes that f is false. 

Definition 5. 
Agnosticism (denoted by A) is defined as: 
A(f) := ~B(f)Ù~B(~f) 

Notice that A(~f) := A(f) by definition, and that, differently from the previ-
ous conditions, agnosticism does not assume anything about the truth of f. More-
over, being agnostic is not in contradiction with the rule of necessitation. 

In fact, by this rule and axiom Int1, the agent believes the tautology stating 
that f is either true or false. Simply put, the agent does not have any opinion 
leading to prefer one case over the other. 

 
3.1 Relating Ignorance Whether and the Three Conditions 

Quite reasonably from an intuitive standpoint, each of the three conditions imply 
first-order ignorance whether (for the complete proofs, see Aldini et al. 2021). 

The formal statements referring to those facts are the following. 
Proposition 4. 
⊢𝔏 M(f)®I(f) and ⊢𝔏 M(~f)®I(f) 

 
4 Note that this is equivalent to stating that the agent believes f, but is factively ignorant 
that f, i.e., D(f) := B(f)ÙIf(f). Moreover, it should be noted that following the traditional 
definition of knowledge as justified true belief, someone who is doubting would be equiv-
alent to someone who has a true belief but lacks justification. For a full exploration of this 
connection, see Tagliaferri 2023. 
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Proposition 5. 
⊢𝔏 D(f)®I(f) and ⊢𝔏 D(~f)®I(f) 
Proposition 6. 
⊢𝔏 A(f)®I(f) 

Interestingly, all those propositions also hold in systems weaker than the one 
presented in this paper. This is due to the fact that for their proofs, some of the 
axioms assumed in this paper are not necessary. In particular, for Proposition 4, 
axiom 4 and axiom B are not needed. For Proposition 5, only axiom T is required. 
Finally, for Proposition 6, only Int1 is required. 

In addition to those proofs, it is also possible to prove that ignorance whether 
implies a disjunction of the three conditions, thus connecting the phenomena. 

Theorem 1. 
⊢𝔏 I(f)®(M(f)ÚM(~f)ÚD(f)ÚD(~f)ÚA(f)) 

 
3.2 Relating Factive Ignorance and the Three Conditions 

Similarly as in the case of I(f) we have that both misbelieving on ~f and doubting 
on f imply being factively ignorant of f. 

Proposition 7. 
⊢𝔏 M(~f)®If(f) and D(f)®If(f) 

Notice that we have to take care of the factivity of If(f), so that the two re-
maining cases M(f) and D(~f) turn out to be related to If(~f) by an analogous 
proposition. 

Unfortunately, being agnostic is not sufficient to establish factive ignorance of 
f, but it is sufficient to state that the agent is factively ignorant of either f or ~f. 

Proposition 8. 
⊢𝔏 A(f)®(If(f)ÚIf(~f)) 

As in the case of I(f),factive ignorance implies the same disjunction combining 
the three ground conditions stated in Theorem 1.5 As a consequence, by the fac-
tivity of If(f), the disjunction of Theorem 1 can be simplified to state that 
If(f)®M(~f)ÚD(f)ÚA(f), since both M(f) and D(~f) contradict the hypothesis of 
the truth of f. 

 
3.3 Relating Ignorance Whether and Factive Ignorance 

In Fan 2021, ignorance whether and factive ignorance are considered to be two first-
order forms of ignorance of which it is interesting to study a weak combination 
through disjunction. 

Formally, in our language Fan (2021)’s operator is expressed as follows: 
Definition 6. 
Disjunctive ignorance (denoted by Ñ) is defined as: 
Ñ(f) := If(f)ÚI(f) 

 
5 We postpone the proof as a corollary of a result demonstrated in the next section stating 
that If(f) implies I(f). 
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Such an operator satisfies interesting properties, especially related to positive 
and negative introspection. Here, however, we take a step back and show that If 
and I are actually tied together. In fact, the former implies the latter. 

Theorem 2. 
⊢𝔏 If(f)®I(f) 

As we mentioned, differently from I(f), we have that If(f) trivially satisfies 
the factivity axiom If(f)®f. So, enforcing also the factivity of I(f), which thus 
would be immediately reduced to If(f), is a trivial way of collapsing I(f) and If(f). 
This is also emphasized by a result shown in the proof of Proposition 8. 

Finally, as a corollary of Theorem 1 and Theorem 2, we have that If(f) im-
plies the disjunction of the three ground conditions expressed in Theorem 1. 

 
4. Hierarchies of Ignorance 

The taxonomy reported in Figure 1 emphasizes that the passage from first-order 
ignorance to second-order ignorance is critical. In fact, the peculiarity of second-
order ignorance suggests that such a lack of knowledge is not mitigated by moving 
toward higher-orders of ignorance. Even more interestingly, under some forms of 
ignorance, this black-hole of higher-order levels of ignorance starts from the very 
beginning of first-order ignorance. 

In the following, we recall some results concerning the hierarchies of igno-
rance and we fill the gap concerning the conditions that trigger/block the passage 
from first-order ignorance to second-order ignorance in the case of the operator I. 

 
4.1 The Loop of Factive Ignorance 

In Fitch 1963, it is demonstrated that ~K(If(f)) holds. Here we recast this result 
and its consequences in our formal system, by showing that If(f)® If (If(f)).6 No-
tice that the major requirements of Fitch's proof are that the K operator is closed 
under conjunction elimination and that factivity holds (all requirements that are 
satisfied in S4, which is the system we are assuming for knowledge in this paper. 

Theorem 3. 
⊢𝔏 If(f)® If(If(f)) 

We observe again that, by definition, we have that If(If(f)) implies If(f). 
Hence, we conclude that all the orders of factive ignorance collapse and that fac-
tive ignorance, since the first-order, triggers a loop without remedy. 

 
4.2 The Loop of Second-Order Ignorance Whether 

Some relations concerning I(I(f)) have been well explored in Fine 2018. In par-
ticular, Fine shows that second-order ignorance and higher-orders of ignorance 
are tightly tied together in S4 systems for knowledge. Once second-order igno-
rance is present, an agent is doomed to a collapse of higher-orders of ignorance, 
i.e., from second-order ignorance on, all order would become equivalent. 

To prove such a result, Fine presents an alternative characterization of sec-
ond-order ignorance, termed Rumsfeld ignorance. Intuitively, an agent is Rumsfeld 
ignorant when s/he is first-order ignorant of f and does not know it. 

 
6 An elegant proof of this result is given in Fan 2022 that relies on neighborhood semantics. 
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Definition 7. 
Rumsfeld ignorance (denoted by IR) is defined as follows: 
IR(f) := I(f)Ù~K(I(f)) 
where I(f) is a first-order ignorance formula. 

We point out that Rumsfeld ignorance can be represented by combining If and 
I, because by definition we have that IR(f) := If (I(f)). 

Then, we can rephrase the finding of Fine 2018 in our formal system as follows: 

• from second-order to first-order: ⊢𝔏 I(I(f))®I(f). 
• from second-order to Rumsfeld: ⊢𝔏 I(I(f))®IR(f). 
• from Rumsfeld to second-order: ⊢𝔏 IR(f)®I(I(f)). 
• lack of knowledge for Rumsfeld: ⊢𝔏 ~K(IR(f)). 

From these results, the lack of knowledge for second-order ignorance imme-
diately derives, i.e., ⊢𝔏I(I(f))®~K(I(I(f))), and, finally, the following theorem 
can be demonstrated. 

Theorem 4. 
In S4 second-order ignorance implies higher-orders of ignorance. Specifically, 
second-order ignorance implies third-order ignorance. Third-order ignorance 
implies fourth-order ignorance and so forth. 
Formally, ⊢𝔏In (f)®In+1(f), with n≥2 

What Theorem 4 shows is that there is a deep connection between second-
order ignorance and higher-order levels of ignorance. In fact, as soon as an agent 
is second-order ignorant, there is no possibility that s/he escapes the collapse of 
the various orders of ignorance on her/his own. Hence, it is evident why deep 
investigations on the relation between first-order ignorance and second-order ig-
norance are required. Once it is established what causes second-order ignorance 
in the presence of first-order ignorance, it might be possible to stop agents from 
having their levels of ignorance collapse one onto the other. 

 
4.3 Relating Introspection and Hierarchies of Ignorance Whether 

As shown in previous sections, once an agent is second-order ignorant, s/he is 
also subject to higher-orders of ignorance, which would cause the agent to not 
even try to make the appropriate steps to eliminate her/his ignorance. Moreover, 
it is common to have situations in which agents are (first-order) ignorant about 
specific facts, i.e., we cannot expect everybody to know everything. This situation 
suggests that it is important to avoid possible passages from first-order ignorance 
to second-order ignorance, so that the collapse of higher-order levels of ignorance 
is prevented, and agents are always in a position to recognize their ignorance and 
work towards solutions to it. Interestingly, a property of knowledge commonly 
studied in epistemic logic (i.e., negative introspection) is exactly what is needed 
to prevent this passage. Negative introspection is an incredibly powerful axiom 
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that can block the passage from first-order ignorance to second-order ignorance.7 
This is exactly the meaning of the theorem that follows.8 

Theorem 5. 
⊢𝔏"𝟓 ~I(I(f)). 

It can therefore be safely claimed that negative introspection is an exception-
ally effective measure to avoid the collapse of higher levels of ignorance. 

Furthermore, it is possible to show that a direct negation of negative intro-
spection is exactly what produces the passage from first-order ignorance to sec-
ond-order ignorance, i.e., not having negative introspection is what causes the 
collapse of higher-orders of ignorance, as stated by the following theorem: 

Theorem 6. 
⊢𝔏 I(f)Ù(~K(f)Ù~K(~K(f))) ® I(I(f)). 

The theorems above seem to show a clear picture: if we include the axiom of 
negative introspection to our system, we avoid higher-order levels of ignorance al-
together; if we explicitly negate the axiom in our system, we are doomed to the 
collapse of all levels of ignorance to first-order ignorance. Those results seem to 
suggest that if we wish to avoid higher-order levels of ignorance we would simply 
need to include negative introspection as an axiom to our formal system. While this 
is true, the requirements placed on an agent in order to have negative introspection 
might be too demanding. We cannot expect all agents to be fully introspective and 
always know when they are ignoring something; while desirable and effective, this 
is unrealistic. Thus, what is needed, is something that avoids the passage from first-
order ignorance to second-order ignorance, but that it is not too demanding to be-
come unrealistic. In short, we need something that stays in the middle between hav-
ing negative introspection and explicitly negating it. The next sections of this paper 
will explore potential candidates that could achieve this desirable result. 

 
4.4 Relating Introspection and the Three Conditions 

In the previous section, we have shown that negative introspection bridges basic 
and higher-order levels of ignorance in the case of I(f). Hence, it is worth studying 
whether negative introspection can be expressed through more specific conditions 
tailored to the cases of misbelieving, doubting, and agnosticism. Along the same 
path followed for the study of first-order ignorance, we will identify conditions 
that, combined with the three conditions, imply negative introspection (resp., its 
negation), thus blocking (resp., triggering) the passage from first-order ignorance 
to second-order ignorance. Notice that when trying to prove that negative intro-
spection follows from a given condition, we have to prove it generally, while, 
when trying to prove that the negation of negative introspection follows from a 
given condition, we only need to show an instance of such negation of negative 

 
7 This relationship between second-order ignorance and the axiom 5 of modal logic was 
already noticed by Fine 2018. In fact, Fine observes that Rumsfeld ignorance, which is tied 
with second-order ignorance, could be considered such a counter-example. 
8 See Aldini et al. 2021 for complete proofs of all theorems presented in this section. Notice, 
moreover, that since our formal system coincides with S4 for the representation of 
knowledge, the following theorem would hold also in S5, i.e., our starting system plus 
negative introspection. 
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introspection. This is necessary if we wish to tie those results to potential applica-
tions of the Theorems 5 and 6. 

We start by considering the relation with agnosticism. The following result 
shows that knowing to be agnostic is sufficient to imply negative introspection 
and thus to block second-order ignorance. 

Proposition 9. 
⊢𝔏 K(A(f))®(~K(f)®K(~K(f)))Ù(~K(~f)®K(~K(~f))) 

Intuitively, while the negative introspection condition, per se, can be consid-
ered too strict, being agnostic and knowing to be agnostic is a much more reason-
able condition. Essentially, by the proposition above, we conclude that the latter 
causes first-order ignorance but inhibits second-order ignorance, thus avoiding the 
ignorance loop. 

As an orthogonal result with respect to that expressed above, we now present 
requirements that, in combination with misbelieving/doubting, represent suffi-
cient conditions for negative introspection. As we will show, these requirements 
are a dual version of the knowledge of agnosticism. Hence, in combination with 
misbelieving/doubting, they block the passage from first-order ignorance to sec-
ond-order ignorance. 

Proposition 10. 
⊢𝔏 (M(f)ÚD(f))ÙK(B(f))ÙK(~K(f))® 
®(~K(f)®K(~K(f)))Ù(~K(~f)®K(~K(~f))) 

We now comment on the interpretation of the requirement K(B(f))ÙK(~K(f)). 
The first conjunct expresses the condition of knowing to believe f, i.e., knowing 
to be under either misbelieving or doubting, since one of the two conditions is 
assumed. In fact, we recall that both conditions assume B(f) and that, by Propo-
sitions 1 and 2, the agent is not aware of which condition s/he is subject to. Hence, 
K(B(f)) is analogous to the knowledge of agnosticism used in Proposition 9. 

The second conjunct, K(~K(f)), combined with the previous one, defines the 
Socratic formula S(f) (hence let us use the expression Socratic agent). The formula 
K(~K(f)) is often interpreted in the literature with an alethic reading, where ~K(f) 
is read as it is possible to know ~f. In such reading, the formula K(~K(f)) can be 
interpreted to stand for the cognitive attitude of knowing that it is possible to know 
~f, i.e., knowing that ~f is a possibility. It therefore becomes reasonable that a 
Socratic agent avoids second-order ignorance, since such agent would have (and 
knowing it) a certain belief, i.e., B(f), but would be open to the possibility of 
knowing the opposite of what s/he believes, which is represented by K(~K(f)). 

By Proposition 10 and Theorem 5, we derive that the Socratic agent is first-
order ignorant but not second-order ignorant, thus avoiding the ignorance loop. 
Therefore, assuming to know that something is believed, but remaining open to 
the possibility of knowing the opposite of that something, which are quite reason-
able conditions in the presence of misbelieving or doubting, is sufficient to block 
the loop of ignorance. 

While the previous result shows conditions inhibiting the ignorance loop in 
case of misbelieving/doubting, we now examine conditions enabling the igno-
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rance loop for such conditions. We start by presenting a requirement that, com-
bined with misbelieving, imply the negation of negative introspection and, there-
fore, the loop of ignorance.9 

Proposition 11. 
⊢𝔏 (M(f)Ù(B(f)®B(K(f))))®(~K(f)Ù~K(~K(f))) 

The requirement B(f)®B(K(f)) represents a very strong condition about an 
agent's own beliefs and, similarly to Int1, is one of the interaction principles that 
has received attention in the literature (Rendsvig and Symons 2019). In particular, 
if we decided to assume it as an axiom together with negative introspection, in 
our system the two notions of knowledge and belief would collapse (Rendsvig and 
Symons 2019), thus making inconsistent the theory we presented about the three 
conditions inducing ignorance. Anyway, notice that Proposition 11 describes a 
scenario in which B(f)®B(K(f)) negates negative introspection. 

Just as in the case of misbelieving, we now consider the case of doubting. In 
particular, even in such a case, we obtain the same result inducing the negation 
of negative introspection and, therefore, the loop of ignorance. 

Proposition 12. 
⊢𝔏 (D(f)Ù(B(f)®B(K(f))))®(~K(f)Ù~K(~K(f))) 

 
5. Conclusion 

In this paper, we investigated some properties and correlations of two forms of 
ignorance emerged in the literature, which helped us to provide novel insights in 
the taxonomy of Figure 1. This was done in the formal framework of a standard 
S4 system for knowledge with the addition of a standard KD system for belief, 
which we tied together with the standard interaction axiom Int1. 

On one hand, we explored three ground conditions that contribute to the 
emergence of ignorance. Together, those conditions are both sufficient and nec-
essary for ignorance whether to emerge, while they are necessary for factive ignorance.  

On the other hand, we clarified the conditions that make the loop of higher-
order levels of ignorance (un)avoidable. This is particularly meaningful, as it 
should be noticed that a system that is unaware of being ignorant, will not be in a 
position to question such ignorance and, thus, will be unable to produce plans to 
achieve extra information and fill the gap. 

An important future work starting from the theorems proved in this paper 
will be the study of the form of ignorance that appears in the consequences of 
Gödel’s theorems (Alexander 2014). Alexander (2014) proved that a machine can 
know its own code exactly but cannot know at the same time its correctness (de-
spite actually being sound). Even though in Aldini et al. 2016 and Aldini et al. 
2015 a machine is defined that for (at least) a specific case, knows its own code, 
and knows to be sound, the ignorance present in Alexander's disjunction still 

 
9 Differently from the previous propositions, in this case we do not need to prove the nega-
tion of negative introspection for both the formula and its negation, since having one por-
tion of it is sufficient to generate second-order ignorance loops. 
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needs to be deeply explored. So we also expect from this work a contribution to 
what we would like to dub ignoring machines.10 
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Appendix

Proof of results

Proof. [Proposition 1.]
By contradiction:

(1) K(B(ϕ) ∧ ¬ϕ) by contradictory hypothesis
(2) K(B(ϕ)) ∧K(¬ϕ) by K -distribution over ∧ from (1)
(3) K(B(ϕ)) by ∧-elimination from (2)
(4) B(ϕ) by axiom T from (3)
(5) K(¬ϕ) by ∧-elimination from (2)
(6) B(¬ϕ) by axiom Int1 from (5)
(7) B(ϕ) ∧B(¬ϕ) by ∧-introduction from (4) and (6)
(8) ¬(B(ϕ) ∧B(¬ϕ)) axiom D
(9) Contradiction from (7) and (8)

Proof. [Proposition 2.]
By contradiction:

(1) K(B(ϕ) ∧ ϕ ∧ ¬K(ϕ)) by contradictory hypothesis
(2) K(B(ϕ)) ∧K(ϕ) ∧K(¬K(ϕ)) by K -distribution over ∧ from (1)
(3) K(ϕ) by ∧-elimination from (2)
(4) K(¬K(ϕ)) by ∧-elimination from (2)
(5) ¬K(ϕ) by axiom T from (4)
(6) Contradiction from (3) and (5)

Proof. [Proposition 3.]
As follows:

(1) K(B(ϕ)) by ∧-elimination from assumption
(2) K(¬K(ϕ)) by ∧-elimination from assumption
(3) B(ϕ) by axiom T from (1)
(4) B(ϕ) ∧K(¬K(ϕ)) by ∧-introduction from (2) and (3)
(5) ¬K(ϕ) by axiom T from (2)
(6) B(ϕ) ∧ ¬K(ϕ) by ∧-introduction from (3) and (5)
(7) ϕ ∨ ¬ϕ propositional tautology
(8) (B(ϕ) ∧ ¬K(ϕ)) ∧ (ϕ ∨ ¬ϕ) by ∧-introduction from (6) and (7)



(9) (B(ϕ) ∧ ¬K(ϕ) ∧ ¬ϕ)∨
(B(ϕ) ∧ ¬K(ϕ) ∧ ϕ) by ∧-distribution over ∨ from (8)

(10) (B(ϕ) ∧ ¬K(ϕ) ∧ ¬ϕ) → (B(ϕ) ∧ ¬ϕ) propositional tautology
(11) (B(ϕ) ∧ ¬ϕ) ∨ (B(ϕ) ∧ ¬K(ϕ) ∧ ϕ) by substitution from (9) and (10)
(12) (B(ϕ) ∧K(¬K(ϕ))) →

((B(ϕ) ∧ ¬ϕ) ∨ (B(ϕ) ∧ ¬K(ϕ) ∧ ϕ)) by →-introduction from (4) and (11)
(13) K(K(¬K(ϕ))) by axiom 4 from (2)
(14) K(B(ϕ) ∧K(¬K(ϕ))) by K -distribution over ∧

from (1) and (13)
(15) K((B(ϕ) ∧K(¬K(ϕ))) →

((B(ϕ) ∧ ¬ϕ) ∨ (B(ϕ) ∧ ¬K(ϕ) ∧ ϕ))) by necessitation from (12)
(16) K((B(ϕ) ∧ ¬ϕ) ∨ (B(ϕ) ∧ ϕ ∧ ¬K(ϕ)) by axiom K from (14) and (15)

Proof. [Proposition 7.]
The result about doubting holds trivially by definition. Here we show the

result about misbelieving:

(1) ϕ by ∧-elimination from assumption
(2) B(¬ϕ) by ∧-elimination from assumption
(3) ¬B(ϕ) by axiom D from (2)
(4) K(ϕ) → B(ϕ) axiom Int1
(5) ¬B(ϕ) → ¬K(ϕ) from (4) by contraposition
(6) ¬K(ϕ) from (3) and (5) by Modus Ponens
(7) ϕ ∧ ¬K(ϕ) by ∧-introduction from (1) and (6)

Proof. [Proposition 8.]
By Prop. 6, we have that A(ϕ) implies ¬K(ϕ) ∧ ¬K(¬ϕ), which in turn

implies (¬K(ϕ)∧¬K(¬ϕ))∧(ϕ∨¬ϕ) by propositional tautology. By distributivity,
we derive (ϕ ∧ ¬K(ϕ) ∧ ¬K(¬ϕ)) ∨ (¬ϕ ∧ ¬K(ϕ) ∧ ¬K(¬ϕ)), from which the
result follows immediately.

Proof. [Theorem 2.]
As follows:

(1) ϕ by ∧-elimination from assumption
(2) ¬K(ϕ) by ∧-elimination from assumption
(3) K(¬ϕ) → ¬ϕ Axiom T
(4) ϕ → ¬K(¬ϕ) from (3) by contraposition
(5) ¬K(¬ϕ) from (1) and (4) by Modus Ponens
(6) ¬K(ϕ) ∧ ¬K(¬ϕ) from (2) and (5) by ∧-introduction
(7) I(ϕ) by definition of (6)



Proof. [Theorem 3.]
Observed that If (If (ϕ)) corresponds by definition to If (ϕ)∧¬K(If (ϕ)), the

proof will be given by contradiction, by assuming both If (ϕ) and K(If (ϕ)):

(1) K(If (ϕ)) Assumption
(2) K(ϕ ∧ ¬K(ϕ)) by definition of (1)
(3) K(ϕ ∧ ¬K(ϕ)) → (ϕ ∧ ¬K(ϕ)) Axiom T
(4) ϕ ∧ ¬K(ϕ) from (2) and (3) by Modus Ponens
(5) ¬K(ϕ) from (4) by ∧-elimination
(6) K((ϕ ∧ ¬K(ϕ)) → ϕ) →

(K(ϕ ∧ ¬K(ϕ)) → K(ϕ)) Axiom K
(7) K(¬ϕ ∨K(ϕ) ∨ ϕ) →

(K(ϕ ∧ ¬K(ϕ)) → K(ϕ)) from (6) by substitution and DeMorgan
(8) (¬ϕ ∨ ϕ) propositional tautology
(9) (¬ϕ ∨K(ϕ) ∨ ϕ) from (8) by ∨-introduction
(10) K(¬ϕ ∨K(ϕ) ∨ ϕ) from (9) by necessitation
(11) K(ϕ ∧ ¬K(ϕ)) → K(ϕ) from (7) and (10) by Modus Ponens
(12) ¬K(ϕ) → ¬K(ϕ ∧ ¬K(ϕ)) from (11) by contraposition
(13) ¬K(ϕ ∧ ¬K(ϕ)) from (5) and (12) by Modus Ponens
(11) Contradiction from (2) and (13)

Proof. [Proposition 9.]
By axiom T , the hypothesis K(A(ϕ)) implies A(ϕ), which, by Prop. 6,

implies I(ϕ), and, in particular, ¬K(ϕ) and ¬K(¬ϕ) (the two antecedents on
the conditionals that comprise the consequent of Prop. 9). What we must show
is that, starting with such hypothesis, both K(¬K(ϕ)) (the consequent of the
first conjunct of the consequent of Prop. 9) and K(¬K(¬ϕ)) (the consequent of
the second conjunct of the consequent of Prop. 9) hold.

This is done as follows:

(1) K(¬B(ϕ) ∧ ¬B(¬ϕ)) Assumption
(2) K(¬B(ϕ)) ∧K(¬B(¬ϕ)) from (1) by K-distribution over ∧
(3) K(¬B(ϕ)) from (2) by ∧-elimination
(4) K(¬B(¬ϕ)) from (2) by ∧-elimination
(5) K(ϕ) → B(ϕ) Axiom Int1
(6) ¬B(ϕ) → ¬K(ϕ) from (5) by contraposition
(7) K(¬ϕ) → B(¬ϕ) Axiom Int1
(8) ¬B(¬ϕ) → ¬K(¬ϕ) from (7) by contraposition
(9) K(¬B(ϕ) → ¬K(ϕ)) from (6) by necessitation
(10) K(¬B(¬ϕ) → ¬K(¬ϕ)) from (8) by necessitation
(11) K(¬B(ϕ) → ¬K(ϕ)) →

(K(¬B(ϕ)) → K(¬K(ϕ))) Axiom K
(12) K(¬B(¬ϕ) → ¬K(¬ϕ)) →

(K(¬B(¬ϕ)) → K(¬K(¬ϕ))) Axiom K
(13) (K(¬B(ϕ)) → K(¬K(ϕ))) from (9) and (11) by Modus Ponens
(14) K(¬K(ϕ)) from (3) and (13) by Modus Ponens



(15) (K(¬B(¬ϕ)) → K(¬K(¬ϕ))) from (10) and (12) by Modus Ponens
(16) K(¬K(¬ϕ)) from (4) and (15) by Modus Ponens

Proof. [Proposition 10.]
First, the hypothesis (M(ϕ) ∨D(ϕ)) implies I(ϕ) by Prop. 4 and Prop. 5.

Hence, we have both ¬K(ϕ) and ¬K(¬ϕ), which are the two antecedents on the
conditionals that comprise the consequent of Prop. 10. Hence, it is sufficient to
show that the conjunction K(B(ϕ)) ∧K(¬K(ϕ)) implies both K(¬K(ϕ)) and
K(¬K(¬ϕ)) in order to prove the proposition:

(1) K(B(ϕ)) ∧K(¬K(ϕ)) Assumption
(2) B(ϕ) → ¬B(¬ϕ) Axiom D
(3) K(B(ϕ) → ¬B(¬ϕ)) from (2) by necessitation
(4) K(B(ϕ) → ¬B(¬ϕ)) →

(K(B(ϕ)) → K(¬B(¬ϕ))) Axiom K
(5) K(B(ϕ)) from (1) by ∧-elimination
(6) (K(B(ϕ)) → K(¬B(¬ϕ))) from (3) and (4) by Modus Ponens
(7) K(¬B(¬ϕ)) from (5) and (6) by Modus Ponens
(8) K(¬ϕ) → B(¬ϕ) Axiom Int1
(9) ¬B(¬ϕ) → ¬K(¬ϕ) from (8) by contraposition
(10) K(¬B(¬ϕ) → ¬K(¬ϕ)) from (9) by necessitation
(11) K(¬B(¬ϕ) → ¬K(¬ϕ)) →

(K(¬B(¬ϕ)) → K(¬K(¬ϕ))) Axiom K
(12) (K(¬B(¬ϕ)) → K(¬K(¬ϕ))) from (10) and (11) by Modus Ponens
(13) K(¬K(¬ϕ)) from (7) and (12) by Modus Ponens
(14) K(¬K(ϕ)) from (1) by ∧-elimination

Proof. [Proposition 11.]
As follows:

(1) B(ϕ) ∧ ¬ϕ Assumption
(2) B(ϕ) → B(K(ϕ)) Assumption
(3) B(ϕ) from (1) by ∧-elimination
(4) B(K(ϕ)) from (2) and (3) by Modus Ponens
(5) ¬B(K(ϕ)) ∨ ¬B(¬K(ϕ)) Axiom D
(6) ¬B(¬K(ϕ)) from (4) and (5) by disjunctive syllogism
(7) K(¬K(ϕ)) → B(¬K(ϕ)) Axiom Int1
(8) ¬B(¬K(ϕ)) → ¬K(¬K(ϕ)) from (7) by contraposition
(9) ¬K(¬K(ϕ)) from (6) and (8) by Modus Ponens
(10) ¬ϕ from (1) by ∧-elimination
(11) K(ϕ) → ϕ Axiom T
(12) ¬ϕ → ¬K(ϕ) from (11) by contraposition
(13) ¬K(ϕ) from (10) and (13) by Modus Ponens
(14) ¬K(ϕ) ∧ ¬K(¬K(ϕ)) from (9) and (13) by ∧-introduction



Proof. [Proposition 12.]
As follows:

(1) B(ϕ) ∧ ϕ ∧ ¬K(ϕ) Assumption
(2) B(ϕ) → B(K(ϕ)) Assumption
(3) B(ϕ) from (1) by ∧-elimination
(4) B(K(ϕ)) from (2) and (3) by Modus Ponens
(5) ¬B(K(ϕ)) ∨ ¬B(¬K(ϕ)) by axiom D
(6) ¬B(¬K(ϕ)) from (4) and (5) by disjunctive syllogism
(7) K(¬K(ϕ)) → B(¬K(ϕ)) Axiom Int1
(8) ¬B(¬K(ϕ)) → ¬K(¬K(ϕ)) from (7) by contraposition
(9) ¬K(¬K(ϕ)) from (6) and (8) by Modus Ponens
(10) ¬K(ϕ) from (1) by ∧-elimination
(11) ¬K(ϕ) ∧ ¬K(¬K(ϕ)) from (9) and (10) by ∧-introduction


