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Abstract

Introduced in the 1950s as a method to deal with the uncertainty of errors, interval
analysis, a kind of generalization of real analysis in which real intervals replace
real numbers, despite the progress made by research, still has some crucial open
problems, including the need to standardize theory through a robust and consistent
framework for both analysis and algebra. Therefore, this work aims to pursue a
dual objective. First, it intends to offer an updated state of the art on the concepts,
problems and techniques of interval analysis, with a specific focus on some theoretical
aspects and on the calculus of interval-valued functions of a single real variable.
Through an intensive use of the so-called midpoint-radius representation, more
advantageous than conventional notations, the possible types of partial orders in
the space of compact real intervals are studied; the use of the gH-difference and
gH-differentiability is also extremely useful, above all for the concepts related to
the study of functions: limits, derivatives, monotonicity, as well as the analysis of
extreme points, concavity and convexity. The various topics, revisited and enriched
with innovative notations (e.g., a new representation of complex numbers), acquire
a more complete meaning and new application possibilities open up (e.g., at the
g-calculus). The other goal to aspire to is to deepen the investigation from an
algebraic point of view, also through unconventional approaches. In particular,
thanks to the introduction of a new partial order with polarity characteristics with
respect to already acquainted orders, it is possible to determine hitherto unexplored
algebraic structures: some quite known, such as semirings and pre-semirings, others
more unusual, like the so-called combined structures. Moreover, from a study on
the complementation properties, interval Boolean structures are also configured and,
finally, the construction of an interval quotient set leads us towards even more solid
structures, such as a pseudoring. The graphic representations, which constitute a
fundamental part of the work, accompany the entire discussion, providing interesting
and explanatory examples that ensure greater clarity and expository completeness.
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Introduction

In mathematics, there are real numbers, a real arithmetic for combining
them, and a real analysis for studying their properties. Interval mathematics
is a generalization in which real intervals replace real numbers, interval
arithmetic replaces real arithmetic, and interval analysis (IA) replaces real
analysis.

This method was introduced as an attempt to handle interval (non
statistical, non probabilistic) uncertainty that appears in many mathematical
or computer models of some deterministic real-world phenomena, even if
there are already examples of its use during ancient times, just think of the
method used by Archimedes for the determination of .

Considering more recent times, the first monograph dealing with the
interval analysis and which in a certain sense marks its birth, is the famous
1966 book by R. Moore ([64]), even if, among the early contributions in the
interval-valued calculus, it is interesting to mention a paper by S. Markov
([56]) which remained essentially un-cited for more than 30 years and was
“rediscovered” only after the publication of [78], [79] and [81]. In addition,
taking into consideration the interval and fuzzy cases jointly, some relevant
works in this area are given by [20], [51], [68] and [95], while other important
contributions are found in papers on gH-differentiability (see, e.g., [7], [8],
[15], [80], [82]) as well as those concerning interval and fuzzy optimization
and decision making (e.g., [18], [29], [38], [69], [87] and [93]), while a recent
generalization to the multidimensional convex case is proposed in [83].

In general we can say that, during the last fifty years, all the main
mathematical areas have been more or less touched by this new approach,
often assembling elements belonging to different contexts, which brought out
both similarities and differences between the classical concepts and those
based on the interval approach.

A relevant example is given by the creation of well-developed algebraic
interval structures that, compared with classical theory, reveal new character-
istics and original properties (e.g., non distributivity of operations, existence
of several partial orders with different interpretations or emergence of multi-
ple solutions to well-posed problems) which necessarily require revisiting the
conventional background. Therefore, what is really missing and extremely
indispensable is a unitary, complete and coherent scheme, where to place
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the various components. Likewise, crucial open problems are still present in
the theory. For example, the concept of derivative of a real-valued function,
one of the most important in classical real analysis, was expected to have
a similar notion when considering interval-valued functions. However, such
a concept, both theoretically well founded and also applicable to concrete
situations, has only recently been introduced, despite almost half a century
of (otherwise very important) research development.
Consequently, the motivations of this research are two-fold:

- first of all we intend to offer an updated state of art about the concepts,
problems and the techniques in interval analysis, with a specific focus
on its mathematical aspects recently addressed by research, especially
those concerning the theoretical aspects of calculus in the setting of
interval-valued functions of a single real variable;

- on the other hand, the aim is to contribute directly to the study of
the aforementioned theoretical aspects, in particular by deepening the
investigation from an algebraic point of view, also through approaches
that go beyond the classical representations (entirely innovative and
original approaches will be proposed, thanks to which it will be possible
to endow the theory with a renewed and powerful algebraic framework
hitherto absent in literature).

We will not explicitly address the issues in how to solve problems such as
algebraic, differential, integral equations or others when intervals are involved.
An account on these topics can be found in the very extended literature on
interval analysis and related fields; see, e.g., [1], [56], [58], [64], [65] and the
references therein.

Finally, it should be noted how recently the interest for this topic had
increased significantly, in particular after the IEEE 1788-2015 Standard for
Interval Arithmetic and the implementation of specific tools and classes in
the C++, Julia (among others) programming languages, or in computational
systems such as MATLAB, Mathematica, or in specific packages such as
CORA 2016 (see [2]). In particular, the research activity in the calculus for
interval-valued functions (of one or more variables) is now very extended,
especially with regard to the more general calculus for fuzzy-valued functions
(started in [71]), with applications to almost all fields of applied mathematics.

That said, in order to achieve the purposes stated above, it was decided
to divide this work into two parts which are presented in a preparatory way
to each other and which are in turn divided into three chapters each, all
closely interconnected.

In the first part some recent results of the theory will be taken into
consideration: these will be revisited, expanded and enriched with new
meanings and details, as well as innovative application proposals.
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In particular, in Chapter 1 we will give an overview on theory of interval
analysis following the so-called classical approach, retracing the main steps
that characterized its development, from the sporadic beginnings to the most
recent theoretical and applicative results, to then dwell on the description of
the salient aspects of the theory. In doing this, the two main types of interpre-
tation will be taken into consideration: numerical and set. After introducing
the basic aspects of the calculus and the main properties connected to them,
we will move on to a quick overview of more elaborate structures, such as
vectors, matrices and elements of complex calculus, after which we can finally
introduce the concept of interval-valued functions with the main problems
connected to them. All this will be of fundamental importance in order to
address the particular themes that will be treated in this work as it will offer
the right interpretative tools necessary for its correct understanding.

However, it is the following two chapters that will allow us to get to the
heart of the theory. Here, in fact, mainly based on the results reported in
two recent papers ([84] and [85]), new ideas and approaches regarding the
interval analysis and calculus for interval-valued functions of a single real
variable will be presented. By making intensive use of the so-called midpoint-
radius representation, in Chapter 2 an innovative approach will be developed
concerning the numerous possible types of partial orders in the space K¢
of compact real intervals. In this regard, the use of a comparative index
recently proposed in the literature, as well as the concept of gH-difference,
will be of fundamental importance.

Then, in Chapter 3, these concepts will be applied to the calculus of
interval-valued functions for which the midpoint-radius notation will be
adopted again, due to the numerous advantages it offers compared to more
conventional notations. Concepts such as limits and continuity will also be
introduced as well as those of gH-derivative and monotonicity, up to an
in-depth study on the extremal points, concavity and convexity of interval-
valued functions. Great importance will be given to graphical representations
(mainly obtained through the use of software such as MATLAB) which
will facilitate understanding of the theory and make the examples more
explanatory. This also concerns the second part of the chapter in which,
a new notation for representing complex intervals will be proposed, the
peculiarities and advantages of which will be fully exploited also through
an unprecedented graphic representation. Finally, an entire section will be
dedicated to the presentation of a possible example of application of interval
analysis to a topic, the g-calculus, which today is of great interest in the
scientific community.

Nevertheless, the most innovative stage of the whole work is reached
within the second part, where new algebraic structures are introduced,
breaking the classical schemes so far proposed in literature and providing
good ideas for applicative outlets, especially in the logic-computer field.

In fact, although over the years many authors have ventured into the
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search for algebraic systems within which to configure the interval theory,
however, even today these structures have not been completely axiomatized.
Therefore, in attempting to help fill this gap, in Chapter 4 some innovative
approaches will be introduced towards the determination of interval algebraic
systems. This will help define that solid and complete framework that the
method required, implementing those more abstract and basic aspects that
any mathematical theory needs. In particular, thanks to the introduction
of a new partial order with polarity characteristics with respect to partial
orders already known in literature, it will be possible to arrive at the notion
of interval completion lattice and, above all, making use of some not obvious
extensions of the space K¢, we will be able to outline algebraic structures
hitherto unexplored in interval theory, some quite well-known, such as
semirings, pre semirings or hemirings, others more unusual, ranging from
lattice-ordered structures to the so-called clodum (Chapter 5).

Moreover, following a careful and original study on the complementation
properties, through the use of interesting and rather extravagant models,
in Chapter 6 we will be capable of configuring even Boolean interval-type
structures (such as Boolean lattices, Boolean algebras and Boolean rings).
Finally, the construction of the quotient set of K¢, obtained thanks to an
ingenious definition of the equivalence relationship between intervals, will
lead us to the determination of further structures, the highest point of which
is represented by an example of interval quotient pseudoring.

The graphic representations, which constitute a fundamental part of
the work, will accompany the entire discussion, providing interesting and
explanatory examples; moreover, they will offer the possibility of approaching
the discussion also through a visual register which, alongside the analytical
one, will ensure a clearer and more complete exposition of the topics and
their more precise location as mathematical objects within a complex general
framework.
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Chapter 1

Basic results

In this chapter we give an overview on theory of interval arithmetic and
analysis. Definitions, notations and basic facts are introduced and briefly
explained following the so-called classical approach, as defined in [64], [65],
[17], [49] and [1].

After a concise introduction on the reasons that originated the interval
analysis (Section 1.1), in Section 1.2 we will retrace the main steps that have
characterized its historical evolution, from its origins to the present day, help-
ing to determine its current structure as well how to outline future prospects.
But it will be in Section 1.3 that we will finally enter the theory itself by
describing the elements that characterize the interval method following the
two principal approaches: axiomatic and set. Starting from the basic con-
cepts, the main algebraic operations with their properties will be presented
and then more complex structures, such as vectors and matrices, will be
analyzed as well as the principal elements of complex interval calculus will
be presented. Whereupon, after introducing the concept of interval-valued
functions, some important well-known applications will be shown, to then
conclude with a mention of the numerous alternative theories related to the
interval method.
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1.1 What is interval analysis

Interval analysis (also known as interval arithmetic, interval mathematics
or interval computation), IA for short, was introduced as an attempt to
handle interval (non statistical, non probabilistic) uncertainty that appears
in many mathematical or computer models of some deterministic real-world
phenomena. Therefore, it may be viewed as a kind of bridge between
deterministic problem solving and problems with generalized uncertainty.

In particular this latter, being the quantitative estimation of errors in
measured data, which is common to all scientific practice, can always be
considered a serious danger to the search for a reliable scientific knowledge;
for that reason IA, providing mathematical tools for controlling the whole
range of errors in computation (rounding, truncation and input) improved
its status and scientific reputation over the years, as one of the most suitable
potential weapon against uncertainty in science and technology.

More specifically, IA arose exactly from the attempt to compute the error
bounds of the numerical solutions of a finite state machine (or, more simply,
a computer) for which the roundoff error was automatically accounted for
by the computer itself. This led to the investigation of computations with
intervals as the entity that enabled automatic error analysis.

Consequently, as active field of research and application, IA is relatively
a new mathematical discipline, defined as a separate branch of study only
at the end of the 50s, thanks to Ramon E. Moore’s technical reports and
his doctoral dissertation ([62] and [63]). Moreover, to better explain what
TA really is and to introduce how it really emerged in mathematics, we
can take inspiration by George W. Walster’s article Introduction to Interval
Arithmetic [91], as brilliantly suggested in [35].

Indeed, it was 1957 when Ramon Edgar Moore, an employee of Lockheed
Missiles and Space Co. Inc., conceived interval arithmetic as an approach to
bound rounding errors in mathematical computation, even thought was only
forty years later, at April 19, 1997, during the meeting of Sun Microsystems’
Interval Arithmetic University R & D program, that he explained his thinking.
In particular he clarified that he was considering how scientists and engineers
represent measurements and computed results through the notation

Tt7,

where 7 is the result (or measurement) and 7 is the error tolerance.

The problem was that, while representing fallible values by the 7 +
form is convenient, computing with it is not, even in a very simple case
such as calculating the area of a square. Indeed, when the errors due to
finite precision arithmetic are taken into account at the same time, then
complexity increases further. Moreover, error analyses of large scientific,
engineering and commercial algorithms are sufficiently complex that they
are often not conducted and the result is that machine computing with
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floating-point arithmetic is not closely linked to mathematics, engineering,
science or commerce.

So, Moore’s idea was the following: since Z + ¥ consists of two numbers,
Z and Z, why not use two different numbers to represent exactly the same
information? This means that, instead of T+ Z , it was possible to use 7 + =
and T — z, which define the extremes of an interval containing the exact
quantity z. It was such a simple, yet brilliant, idea that allowed to start TA
as a very important branch of applied mathematics.
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1.2 Historical background

In this section we will give an overview of the main steps that have charac-
terized the historical evolution of interval analysis, from its origins to the
present day, thanks to which it was possible to elaborate its current structure
and to outline future prospects.

1.2.1 Childhood of interval analysis

Even though interval method developed from the 1950s and 1960s, it was not
a completely new phenomenon in mathematics as it has appeared several
times under different names in the course of history. Indeed a famous and
very old example of an interval enclosure is given by the method due to
Archimedes where he considered inscribed and circumscribed polygons, each
of n sides, of a circle with radius 1 to obtain an interval containing the
number 7. By choosing n large enough, an interval of arbitrary small width
can be found in this way containing .

Considering more recent times it can be argued that it was John Charles
Burkill, in 1924, the first to deal with interval analysis, as in his article [12]
he examines functions of intervals (which necessarily include arithmetic since
the algebraic operations are functions); nevertheless, intervals as entities
were not the focus of this work and we must wait a 1931 article by Rosalind
Cicely Young, a doctoral candidate at the University of Cambridge, to finally
see a first description of the rules for calculating with intervals and other
subset of real numbers. In particular Young developed the arithmetic for
sets of numbers and was interested in properties of limits. Moreover, she
worked out the commutative, associative, and distributive law of scalars (real
numbers) over intervals.

Then the method developed, particularly thanks to some apparently
independently different works, as an approach to putting bounds on rounding
and measurement errors in mathematical computation and thus developing
numerical methods that yield reliable results.

Indeed one of the first references to interval arithmetic as a tool in
numerical computing can already be found in a German work [28] (originally
published in 1951) where the rules for the Interval Arithmetic (when only
positive numbers are considered) are specified and applied to what today is
called interval arithmetic evaluation of rational expressions.

During the same period Paul S. Dwyer (University of Michigan) particu-
larized Young’s work to compact sets of numbers (intervals). He discussed
matrix computations using interval arithmetic in his book [21], a 1951 text
on linear algebra where the interval method was introduced as an integral
part of roundoff error analysis; likewise, five years later, in [92], Mieczyslaw
Warmus suggested some formulas in order to provide a valid theoretical
support to numerical computation with intervals.
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But nevertheless, the most important paper for the development of IA has
probably been published in 1958 by the Japanese scientist Teruo Sunaga [88].
Here not only the algebraic rules for the basic operations with intervals can be
found but also a systematic investigation of the procedures which they carry
out: the general principle of bounding the range of a rational function over an
interval by using only the endpoints through interval arithmetic evaluation is
already discussed; furthermore, interval vectors and corresponding operations
are introduced (as multidimensional intervals). Sunaga also presented the
idea of computing an improved enclosure for the zero of a real function by
what is today called interval Newton method. Finally, he discussed how
enclosing the value of a definite integral by bounding the remainder term
through the tools of interval arithmetic and computing a pointwise enclosure
for the solution of an initial value problem by remainder term enclosing.

We can adfirm that both, Warmus and Sunaga, had the full development
of axiomatic interval arithmetic. Sunaga also recognized the importance
of interval arithmetic in computational mathematics but did not proceed
further whereas, in the same year, Patrick C. Fischer (see [23]) reported a
computer program that uses two computer words that automate propagated
and roundoff errors: one holds the approximate value of the variable while
the other word holds the value representing the bound of previous compu-
tations and roundoff errors of the approximation. It was the first effort at
implementation of TA to computers.

In any case, although written in English, these results did not find much
attention until the first monograph dealing with interval analysis appeared:
the celebrated book of the 1966 written by Ramon E. Moore [64], which
marked the birth of modern interval arithmetic. Moore’s book was derived
from the research of his Ph.D. thesis and therefore was mainly concentrated
on bounding solutions of initial value problems for ordinary differential
equations although it contained a lot of general ideas.

Its merit was that starting with a simple principle, it provided a general
method for automated error analysis, not just errors resulting from round-
ing: the same way classical arithmetic operates on real numbers, interval
arithmetic defines a set of operations on intervals.

1.2.2 Popularization of TA

After the appearance of Moore’s book several research groups from different
countries started to investigate the theory and applications of IA and during
the last decades the role of compact intervals as independent objects has
continuously increased in numerical analysis, when verifying or enclosing
solutions of various mathematical problems or when proving that such
problems cannot have a solution in a particular given domain. This was
possible by viewing intervals extensions of real or complex numbers, by
introducing interval-valued functions and interval arithmetics and by applying
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appropriate fixed point theorems.

In the following twenty years German researchers carried out pioneering
work around Go6tz Alefeld and Ulrich Kulisch at the University of Karlsruhe
and later also at the Bergische University of Wuppertal. Among these,
Karl Nickel explored more effective implementations, while Arnold Neumaier
improved containment procedures for the solution set of systems of equations.

Important results were also achieved by Eldon R. Hansen, who dealt with
interval extensions for linear equations and then provided crucial impacts
to global optimisation, including what is now known as Hansen’s method,
perhaps the most widely used interval algorithm; on the other hand Helmut
Ratschek and Jon George Rokne, using intervals to provide applications for
continuous values, developed branch and bound methods which, until then,
had only been applied to integer values. Finally, it will be Rudolf Lohner,
in 1988, who will develop Fortran-based software for reliable solutions for
initial value problems using ordinary differential equations.

Nevertheless, it is important to stress the fact that, in order to broaden
interval modes to the various fields of mathematics, one of the main problems
is that the classical techniques of analysis cannot be transferred one-to-one
into interval-valued algorithms, as dependencies between numerical values
are usually not taken into account; so an accurate work is required, often
with the expense that we have to sacrifice some useful properties of ordinary
arithmetic and analysis.

1.2.3 Areas of possible fruitful research

In spite of all the problems and disadvantages, nowadays IA is a well-
established area not only providing mathematical and computational tools
for modelling systems with uncertainties or controlling rounding errors in
computations, but also the field of fuzzy sets method relied more and more on
interval formulation (through the so-called a-cut approach). Indeed, we know
that, apart from the strict statements € X and = ¢ X, intermediate values
are also possible, to which real numbers are assigned. Hence, a distribution
function could spread uncertainty, which can be understood as a further
interval.

In addition, very interesting convergences can be found even in quantum
structures, in the framework of the so-called unsharp approach to quantum
theory, which proposes to describe some apparent mysteries of the quantum
world as special cases of some general interval or fuzzy phenomena, whose
behaviour has not yet been fully understood.

On the other hand also experimental and computational physics represent
interesting application areas of IA as interval computations are used to
handle the gathered uncertain data about observed physical phenomena and
interval algorithms are used to solve problems arising from experimental and
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theoretical physics. Moreover, being hundred of times faster than Monte
Carlo method, interval computations are succesfully applied also in electrical
engineering and in control theory, and besides, we cannot forget to mention
their use to verify computed numerical solutions in chaotic dynamical systems
or their application to visualize strange attractors in discrete chaotic systems.

Other important sources of interval research originated from the work on
reasoning with time intervals in economics where the notion of arrangement
interval relations has been developed and extensively studied in particular for
managing uncertainty in optimization problems and in decision management.

And again, throughout the last decades reliable computing, validated
numerics and interval problems with differential equations have been discussed
in several monographs and research papers and another major approach to
a set of similar problems is that of differential inclusions and multivalued
analysis, also able to deal with discontinuous dynamical systems which do
not fully fit into the interval analysis topic.

We can say that interval arithmetic represents an elegant tool which
has been used to solve an impressive array of problems. For instance, it
was thanks to IA that, in 2002, Warwick Tucker (see [89]) was able to show
that the Lorenz equations do possess a strange attractor, thus solving a
long-outstanding problem: the Steve Smale’s 14th conjecture (see [77]).

In conclusion, if in the early stages IA had to do with rounding, truncation
and input errors of numerical computation, later it was realized that its
potential went beyond simple calculation, being able to deal with problems
that are inaccessible to conventional approaches, such as its use in a proof
of Kepler’s conjecture on the densest packing of spheres in space; in fact,
using interval arithmetic, the problem was solved by Thomas C. Hales in
2000 (see [31] and [32]), thus allowing to finally find the definitive proof of a
conjecture that for almost 400 yeard had been looking for a confirmation.
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1.3 Elements of classical theory

In this section we finally enter the theory itself by describing the elements
that characterize the interval method following its two main approaches:
axiomatic and set.

Starting from the basic concepts, the principal algebraic operations with
their properties will be presented and then more complex structures, such as
vectors and matrices, will be analyzed as well as the principal elements of
complex interval calculus will be described. Whereupon, after introducing the
concept of interval-valued functions, some important well-known applications
will be shown. We will conclude the section with a mention of the numerous
alternative theories related to the interval method.

1.3.1 The two approaches

First of all, let recall what a closed real interval [a, b] is. Indeed, although
various other types of real intervals (open, half-open) appear throughout
mathematics, our work will center primarily on closed intervals and in
particular here the term interval will mean real closed interval.

So, an interval [a,b] is defined as the set of all real numbers included
between extremes a and b, denoted by

X={zeR|a<z<b}

and belonging to the real number line with the usual meaning of the order
relation <. But, as anticipated in Section 1.1, there is also another definition
of an interval: as a pair of real numbers lying at the endpoints of the interval
itself. Thus, we can say that, from the point of view of TA, intervals on
the real line have a dual nature: as sets of real numbers and as a new kind
of number represented by pairs of real numbers. In this second case it is
possible to define a whole interval arithmetic, developed axiomatically and
consistent with the set interpretation.

Consequently, IA can be mainly derived in two different ways which
correspond to two different approaches.

1. The “number (or axiomatic) approach”, where intervals are consider-
ated as numbers with two components and where operations are defined
axiomatically. In general the arithmetic associated with this approach
is simple as it is expressed by operations which are at most four times
more complex than the corresponding real numbers operations (for
details see [49]). Nevertheless, the arithmetic obtained is not without
some critical issues as it is subdistributive and it does not have inverse
elements with respect to addition and multiplication; furthermore, as
we will show later, the risk of obtaining a kind of overestimation is
substantial and in order to reduce it the exponential complexity could
extremely increase.
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2. The “set (or extension principle) approach”, which derives from the
so-called Moore’s united extension and considers intervals as sets.
This method originates an arithmetic, known as constraint interval
arithmetic, which, instead of operations, requires a procedure and is
expressed through global optimization of the united extension function
of the arithmetic operations. However, its algebraic structure is dis-
tributive and possesses both additive and multiplicative inverse, but is
not so simple to be executed because of its global optimization nature.

Indeed, as described above, on the real line, with the usual meaning
of the order relation <, an interval [a,b] is the set of all real numbers
{r € R:a < x < b}; on the other hand, as a number, an interval X consists
of a pair of numbers {a, b}, which denote the left and right endpoints of the
interval. Naturally, analysis on intervals, since intervals are sets, requires
set-valued functions, limits, integration, and differentiation theory: all this
is done via the so-called united extension (see [64]).

Proceding step by step we can say that the original formulation of the
number approach was defined axiomatically in 1956 by Young, Dwayer,
Warmus and then, independently, by Sunaga. It was only in a second
moment that Moore rediscovers this approach and extends it to rounded
interval arithmetic, allowing its utilization in computational mathematics.

Indeed, in his first works, Moore adopted the set outlook using a kind of
extension principle for intervals, called united extension. Representing one
way to define arithmetic on intervals, the extension principle is especially
crucial because it defines how real-valued expressions are represented in the
context of intervals and can be viewed as one of the main unifying concepts
between interval analysis and fuzzy set theory. Moreover, it represents one
way to define arithmetic on intervals.

Generally, we can say that an extension principle defines how to obtain
functions whose domains are sets. Achieving this for real numbers is clear
while it is more complex for sets because in this case well-defined entities
must be defined.

W. Strother was the first, in his paper [86], to define the united extension
for set-valued functions for domains possessing specific topological structures;
thus, Moore did nothing but applied Strother’s united extension to intervals
and in doing so, he retained the name united extension as the extension
principle particularized to intervals. That is, Moore’s united extension (or
the interval extension principle) consists on a set-valued function whose
domain is the set of intervals and the range is an interval for those underlying
functions that are continuous.

In particular, considering a real-valued function f of a single real variable
x, Moore would like to know the precise range of values taken by f(z) as z
varies through a given interval X; this means that the image of X under the

mapping f is
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fX) ={f(z):z e X} (1.1)

The next definition represents the first step.

Definition 1.3.1. ([64]) Let f : My — My be a mapping between sets, and de-
note by S(My) and S(Ms) the families of subsets of My and My, respectively.
The united extension of f is the set-valued mapping f : S(My) — S(M3)
such that

f(X)={f(x):ze X, Xe€S(M)}.

Note that

FX) = {J @),

zeX

that is, f(X) contains the same elements as the set image f(X). For this
reason it is usually apply the term united extension to set images such as
the one described in (1.1).

Definition 1.3.2. An interval arithmetic based on united extension principle
15 called extension interval arithmetic.

However later, while implementating Sunaga’s work, Moore applied the
united extension for different pairs of arbitrary intervals X and Y, asserting
that for all arithmetic functions o € {+, —, x, +}, we have the following fact

XoY={zoy|lzeX, yeY}

Hence, he abandons the united extension definition and develops axioms
because of the simplification they lead of the operations since they need not
account for multiple occurrences. Nevertheless, on the other hand, using the
axioms create a kind of overestimation which represents a severe problem
too. Therefore, despite the simplicity, Moore was aware from the beginning
of the problems of overestimation associated with multiple occurrences of
the same variable in an expression. Furthermore, it was also obvious that,
from the axiomatic approach, X — X is never 0 and that X + X is never 1
unless X is a real number.

Actually, in this kind of approach, interval arithmetic and associated
semantics deal with intervals [a, b], for which a < b, has some interesting
applications to fuzzy arithmetic since the axioms of IA can be applied to
each a-cut of a fuzzy set membership function.

In general the axioms of TA, as they were articulate by Warmus ([92]),
Sunaga ([88]) and, in a second moment, by Moore ([62]), can be summarized
as follows:

1. addition [a,b] + [¢,d] = [a + ¢, b+ d];

2. subtraction [a,b] — [¢,d] = [a — d, b — c];
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3. multiplication [a, b] X [c, d] = [min{ac, ad, be, bd}, max{ac, ad, be, bd}];
11
4. division [a, b] + [¢,d] = [a, ] X {d’ ] , where 0 ¢ [c, d].
c

These axioms can be traced back to a single formulation.

Definition 1.3.3. For all arithmetic functions o € {4, —, X, +} and for any
two intervals X and Y, the binary algebraic operations are defined by

XoY={zoy|lzeX,yeY}
where, in the case of division, 0 ¢ Y.
Similarly to Definition 1.3.2, we have the following one.

Definition 1.3.4. An interval arithmetic based on axioms expounded by
Definition 1.3.8 is called axiomatic interval arithmetic.

As reported above, the basic axioms associated with interval arithmetic
and their properties were more fully developed in 1966 by Moore (see [64])
and the difference from the axioms of real numbers inevitabily emerged such
as subdistributivity.

It is interesting to say that the four axioms associated to the four op-
erations essentially compute the maximum and minimum values of the set
{roy |3z € X,Jy € Y} and the two intervals X and Y are considered
independent. As a result, axiomatic interval arithmetic is a type of min/max
calculus since the values only involve the endpoints (min/max) of the inter-
vals.

As well described in [49], we can say that the power of the axiomatic ap-
proach to IA lies especially in its simplicity of application since its complexity
is at most four times that of real value arithmetic.

Conversely, this approach leads to overestimations in general because
it takes every instantiation of the same variable independently and simple
notions such as X — X = 0 and X + X = 1, with 0 ¢ X, are desirable
properties which can be maintained only if the united extension is used to
define TA.

In addition it is interesting to mention that there is also a third method,
which derived directly from the united extension rather than axiomatically
and redefine intervals into a form equivalent to the graph of a function of one
variable and two coefficients. The ensuing arithmetic is called “constraint
interval arithmetic” and within it an interval [a, b] is defined as the graph of
the following real single-valued function

X)) = Aa+ (1= Ag)b, 0< Ay < 1. (1.2)

Basically, since in (1.2) the input numbers a and b are known, they
are considered as coefficients, whereas A, is varying, although constrained
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between 0 and 1, hence the name constraint interval arithmetic. Note that
X ()\;) defines a set representation explicitly, and the associated arithmetic
is developed on sets of numbers. The algebraic operations are defined as
follows:

XoY ={(Agaz+(1—=XAz)bz)o(Ayay+ (1 —Xy)by), 0 < Ay <1, 0< Ay < 1},

where a, = minX, b, = mazX, and o € {+, —, x,+}.

The result is that constraint interval arithmetic represents the complete
implementation of the united extension, and it provides an algebra that
possesses an additive inverse, a multiplicative inverse, and a distributive law.
Moreover, one of its big benefits consists on its semantically correspondence
with classical real arithmetic as any sentence of real arithmetic can be
converted in another of constraint interval arithmetic which is semantically
equivalent.

In general, as it will be well exposed in Subsection 1.3.7, we can say that
over the years, various interval arithmetic approaches have been developed
in addition to the axiomatic and united extension methods and also different
representations of intervals have been invented with the common goal of
simplifying operations and obtain more accurate results in arithmetic.

1.3.2 Definitions and basic concepts

According to the approaches described in Subsection 1.3.1, the basic algebraic
operations for real numbers can be extended to intervals. In this section, we
shall formulate the basic relations and algebraic procedures on them. The
definitions follow the line drawn by most IA texts, such as [17] and [65].

In Subsection 1.3.1 we have already defined what a real interval is,
adopting the convention of denoting intervals by capitol letters and their
endpoints by lowercase letters. In particular, from here on, we establish that
the left and right endpoints of a real interval A will be denoted by a~ and
a™ respectively.

Thus, the interval A can be defined as a number:

A=la",a"]

or as a set:
A={zeR|a <z <a'}.

Definition 1.3.5. Let a—,a™ € R be real numbers such that a~ < at. An
interval A is the set of all real numbers included between extremes a~ and
a™, denoted by

A=[a,a"]={reR|a <x<at}, (1.3)

where a~ and a™* are called, respectively, the lower and upper bound (end-
points) of [a~,a™].
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In general, as well reported in [79], considering the more general case in
which we have a metric vector space V with the induced topology and in
particular the space V =R" (n > 1) of real vectors equipped with standard
addition and scalar multiplication operations, we denote by (V) and K¢ (V)
the spaces of nonempty compact and compact convex sets of V (see also [57]
and [73] for more details).

In this thesis we will almost exclusively examine the particular case in
which n = 1 and, from here on, the notations IC(R) and K¢(R) will be simply
denoted by K and K¢.

Accordingly, we define by K¢ the family of all bounded closed intervals
in R, i.e.,

Ke={[a",a%] |a”,a" €R and a~ <a'}. (1.4)

Two intervals A = [a~,a™] and B = [b~,b"] are said to be equal if

they are the same sets. Operationally, this happens if their corresponding
endpoints are equal:

A=B&a =b andat =0b". (1.5)

Remark 1.3.1. Note that the equality in Ko is defined in terms of equality
i R. This definition is a special case of the axiom of extensionality of
aziomatic set theory (i.e., two sets are equal if and only if they have precisely
the same elements) from the fact that every interval is an ordered set.

An interval A is said to be symmetric if a= = —a™.

We say that an interval A is degenerate if a=— = a*. Such an interval
contains a single real number a and, by convention, we identify the degenerate
interval with the real number itself:

[a,a] = a

In this sense, we may write [0, 0] = 0.

Furthermore, referring to the set-type operations, we can say that the
intersection of two intervals A and B is empty if either a™ < b~ or b < a™.
In this case A and B have no points in common and we write

ANB =2,

where @ denotes the empty set.
If AN B # @ we define the intersection between A and B as the interval

ANB={z|z € Aand x € B} = [maz{a,b” },min{a™,b"}].  (1.6)
Similarly, we define:

- the union between A and B, which is not necessary an interval, as

AUB={z |z € Aorx € B}; (1.7)
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- the interval hull between A and B as

AW B = [min{a”,b” },maz{a™,b"}]. (1.8)

It is trivial to verify that, for any two intervals A and B, we have:
AUBCAWYB (1.9)

where AUB=AWB & ANB# 2.
Other important terms which will be useful in the sequel consist of the
following:

- the width of the interval A, defined by

w(A) =at —a; (1.10)

- the absolute value of the interval A, given by

|A] = maz{|a”], |la"[}; (1.11)
- the midpoint of the interval A, denoted by

a= %(a‘ +a™). (1.12)

Hence any symmetric interval has midpoint 0.

We also know that the real numbers are ordered by the relation < which
is transitive; so a kind of corresponding relation can be defined for intervals
in K¢

A<B&at <b” (1.13)

and transitive property still holds: if A < B and B < C then A < C.
It follows that we can define an interval A = [a™,a™] as:

- positive if a= > 0;
- negative if a™ < 0.

This means that:
A>0&a>0,Vac A (1.14)

We observe that not every two elements of ¢ can be compared by the
relation <; indeed if AN B # @, according to (1.13), it is not possible to
write neither A < B nor B < A. That is, only a partial order (i.e., can only
compare certain elements) is possible to be defined with respect to <, with
the consequence that the order < is strictly partial on K.
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Another transitive order relation for intervals is represented by set inclu-
sion:
ACBeb <a andat <0bT. (1.15)

Of course, also in this case we have a partial order as not every pair of
intervals is comparable under set inclusion.

For instance, if A and B are overlapping intervals, then A is not contained
in B, nor is B contained in A. However, AN B is contained in both A and
B.

1.3.3 Algebraic operations and properties of TA

The notion of the degenerate interval permits us to regard the system of
closed intervals as an extension of the real number system. Indeed, there is
an obvious one-to-one pairing

[a,a] < a

between the elements of the two systems.

According to the Definition 1.3.3 and from the fact that intervals are
ordered sets of real numbers, it is possible to find an operational way to
implement binary and unary algebraic operations that, for practical applica-
tions, can be simplified further and be formulated in terms of the interval
endpoints.

Therefore, for every two real intervals A = [a~,a™] and B = [b—,b"]
and for every real number k, it is immediate to define the classic Minkowski
operations as shown below:

- addition A @y B=[a" +b",a" +bT];

e [ kak-at]ifE>0
- scalar multiplication k- A = { le-at k-a-] ifk<0°
- negation —A = —-1-A=[—a",—a"];
- subtraction Ay B=A®) (-1)-B=[a" —b",a™ —b7];

- multiplication A®y; B = [min{a™-b",a”-b",a™-b~,a"-b"}, max{a-
b=,a” bt at b7 at - b}

reciprocal A_l—l— min i i maz i i
p _A_ a_7a+ 9 a_7a+ )

providing 0 ¢ A;

A 1
- division A B=—=4 —
ivision A Qs B QM B

I I A G AR
- b_7b+7b_7b+ ) b_7b+>b_ab+ ’
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_ [ [min{(a”)?, (a*)?}, maz{(a™)? (a")*}ifO & A
- square A% = { [0, maz{(a™)?, (a™)?}] otherwise ’

- square rooth VA = [\/ a=,V a+], providing a= > 0.

Generally, the subscript (-)as used in the notation of Minkowski-type
operations between intervals will be removed, and classical addition, sub-
traction, multiplication and division will be denoted by @, ©, ® and ©
respectively, but we will insert the subscript in cases where these operations
are used in combination with others.

The definitions of the basic interval arithmetic operations lead to a
number of familiar looking algebraic properties. By virtue of our definition
of an interval, the properties of real numbers are obviously assumed. It is
easy to verify (see [65]) that, with the axiomatic approach, some important
properties still hold, as already anticipated in Subsection 1.3.1.

e Interval addition and multiplication are commutative and associative,
as for any A, B,C € K¢:

ApB=BoAand Ao (BaC)=(A®B)aC;
A®B=B®Aand A® (B®C)=(A®B)®C.

e The degenerate intervals 0 = [0,0] and 1 = [1, 1] are addittive and
multiplicative identity elements in the system of intervals as, for any
A€ Ke:

0dA=Ap0=Aand 1 ®A=A®1=A.

e The degenerate interval 0 = [0, 0] is an absorbing element for interval
multiplication as, for any A € Kg¢:

0®A=A®0=0.

e Cancellation law holds for interval addition, as for any A, B,C' € K¢:

ApC=BoC=A=B.

e Inclusion monotonicity of interval arithmetic holds:
let Ay, Ao, B, and By be elements of K¢ such that A1 C By and
Ay C By, then we have

Al DA C By ®Byand Ay © Ay C B © Bo.

An immediate consequence is the following important special case:
let A and B be intervals of K¢ with a € A and b € B, then we have

at+bc A Banda—be AO B.
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On the other hand it is fundamental to remark the fact that there is also
a large number of properties, typical of the real numbers, which are lost or
modified (see [65]), such as the following.

e Nonexistence of additive and multiplicative inverse elements, except
for degenerate intervals:

(i) subtraction is not the inverse of addition as for any A € K¢, it is
A S A #0; indeed we have

AcA=[a" —a",a" —a7]

which equals 0 = [0,0] only if a= = a™;
(ii) similarly, division is not the inverse of multiplication as for any

A A
A€ K, it is 1 # 1; indeed we have that i 1 onlyifa” =at.

e Squaring is tighter than multiplication by itself since, from the defini-
tions given above, it follows that

A2 C A®A.

e Multiplication is not distributive with respect to addition, since for
any real intervals A, B, C, it is

A(BaC)#(A®B)® (A ()

as you can easily verify with the following counterexample.

Example 1.3.1. A=[-1,1],B=[-3,-2] and C = [2,3]. So we have
4 (B®C) = -1,1]@(-3,~2 & [2,3)) = [-1,1] @ [-1,1] = [-1,1]
while (A®B)@(A®C) ((-1,1]®[-3,-2) @ ([-1,1] ® [2,3]) =
[—3,3] @ [-3,3] = [-6,6].

Nevertheless, a sub-distributive law hods (see [65]):
A (BoC)C(A®B)d (A ()
for anyA, B,C € Ke.

e Contrary to what happened with the interval addition, cancellation
law fails for interval multiplication, that is, for any A, B, C € K¢,

A®B=A®C=+» B=_C.

An easy counterexample is obtained using the same intervals as the
previous one.
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Example 1.3.2. A=[-1,1],B =[-3,-2] and C = [2,3].
Despite having that A® B = [—-1,1] ® [-3,—-2] = [-3,3] as well as
A C = (-1,1]1®[2,3]) = [-3, ], however B and C' are different

from each other.

Finally, about the algebraic system of interval arithmetic, the following
facts are valid (see [17]).

Proposition 1.3.1. Let (K¢, o) be the algebraic system of intervals. Then
the two structures (K¢, ®) and (K¢, ®) are abelian monoids.

Indeed, as we have seen above, interval addition and multiplication are
associative and commutative in K¢ and the degenerate intervals 0 and 1
represent additive and multiplicative identity elements respectively.

So, the set K¢ forms an abelian monoid under both addition and multi-
plication (for a more complete list of relations associated with K¢ see [56]).
However, there are two very important pieces of evidence that have risen in
this section:

- additive and multiplicative inverses do not always exist for interval
numbers;

- there is no distributivity between addition and multiplication except
for certain special cases.

This clearly means that it is necessary sacrificing some useful properties
of ordinary arithmetic but at the same time it allows to investigate other
peculiarities typical of mathematical entities such as intervals.

Historically, the study and evolution of the algebraic structures and the
topological properties were developed by Moore himself in [64] and [65] as
well as foundations for validated methods for solutions of equations in [66].
Later, as the field expanded, one of the main applications of interval analysis
is in validation methods which are computational process for solutions of
equations in a mathematically valid way. This means that solutions are
generated with guaranteed bounds. Then the implementation of interval
arithmetic on the computer leads to rounded interval arithmetic and its
resultant algebraic structure was derived in [46].

1.3.4 Vectors, matrices and systems of linear equations
We define an n-dimensional interval vector as

A = (A1, As, ..., Ay) where A; = [a; ,a]] for any i = 1,..

In particular we have that:



1.3 Elements of classical theory 21

- a 2-dimensional interval vector A = ([a],a{],[ay,a3]) can be repre-
sented by a rectangle in the plane x, y:

A = {(a1,a2)la; <a1 < af and a; < ag < a;r};

- a 3-dimensional interval vector A = (Aj, Aa, A3) can be represented
by a box in the space z, v, z;

- an n-dimensional interval vector A = (A, As, ..., A;,) can be thought
of as an n-dimensional “box” in the space x1, x2,...Tn.

Figure 1.1: Examples of interval vectors in dimension 1, 2 and 3.

It follows that, with suitable modifications, many of the notions for
ordinary intervals can be extended to interval vectors:

1. If a = (ai,...,a,) is a real vector and A = (A44,..., 4,) is an interval
vector, then we write:

acA & g eA;foralli=1,... n.

2. The intersection of two interval vectors is empty if and only if the
intersection of any of their corresponding components is empty; that
iss ANB=9 < A;,NB; = for any i.

Otherwise, for A = (Ay,...,A,) and B = (B, ..., B,,) we have that:
ANB= (41 NBy,.., A, N By) which is an interval vector too.

3. If A=(Ay,...,4,) and B = (B, ..., By,) are interval vectors, then we
have that: ACB & A; CB;foralli=1,...,n.

We also recall some important definitions below. If A = (44,..., 4,) is an
interval vector, then:

- the width of A is the largest of the widths of any of its component
intervals:
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- the midpoint of A is denoted by
a=(a,...,an),
O R N .
where a; = i(ai + ;") is the midpoint of the interval vector element
A fori=1,.. n;
- the norm of A is given by

Al = max |A], i =1,..n.

which is a kind of generalization of absolute value.

In a completely analogous way to what has been done for vectors it is
possible to define an (n x m)-interval matrix as

[A] = (Aij)i1,. .njod,..m where Aij = [aj;, af].

Also in this case is possible to extend to interval matrices some of the
notions for ordinary intervals, so if [A] = (A4j)i:1,... nyj:1,..,m in an interval
matrix, then:

- the width of [A] is the largest of the widths of any of its component
intervals: w([A]) = max;; w(A;;);

- the midpoint of [A] is denoted by the real matrix

~

[A] = (aij)i:l,...,n;j:l,...,m,

—_

where @;; = S (a;; + a;;) is the midpoint of the interval matrix element

\V]

Ajj,fori=1,..,n;5=1,....,m;

- the norm of [A] is given by

ITAJlN=max D [Aigl, i =1,0mij = 1,0m,
J

which is a kind of interval extension of the maximum row sum norm
for real matrices.

Note that if [B] is any real matrix contained in an interval matrix [A]
(so that [B] C [A]), then |B| < [[[A]]]

The importance of interval vectors and matrices arises in particular
when we have to deal with linear interval systems which consist of a matrix
interval extension [A] = (Aij)i1,..nij:1,...,m and an interval vector B =
(B1,Ba, ..., Bp).
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As described in details in [50], the problem we address is the extension to
intervals of the usual real-valued (also called crisp) system of linear equations
problem: A-x = b.

What we want is to find the smallest cuboid X = (X1, Xo, ..., X;), for
all vectors x = (x1, x2, ..., ) for which there is a pair (A, b) with A € [A]
and b € B satisfying A-x = b.

In case of quadratic systems, i.e., when n = m, it could be possible
to find an interval vector X, which covers all possible solutions, using the
interval-valued Gauss method which represents the interval version of the
linear algebra method known as Gaussian elimination (see [65]). In any
case, using the interval entities [A] and B repeatedly in the calculation,
this procedure could produce poor results which only provides first rough
estimates of some problems. Indeed, even if the result contains the entire
solution set, it also has a large area outside it. So, a rough solution X can
often be improved by an interval version of the Gauss—Seidel method, an
alternate strategy commonly used in practice which is extensively described
in [65].

1.3.5 Elements of complex TA

The classical interval arithmetic theory can be extended, via complex interval
numbers, to determine regions of uncertainty in computing with complex
numbers. Indeed, as an interval can also be defined as a set of points at
a given distance from the centre, it is easy to extend this definition from
real numbers to complex numbers. So, let define what a complex interval is,
according to [17].

Definition 1.3.6. Let Az and Bz be real intervals. A complex interval Z is
the set of all ordinary complexr number a, +1ib,, for all a, € Az and b, € By,
that is:

Z=A;+iBy = {z:az—i—ibz | a, € Az, b, € Bz}

where Az and By are, respectively, the interval real part and the interval
imaginary part of Z while i = [i,1] is the interval imaginary unity.

Geometrically, a complex interval may be concieved as a 2-dimensional
interval vector

Z = (Az,Byz)

where A is the real interval element and B is the imaginary interval element.
Then the complex interval is represented by a rectangle in the complex plane,
that is a kind of rectangle of certainty.
In the complex case we denote by K¢(C) the set of complex intervals.
Note that, as an interval is a real closed interval and a complex number
is an ordered pair of real numbers, there is no reason to limit the application
of interval arithmetic to the measure of uncertainties in computations with
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real numbers. Therefore, the basic algebraic operations for real intervals
can be extended to complex numbers and it is not surprising that complex
interval arithmetic is similar to the ordinary complex one.

Considering a complex interval Z = Ay + iBy = (Az, Bz), is interesting
to remark the following notational conventions:

- if Bz = [0,0] then Z is a pure real interval,
- if Az =[0,0] then Z is a pure imaginary interval;
-if0 ¢ AZZ + B% then Z is a nonzero complex interval;

- if Az =az,a;] and Bz = [b,,b,] (so they are both real point interval),
then Z is nothing more than a point complex interval. It follows that
every element [a.,a.] + i[b,,b,] is an isomorphic copy of an element
a, + ib, € C. By convention, we agree to identify them.

We also define the conjugate of a complex interval Z = Ay 4+ iBy =
(Az, Bz) as
Z = AZ —iBy = (Az, —Bz).

Similarly to ordinary complex numbers, also complex intervals cannot
be ordered with respect to inequality relation <, while equality relation for
two complex intervals X = (Ax,Bx) = Ax +iBx and Y = (Ay,By) =
Ay + iBy, is defined in the following way:

Ax +i1Bx = Ay +iBy & Ax = Ay and Bx = By.

In general complex interval arithmetic can be defined in terms of real
interval arithmetic in a way which is similar to how ordinary complex
arithmetic is defined in terms of the real one; therefore, using procedures
similar to those seen in the case of real intervals, it is possible to implement
binary and unary operations even in the case of complex intervals.

It follows that, for any two complex intervals X = (Ax, Bx) = Ax +iBx
and Y = (Ay, By) = Ay + iBy and for every real number k, the following
facts are immediate (see [17]):

- addition X®Y = (Ax ® Ay,Bx ® By) = (Ax ® Ay) @ i(Bx ® By);
- scalar multiplication k- X = (k- Ax,k - Bx);

- negation —X = (—Ax,—Bx);

- subtraction XY =X ® (-1)-Y;

- multiplication X®Y = (Ax®Ay@Bx®By)+i(AX ®By ®@Bx ® Ay );
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1 Ax ©1iBx X
- reciprocal X! = — = = if X is a nonzero
P X~ AL eB% AL 0B} ’
complex interval;

X 1
- division Y- X® (Y) if Y is a nonzero complex interval.

Other important definitions are the following.

1. The complex width of a complex interval X = Ax + iByx, where
Ax =la;,af] and Bx = [b;,b}], is defined by

x T T rx

w(X) = w(Ax) + iw(Bx) = (af —a;) +i(b} —b).

2. The complex midpoint of a complex interval X = Ax + iByx, where
Ax =la;,a}] and Bx = [b,,b}], is denoted by

T T T T

X =G, +ib, = %(a; +al) + %(b; +b).
We remark the fact that for a complex interval X = Ax + iBx with By =
[0, 0], the operations for complex interval are reduced to the corresponding
operations for real intervals.

In addition, according to [17], it can also be shown that, as happens
in the real interval case, there is no distributivity between addition and
multiplication of complex intervals except for certain special cases, and
inverse elements do not always exist.

But in complex interval arithmetic there are two other useful properties
of ordinary complex arithmetic which fail. Indeed the additive and multi-
plicative properties of ordinary complex conjugates do not hold for complex
interval conjugates.

Finally, it should be remarked the fact that interval arithmetic can be
also extended, in an similar way, to other multidimensional number systems
such as quaternions and octonions, but with the compromise that other
useful properties of ordinary arithmetic have to be sacrificed.

1.3.6 Basic notions of interval-valued functions

The application of functions to intervals is strictly connected to the extension
principle used by Moore in [65]. Interval arithmetic can be used to define the
bounds of the image of a continuous function f, defined on a closed interval
X = [z7,x"] as its preimage. Indeed, since intervals are the connected
subsets of R, their image obtained by a continuous function is also an
interval. In particular we can say that the range of values of a real-valued
continuous function f of a single real variable z € X is contained in an
interval Y = [y~,y™], that is f(X) C Y.
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This kind of interval exists since f is a continuous function and X is a
compact set, which means that f reaches a minimum and maximum and all
the values between them.

Things are particularly easy when we deal with monotonic functions,
either increasing or decreasing. As shown in Figure 1.2, an increasing function
send an interval X = [z~, 2] into the interval f(X) = [f(z7), f(z™)].

y

flx+) -

flx-)

Figure 1.2: Example of interval extension of a monotonic function.

Consequently, when we have to find the interval extension of monotonic
functions, we only need to calculate the value of the endpoints of the interval
X = [z7, "], as the image of interval itself is:

F(X) = f([a7,27])) = [min{ f(27), f(a)}, maz{f(z7), f(zT)}].

All this means that the following basic features for interval-valued func-
tions f(X) with X = [x7, 2] can be easily defined:

- power function f(z) =22, z €R

(x7)%, (z1)?] if 0<a” <™
r7)? if 27 <2t <0

for n € N even

[(z7)™, (z7)"] if 0<z” <at
= f(X)={2"|z € X} = [(zT)", (z7)"] if 27 <at <0
[0, maz{(z™)", ()"} ifz~ <0<zt

while in case of n € N odd

FX) ={a"z € X} = [(z7)", (=)"};
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- exponential function f(z) =e®, x € R

+

= f(X)={e"lr e X} =[e" ,e" ]

or in the more general case f(r) =a®, x € R
:>f(X)={az\l’€X}={

- logarithmic function f(z) = In(z), x € Rt
= f(X) = {in(z)|z € X} =[In(z7),In(z")]if 2= >0
or in the more general case f(z) = log,(z), * € RT

[loga(x™),loga(xt)] if a>1

= f(X) = {loga(z)|z € X} = { lloga(zt), loga(z™)] if 0 <a <1

- square root function f(z) =+/z, © >0
= f(X)={Vzlz € X} = [Va—,Vat]if 2~ > 0;

- sine function f(x) = sin(x), z € R

)

T
(as it is not monotonic, we consider its restriction to the set [—5 5}

where the function is increasing)
‘ T o
= f(X) = {sm(m)\x €eXC {—5, 5}} = [sin(z7), sin(z™)],

cosine function is similar, considering X C [0, 7.

Actually, dealing with monotonic functions, it is easy to verify that the
result is exactly the same we have obtained considering the endpoints of the
interval.

More generally, it is sufficient to consider the endpoints of the interval
X, paying attention to the so-called critical points within the interval being
those points where the monotonicity of the function changes direction. In
this way we have been able to define a few interval-valued functions by
selecting a real-valued function f and computing the range of f(z) with x
varied through some interval X: the result is defined to be the set image
F(X).

But it is also possible to use another process which consists in extending a
real-valued function f by applying its formula directly to interval arguments.
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Definition 1.3.7. Let f be a continuous real-valued function of a single real
variable x, that is
f:R— R,

2 — f(@)

and let F be a function which sends interval X to interval F(X)
F: /Cc — /Cc,

X — F(X).

We say that F is an interval extension of f if, for degenerate interval
arguments [z, x], we have that F corresponds to f, that is,

F([z,z]) = ().

Following the approach described in [65], we first consider the monotonic
case and take an increasing (or decreasing) function

f:R — Rsuch that V1,20 € X | 21 < 22 = f(21) < (2)f(z2).
In order to better explain, let us start with the following example.

Example 1.3.3. Consider the continuous real-valued function f given by
f(x)=1—z withrt €Rand X = [z, 27| withz™ < 2.

Note that a function is defined by two things: a domain and a rule. In that
case they are both specified as the elements of the domain are reals numbers
and the mapping rule is: x — 1 — x. Note also that, taken in isolation, the
entity f(x) =1 — x is a formula, not a function. Often this distinction is
ignored and we tend to interpret it as a function whose domain should be
taken as the largest possible set over which the formula makes sense (in this
case, all of R). Nevertheless, to the definition of f, the domain is just as
essential as the formula.

Now we take the formula f(x) =1 — x that describes the function above
and apply it to interval arguments. We obtain the following interval-valued
function:

F(X)=1-X with X =[z7,27],

which is an extension of the initial real-valued function. What we have done
1s to enlarged the domain in order to include nondegenerate intervals X as
well as the degenerate intervals [x,x] = x.

According to the laws of interval arithmetic, we calculate the extension
of f by applying its formula to interval X :

F(X)=1-X=[11]-[27,2"] = [L,1]+[(-2)", (-2) ] =[1-2", 1-27].
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On the other hand, as x increases through the interval [x~, x|, the values
of f(z) decrease through this interval from 1 —x~ to 1 — ™ as

fzT)=1-2">1-a" = f(a™).
Then, by definition we have:
FX) = f(lz™,27]) = [min{f(z7), f(z)}, maz{f(z7), f(z")}]

=1-a71-27]

in other words, we obtain: F(X) = f(X) with f(X) = {f(x)|lz € X}.
Therefore we have found the united extension of f : f(X)=1— X.

Things change when we are dealing with general functions as shown in
the Example 1.3.4.

Example 1.3.4. Consider the following real-valued function
fx)=2* -z +1 wherex € [-2,1] = [z7,27] = X.

We know that in ordinary real arithmetic, it is possible to rewrite the function
3

1\ 2
in different ways, such as: 2> —x+1=2(z - 1)+ 1= <:1: - 2> + 1

Hence we obtain three real-valued functions, mathematically equal, which can
be defined as:

2 1\? 3
fl@y=a2*-2+1, glx)=z(x—-1)+1 and h(z)= :c—§ +Z'

Now, let form corresponding interval extension to X = [z~ ,zT]:

1\2
FX)=X?2-X+1, GX)=X(X-1)+1 and H(X) = (X — 2) —&—2.
Applying these formulas to the given interval X = [z~ ,z"] = [-2,1] and
using the algebraic rules defined in Subsection 1.3.3, we obtain the following
results:

[_2’ 1}) = [_Qa 1]' ([_27 1] - [1’ 1]) + [17 1] = [_23 1]' [_37 0] + [1’ 1] =
[_376] + [17 1] = [_27 7]3

s = (o) + - 3 -

In conclusion we get three different solutions even thought these ex-
pressions would be equivalent in ordinary arithmetic. Indeed, considering
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3/4

-8 -6 -4 -2 2 4 6 8

-2

Figure 1.3: The real-valued function: f(z) =22 —z + 1.

X = [-2,1], we obtain that, as x increases from —2 to 1, the tree maps F,G

and H decrease from 7 to —, then increase back to 1 as shown in Figure 1.5.

As a result we have that
3
F-2.1) = g(-2.1) = w(l-2.1) = | 3.7].

On the other hand, considering interval-valued extensions of f, g and h, we
have just obtain that

H(-21) = |57 € F-2.1) = 0.7) € 62,11 = [-27

It is evident that neither of the two functions F and G map the interval
3
[—2,1] into T 7] and this is due to the lack of distributivity and additive

and multiplicative symmetric in interval arithmetic. It is evident that the

united extension of the original function f results from the third equivalent

3
formula h as H(]—2,1]) = 7 7
This means that the different formulas generate different extensions but
not all can be considered the united extension.

So it is clear that the quality of the interval arithmetic evaluation as an
enclosure of the range of f over an interval X is strongly dependent on how
the expression for f(x) is written. This represents one of the main obstacle
to the application of interval arithmetic; indeed if an interval occurs several
times in a calculation and each occurrence is taken independently then this
fact can lead to an expansion of the resulting intervals.
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Actually the exact range of values could be achieved if each variable
appears only once and if function f is continuous inside the box but, unfortu-
nately, not every function can be written in this way. Therefore, there is the
effective risk of an over-estimation (also called interval dependency problem)
of the value range which could prevent more significant conclusions.

Nevertheless, as described in [35], interval analysis does not suffer from
any restriction to a particular class of functions that it can be applied to and
this is thanked to the fundamental theorem of interval arithmetic.

Theorem 1.3.1 (Moore’s fundamental theorem [65]). For any bounded
real-valued function f defined by an arithmetical expression

fR—R, x+— f(z),
the corresponding interval-valued extension F
F:Kc—)/Cc, Xl—>F(X)

18 an inclusion function of f, that is, for any compact interval X € K¢, the
following inclusion applies:

F(X) 2 J(X) = {f()]« € X}. (1.16)

Note that, unlike F'(X), in general f(X) does not necessarily have to be
an interval.
Furthermore, until now we have limited the processes to functions of a single
interval variable X but there is no reason to avoid more general functions.
Therefore we can consider a function depending on n interval variables.

Definition 1.3.8. Let f : R* — R be a function, then the function
F:Ke™ — K¢ is an interval extension of f if

F(Xl, ,Xn) ) f(Xl, ,Xn) = {f(a;l, ,xn)]xz € X;,1:=1, ,n}

By an interval extension of f, we mean an interval-valued function F' of
n interval variables X7, ..., X,, such that for real arguments 1, ..., z,, we have

F(zy1,...,xpn) = f(z1, ..., Tn).

Remark 1.3.2. As shown in Example 1.53.4, we obtained extensions F of
real rational functions f by replacing:

- the real variable x with an interval variable X ;

- the real arithmetic operations with corresponding interval operations.
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The result F' is called the natural interval extension of f.

The same procedure can be performed with functions of n variables and
the most important observation we made can be repeated even with general
functions: two rational expressions which are equivalent in real arithmetic
may not be equivalent in interval arithmetic.

However, the inclusion property provides a robust rejection test, i.e.,

0¢ F(X)=0¢ f(X).

This also means that, given a function f and a bounding box B defined as a
product of n intervals, we have a very simple experiment to prove that the
box B does not intersect the image (or surface) of f: 0 ¢ F(B) =0 ¢ f(B).

As described in [35] and [36], “point sampling” fails as a rejection test
on non-monotonic intervals.

It is important to say that while many methods exist for isolating mono-
tonic regions, inclusion methods using interval can be considered as the most
general and strong as they evaluate an inclusion extension of the implicit
function (see Figure 1.4) and use that for spatial rejection or evaluating
monotonicity. In particular when the function f is non-monotonic on an
interval I, in order to assure a convex hull CH(I) over the range, calculating
the lower and upper components of a domain interval could be not sufficient.
Of course, things are different with an inclusion extension F' of f, which in-
clude all minima and maxima of the function within that interval. Note that
these can be used for any computable function, but require implementation
of an inclusion arithmetic library.

Jix) Sx)
Sl _ 0
i _ _ _ _ 4 CH{l)
e _ _ __ _ _ _ _ _ _ 5 fiwd _\
j R
| =LA \ =lLh)
— [ . — [ "

Figure 1.4: Example of the inclusion property when the function is non-monotonic.
Left: calculation through lower and upper component of the domain interval.
Right: inclusion extension which includes all minima and maxima of the function.

(Figure reproduced from [36]).

Thus, just as TA can be used to find bounds on the image of a continuous
function defined on a closed interval as its preimage, so interval methods
are applied to a wide range of mathematical concepts as well as important
calculation estimates, such as bounding the error term in Taylor’s series or
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in evaluating definitive integrals (as well explained in [17]); however, it is im-
portant to remember that the methods of classical numerical analysis cannot
be transferred one-to-one into interval-valued algorithms, as dependencies
between numerical values are usually not considered.

This is a general rule that must be taken into account especially when
dealing with central concepts of analysis such as convergence, continuity or
differentiability (which will be dealt with in details in Chapters 2 and 3).
In particular, since the definitions of such concepts depend on having an
adequate way to express distance, it is advisable first of all to provide an
appropriate notion of interval metric as a measure of the ”distance” between
the objects.

Therefore, in order to introduce continuity and convergence in the context
of interval analysis, we define a measure of distance between two real intervals
X=[z",2]and Y = [y~,y"] as

d(XaY) :maaj{|x_ 7y_|7|$+ 7y+|}a (117)
from which we have the following definition.

Definition 1.3.9. Let {Xy} be a sequence of intervals. We say that { Xy}
is convergent if there exists an interval X* such that, for every € > 0, there
is a natural number Ng, such that d(Xy, X*) < ¢e,Vk > N .

As in the case of real sequences, we write

X* = lim (X%) or X — X*

k—o0
and refer to X* as the limit of {Xy}.

To conclude this section we must remember that the real interval system
represents an extension of the real number system. In fact, as reported in
[65], the correspondence [x,z] «— x can be considered as a mapping which
preserves distances:

d([z, z], [y, y]) = maz{|z — y|, [z — y|} = |z — y|, Vo, y.

For this reason, it is called an isometry, and it follow that the real line is
isometrically embedded in the metric space of intervals.

1.3.7 Alternative theories

As anticipated in Subsection 1.3.1 and according to [17] and [49], there are
some alternative theories of IA which were mainly introduced to extend the
algebraic structure associated with intervals or to decrease the dependency
effect.

In general, different approaches have been developed in addition to the
axiomatic and united extension (the constrain interval arithmetic is an
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example of these) and various representations of intervals have been created
too, with the intention of make operations simpler and define more precise
results. Among these last, we mentioned in particular the midpoint-error
form, as we will extensively use it in the following. Originally called range
arithmetic, this notation was first developed by Oliver Aberth in 1988 and
represents an interval X (also called range number) as

X=2+7=[z",27]

x” +at xt — 2~

where T = — is the midpoint and z = 5 represents the error

(or radius) of the interval.

Instead, regarding alternative theories, it is important to remark that
one of the most important problem about interval arithmetic was to extend
it to unbounded intervals that may be entered or result from a division by 0:
this is what the extended interval arithmetic, proposed by Kahan in 1968,
aimed to do, trying to incorporate plus and minus infinity as endpoints of
intervals; successively, also the space of improper intervals, with the so-called
directed interval arithmetic, was developed, including a particular kind of
intervals with negative width, known as nonregular intervals, which are used
to complete the set of real intervals to its closure.

Later, in order to solve the problem of overestimation that characterizes
the axiomatic approach, the so-called generalized interval arithmetic was
introduced. In this particular approach an interval is represented by

X=lo", 2" =y+[-k+k], k>0

so that X = [y —k, y+k] and the peculiarity of the arithmetic associated with
it is the reduction of the effects of dependencies. More recent generalizations
of this approach are represented by the affine arithmetic and the Taylor
model arithmetic: the first minimized the effect of overestimation defining an
interval X = [z~,2"] by its affine representation z = xg + z1€1 + ... + Tnén,
so that

X = [x0_£7$0+£]7

where £ = 7" | |z;|, while the Taylor model, which represents one of the
most succesful approach to deal with dependancy problem, is a method to
do arithmetic on functions as it is able to provide enclosures of any function
by a Taylor polynomial.

Furthermore, during the same years, tripler arithmetic and its probabilis-
tic generalization, quantile arithmetic, were introduced to carry more informa-
tion about the uncertanty of the bounds which are denoted by endpoints. In
particular a triplex interval is symbolized as X = [z7,Z,27], 2= < < 2™,
where 7 is called the main value and the arithmetic associated with, expecially
the quantile one, approximates distributions whose support is an interval.
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For the three-point quantile arithmetic, the distribution af a variable X, is:

oY if = 21, where P(X < 11) =

1—-2a if z =z, where P(

< o
1
X <ag) =<
fx(z) = n)=3
oY if = z3, where P(X < z3) =1

0 otherwise

1
where the parameter 0 < a < 3 is generally fixed a priori. We obtain that

- < a1 < 29 < a3 < 27, where the support of the distribution is [, ."L‘+]
and 1, z2, 3 represent the a-quantile, the median and the (1 — «)-quantile
of the continuous variable X. It can be demostrated that 0 and 1 represent
the additive and multiplicative identities and that quantile arithmetic is
commutative but not associative and not even subdistributive; however, if
F(X) is the quantile expression of the rational expression f(x), the following
property holds: f(z) C F(X).

Finally, we cite two more types of interval approach: the ellipsoid arith-
metic developed by Arnold Neumaier in 1993, which is based on approxi-
mating enclosing affine trasformations of ellipsoids that are in turn enclosed
in an ellipsoid, and the variable precision arithmetic, developed in order to
bound solutions to problems which require more precision than guaranteed
by the common floating-point arithmetic.

We terminate this collection merely pointing out a very important method,
constructed in 1985 by Ernest Gardenyes, which can be considered a struc-
tural, algebraic and logic completion of the classical intervals as it deals with
a basic problem of the classical theory: the lost of semantic of quantification
over real variables. Indeed, the so-called modal interval analysis (MIA for
short) provides a set of semantically equivalent interval sentences to a bigger
subset of the corresponding real sentences.

As well explained in [17], [34] and [75], what MIA intends to do is to
define a modal interval by associating a quantifier to a classical interval,
and to introduce the fundamental relationship of inclusion between modal
intervals by including it among the sets of predicates they accept. So, a
modal interval consists in a classical interval, which defines its domain, and a
quantifier, which defines its modality. We can say that, just as a real number
x can be represented by the pair consisting of the absolute value and the
sign (|z|, £), in the same way a modal interval can be identified as a pair of
a set teoretical interval and a logic quantifier ([x~, 7], x), where * € {V,3}.
So a modal interval represents the set of all true sentences with respect to
the quantification *z € [z, zT].

To better explain this we can consider the following two sentences:

Ve ez, 2%, Vyely,y'], JzeR|z==zo0y,

Ve ez ,2%), ey ,y], JzeR|z=xo0y,
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where o € {+, x}.
We know that, according to the classical interval theory, these two
sentences can be translated only in one single way, that is,

3ZecKe|Z=[z",x oz, 2]

which, from a semantic point of view, is equivalent to the first sentence.
Therefore, in classical theory, the meaning of the second sentence is lost as
the semantics of the existential quantifier is not included in the set definition
of the operations; on the other hand, being MIA based on predicate logic
and set theory, it can easily overcome the problem.

The result is that we obtain a theory where, despite its complicated
construction, additive and multiplicative inverse exist; however, even this
approach is not without its problems as, differently from the theory of
constraint intervals, it is not possible to translate every sentence of real
arithmetic into a semantically equivalent modal sentence without loosing
dependency information.



Chapter 2

Orders and representations
for intervals

The contents presented in this chapter is inspired in particular by the results
of the first part of a recent work consisting of two distinct and interrelated
papers ([84] and [85]), concerning interval analysis and the calculus for
interval-valued functions of a single real variable.

Starting with a recently proposed comparison index, we develop an
innovative general setting for partial orders in the space K¢ of compact
real intervals. We adopt extensively the midpoint-radius representation of
intervals in the real half-plane and show its usefulness in calculus. However,
the contents of this chapter have been expanded and enriched with various
new elements, which offer innovative and interesting interpretative ideas.

More specifically, the basic properties of the space of real intervals are
described in Section 2.1, while Section 2.2 introduces several partial orders for
intervals, discusses their properties in terms of the midpoint representation
and in relation to lattice theory. The fundamental role of gH-difference
in characterizing the partial orders is also shown and there are numerous
references to graphical representations relating to this notation.
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2.1 The metric space K¢ of real intervals

In this section we introduce the basic properties of the space of real intervals
and, as already shown in Subsection 1.3.3, we focus on the fact that in
interval arithmetic the standard Minkowski addition and multiplication
are not invertible operations. However, the need to determine the inverse
elements of these operations has proved to be extremely important as they
are fundamental within the whole interval analysis, with particular reference
to important applications such as the solution of equations, the concepts of
differentiability, of interval integral, differential equations and so on.

Therefore, the attempt to find such inverse elements has always been one
of the main objectives of the interval analysis and a good example of this
is represented by the operations introduced by Hukuhara in [37], which we
briefly present in Subsection 2.1.1.

2.1.1 The gH-operations in K¢

As defined in (1.4), we denote by ¢ the family of all bounded closed intervals
in R.

To describe and represent basic concepts and operations for real intervals,
the well-known midpoint-radius (or simply midpoint) representation is very
useful: for a given interval A = [a™,a™], let us define the midpoint @ and
radius a, respectively, by

 at+a 43 at —a~
a=———and a = ——
2 2 7
so that ™ =a —a and a™ = @ + a. It follows that, using midpoint notation,

interval A = [a™,a™] can also be denoted by A = (a;a); therefore, we can
redefine:
Ko ={(a;a)|a,a € Rand a > 0}.

Given A =[a",a"], B=1[b",b"] € K¢ and 7 € R, we have the following
classical (Minkowski-type) addition, scalar multiplication and difference:

e Ay B=[a" +b",a" +bT],

[ra=,7at], ifT>0
[ra™,7a™], if T <O,

. TA:{Ta:aEA}:{
e —A=(-1)A=[-a",—a"],
° A@MB = A@M (—1)B = [a’ —b*,(ﬁ —bf}.

Switching to midpoint notation, we get that:

(@t +bT)+(a” +b7) (at +b")—(a” +b7)
2 ’ 2 )

A@MB:<
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at+a- bt 4+b at—a bt —b" o~
_< 5 + SR 5 + 5 >_(a+b,a+b>.

Proceeding in a similar way also in the other cases, we obtain that, using
midpoint notation, the previous operations, for A = (a;a), B = (b;b) and
7 € R are given by:

o A®y B=(G+ba+b),
o TA = (1a;|7|a),

o —A=(-aa),

e Aoy B=(a—b;a+Db).

Generally, as already mentioned in Subsection 1.3.3, the subscript (-)as
in the notation of Minkowski-type operations will be removed, and classical
addition and subtraction will be denoted by @ and ©, respectively, but we will
insert the subscript in cases where these operations are used in combination
with other ones.

Therefore, as well explained in [79] and partially anticipated in Subsection
1.3.3, given two subsets A and B and a real number 7, it is well known
that addition @ is associative, commutative and with neutral element O;
hereafter 0 will also denote the singleton {0}. However, the opposite —A of
A, obtained thanks to scalar multiplication when 7 = —1, is such that

A®(=A) = (a;a) ® (—a;a) = (@ —a;a+a) = (0;2a) # (0;0) =0,

i.e., the opposite of A is not its inverse in Minkowski addition (unless
A = (a;0) = {a} is a singleton).

A first implication of this fact is that, in general, even if it is true that
(A® C = B® () < A= B, addition/subtraction simplification is not valid,
ie, (A@B)e B # A.

In order to overcome this situation, the following H-difference was intro-
duced by Hukuhara in [37]:

AcgB=C<A=BaC(=Bay0).
An important property of &y is that
Aeg A=0,VA € K¢ and (A@B) &g B=AVYA,B € K¢;

we have that H-difference is unique, i.e., if there exists an interval C' such
that C @ B = A, then if C exists it is unique (see [71]) and we call it the
Hukuhara difference of A and B (H-difference for short): Aoy B.
Nevertheless, for A6y B to exist a further condition is necessary: A must
contain a translate {c}+ B of B. In general we have that A6 B # Ay B and
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from an algebraic point of view, the difference of two sets may be interpreted
in terms of addition (as we have seen above) or in terms of negative addition:

Ay B=CoB=A&(—1C)(= Aoy C)

where (—1)C' is the opposite set of C'. These two conditions are compatible
to each other and suggest a further generalization of Hukuhara difference.
Therefore, we denote the generalized Hukuhara difference (gH-difference for
short) of two intervals A and B as:

(i) A=B®yC,
Acyy B=C <= { or (2.1)
(i) B=AouyC.

It is easy to show that (i) and (i) of (2.1) are both valid if and only if
C = (¢;0) = {¢} is a singleton.
The gH-difference of two intervals always exists and is equal to
Aoy B=[min{a” —b ,a” —b"},max{a” — b ,a" —b"}]
=(@-bla—b)CAenB.

In a similar way we can define the gH-addition for intervals as

A@gHB:AegH (—B) (22)

so that we get

A Dol B=A OgH (—B)
= [min{a” +b",a" + b}, max{a” +b",a" + b7}
= (@+b;la—b]) C Aay B.

In conclusion we have that the Minkowski addition @ is associative and
commutative and with neutral element 0 = {0} but, as already mentioned,
in general in Minkowski addition the opposite of A is not the inverse of A
(unless A = {a} is a singleton) and an important implication of this fact is

that additive simplification is not valid, i.e., (A ® B) © B # A.
Conversely, considering the gH-difference, we always have

A@gHA:O and (A@MB)@gHB:A,VA,BEKC

(and other properties that will be given in the following, when needed).
Note also that:

- aA oy A= (a+ B)A only if af > 0 (except for trivial cases),

- AoyuB = Aoy Bor A®yg B = A®y B only if A or B are singletons.
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Remark 2.1.1. The introduction of two additions ©pr, ©gu and two differ-
ences On, Ogr for intervals is not motivated here as an attempt to define a
“true” arithmetic in Kc; for example, ©pr and ©gy are both commutative
with neutral element 0, but only Gr is associative. The four operations are
each-other strongly related and their properties motivate the (appropriate)
use of them in the context of interval analysis and calculus.

It is possible to repeat a similar procedure as regards the multiplication
and division operations: indeed the gH-difference can be used to introduce
a division of real intervals.

In Subsection 1.3.3 we have seen how Minkowski multiplication, reciprocal
and division are defined. In particular we noticed that the multiplicative
inverse (it is not the inverse in the algebraic sense) of an interval B = [b~,b"]
with b~ > 0 or b* < 0 (i.e. 0 ¢ B), is defined by

11
71_
B! = [H,b_]

So, we can denote the generalized Hukuhara division (gH-division for short)
of two intervals A and B as follows:
(i) A=B&ayC,
Ao B=C<+= (¢ or (2.3)
(ii) B=AoyC=A®yCL

If both cases (i) and (ii) of (2.3) are valid, we have:
1
CouCt=0"1®yC={1},ie, C={c} and C~! = {E} with ¢ # 0,

that is, C is a singleton.

It is immediate to see that A @4,y B always exists and is unique for given
A=la",a"], B=[b",b"] with 0 ¢ B.

Remark 2.1.2. If 0 €]b=, b, the gH -division is undefined, while for inter-
vals B =[0,b"] or B = [b™,0] the division is possible but we obtain unbounded
results C' which have the infinitive form C =] — oo, c™]| or C = [¢™, 400 : we
can work with B = [g,b"] or with B = [b—, —¢] and we obtain the result by
the limit for e — 0.

Finally, as was done for addition, even in the case of multiplication it
is possible to give a generalized Hukuhara version, using the gH-division
operation that we have just introduced.

So we define the generalized Hukuhara multiplication (gH-multiplication
for short) as follows:

{0} if 0€ A,0 € B,
A®u B={ Ao,y B~! if 0¢ B, (2.4)
Bogy A7V if 0¢ A.

Note that, in case 0 ¢ A and 0 ¢ B, we have:
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2.1.2 The interval metric space

One of the things we are interested in is discussing the notion of continuity
and convergence in the context of interval analysis but, as we know, for this
it is first necessary to define a suitable metric.

In this regard, let us briefly recall that, assuming S is any set and that a
real-valued function d is defined such that for any two elements x,y € S the
following statements hold:

1 d(x,y) =0 if and only if z = y,
2 d(z,y) = d(y,z),
3 d(z,y) < d(z,z)+d(z,y) for any z € S,

the function d is a metric on S which, in turn, is called metric space.

It is well known that the three conditions listed above can be considered
as the essential characteristics of the distance between objects of S; therefore,
what we really need now is to define a distance between intervals in K¢. For
this purpose we will use the well-known Pompeiu—Hausdorff distance. In
this regard let us remember that, in general, if A and B are two closed and
bounded sets and a € A, then the distance between the point a and the set
B is given by

d(a, B) = min{d(a,b) : b € B} = min|a — b
beB

where d(a,b) is the (Euclidean) distance between the points a and b.

So we can give the following definition.
Definition 2.1.1. Considering two intervals A, B € K¢, the Pompeiu—Hausdorff
distance di : Ko x Ko — RT U {0} is defined by

di(A, B) = max {max d(a, B), max d(b, A)}
€

a€A
with d(a, B) = minpep |a — b|.
The following properties are well known:

dp(TtA,7B) = |7|du(A, B),VT € R,
du(A® B,C® D) <dy(A,C)+du(B,D).

It is also known (see [79, 82]) that

dr(A; B) = [[AS4n B (2.5)
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where, for C' € K¢, the quantity
|C| = max{|c|;c € C} = du(C,{0})

is called the magnitude of C.

Furthermore, an immediate property of the gH-difference for A, B € K¢

is

dg(A,B) =0 <= Aoy B=0 < A=35B. (2.6)
Then, we have that all the conditions necessary to define a metric are satisfied;
therefore, we have that (K¢, dpy) is a metric space.

In addition, as stated in [7] (Theorem 8.5), [19] and [48] (Proposition
1.3.1), it is well known that (K¢, dy) is a complete metric space. Indeed,
the concepts of a convergent sequence of intervals (A4, )nen, An € K¢ can be
considered in the classical sense in the metric space K¢, endowed with the
dy distance.

Definition 2.1.2. We say that lim, o, A, = A if and only if, for any real
e > 0, there exists an ne € N such that dg (A, A) < e for all n > n..

Consequently, the following equivalence is always true, as it is a trivial
application of (2.6):
lim A, = A if and only if ILm (An©ga A) =0. (2.7)

n—oo

2.1.3 Innovative graphical representations for intervals

Before concluding Section 2.1, we briefly propose further innovative graphical
representations for the set of real intervals, thanks to which it is possible to
interpret an interval as a point with all the advantages that this entails.

In Subsection 2.1.1 two different notations have been introduced to
describe the intervals A € Ke:

a) endpoint notation: A =[a",a"]

b) midpoint-radius notation: A = (a;a)

where a@ = % (e +at)anda = 1 (at —a7),sothat a~ =a—a, ot =a+a.

By making use of the aforementioned notations, it is interesting to observe
how intervals can be represented as points both in the midpoint half-plane
(7; %) or in the extremes plane [z, x| respectively, as shown in Figure 2.1.

In this regard we can even consider the two points A = [a™, a™] and
Ay = (a;a) as different representations of the same element, respectively
in the midpoint half-plane and in the extremes plane (see Figure 2.2). In
particular, in this second type of representation, it can be seen that the lower
extreme a~ of the interval A = [a™,a™] is positioned on the horizontal axis
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X
X %
o B MID-POINT
° (% %)
A a A
\ ¢ X
x a3 a % b x 8 b
X+
b B X=X
EXTREMES
[x, x*]
X .
X
X a b
A a

Figure 2.1: Example of graphical representation of intervals by points in the
midpoint plane (Z; ) (top) and in the extremes plane [z, z"] (bottom).

of the plane while the upper extreme a™* on the vertical axis. We also note
how, unlike the midpoint half-plane, in this case the entire plane is used.
Moreover, it is also possible to redefine the above concepts using matrices.
Indeed, as
a
la

we can consider the associated matrix M = so that, for all

HER!

Since det(M) = 5 # 0, it follows that the inverse matrix M ! exists and
corresponds to

(a= +a™)
(_a’_ + CL+),

I
DO =0 =

o=
N[ —

D=
N[ —

A=la",a"] € K¢ we have

1 _1 L _1
1 1 2 2 2 2 T
M :W ) :2 . ZQM,

1
2 2 2

N[ =
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X* X
xt=x
I A
a4y ]
c* c
Xu
x X
X+ 3 Am
A
X o X
X a c 'S < a x* 4 8=c*=c a*

Figure 2.2: Example of representation of the same intervals in the midpoint plane
(right) and in the extremes plane (left).

where M7 is the transposed matrix of M.
So we get: M -M~1 = M-2MT =, thatis: M-MT =MT-M =31
In fact, it can be trivially verified that

SR EE S N
M -MT = . — _1.[1 O:|_1.[2'

_1 1 11 0 1 2 101 2

2 2 2 2 2

In summary we have
[ P oy
[~]—M [(ﬁ_] for all A—[a ,a }
and, on the other hand,
a . T Zi e~
{GJF]—QM [5] for all A = (a;a).
Hence, according to Figure 2.2, we can define the sets:

I={X =[z7,22] 21 <z} and J={Y = (y1;92) : y2 = 0}

where the matrix M gives us the bijective map: M : I RN J, such that
Su

HEEMEH
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X+

a* A Xr=x

>

my

B b*

Figure 2.3: Visualization in the extremes plane [z7, 2] of the distance between
the points representing two intervals (A and B) and the line 27 = 2~.

represents the composition of a rotation and a contraction.

Indeed, as illustrated in Figure 2.3, the distance from point A to the line
rt =1 isd= % =/2-a, from which it follows @ = %.
This means that M represents the composition between a rotation and a
contraction of I into J.

Indeed, if we define

N:\@-le

<5l
SIS

s - s
_ [ cosy  siny }
o T T |

sin%  cos’

N

it follows that
M=N- -—1I,

1
where matrix N stands for a 45 degree clockwise rotation, while —=1s

V2
represents a contraction by a factor —2
In this work we will make extensive use of the graphic representation

in the half-plane (Z;z) which will be privileged with respect to that in the
plane [z, z7].
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2.2 Order relations for intervals

The problem of ordering intervals has been a topic of intense research in
several areas and in this section we will introduce several partial orders for
intervals and we will also discuss their properties in terms of the midpoint
representation and in relation to lattice theory. Then the fundamental role
of gH-difference in characterizing the partial orders will be shown and finally
we will provide numerous references to graphical representations related to
this notation.

2.2.1 Orders and lattices in classical theory: basic recalls

Before proceeding, let us recall some elements of classical theory (the material
in this section follows [10], [24] and [54]).

It is well known that a partially ordered set (P, <), poset for short, is a
set P with a binary relation < that is a partial order, i.e., it satisfies the
following properties: Vx,y,z € P

1) z <z, Vx € P (reflexive);
2) if z <y and y <z, then z =y, Vz,y € P (antisymmetric);
3) ifx <yandy<z then x < z, Va,y,z € P (transitive).

Furthermore we say that P is a totally ordered set when < has the
following additional property:

4) Vx,y € P, we have x < y or y < x (linearity).

We also recall the fact that to each partial order < on set P, an inverse
partial order <’ exists, defined by

< yer>y.

The so-called duality principle follows: if (P, <) is a poset, then (P, <') is a
poset too, called dual poset.

Now let S C P be a subset of a poset P.
We say that an upper bound (resp. lower bound) of S is an element b € P
such that z < b (resp. = > b), Vo € S; moreover if b € S, then b is the
greatest element or mazimum (resp. least element or minimum) of S.
An element m € S is said to be maximal (resp. minimal) if in S there is no
element that is greater (resp. smaller) than m.
Finally, the least upper bound (lub) of S is called its supremum and is de-
noted by supS. Using the principle of duality, it is also possible to define
the greatest lower bound (glb) of S, called its infimum and indicated with
infS. If the supremum and the infimum exist, they are unique.
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Definition 2.2.1. A poset (L, <) is a lattice when any of its elements x and
y have a supremum, denoted by x V y, and an infimum, denoted by x N y.
For this reason we often denote the lattice structure by (L,V,N).

A Lattice (L, <) is bounded if it has a maximum, denoted by 1, and a
minimum, denoted by 0, which satisfy

0<z<1, foreveryz € L.

Furthermore, a lattice L is complete if each of its subsets has a supremum
and an infimum in L, as best described below.

Definition 2.2.2. (/24]) A poset (L, <) is a complete lattice if an only if,
for all subset Y C L, sup(Y') and inf(Y") exist.

Note that any nonempty complete lattice is universally bounded because
it contains its greatest element (the unit) and its least element (the zero).

In any lattice (L, <), by replacing the partial order with its dual <’ and
by exchanging the roles of the supremum and infinum (considering the dual
operations), it is possible to form a new lattice (L, <') or (L, V', \'), called
the dual lattice.

The duality principle assures that for every definition and property that
applies to the lattice (L, <) there is a dual one that applies to the dual lattice
by interchanging < with > and V with A.

As will be covered in more detail in Subsection 4.1.2, the lattice operations
V and A satisfy many properties. The four fundamentals are:

-zVy=yVzand z ANy =y Az, Vo,y € L (commutativity);

-zV(yVz)=(xVy)Vzand zA(yAz) =z A(yAz), Vz,y,z € L
(associativity);

-zV(xAy)=zand x A (xVy)=ux, Vr,y € L (absorption);

-zVez=xand z ANz =z, Vr € L (idempotence).

Conversely, a set L equipped with two binary operations V and A that satisfy
these four properties is a lattice whose supremum is V, infimum is A, and
partial order < is given by:

-r<yey=zVyandzr <y<zx=xAy, Vr,y € L (consistency).

A lattice L is called distributive if, for any finite index set J the following
property holds:

- yA(VieJ :U%) = VieJ(?J/\xi) and yV (/\ie] fl‘z) = /\ieJ(yvxi) ,Vwj,ye L
(distributivity).
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If it also holds for an infinite index set, then the lattice is called in finitely
distributive.

In a lattice L with universal bounds 0 and 1, an element x € L is said to
have a complement z¢ € L if

zVzf=1land z Az¢=0.

If all the elements of L have complements, then L is called complemented.
A lattice is called Boolean if it is complemented and distributive. In any
Boolean lattice the complement of each element is unique and involutive:
(z¢)¢ = z. However, all this will be resumed and deepened later in a more
accurate way in the second part of this work.

2.2.2 Partial order relations for intervals

In order to compare intervals, in addition to the classical relation defined in
(1.13), several types of partial orders can be introduced; in classifying them,
particular attention is paid to those cases in which there is a (partial or total)
overlap between the intervals involved since in such cases the comparison is
not as immediate as in the basic classical case of disjoint intervals.

As well described in [30], if we consider A = [a™,a™] = (a;a) and
B=[b",b"] = (b;b) € K¢ with a~,a™,b~,b%,3,a,b,b € R (@,b > 0), it is
possible to define eight different types of orders, briefly listed below and well
represented in the Figure 2.4.

- Upper versus Lower order (U L-order for short), denoted by Sy
AgULB & cﬁélf.

This order which, as already said, corresponds to the classical case
(1.13), requires that the two intervals are separated (i.e., a < b, Va €
A,b € B); it is clear that this order does not present particular in-
terpretation difficulties since, in the case of a problem of minimum
every possible value of A is to be preferred over those of B, while in a
problem of maximum every value of B is better than all those of A .

- Lower and Upper order (LU-order for short), denoted by Zru:
AZww B & a <b and a™ < bt (2.8)
- Center and Max-Width (CWj-order for short), denoted by Scow,,:
AZew, B & a<banda>b. (2.9)
- Center and min- Width (CW,,-order for short), denoted by Zcw,,:

AZew, B < a<banda <b. (2.10)
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- Lower and Center (LC—order for short), denoted by Zre:

AZe B & a<banda” <b . (2.11)

- Upper and Center (UC—order for short), denoted by Jyc:

AZye B & a<banda® <bt. (2.12)

Different cases:

AN B =9 disjointintervals (6. and 1.)
AN B+ @ partial overlapping (5. and 2.)
AcB@)orBcA (A4.) complete inclusion
(4"&3”:a<b and 4&3:a>b)
U orders associated:
Upper vs Lower <y : 6 (and 1)
A3y B at<b~
Lower & Upper =,y :5(and 2)
ASijyBe a~ <b &a* <b*
Centre & Max-Width <.y, : 4" (and 4)
AScwy,Be a<b&a=b
Centre & min-Width <.y, : 3" (and 3)
AScw Be a<b&a< b
Lower & Centre <;.:4", 5,6
AZcBe a<bh&a <bh”
Upper & Centre <y.:3", 5,6
ASycBe a<b&a*<h*

Figure 2.4: The eight possible positions between two intervals A = [a~,a™] = (

o~ ~

and B = [b~,b"] = (b;b) € K¢ with the partial orders associated with them.

a;a)

Furthermore, the following properties are valid for the partial orders just

described (see [30]):

1) (A Sy B and B Zcw,, A) iff A= B;
2) (AZrv B and B Zew,, A) if A= B;
3) (AZy Band A Zcw,, B) it A Zre B;
4) (A v B and A Zew,, B) it A Zue B;
5) If A Zew,, B, then A Zrc B;
6) If A Zcw,, B, then A Syc B;

)
)
)
)
)
)

7 A gLU B iff (A :;LC' B and A ch B)
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2.2.3 A comparison index based on the gH-difference

It is known that several authors have introduced interval-based comparison
indices to help in decision making with interval imprecision or uncertainty; a
comparison index is nothing more than a useful tool in choosing between two
or more intervals as it represents the uncertain or imprecisely defined outcome
of a decision problem. In order to define it, we must first consider the order
induced by the gH-difference and the natural order on the real numbers.

Given an interval C = [¢™,c¢T] = (¢;¢) € K¢, p € R,p > 1, we define the
(modified) p-norm as

ICll, = (e + [a")»

while in the case where p = oo, we can define ||C||,, = maxz{|c|,¢} which
represents the infinity norm or maximum norm.
Furthermore, we also have that for each p the following properties hold:

- IC|l, > 0 and |C]l, =0 = C =0,
- 1€+ DI, < lICll, + D1,

In particular we are now interested in the 2-norm of C, given by

||CH2 = \/m = \gi (c—)Q + (C+)2

such that, of course, we have:
ICll; 2 0 and [[Cll; =0 <= C =0, [|C+ Dlly <|[Clly + [|Dll,-
In order to include commonly used order relations, a new comparison
index has been defined, based on the generalized Hukuhara difference.
Considering as usual A = [a™,at] = (a;a) and B = [b~,b"] = (b;0),
their gH-difference can be expressed in endpoint notation as

Acyn B=[(Acyu B)™,(Acyn B)T];

while in midpoint notation it is

Ay B = ((ASg B); (ASyn B))
where (Aa,;B) =@ — b stands for the midpoint and (A4 Ogr B) = |a — b|
for the radius.

A good property for the gH-difference is that it always exists for any
pairs of intervals and is useful to analyse the basic order relations in terms
of arithmetic interval operations.

According to [30], some properties relating the orders and the gH-
difference are immediate to prove, such as the following:

1) A ;;LU B iff (A @gH B)+ < 0;
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2) it A Zew,, Bor AZcw,, BorAZLc Bor AZyc B,
then (ASyy B)” <0 and (Acyy B) <0

and a generic comparison index, based on gH-difference, has been suggested
too.

Definition 2.2.3. ([/30]) Given two distinct intervals A # B, the gH -
comparison index of order p > 0 is defined as

A6y B
A B) = e Bl

where A Oy B is the gH -difference, VA, B.
In addition, the main properties of the index have also been given.

Proposition 2.2.1. (/30]) Given two distinct intervals A # B, we have
Vp >0

1. CI,(A,B) € [-1,1],

2. CI,(A,B) = —CI,(B, A),

3. CI,(A,B) =0 <= a =0,

4. |CL(A,B)|=1<=(a=0banda+#b),

5. CIp(A,B) > 0<=1a > b,

: ‘ , [ CL(A,B) if k>0
6. An invariance of scale holds: Cl,(kA,kB) = { CL(B,A) if k<O,
7. CI,(A® C,B® C) = CIy(A,B).

However, here only the particular case of comparison index based on
gH-difference and the Euclidean 2-norm is considered. The definition and
basic properties are given below.

Definition 2.2.4. (/84]) Given two distinct intervals A # B, the gH-
comparison index is defined as

AS.n B
I,gy(A,B)= —%7 . 2.1
C QH( 9 ) HA @gH BHQ} ( 3)

it has the following properties:
1. Clyu(A,B) € [-1,1],
2. Clyu(A,B) = —Clyu (B, A),
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3. CLy(A,B)=0<=a=b,
4. |CLg(A,B) =1 <=(a=0b anda #b),
5. ClLy(A,B) >0 < a>b,
[ CL(A,B) if k>0
6. Clon(kA, kB) _{ CLu(B.A) if k<0,

7. Clyg(A® C,Ba C) =Clyu(A,B).
We can write
AS,u B a-b
1A g Bll, - \/(a,g)Q +(@— D)2

Clyu(A,B) =

and, assuming the condition @ # B, we define the following gH-comparison

ratio
a—b
YA,B = T VB,A- (2.14)

Note that for the comparison ratio v4 g the following properties are
immediate:

vyap if k>0

(a) an invariance of scale holds: AkB = { g if k<0,

(b) va+c,B+c =7A,B-

The comparison ratio 74, can be determined for all the possible positions
of two intervals A = [a~,a"] = (@;a) and B = [b~,b"] = (b;b) and in
particular it characterizes how the two intervals overlap each other (see

Figure 2.4). We have the following cases.

1. Case 1 is an unambiguous one as the two intervals do not overlap and
the strict dominance is verified: we have B Zyr, A, which occurs when
BZwAanda—b>a+b, thatisa™ > b

2. In case 2 we have B Zry A or, equivalently b~ < a” and bt < a™,
from which we have a=™ —b~ > 0, a™ —b" > 0 and, obviously, @ —b > 0.
It is immediate to see that

v @-m-(6-h a-b a-b
0= _@-@=0b=b)_a=b a=b_ o1
a—1b a—b a—-b a-b
as well as
f bt @r@) -G+ _a-b_a-b
P :(a—i-aA) b+ ):z b amb s (216)
a—b a—b a—b a-b
which means that |y4 g| < 1.
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. Case 3 occurs when @ < b (soa— b < 0) and has to be split up into

the two sub-cases 3’ and 3" depending on the relative positions of the
midpoints:

3’. in the first case, which corresponds to B Zcwm A, we have a > B,
that is @ — b > 0; therefore, we have v4 g < 0;

3”. on the other hand, in the case A Zcwn B we have that a < b,
which means @ — b < 0; so we have y4 g > 0.

. Also case 4, which occurs when a > b from which a@ — b 0, should

be divided into two sub-cases 4’ and 4” still dependent on the relative
positions of the midpoints:

4’ the first case stands for B Zcw,, A, we have a > ?)\, that is
a — b > 0; therefore, we have y4 p > 0;

4”. similarly, in the second case, which corresponds to A Jcw,, B,
we have that @ < b, so that @ — b < 0; therefore, we have y4 g < 0.

. In case 5, in a completely analogous way to case 2, we have A Zry B

or, equivalently a= < b~ and a™ < b™, from which we have a™ —b~ < 0,
at — bt < 0 and obviously @ — b < 0. Also this time it is immediate
to verify the validity of (2.15) and (2.16) so that once again we have
[vaBl < 1.

. Case 6, similarly to the first, is unambiguous and the strict dominance

A iUL B is verified as we have A Zry B and b—a>a+ b, that is
b= >a™.

Accordingly, we can conclude that, if a # b and |va,B| <1, it is possible

to base our choice on the value of @ and b as there is no risk; on the other
hand, when |y4 g| > 1 there is a risk that requires more careful analysis.

To sum up, assuming that a < Z, it is possible to prove that, in terms of

v4,B, the five order relations we have defined above can be characterized as
follows (see also Figure 2.5)

(a) AéLU B & YA,B S [—1,1];

(b) AZcwy B & v4,8<0;

(c) AZew,, B & vaB=0;

(d) A,’chB & —1<v4B<0;

() ASuc B & 0<yap<L
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CWm

CWm

LU

uc

LC

Figure 2.5: Characterization of the order relations in terms of v4 p (assuming that
@ <b).

Therefore, it is evident that the comparison ratio y4 p is very useful
in the characterization of different order relations for intervals and its use
is extremely convenient when we are dealing with maximum or minimum
problems. Indeed if we consider two distinct intervals A # B we can use the
(partial) order relations to decide if A is “less” than B, or if A is “greater”
than B, or if A and B are incomparable with respect to the order considered,
as will be fully discussed in the Subsection 2.2.4.

2.2.4 Optimization problems

The notions of “smaller than” and “greater than” are strictly related to the
order relation that we want to use to rank intervals; in particular it could
happen that, with respect to the selected (partial) order, the two intervals
cannot be compared. Therefore, in this case, it is not easy to choose the best
range. This is especially the case when the insides of the intervals overlap. In
fact, if we are minimizing and a™ < b~, then the whole interval A is smaller
than interval B because a < b for all possible values a € A and b € B. This
means that A can be chosen for the minimum or B for the maximum. When,
on the other hand, there is an overlap of intervals, the choice will depend
on their relative position and in this case having precise selection criteria
available is of great help in identifying a final decision.

Specifically, we have that the following cases may occur.

If @ = b the comparison is easy as indeed, being A # B, either @ < b
or @ > b and the decision can be based simply on the comparison of the
midpoint values.

Ifa# band = 3, then A and B are incomparable with respect to any
order relation; indeed, in that case, the intervals are equally centered and one
of them is strictly included in the other (we can eventually have a preference
for the bigger or the smaller one, but there is no simple way to quantify how
much one is better or worse than the other).
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The interesting and more complex case to analyze is obviously when
a # band @ % b. Consider first the comparison “A is less than B”, formally
“decide if A < B or not”. If @ < b and A and B do not overlap w1th internal
points, i.e., when a™ < b™, it is reasonable to accept A < B, as no element
in A is greater than any elements in B (see first case in Figure 2.6); instead,
some indecision is justified if the two intervals overlap internally (as shown
in the other three cases of Figure 2.6).

A

A 3y, B: a’ < b~ (disjoint intervals) [~

=>a<b Va€AVbeB norisk -

A=ZyB:a” <b” &a' < b* (partial overlapping) 2
> Risk: Ja €A, 3b€EB|a>b hﬂ
A

A3cy, B:a< b (complete inclusion 4 c B) -

> Risk (left):3beB|la>b Va€eA B

~ A
A=y, B:adz= b (complete inclusion B c A) _*_.
= Risk (right) : 3a€ A|a>b VbEB B

Figure 2.6: Risk in a minimization problem (assuming that @ < 3)

We can analyze this situation using the comparison ratio y4 p; we distin-
guish two cases, (I) @ < b, a < band (II) a < b, a > b.

Case (I): (@ <band @ < b so that 74,8 > 0).

We can easily check the validity of (2.15). Therefore, if a= < b, that
is1—74p>0,507v4p <1 (or, even better 0 < y4 p < 1), then there
is no element in B which is smaller than all elements in A (second case
shown in Figure 2.6).
But if a= > b7, that is 1 — y4,p < 0, so that v4 g > 1, then elements
of B exist on the left side of B which are smaller than all a € A (third
case shown in Figure 2.6) and the ratio GA;E = 1 — v4,B measures
how much elements of B are better than al? elements of A, with respect
to how much the central value of A is better that the central value of
B.
In some sense, 1 —v4 p gives a relative measure of a possible “loss”
~ —b~ > 0 if we chose A against B based on central values (expecting
a mid-value “gain” b — a).

Case (II): (a < band @ > b so that 74,8 < 0). Similarly to the previous
case, we can immediately verify the validity of (2.16). This means
that if a™ < b™, that is yap +1 >0, so 45 > —1 (or, even better

—1 < ya,B < 0), then there is no element in A which is greater than
all elements in B.
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But if a™ > b, that is va,B +1<0,s0 74,8 < —1, then elements of
A exist on the right side of A which are greater than all b € B (fourth
a+ _ b+
case shown in Figure 2.6) and the ratio ———— = 1 4 4 p measures
(1/ —

how many elements of A are worse than all elements of B, with respect
to how much the central value of A is better than the central value of
B.

In some sense, y4,p + 1 gives a relative measure of a possible “loss”
at — bt > 0 if we chose A aAgainst B based on the central values
(expecting a mid-value “gain” b — a).

Summarizing, we can say that in accepting A < B on the basis of the
comparison a < b of the midpoint values, a possibly positive (worst-case)
loss appears when v4 g > 1 or when v4 p < —1; we then have the following
interpretation of the comparison ratio 4 g.

o If G < band —1 < v4,B < 1, no possible worst-case loss appears in
accepting A < B.

o If G < b and v4,B > 1, a possible worst-case loss in accepting A < B
appears because some values of B (on the left side) are less than all
values of A (i.e., some values of B are better than all values of A); the
quantity 1 —~4 B < 0 gives a relative measure of the possible loss with
respect to the midpoint gain.

e If 4 < band v4,B < —1, a possible worst-case loss in accepting A < B
appears because some values of A (on the right side) are greater than
all values of B (i.e., some values of A are worse than all values of B);
the quantity 1 + v4,p < 0 gives a relative measure of the possible loss
with respect to the midpoint gain.

The gH-comparison index y4 g will be used extensively in the rest of
this work. In a similar way we can define a comparison index based on
M-difference and 2-norm.

Definition 2.2.5. (/84]) Given two intervals A, B, the M-comparison index
is defined as
Clu(A,B) = —AomMB a-b (2.17)
1A Bl N2t (G4d
u Bl @b+ @+ by

where A Sy B is the Minkowski difference. Given two distinct intervals
A # B, it has the following properties:

1. CLy(A,B) € [-1,1],
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CIy (A, B) = —Cy(B, A),
CIy(A,B)=0<=a=0b,
ICI(A,B)|=1<=(@G=b=0andd #b),

SR

CIyv(A,B) >0<>a>b,

CIv(A,B) if k>0

6. Clu(kA, kB) :{ Cly(B,A) if k<0,

7. CIy(A® C,B & C) = CIy(A,B).

Assuming a # 3, we can define the M-comparison ratio

a+b
NAB= —=. (2.18)
a—>b

The reciprocal of the ratio na g, called acceptability indexz,

Acc(A< B) = =04
b+a

was introduced in [76] and it always exists when @+ b > 0 (i.e., when at least
one of A and B is a proper interval).

Given two distinct intervals A = [a~,at] = (@;a) and B = [b~,b"] = (b; b) it
has the following basic properties:

b-a b+a DT (aaa
l_ri—a b+a b+a

which corresponds to 573 > 0, we obtain a™ < b~ (i.e., all values
+a
of A are less than or equal to all values of B);

(2) if Acc(A < B) < —1, thatis =0 4 P78 < o 0= @70)
i b+a b+a b+a
which means % <0, we have a= > b" (i.e., all values of A are

+a
greater than or equal to all values of B).

When is positive, index Acc(A < B) gives a measure of acceptability of
the inequality A < B: if Acc(A < B) = a €]0,1] then A < B is accepted
with degree .

The two ratios v4,p and 14, p are not related each-other in a simple
way; the following two numerical examples compare the acceptability index
Acc(A < B) with the gH-comparison ratio y4 p for intersecting intervals A
and B. In particular, when an interval is included in the other, we have two
possibilities:
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(a) ACB
(a.1) if A=[3,9

(a.2) if A=15,7] = (6;
we get Acc(A < B) = +%, YAB = 3;
(b BC A
(b.1) if A =[1,13] = (7;6), B = [8,10] = (9; 1),
then Acc(A < B) = +7, YA,B = —%;
(b.2) if A= [2, 10] (6;4), B = [5,11] = (8;3),
then Acc(A < B) = —1—7, YAB = —%.

In the four cases, the acceptability index has the same value while the
gH-comparison ratio has significantly different values; it is then clear that
the two indices will not produce comparable results.

2.2.5 The LU-order for intervals

The LU-order for intervals, extensively used in [4], [84] and [85], is well
known in the literature. However, we can further refine the definition by
introducing also the cases of strict order and strong order, and related
annexed propositions, exactly as reported in [84], so as to better highlight
the connection with the concept of gH-derivative.

The following definition extends what was stated in (2.8).

Definition 2.2.6. (/84]) Given A= [a",a%] € K¢, B=[b",b"] € K¢, we
say that

(i) A Zru B if and only if a= < b~ and a™ < bT,
(ii) A Zru B if and only if A Sy B and (a= <b~ orat <bt),
(11i)) A <py B if and only if a= < b~ and at < bt.
The corresponding reverse orders are, respectively:
AZwB < BZwA, AZwB < BZwA

and A>y B < B =<y A.

Using midpoint notation A = (a;a), B = (b;b), the partial orders (7) and
(7i7) above can be expressed as

_a<b <b
(i) b<a+(b—a) and (i) b<a-+ (b—7a)
b>a—(b—a) b>a—(b—a)
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while the partial order (i7) can be expressed in terms of (i) with the additional
requirement that at least one of the inequalities is strict.

Proposition 2.2.2. (/84]) Let A,B € K¢ with A = (a;a), B = (b;b). We
have

(i.a) A Zru B if and only ifg—a > )Z—E‘;

(ii.a) A Zpuy B if and only ifa<3 andb—a > ‘E—Zi ;
(t1i.a) A <py B if and only ifb—a> ’E—Zi‘;

i.b) AZru B if and only if G —b > |b—al;

( ~ y

7

(ii.b) A v B if and only ifa>banda—0b> ‘5—6
(i1i.b) A =ry B if and only ifa—b> ’E—E‘.

Proof. For case (i.a), if C = ASyg B = [min{a™ —b~,a’ — b}, max{a™ —
b, at bt} = (a—& 5—5)), then C = [5—3— \E—a’ G—b+ ]’E—aH -
[c™, ¢t]. According to Definition 2.2.6, we know that A Zry B if and only if
a” <b” and a™ < bT, that is, a™ — b~ <0 and a™ — b"™ < 0, which means
¢t = maz{a~ —b~,at — bt} < 0. Therefore, ¢t =a— b+ ‘5—5‘ <0

which is equivalent to stating that b—a > "B—a‘. The other cases are

analogous. O

Proposition 2.2.3. ([84]) Let A, B € K¢ with A = (a;a), B = (g,g) We

have
(i.a) AZru B if and only if Acgu B Zru 0;
(ii.a) A Zry B if and only if A©gr B Zru 0;
(iii.a) A <py B if and only if ASgn B <rv 0;
(i.b) A Zru B if and only if ASyu B Zru 0;
(ii.b) A Zru B if and only if ASgn B Zru 0;
(1ii.b) A >y B if and only if ASyuw B >rv 0.

a-b

then C = [a—E— ‘E—a G—b+ ]E—aH = [c~,ct]. Since A Zry B if
and only if a= < b~ and a™ < bT, that is, a= — b~ < 0 and a™ — b" <0,

Proof. For case (i.a) we remember that if C = Acyy B = (a —b;
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which means ¢ = max{a™ —b~,a™ — b} <0, then we can also write ¢* =
(ASym B)™ < 0. This implies ¢~ = (ASyy B)™ < 0 and so ASyu B Jru 0;
the other cases are analogous. O

Proposition 2.2.4. Given A, B € K¢, we clearly have that

A<y B — A'<LUB - A:jLUB
A>—LUB:>A>LUB:>A LUB

Definition 2.2.7. We say that two intervals A, B € K¢ are LU-incomparable
if neither A Sy B nor A Zru B.

Proposition 2.2.5. Let A,B € K¢ with A = (a;a), B = (g,g) The follow-
ing statements are equivalent:

1) A and B are LU-incomparable,

(1) p

(i) A©gm B is not a singleton and 0 € int(A ©45 B),
(iii)

(iv) A C int(B) or B C int(A),

i <[p-al,

where int(E) is the set of all interior points in an interval E € Ke.

Proof. (i) <= (ii): LU-incomparability means that neither A Jry B
nor A Zry B, i.e., neither Aoyy B Zry 0 nor Aoy B Zry 0 and
this is equivalent with both (A ©,y B)" > 0 and (A©,y B)” < 0, i.e.,
0 € int(A oy B).

(ii) <= (di3): validity of (ii) means (A @gH B)” <0< (Ao,y B)*t
and this is equivalent to @ — b— ‘a — b‘ <0<a—b+ ‘a — b‘ or, more simply,
to ‘a - b) < ‘a - b)7 so, (1) and (#i7) are equivalent.

(it) <= (iv): observe that AS g B = [min{a™—b",a™—b"}, max{a™ —
b=, at—bt}]; then (A S,y B)” <0< (Ao, B)" is equivalent to a™ —b~ <
O<at—bTorat—br<0<a —b".

But a™ — b~ < 0 < at —b" is equivalent to ¢~ < b~ and at > b, i.e.,
B C int(A); similarly, a™ —bT <0 < a~ — b~ is equivalent to a™ < b* and
a” >b", e, ACint(B). O

Proposition 2.2.6. (/84]) If A, B, C € K¢, then
(i) AZry B if and only if Ay C Sy By C;
(ZZ) IfAEBMB LUCthenA LUCGgHB

(1it) If A®n B Zru C then A Ty C 64 B.
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Proof. 1t is easy to check that A ©yg B = (A ®m C) o9 (Bem C), s
accordlng to Proposition 2.2.3, we have A ZJry B if and only if A 99H
B Zrv 0, which corresponds to (A @y C) ©gu (B ®m C) Zrw 0, that is,
(Adym C) Zrv (B@am C) and (i) follows.

For (i1),if Ay B 3 LU C, that is equivalent to (A®n B)Syu C Zrv 0,

then ((A @y B) Sgn C’) =max{a” +b” —c,at +bt —ct} <0 and we
get a” +b- <c and a” +b" < ct. Then, a” < c”—b",at <ct—b" and
from a~ < at we have a~ < min{c™ — b, ¢" — bt }.
On the other hand, a™ < ¢t — b" < max{c™ — b~,c¢™ — b} and, since
C Sgn B = [min{c™ —b",c" = b}, maz{c” —b",ct —bT}], we have a~ <
min{c™ — b7, ¢t = b7} < (C 6y B)™ and a™ < max{c™ —b~,ct — b7} <
(C ©4m B)T, so we conclude that A Zrpy C Oy B.

For (iii), if A®n B Zru C then ((A @y B) 64 C) Zrv 0, from which
(A®pm B)oyu C)” =min{(a™ +b7) —c,(at+b") —c"} > 0 and we get
a”+b->c andat +b" >ct. Then,a™ >c —b",a" >c" — b and
from a™ > a~ we have at > max{c™ —b",ct —b"} = (C &y B)"; on the
other hand, a= > ¢~ — b~ 2 min{c™ — b, c¢" —b"} = (C 6y B)™ and we
conclude, by Definition 2.2.6, that A Ty C ©45 B. O

2.2.6 The g(ﬁy—ﬁﬂ-order for intervals

The three order relations Jry, Srv and <y introduced in Definition 2.2.6

can be generalized in terms of the g H-comparison index as follows, highlight-
ing for each the peculiarities that characterize them.

Definition 2.2.8. ([/84]) Given two intervals A = [a~,a"] = (a;a) and
B=1[b,b"] = (b b) and v~ < 0, vt > 0 (eventually v~ = —oo and/or
vt = +00) we define the following order relation, denoted 3 ~y— oyt
a<b
AZ -+ B azb+qt (a—b) (2.19)
a<b+ ~~ (Zi — 3)

It is immediate to see that the relation éw*w* with v~ < 0, v* > 0
is reflexive (i.e., A Z,- ,+ A), antisymmetric (ie., if A Z,- ,+ B and
B 3~ 4+ Athen A = B) and transitive (i.e.,if A 3.~ \+ Band B 3~ ,+ C
then A 3, -+ C).

It follows that 3.~ .+
set (poset for short).

is a partial order and (K¢, 3 4+) is a partial ordered
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Definition 2.2.9. ([/84]) Given two intervals A = [a~,a™] = (a;@) and
B =[] = (b b) and v~ <0, " > 0 (eventually v~ = —oc and/or
T = 400) we define the following (strict) order relation, denoted 3. -+,
a<b
AZy e Be={ azb+q" (5 - b) (2.20)
a<b+ ~~ (Ti — 3)

The relation 3, o+, with v~ <0, 4T > 0, is not reflexive nor antisym-
metric, so we say that it is asymmetric (i.e., only one of A 3. - .+ B or
B =2~ .+ A can be valid), as well as being transitive.

YTy
Definition 2.2.10. (/84]) Given two intervals A = [a”,a"] = (a;a) and
B =[b",b%] = (b:;b) and v~ < 0, v© > 0 (eventually v~ = —oo and/or
" = +00) we define the following (strong) order relation, denoted <.~ .+,
a<b
A<y Bes{ a>b+q" (5 - b) (2.21)

a<b+y (&—3) .
The relation <~ ,+ with v~ <0, 4T > 0 is asymmetric and transitive.
Definition 2.2.11. Given A, B € K¢, we clearly have that
A <yt B — A ,‘57777+ B — A gqﬁnﬁ B,
Aryqp B = AZy v B = AL, 4+ B.

We say that A and B are y-incomparable if neither A 3.~ ,+ B nor
AZy-qt B

There are specific values of v~ and v which make the order relation
Z+- 4+ equivalent to LU-order and other orders suggested in the literature
(see [30] for details).

Remark 2.2.1. According to Deﬁm’tion 2.2.8, in order to have A 3.+ B
we need @ < b and b+ vt (&—3) <b+ ~~ (6—3). It follows that

for the order relation 3. .+ with v~ < 0,7 > 0 in Ko, we have the
equivalence

AZy- 4+ B <= (AZ,- 4+ Bor A=DB). (2.22)
Proposition 2.2.7. ([84]) Let A and B be two intervals; then it holds that

a<b
(1) AZw B+={ b<a +(Z i) < A3...B,
b>a—(b—a)
e., (2.20) with v~ = —1 and v+ = 1;



64 Orders and representations for intervals

(Q)ANCWMB<:>CL<Z)CL b<:>A<,oooB
, (2.20) with v~ = —o0 and vyt = 0;

(3) A CWmB<:>a<b a < 3<:>A50,+OOB,
, (2.20) with v~ =0 and " = +o0;

(4)AjLCB<:>a<3,a‘<b‘<:>a<3,5<6+(3—a)<:>

AZ 1 B, e, (2.20) withy™ = —oco0 and vt =1;
(5)AchB<:>a<3,a+<b+<:>a<b,b> (b—a)<:>
A3 1400 B, e, (2.20) withy™ = —1 and v = 400

By varying the two parameters —oo <y~ <0, 0 < 7+ < 400, we obtain
a continuum of partial order relations for intervals and we have the following
equivalences:

Proposition 2.2.8. (/84]) If A and B are two intervals then it holds that
(1) AZw B<= AZ_11B;
(2) AZcw, B<—= AZ 0 B;
(3) A Zcw,, B<= A Z0+00 B;
(4) AZLc B<= AZ o1 B;
(5) A Sve B A3 1400 B.

All this can be represented graphically by making use of what has been
said in Subsection 2.1.3 and by considering the interval A = [a™,a™] = (a;a)
as a point in the midpoint half-plane (Z,2).

Definition 2.2.12. For a given interval A = (a;a) and any interval X =
[z7,2%] = (7; %), we can say that A dominates X (or X is dominated by
A) with respect to y-order Zo- 4+ (i.e., v~ < vax <77T) if and only if the
following conditions are satisfied:

1.a<z
2. yax <Yt <y (T —a)+a
3. vax =2 =2y (Z—a)+a.

By varying v~ < 0 and v" > 0, we can obtain an infinitive of partial
order; for instance, the LU-order corresponds as usual to the values v~ = —1
and vy = +1.

Definition 2.2.13. (/84]) For a given interval A = (a;a), we define the
following sets of intervals X which are
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(a) (Zy- ~+)-dominated by A:

D<(A;’y_,'y+) = {X ekc|A év‘,v‘*‘ X};' (2.23)
(b) (Z- 4+)-dominating A:

Do(Ain ) = {X €Ko | X Zne Al (224)
(c) (24~ 4+)-incomparable with A:

LAy 7)) ={X €K | X ¢Dc(A;77,77), X ¢ D5 (47,7}
(2.25)

From the graphic point of view, the sets Do (A;y~,v"), D= (4;77,9)
and I(A;y~,~") can be easily represented in the midpoint half-plane (Z;2)
as shown in Figure 2.7.

Figure 2.7: The blue area represents the set X of intervals dominated by interval
A7 i'e'7 ]D)< (Aa ’Y_v 'Y+)

Proposition 2.2.9. (/8/]) For any —oco <y~ <0, 0 <t < +0c0 and any
intervals A, B € K¢, we have

a. AZ -+ Bif and only if Do (B;~y~,7") €D (A5 ,77T);

b. A= B if and only if D<(A;v~,v") = D (B;v~,7");

¢. 0 =Dc(A;77 7)) NIAY T, v) =D (A9 v NIA; v, 9F);

d. {A} =D (A7 v ) NP> (A377,77);

e. Ko =1(4;77,7v")U D (A 77_7’Y+)UD>(A;’Y_/Y+)-
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(For the proof of Propositions 2.2.7, 2.2.8 and 2.2.9, see [84]).

Example 2.2.1. Considering the midpoint-radius plane (Z;T), the four
Figures (2.8, 2.9, 2.10 and 2.11) show, for the given interval A = (0;5) =
[—5,5], the corresponding set of dominated, dominating and incomparable
intervals, respectively the sets:

Do (A;77,7") (red colored pictures),
D< (A;y~,7") (blue-colored regions),
I(A;v~,~vT) (in green color),

for partial orders (3.~ +) with four different pairs (v~,~").
In particular it is shown:

(—1,1)-dominance (i.e., LU-dominance) in Figure 2.8,
(—0.5,0.5)-dominance in Figure 2.9,
(—1,2)-dominance in Figure 2.10,

(—=1,0.5)-dominance in Figure 2.11.

All the figures consider intervals X = (z; ) in the range T € [—15,15] and
z € [0,20].

(—1,1)-dominance for interval A

Incomparable with A

Dominating A

Dominated by A

20

Figure 2.8: (—1,1)-dominance (i.e., LU-dominance) for interval A in the midpoint-
radius plane (Z; Z): representation of the set of dominated (red), dominating (blue)
and incomparable (green) intervals.

By inspecting the four figures, we see that with respect to the LU -order
(Figure 2.8, with v+ = —y~ = 1) or an order with v~ +~* =0 (Figure 2.9,
with v© = —y~ = 0.5), the set of incomparable intervals is symmetric with
respect to the vertical line T = a; when v~ +~+ > 0 (Figure 2.10) the right
part of the incomparable region, determined by an increase of v* > 1, tends
to become more vertical and reduces in favor of the dominated region (red
colored) and the dominating region (blue-colored). The opposite effect appears
if v+ < 1 decreases (Figure 2.11).
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Dominated by A

(—0.5,0.5)-dominance for interval

Dominating A

A

Incomparable with A

-10 0 10

Figure 2.9: (—0.5,0.5)-dominance for interval A in the midpoint-radius plane (Z; Z):

representation of the set of dominated, dominating and incomparable intervals.

Dominated by A

(—1,2)-dominance for interval A

Dominating A

20,

Incomparable with A

-10 -5 0 5

Figure 2.10: (—1,2)-dominance for interval A in the midpoint-radius plane (z;z):

representation of the set of dominated, dominating and incomparable intervals.

Dominated by A

(—1,0.5)-dominance for interval A

Dominating A

20,

Incomparable with A

Figure 2.11: (—1,0.5)-dominance for interval A in the midpoint-radius plane (Z; Z):

representation of the set of dominated, dominating and incomparable intervals.

2.2.7 The 3, ,+)-order and lattice theory

The poset structure of K¢, endowed with the partial order gv‘ﬁ%*’ can be
further analyzed by considering the basic concepts of least upper bound
and greatest lower bound introduced in Subsection 2.2.1. For two intervals
A,B € K¢, a (common) upper bound is an interval Z € Ko such that
AZy- 4+ Zand B 3y 4+ Z. A (common) lower bound is an interval
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Z € Kg such that Z 3 - \+ Aand Z 3.~ ,+ B.

The least upper bound for A, B, denoted lub(A, B) or sup(A4, B), is a
common upper bound Z such that every other upper bound Z’ is such
that Z gfﬁﬁ Z'; analogously, the greatest lower bound for A, B, denoted
glb(A, B) or inf(A, B), is a common lower bound Z such that every other
lower bound Z' is such that Z’ 3.~ ,+ Z. It is immediate to see that inf(A, B)
and sup(A, B) always exist (and are unique) for any A, B € K¢ (see [30]
for details). It follows that, according to Definition 2.2.1, the structure
(Ko, By~ 4+) is a lattice.

If S C K¢ is any subset of intervals, we say that S is bounded from below
(lower bounded) with respect to 2.~ .+ if and only if there exists L € K¢
such that L 2~ .+ X for all X € S and we say that S is bounded from above
(upper bounded) with respect to 3.~ .+ if and only if there exists U € K¢
such that X 3.~ ,+ U for all X € S. If S C K¢ is both lower and upper
bounded, we say it is bounded (see Figure 2.12 ).

X

Ay = Gsup

x>

+
el \ N
qu = Qinf

Figure 2.12: Subset of intervals bounded from below and from above.

Now we may define K¢ = K¢ U {—o00, +00} where:

—00 = (—00;0) = ]—00, —o0[ € R

+00 = (400;0) = |[4+00,4+00[ € R
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so that, for all v~ < 0, v+ > 0, it is:
—00 gﬁﬁﬂﬂr A ;,ﬁf’,ﬁ +o00, VA€ Ke.

It follows that, considering K¢ endowed with the partial order §7_77+,
the structure (K¢, 3~ ,+) is a bounded lattice (see Figure 2.13).

Figure 2.13: Bounded family A C K¢.

This means that for a family A C K¢, such that A is bounded, (i.e.,
IM,N € K¢ with M 3~ .+ AZ,- + N ,VA € A), there exist both:
inf(A) € K¢ and sup(A) € K¢
with
M 2~ 4+ inf(A) and sup(A) Z,- ,+ N.
Definition 2.2.14. If inf(A) € A we say that it is min(A); if sup(A) € A
we say that it is max(A).

It is important to remark the fact that every bounded subset of K¢
admits inf and sup.

Proposition 2.2.10. (/84]) Consider a partial order 3., 1+ on Ko and let
S C K¢ be any nonempty bounded subset of intervals. Then, there exist both
inf, - ,+(S),sup,- ,+(S) € K¢ such that for all X €S

inf(S) 2y~ 4+ X 2y 4+ sup(S). (2.26)

We also have, for all A € K¢,
A =inf(D<(A;97,9%)) and A =sup(D=(4;77,77)).  (2.27)
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Proof. We will prove only (2.26) by a constructive procedure (see Figure 2.12
again for help); the proof of equations in (2.27) is immediate.

Let L = (T,l~) € K¢ be any lower bound and U = (u;u) € K¢ any upper
bound for S and consider the four lines, in the half-plane (¥; ), with equations

T=1+~" (f - ZA) and T=1+~" (f — ZA) (through point L),

T=u+~"(@T-%) and T=u+~" (Z— 1) (through point U).

They intersect the vertical axis (z = 0) with intercepts, respectively at:
gf =11, qp =1—~71, and ¢ =u—~*4, ¢y =u—~0

Considering an arbitrary element S = (5;5) € S, the two lines trough
S with angular coefficients y* and v, with equations ¥ = 5+ 1 (7 — 3)
and T = 5+ v~ (T —3), respectively, have intercepts qg = 35— %5 and
gs = 5 — 75 and their sets QT = {¢¥|S € S} and Q™ = {¢5|S € S} are
both bounded with q(J} < qgf < qj{ and q; < qg < qy forall S €S.
Consequently, there exist the four real numbers g;, s = inf Q" qfy, =sup QT
Gy = I0f Q7 g, = sup Q™ with q;Lf < G4y and Uins < Doup-
Finally, the intersection point of the two lines T = q;'zp +~TZ and 7 = Uy +
~~ & corresponds to the interval inf S € K¢; analogously, the intersection
point of the two lines T = q;ibf +~TZ and 7 = Qsup + 7~ T corresponds to the
interval supS € K¢. More precisely, we have

e (qiup ~ Gy VG — 7+qu>

S AN Ta e A
and
Gt = Gsup Y Doy =V Coup
supS = - — - T
Y= Y=
This completes the proof. O

Therefore, according to Definition 2.2.2, it is possible to conlcude that
(K¢, 3~ -+) is a bounded-complete lattice.

Furthermore, if for a nonempty bounded subset S C K¢ we have that
inf(S) or sup(S) are elements of S, then there exist the intervals min(S) or,
respectively, max(S).

As shown in Figure 2.14 and as will be further analyzed in Subsection
4.1.1, interesting bounded subsets in K¢ are the following:

- the “segment” with extremes A, B € K¢, given by the convex combi-
nation of intervals and defined by

S(A,B) = {X,|X, = (1 - ) A+ tB,t € [0,1]}; (2.28)
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- the “interval” (of intervals) with extremes A, B € K¢, assuming
A 3, 4+ B (here, the dominance is essential), defined by

[[A, BH’YT’W = {X € KclA §7777+ X é,y,;ﬁ B}. (2.29)

x1

[[AB]]

X >4\

Figure 2.14: Example of “segment” and “interval” of extremes A, B € K¢, assuming
AZy- o+ B

If S is a bounded subset of K¢, we clearly have S C [[inf(S), sup(S)]],- 1+,
with equality if and only if S = [[A, B]],- .+ with A = inf(S), B = sup(S).
We conclude this section with an interesting property.

Proposition 2.2.11. ([84]) For a given partial order 3.~ .+ with v~ <0,
~T >0, consider the partial order =3 S—t,—~—; then, for all A, B € K¢,

AZy- At Be (=B) 2oyt (F4) (2.30)
where —A and —B are the opposite intervals of A and B.

Proof. Starting with inequalities (2.19) that define A 3, .+ B and recall-
ing that —A = (—a;a) the conclusion follows after a few simple algebraic
manipulations:

<b 5
AZy ot B= a}b—i— EE b —a< —b— vt -b
a<b+n b a>—b- i
b< —a
= b2 -a-y"(0-3) = (=B 2 (-A) 0
-b<L—a—vy (b—a
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In particular, if v~ +~T =0, i.e., y© = —y~ =4 > 0 so that

),

NA
3

(By-t) = Ryt ) = (
we have that for any bounded subset S C K¢,
inf(S) = —sup(—S) (2.31)
where the (bounded) subset —S C K¢ is defined by

~S={-X|X €S}. (2.32)

2.2.8 The 3 y-order and gH-difference

vt
At this point, it is interesting to try to express a partial order 3, ,+ in
terms of the gH-difference A ©4g B = (a — b; |a — b|).

Recall that, from (2.19), i.e.,

a<b
AZyyp B az2b+7" (a - b) (2.33)
a<b+r (Ei—b),
we can write the reverse order
a=b
Ag, 4 Be={ a<bt+’ (5 - b) (2.34)
a>b4 (a . b)

Remark 2.2.2. One may think that condition @ < b is redundant in (2.33);
indeed, if v~ <0 or vt >0, it is implied by the second and third conditions.
Butifa=b=0 and~y~ =~1 =0, the order reduces to the standard order for
real numbers while the second and the third conditions reduce to inequalities
0> 0 and 0 < 0. For this reason we will always include condition a < b in
If v~ <0 or v > 0 and the second and third conditions are both satisfied
with equality, then A = B and vice-versa.

Furthermore, for an interval X, from equation (2.33), we have that

X3+ 0=
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Since the second inequality is always verified as a consequence of the
others, we can say that

XZ-4+0 e (@<0andz <y 7). (2.35)
In a similar way we have that
03+ X & (20andz <777). (2.36)

Therefore, considering the definition of A ©4x B, we have that:
Ay B Zo v 0if and only if (@ —b < 0 and [a — b < v~ (@ — b)),
which are obvious consequences of the first and third conditions (a < b and
a<b+~y (a—>b)) of (2.33).

The procedure is completely analogous in case 0 5~ ,+ B ©ym A and,
considering the equality A ©yy B = —(B ©4u A), we obtain the following
results.

Lemma 2.2.1. ([84]) Let A, B € K¢ and consider the lattice (Ko, Sy 4+)
with v~ < 0 and v+ > 0; then

(1a) A2y~ y+ B = ASgn B 3y 4+ 0

(in the right part of implication, v* is not involved);

(1)) AZ,- 4+ B=0Z,-,+ Boyg A

(in the right part of implication, v~ is not involved);

(2) AZy=+ B= (ASgn B 5y 3+ 0 and B Sy ALy - 0);

(8) Assuming —y~ =~ =~ >0, then

AZ B<= (Acsu B3, 0) <= (Boyu A2 0).

Remark 2.2.3. Considering the distinction between type (i) and type (ii) of
gH-difference defined in (2.1), several other implications can be established,
not used in this work. For example in type (i), it is a > b and we have

- ASyn B 3~ 4+ 0 if and only if (Zi <bandb>a+ ’y_(/l;— Zi))
(so vT is not involved);

- Aoy B Zy- 4+ 0 if and only if (?i >band b > a+»y+(3—a))

(so v~ is not involved).

Figures 2.15, 2.16, 2.17 and 2.18 show, for the given interval A = (0;5) =
[—5,5], the gH-differences C' = A ©45 X comparing it with the correspond-
ing set of dominated, dominating and incomparable intervals in different
cases of dominance.

In particular it is shown:

(—1,1)-dominance in Figure 2.15,



74 Orders and representations for intervals

(—0.5,0.5)-dominance in Figure 2.16,
(—1,2)-dominance in Figure 2.17,

and (—1,0.5)-dominance in Figure 2.18.

C =A—yu X and (—1,1)-dominance for interval A

C with A < X C with A < X C with A < X

-15 -10 -5 0 0 5 10 -10 0 10
C with A > X C with A > X C with A > X

5 5 S

4 4 at’

3 3 3

2 2 2

| 1 1

15 10 5 5 10 15 -4 2 0 2 4

Figure 2.15: (-1, 1)-dominance for interval A: representation of the gH-differences
A OgH X.

C=A—yy X and (0.5, 0.5)-dominance for interval A

C with A < X C with A < X C with A < X
6 6
4 4
2 2
0 . 0
-15 -10 -5 0 0 5 10 15 -10 0 10
C with A > X C with A > X C with A > X
5 [ —— ey
4 4
3 3
2 o SEseTEmsees 2
! =
5 10 15 5 0 5

Figure 2.16: (—0.5,0.5)-dominance for interval A: representation of the gH-
differences A ©gg X.

In all figures, the three pictures on top give the g H-differences for intervals
X with Z < @ and the pictures on bottom correspond to the intervals with
> a.

In Figures 2.15 and 2.16 (where we have v~ +~" = 0) it can be seen
how the two pictures (top and bottom) coincide as they are perfectly su-
perimposable, while in Figures 2.17 and 2.18 we have v~ +~T # 0 and the
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C =A -4y X and (—1,2)-dominance for interval A

C withA< X

CwithA<X C with A< X

915 -10 -5 0 0 5 10 15 -5 0 5 10
5 C with A > X 5 C with A > X . C with A > X
4 4 4 R

3 3 3

2 2 2

1 1 1

-15 -10 -5 5 10 15 -4 2 0 2

Figure 2.17: (-1, 2)-dominance for interval A: representation of the gH-differences
A OgH X.

C = A~y X and (—1,0.5)-dominance for interval A

CwithA<X CwithA<X
15 15
10 10
5 5
0
0 5 10 15

= N oW Ao

4 -2 0 2 4 6 8

Figure 2.18: (—1,0.5)-dominance for interval A: representation of the gH-differences
A Ogr X.

incomparable sets are not symmetric with respect to the vertical line 7 = a.
In this cases, indeed, gH-differences A Oy X are differently asymmetric
and the position of A ©4 X with respect to 0 does not correspond uniquely
to the position of X with respect to A; the distinction is determined by the
midpoint values, i.e., when Z < a or = < a.

2.2.9 Further developments in 3(,- ,+)-order classification

As described in Subsection 2.2.3, the comparison ratio is very useful in the
characterization of different order relations in C¢. Furthermore, in Subsection
2.2.6 we have generalized the LU-order up to the « case, sorting to the order
range, but limiting ourselves to the cases in which v~ < 0, v" > 0 (eventually

4~ = —oo and/or ¥ = +00 ). Therefore, it is interesting to further extend
the cases relating to the y-order, analysing the whole range of possibilities
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as regards the values that v~ and v+ can assume.
So let v7,7vT € RU {#oc} with v~ < 4T, if A € K¢ it is possible to
define the following relation between A and a generic interval X € Ke¢:

S
X3 . Ae (1) if v <4t <0 {;;gi%g_gg
ZT<ae v =97 =0)
(2)ify <0,y >0 : z<a+y (z—a)
F>a++"(Z-a)

3
=)
|
2

. . [Fxa
(8)if 0 <~ <~ .{525

+ +
2
Py
=)
|
B

(2.37)
Let us now analyze the various cases, starting with case (2), since it
coincides exactly with the case examined so far.
e v~ <0, 7" >0, (case(2))
Given v~ < 0, v > 0 (not both zero), we define the order relation,

denoted 3.~ 4+, as
r<a+v (T —a)
X Zyar A TN SN 2.
= 7,Y+ <:>{x>a+’y+(x—a), (38)
i.e.,
~ T—vyIr<a—~va
X 35 ,7+A<:>{5_7+§>a_v+a. (2.39)

We highlight that if v~ = " = 0, then the condition Z < @ must also
be added (which is pleonastic in all other cases).

Moreover, as stated in Definition 2.2.13, for a given interval A = (a;a),
we fix the following sets of intervals X (see Figure 2.19) which are:

(Zy- 4+ )-dominated by A: {X € K¢|A Zy- 1+ X1,
(Zy- 4+ )-dominating A: {X € Ko|X Z,- + A},

(£, 4+)-incomparable with A when X € K¢ but it does not belongs
to any of the two previous sets .

Note that by changing v~ < 0 and v+ > 0 we obtain an infinite number
of partial orders and by increasing v+ > 0 and/or decreasing v~ < 0
the incomparability region(s) will be reduced as shown in Figure 2.20.
In particular we observe that <_; ; is the standard LU-order: A Zry B
if and only if a= < b~ and a™ < bT.

Then there are some special cases (extremal situations):

if Y7 =~T =0, we have:

XZooAde (Z<aandz =a),
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xt

incomparable A 5y—,y"- X
XandA

principal upset

WY

principal X=,-,+ A
downset

}/+ incomparal
— XandA

>

>

Figure 2.19: Sets of intervals which are dominated by A, dominating A or incom-
parable with A with respect to order relation 3., - ,+ if v~ <0, ~T>0.

X
y =-1
‘\\\ 2
Y <, A
Y dominating A Az X
X dominated by A
a A
X
.Y '
.
/ . R
..' - >
y a A & at x

Figure 2.20: The infinite number of partial orders that can be obtained by changing
v~ < —land~yt > 1.

if v~ — —00,y" — 400 we have:

X Zvortoo A (<)
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Other cases are also possible, such as:
(v~ =0,7" — +00); (v~ — —00,7" = 0), etc.

In particular, from (2.14), we have:

— case (2a)
T—a<y (x—a)&
(Z<aand vy~ <7yax) or (Z>aandy” >vy4x) or (
and 7 < a);

— case (2b)
T-a>~y"(7-a) e
(T<aandy" >vyax) or (T>aandyT <vy4x) or
and T > a).

8])
I
Q)

)
I
Q)

e 7~ <" <0 (case(1))
If v~ <" <0, we define the order relation , denoted .- .+, (see
Figure 2.21) as

T<a+y (T—-a)
XN77+A<:>{5<5+7+(§—6), (2.40)
i.e.,
X Aes { Tor Tsa=q7a (2.41)
YT T—ytz<a—-~"a. '

In particular we have:

— case (la)
T—a<~vy (x—a) &
(<aandy” <7vyqx) or (Z>aandy” >7vy4x) or (
and T < a);

— case (1b)
r—-a<~yt(z-a)e
(T<aandy" <yax) or (T>aand~" >q4x) or (Z=a
and T < a).

=a

8)

o 0<~v <At (case(3))
If 0 <~ <~v7", we define the order relation , denoted Sy 4t (see
Figure 2.22) as

zza+y (F-a)

~~ ~ o~ 2.42
r>za+~"(z—a), (242)

X3 A= {
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-1<y*<0
incomparable
XandA

principal upset

A Sy’,}ﬁ X

principal downset

2

X=,- s A

$Ye)

Figure 2.21: The order relation gwﬁ if v~ <~T < 0. In this case we also have:

7~ < -1< 7T <0.

X St
incomparable
Xand A
principal downset
0y <1
< _
X Lyt A
a
principal upset
< _
A Byt X
incomparable
XandA
X
yzo a 3 at
=0

Figure 2.22: The order relation 3.~ .+ if 0 <~ <~T . In this case we also have:

0<y <1<yt

i.e.,
- (2.43)
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In particular we have:

— case (3a)
T—azy (Z—a)&

(Z<aandy” 2vy4x) or (T>aandy <7yax) or (T=a
and T > a);
— case (3b)

F_azyt(E-a) o
(T<aandy" >vyax) or (T>aand " <yax) or (
and T > a).

8)
I
Q)

In general we can say that when X §7—77+ A we have:
- if v <0, then 7 — vZ < a — va (see Figure 2.21 );
- if 4 > 0, then Z — vZ > a — va (see Figure 2.22).

From here on, we will consider only case (2) (y~ <0, v© > 0) as it is the
one that is best suited for estimating the risk of possible worst case loss (see
[30]); indeed it is possible to face two types of risk, due to the possibility of
a worstcase loss if we make a choice exclusively on the basis of the midpoint
values T and a.

Moreover, according to [45], it appears evident that for all A, B € K¢,
where A = [a~,a"] = (a;a) and B = [b—,b"] = (b; b), the following properties
(where A < B stands for “A is better than B”) are satisfied:

1) reflexivity: A < A, for all € K¢;

\V)

w

transitivity: A < B and B < C, then A < C, for all A, B,C € K¢;

)
) antisymmetry: A < B and B < Aiff A= B, for all A, B € K¢;
)
4)

consistency with common sense: if a™ < b~ then A < B, for all
A, B € Ke;

5) scale-invariance: if A < B then cA < ¢B, for all A,B € K¢ (that
is, if we multiply all the gains by the same positive constant ¢ > 0,
then whichever gain was larger remains larger, and whichever gain was
smaller remains smaller);

6) additivity: A < Biff Ady C < B@y C for all A, B,C € K¢ (that
is, if we add the same amount to the two gains, this will not change
which gain is larger);

7) closeness: when the values of a~ and a™ are close, the corresponding
alternatives are practically indistinguishable. Similarly, if we have two



2.2 Order relations for intervals 81

sequences (A), and (B), so that (A), < (B), and endpoints of both
tends to some limits, then, since the limit intervals are indistinguishable
from these one for sufficiently large n, we should expect the same
relation < for the limit intervals. This means that if for all n we have:
(A)n < (B)a and (a)y, — a=, (a)F — a*, (b); — b, (B)F —> b,
then A < B.

On the basis of the properties just stated, as well explained in [45], it
follows the result below.

Proposition 2.2.12. ([45]) For a binary relation < on the set of all intervals
Kec, the following two conditions are equivalent to each other:

(1) the relation is transitive, reflexive, consistent with common sense, scale-
mvariant, additive, and closed;

(2) for some values o=, at € R, for which —1 < o~ < a™ < 1, consider-
ing X = (2;2),Y = (4;9) € K¢, the relation < has the following form:
X<Y,ie,[z—2,24+7| <[y—9,y+Yl], if and only if either

-z<yand TLYy+a (y—1x)
or
-r<yand TLy+at(y—71).

Note that in this case the values o~ and at are the angular coefficients of
two straight lines in the half-plane (7; Z), i.e., an inverted representation with
respect to the one used in this work; therefore, they can also be interpreted
as the reciprocals of the values v~ and 4T used so far.

Before proceeding, we highlight the fact that from now on the symbol 3
will be used to indicate 3.~ ,+, with v~ <0, vt > 0.

Moreover, in addition to the Z-order, we will consider also the strict
order relation, denoted by 3=, and the strong order relation, denoted by <,
which stand for 3, ,+ and <, + respectively.
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Chapter 3

Real and complex
interval-valued functions

As in Chapter 2, also in this case the contents presented are inspired by the
results of the work published in [84] and [85], but this time with particular
attention to the part concerning the calculus for interval-valued functions of
a single real variable F' : [a,b] — K¢.

Indeed, in Section 3.1 the notions introduced in Section 2.2 will be applied
to the analysis and calculus of interval-valued functions. Concepts related
to convergence and limits, continuity, gH-differentiability and monotonicity
will be introduced and analyzed in detail, as well as a discussion of extremal
points, concavity and convexity of interval-valued functions will be presented,
a full analysis of which will be provided, accompanied by an illustrated
example. Furthermore, the periodicity of interval-valued functions will be
introduced and visualized with the help of some well-known plane curves.

Afterwards, in Section 3.2 a new notation to represent complex intervals
will be proposed, also showing, through examples and graphical representa-
tions, the peculiarities and advantages associated with its use. Finally, the
last part of the chapter will be dedicated to the presentation of a possible
example of application of the concepts seen to a topic, the g-calculus, which
today is of great interest in the scientific community.
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3.1 Interval-valued functions

In this Section, after having presented the notion of interval-valued function
making use of different notations (endpoint and midpoint-radius), we will
introduce the concept of limits, continuity and gH-derivative related to it;
we will also show its connection with the comparison index, which is used
extensively to discuss the monotonicity of such type of functions. Then, a
discussion on extremal points, concavity and convexity of interval-valued
functions with the use of gH-derivative will be presented for a complete
analysis, also enriched with an illustrative example. In addition, periodicity
of interval-valued functions will be outlined and illustrated with the help of
some famous plane curves.

3.1.1 Interval-valued functions of a real variable

In the Subsection 1.3.6 we saw the concept of interval extension of a con-
tinuous real-valued function f of a single real variable z, by defining the
function

F:.Ke— Ke, Xi—>F(X)

which sends interval X to interval F'(X) (see Definition 1.3.7).

In this chapter, however, we are dealing with functions that send a real
variable z, i.e., defined on a subset [a, b] of R, to an interval of K¢ (see also
[56] and [84] for details). From now on we will refer to such types of functions
as interval-valued functions or, even more simply, interval functions.

Definition 3.1.1. An interval-valued function is defined to be any
F: [a, b] — K¢

with
F(z)=[f(2), fT(2)] € K¢
such that f~(z) < fT(x) for all x € [a,b], where the real-valued functions

f~(z) and fT(z) are the so-called endpoint functions of interval F(x).
Otherwise, using midpoint representation, we write

F(z) = (f@): f(2)) € Ko
where f(z) € R is the midpoint value of interval F(z) and f(z) € RT U {0}
is the nonnegative half-length of F(x), respectively defined as:

s P@A @) ) - (@)

fla) = 050 and fi) S >0

so that

~ ~

f(@) = f(z) = f(x) and f*(2) = f(@) + f(x).
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Graphically an interval-valued function F'(z) can be represented in various
ways:

- by the classical graphical representation in the plane (z,y) (see Figure
3.1): in this case it is possible to define F(z) in terms of endpoints
functions [f~(z), fT(z)] (thus obtaining two curves representing the
extremes within which the interval-valued function is located) or in

terms of midpoint-radius functions (f(x), f(:c)) but in this case the

two curves obtained represent respectively the midpoint function and
the radius function of F(z).

- by the parametric mode in the midpoint half-plane (z;%z), z > 0
(see Figure 3.2) where each interval F'(z) is identified with the point
(f(x); f(z)) and the use of several arrows gives the direction of moving
the intervals for increasing z € [a, b].

Example 3.1.1. Let [a,b] = [-1.25,2.5]. We consider the interval-valued
function defined by F(x) = (—1‘3 +222 4+ —1;1+ sin(%m)) i midpoint
notation, i.e., f(:z:) =34+ 22 421, fla)=1+ sin(§z).

Obuviously, by applying the transformations seen above we can easily go back
to the endpoint notation.

Fur‘lction F(J“) = [ff(-Tl), ()]

I I I I
-1 -0.5 0 05 1 15 2.

N
w”

Fl‘mcti()n F("E) = (f(-Tl). f(T))

Figure 3.1: Graphical representation of F' in the plane (x,y).

The graphical representation of F(x) in the plane (x,y) is given in
Figure 3.1 where, on the top of the picture we can see the interval-valued
function F(z) in terms of endpoints functions f~(x) and f*(z) (blue color),
while on the bottom part there is the same interval-valued function in terms
of midpoint function f(:ﬁ) (black color) and radius function f(z) (red color).

Note that for x = a = —1.25 we have F(—1.25) = (2.828;1.854) =

0.974,4.682] and forx = b= 2.5 it is F(2.5) = (—1.625;1.5) = [~3.125, —0.125];
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Function F(z) in midpoint plane (f, f)

Figure 3.2: Graphical representation of F' in the half-plane (Z;Z2).

looking at the midpoint representation in Figure 3.2, the arrows start exactly
at point (2.828;1.854) = [0.974, 4.682] and terminate at point (—1.625;1.5) =
[-3.125, —0.125]. The values of x € [~1.25,2.5] where the midpoint function
f(x) is minimal or maximal are, approrimately:

- Ty, = —0.215 with interval value F(z,,) = (—1.113;1.110),

- xpr = 1.549 with interval value F(xpr) = (1.631;1.424).

3.1.2 Limits and continuity of interval-valued functions

As reported on [56] and [64], since K¢ is normed, continuity and limits of an
interval-valued function are understood in the sense of such norm. According
to what we have seen in Subsection 2.1.2; this obviously leads to characterize
the concepts of continuity and limits in the Pompeiu—Hausdorff metric dg
for intervals (see Definition 2.1.1), which, according to (2.5), is given by the
gH-difference (for details see [19] and [48]).

Therefore, it is easy to derive the definition of limit of an interval-valued
function.

Definition 3.1.2. Suppose that F' : K — K¢, K C R, be such that
Fx) = [f~(2), f*(@)] = (f(2); f(z)). Let L =[I",1"] = (I;]) € Ko and xo
be an accumulation point of K.
Then we say that L is the limit of F', as x approaches xg, and write
mlggjlg F(z)=1L

or alternatively: F(x) — L as © — xo (reads “F(z) tends to L as x tends to
xo”) if the following property holds:
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for every real € > 0, there exists a real § > 0 such that for all x € K,
0 < |z —zo| < & implies that

|1F(2) Ogn Ll < e

The definition of continuity of an interval-valued function is also formal-
ized in a similar way.

Definition 3.1.3. Given an interval-valued function F : K — K¢, K CR,
we say that F is continuous in xg € K when the following fact holds:

for every real € > 0, there exists a real § > 0 such that for all x € K,
0 < |z — zo| < & implies that

| F(z) ©gn F(wo)|| <e.

The following result, described in [81], is well known and it follows
immediately from the property

dp(F(x), L) = [|[F(x) ©gm LI|;

note that the second equivalence defines the continuity at an accumula-
tion point.

Proposition 3.1.1. Let FF : K — K¢, K C R, be such that F(z) =
[f~(x), fT(x)] and let L =[I",1T] € Ko. Let xg be an accumulation point
of K. Then we have

lim F(z) =L <= lim (F(z)©4g L) =0

T—TQ T—T0

where the limits are in the metric dg. If, in addition, xo € K, we have

lim F(z) = F(x9) <= lim (F(x) ¢ F(x0)) = 0.
T—x0 T—T0
Furthermore, in midpoint notation, let F'(x) = (f(:c), f(z)) and L = (li?),
then the limits and continuity can be expressed, respectively, as

lim F(z) = L < lim f(z) =1 and lim f(z) =1 (3.1)

Tr—T0 T—TQ Tr—T0

and

—~ —~ ~ ~

lim F(z) = F(xy) <= lim f(z) = f(zo) and lim f(x) = f(xo).
T—xQ T—x0 T—x0
The following proposition connects limits to the order of intervals; we
will consider the lattice (K¢, S~ ,+) with partial order .-+ defined for
any fixed values of v~ < 0 and v > 0. Analogous results can be obtained
for the reverse partial order ;«_f/*v*-
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Proposition 3.1.2. Let F,G,H : K — K¢ be interval-valued functions
and xg an accumulation point for K.

(i) if F(z) Zy-++ G(x) for all x € K in a neighborhood of xo and

limg 0 F'(2) = L € K¢, limgz, G(x) = M € K¢, then L 3+ M;

(i) If F(x) S+ G(x) S+ H(x) for all x € K in a neighborhood of xq

and limg_,, F(x) = limg_,, H(z) = L € K¢, then lim,_,,, G(z) = L.

Proof. We will use the midpoint notation for intervals.
For the proof of i), we have, according to (2.33), that F(x) <, 4+

G(w) if and only if f(z) < Glx) and §(z) + v+ (f() — (@) < J(a) <
g(x) +~~ (f(:z:) - §(x)), from (3.1) we have, at the limit, that [ < and

m4+~T (T— ﬁ”L) <l<m+~~ (T— ﬁl) and this means that L éva* M.

For the proof of i) we have F(z) -+ G(z) and G(z) Zy-—+ H(x)

if and only if f(z) < §(a), §(x) + 7" (Fl@) —3@)) < fl@) < §@) +
7 (Fl@) = 5(@) ) and §(@) < h(@), h(z)+7* (5) = b)) < gla) < hw)+

o~

v~ (f](x) —ﬁ(x)) from f(z) < g(z), g(x) < /Ii(:v), according to (3.1), we
have that lim, ., g(x) = 1 exists; from g(x) +~* (f(x) - §(x)) < f(2)

we obtain §(z) < f(z) — 4" (f(a:) - §(:L‘)>, so that we can write h(z) +
vt (?(33) - ﬁ(l‘)) < g(z) < f(x) — 4t (f(x) — §(:L‘)) On the other hand,

from limg_,4, f(m) 7= limg 4, h(z), we have

limgaq (A(@) + 77 (§(2) = h(2)) ) =T+770-D)

and lim,_yq, (f(x) s (f(x) - §(m))> =
so that limg_,,, g(z) = 1; the conclusion follows from (3.1) applied to G. O

Remark 3.1.1. Similar results as in Propositions 3.1.1 and 3.1.2 are valid
for the left limit with © — xo, x < xo (x / xq for short) and for the right
limit x — xo, © > xo (xr \y To for short); the condition that lim F(x) =L

Tr—xTQ

if and only if lim F(x) = L = lim F(x) is obvious.
x T zN\o

3.1.3 The gH-derivative for interval-valued functions

The gH-derivative for an interval-valued function, expressed in terms of the
difference quotient by gH-difference, has been first introduced in 1979 by S.
Markov (see [56]). In the fuzzy context it has been introduced in [78]; the
interval case has been analyzed in [81] and the fuzzy case again reconsidered
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(level wise) in [8]. Several authors have then proposed alternative equivalent
definitions and studied its properties and applications; actually, it is of
interest for an increasing number of researchers. A very recent and complete
description of the algebraic properties of gH-derivative can be found in [14].
The following definition, based on the gH-difference, is the one that was
proposed in [81] and it has the advantage of having a simpler formulation
compared to other definitions.

Definition 3.1.4. (/81]) Let xo €]a,b] and h be such that xo + h €]a,b|,
then the gH-derivative of a function F :Ja,b[— K¢ at xg is defined as

Fio) = lim & [F(zo + h) ©1t F(wo)] (3:2)

if the limit exists and it is an element of K¢. The interval Fg’H(xo) e K¢
satisfying (3.2) is called the generalized Hukuhara derivative of F (gH-
derivative for short) at x.

Also, one-side derivatives can be considered.
The right gH-derivative of F' at xg is

1
F(/r)gH(wO) = %{%E[F(gj‘o + h) OgH F(.le(])]
while to the left it is defined as
1
Fliges (w0) = lim - [F(x0 + h) Sgrr F (o).

The gH-derivative exists at ¢ if and only if the left and right derivatives at
zo exist and are the same interval.
The following properties are indeed immediate to prove.

Proposition 3.1.3. (/84]) Let F : [a,b] — K¢ be given, F(x) = <A(x); f(x))
Then
(1) F(x) is left gH-differentiable at xo €]a,b] if and only if f( ) and f( )
o)
(2) F(x) is right gH-differentiable at xy € |a, b if and only if ]?(ac) and f(x)
fr(xo)
(8) F(x) is gH-differentiable at xo €|a,b] if and only if ]/”\( ) is differentiable
and f(z) is left and right differentiable at zo with ) /(z )) = )f;ﬂ(azo)‘

and in this case, F;H(l“o) = (f,( 0); fr 0) D (J? )
equivalently, if and only if Fy y(w0) = F{,y 5 (o).

are left differentiable at xq; in this case, F(’l)gH(ﬂso) = (fl (x0);

are right differentiable at xq; in this case, F(’r)gH(mo) = (ﬁf(xo);

)}.

$0
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In terms of midpoint representation F(z) = (f(a;), f(m)) we can write

)

and, taking the limit for h — 0, we obtain the gH-derivative of F' if and
only if the two limits

flz+h) - f(z)
h

Fz+h) Ogn F(z) _ (f(x +h) - fz)
h h !

lim flat+h) - f@) and lim

h—0 h—0

flz+h) - f(x)
h

exist in R; remark that the midpoint function fis required to admit the
ordinary derivative at z.

With respect to the existence of the second limit, the existence of the
left and right derivatives f/(x) and f/(z) is required with

Ji@)| =

Fi@)| = ir(2) > 0

f’(az)‘ if f’(x) exists) so that we have

(in particular wp(x) =

(@) = (F (@) e () (3.3)
or, using the standard endpoint interval notation,
v (@) = [F(@) = @), F(2) + @n ()] (3.4)

Equation (3.3) is of help in the interpretation of gH-derivative; indeed,
the separation of midpoint and half-length components in F'(x) is inherited
by the gH-derivative F; (). In particular, the correspondence

o= () fo !
! " 4 (3-5)
Fog = (Piar) = F L ar=1H1=If

shows that the midpoint derivative f’ is the derivative of the midpoint f
while the half-length derivative is the absolute value |fl’\ = | /7| of the left
and right derivatives of the half-length f, with fl’ = +f/ (for details see [15]
and [80]). _

For the function in Example 3.1.1, we have that both ]?(:L‘) and f(x) are
differentiable so that Fy; (z) exists at all internal points. Figure 3.3 shows
the graphical representation of the derivatives _]?/(37), f'(x) and Fip(2) in

the plane (z,y); note that the four points where f’(x) is zero correspond to
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Functions (f)(z) (k) and (f)(z) (r)

o &b b Y own
T

o Ao N

Figure 3.3: Graphical representation of the derivatives f’(x) and f'(z) (top) and
Fy () (bottom) in the plane (z,y).

F, y(z) (mid-point)

15

05

Figure 3.4: Graphical representation of Iy ; () in the half-plane (2;2).

a singleton gH-derivative, that is, the interval is reduced to a single point.
While Figure 3.4 illustrates the graphical representation of Iy ;;(z) in the
half-plane (Z; 2); here the two marked points (red) correspond to zeros of the
derivative f'(z).

For a function F : [a,b] — K¢, we can define the g H-comparison index-
function of F(x) by

~

B (G (O N
| F(x0)]| o \/‘f(m)f‘*"ﬂx)‘?

CIF(.%)
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If F(z) has gH-derivative F,y(z) = (f/(x),iﬁp(x)> at x, we can consider

the gH-comparison index of F ; y at z, given by

Ol @)= 2 T
F@| + o)

" e,

and if j?’(ac) # 0, the ratio

G
B
is well defined so that,
o’ (P + )
as \/1+ (yp(x))? = |1+ ( - ) = — , and then
() ’(:c)‘
\/ ]/”7(33)‘2 +|wp(x)|” = A’(w)’ 1+ (ygr(x))?, we have

sgn(f'(z))
1+ (ymr(2))

Clp, (z) =

(sgn(z) =11if 2 > 0, sgn(z) =0 if z =0, sgn(z) = -1 if z < 0).
We can use the index ypr(z) extensively, to evaluate the order relations
Fl(7) 34 4+ 0 and similar.

The partial order (<, ,+) can be appropriately introduced for the gH-
derivative by the inequality

7 <) <ot e, v < SEE <o
f'(x)
moreover, if f and f are differentiable, we have wr(x) = ’f’(m) , SO
@)
< Ss— <t
f'(x)
which is equivalent to
f(@)=0 ) <0
fll@) <yt f'(z) or ¢ fl(@) 2+ f(2) - (3.6)
f(x) 2y () f'(@) <y~ f(=)
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If fis not differentiable or if its left and right derivatives do not have the
f,’,(ac))), then I ;(x) does not exist, but
possibly the left and right gH-derivatives F(/l)g e F(’T)g y €xist and we have

same absolute value (i.e., ’f[(x)‘ #

Flpon(@) = (f@): 1f[(@)]) and Fy,p(@) = (Fi);]f(2)),

where (-); and (-),. are the notations for left and right derivatives.
In this case, the inequalities v~ < T, (x) <~ are equivalent to

filw =0 (@) <0
fi@) <y @) or { Ji@) > vt i) (3.7)
Ji@) = v Fw) (2) <~ fi(x)

_ fr@) 20 1(x) <0
fil) <t fix) or ¢ fi(x) =" fi(x) (3.8)
r(x) =77 fi(x) (@) <y fl(@).

Observe that if F(z) =0, then the other conditions in (3.7) and (3.8)
become f)(x) = f/(x) = 0 so that f’(x) = 0; as a consequence, if f'(z) =0

and f;(w)‘ = )ﬁ(x)‘ # 0, then we cannot have the inequality expressed

above (7~ < yp(z) < 4); therefore, we have that neither F, ;(v) - 1+ 0
nor Fyy(z) Zy- 4+ 0, ie., Iy (x) and 0 are incomparable.

Remark 3.1.2. As we have seen, the existence of gH-derivative Fg’H(m)
is equivalent to the existence (and their equality) of both the left and right
gH-derivatives, defined as follows

F(x +h) g F(x)

/ BT
Fiygr () = Ho h €Ke
e F(z + h) ©gn F(x)
, . r+h)Ogn £(x
Firygn (@) = lim - € Ko

indeed, according to Proposition 3.1.3, we have F(’l)gH(x) = (fl’(;v);
and Fy, ;@) = (F(@): |7 (@)).

In many cases, the midpoint function is defined as f(z) = |p(x)| where
o(z) is differentiable; then, if also f'(z) exists, we have that F(x) is gH-
differentiable and Fyy(z) = <]?’(x), |g0’(:c)|>
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3.1.4 Monotonicity of functions with values in (K¢, <.~ ,+)

Monotonicity of interval-valued functions has not been much investigated
and this is partially due to the lack of unique meaningful definition of an
order for interval-valued functions. By definition of the lattice (K¢, Sy~ 4+),
endowed with the partial order Z,- ,+ (7~ <0 and v+ > 0) and with use of
the reverse order .- .+, it is possible to analyse monotonicity and, using
the gH-difference, related characteristics of inequalities for intervals.

Definition 3.1.5. (/84]) Let F : [a,b] — K¢ be given, F(z) = (f(x);f(:c)).
We say that F' is

a-i (- ~+)-nondecreasing on [a,b] if x1 < w2 implies F'(x1) Sy o+ F(22)
for all x1,x9 € [a,b];

a-it (Zy- +)-nonincreasing on [a,b] if 1 < xo implies F(x2) Z\- 4+ F(r1)
for all x1,x9 € [a,b];

b-i (strictly) (- 4+)-increasing on [a,b] if x1 < x2 implies F'(x1)
F(z2) for all x1,x2 € [a,b];

< _
~yT ot

b-ii (strictly) (3~ ,+)-decreasing on [a,b] if x1 < xo implies F(x2)
F(x1) for all x1,x9 € [a,b];

< _
~yToat

c-i (strongly) (<. +)-increasing on [a,b] if 1 < xo implies F (1) <y +
F(x2) for all x1,x2 € [a,b];

c-ii (strongly) (<~ ,+)-decreasing on [a,b] if v1 < xo implies F(x2) <\ ,+
F(xy) for all x1,x2 € [a,b)].

If one of the six conditions is satisfied, we say that F' is monotonic on [a,b];
the monotonicity is strict if (b-i,b-ii) or strong if (c-i,c-ii) are satisfied.

The monotonicity of F' : [a,b] — K¢ can be analyzed also locally,
in a neighborhood of an internal point z¢ €]a,b[, by considering condi-
tion F(z) 3, 4+ F(zo) (or condition F(x) Z_+ _,~ F(x0)) for x €]a,b]
and |x — xg| < § with a positive small 4.

Definition 3.1.6. (/84]) Let F : [a,b] — K¢ be given, F(x) = (f(l‘), f(:v))
and xo €)a,b[. Let Us(zg) = {x;|x — zo| < d} (for positive 6) denote a
neighborhood of xo. We say that F is (locally)

a-1 (g,y—’w)-nondecreasing in a neighborhood of xg if 1 < xo tmplies
F(x1) Zy- 4+ F(2) for all x1,29 € Us(xo) N [a,b] and some § > 0;

a-11 (§7—7,Y+)-n0nicreasing in a neighborhood of xy if x1 < xo implies
F(x2) Zy- o+ F(1) for all x1,29 € Us(xo) N [a,b] and some § > 0;
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b-1 (strzctly)(N,Y ~+)-increasing in a neighborhood of xo if v1 < x2 implies
F(x1) 24~ 4+ F(x2) for all x1, 29 € Us(wo) N [a,b] and some § > 0;

)-

(

b-i1 (stmctly)(wy ~+)-decreasing in a neighborhood of xo if x1 < xo implies
F(x2) 2y 4+ F(x1) for all 1,29 € Us(xo) N [a,b] and some § > 0;

c-1 (strongly)(%T’ﬁ)—mcreasmg in a neighborhood of xo if x1 < xo implies
F(x1) <y~ 4+ F(x2) for all 1,22 € Us(x0) N [a,b] and some § > 0;

c-ii (strongly)(<.- +)-decreasing in a neighborhood of xq if x1 < w2 implies
F(z2) <y~ 4+ F(z1) for all 1,75 € Us(z0) N [a,b] and some § > 0.

Moreover, according to (2.33), we have:
F(2) 3t Flzg) <= { [@) = flzo) +7* (f(x) - f(%)) (3.9)
< + f

i.e., for increasing case,

B Nf(x)—ffﬁo)A<0 ~
% < 20 J(@) = flao) = v+ (Flw) - Flao)) (3.10)
J(@) = flao) <5~ (Fl@) = Fao)) .
that is,
@ -TFan<o
r<z = { fl@)=v"f@) > flzo) =7 Flao) (3.11)
f(@) =7 f(z) < f(zo) =7 f(20),
so that F(x (- 7+) monotomc at zg according to the monotonicity of
the three functlons f(x) fz) — (1:) and f(z) — f( ):

Proposition 3.1.4. (/84]) Let F : [a,b] — K¢ be given, F(x) = (A(x); f(az))
and zo €)a,bl. Then

(i) F(x) s (Zy- 4+ )-nondecreasing in a neighborhood of xo if and only

f f(x) is nondecreasing, f(z) - 'y+f(ac) is nonincreasing and f(z) —
) is nondecreasing at xq;

i
(i) F(x) is (- 4+)-nonincreasing in a neighborhood of xq if and only
zf f( ) is nonincreasing, f(z) —~*f(x) is nondecreasing and f(z) —
( ) is nonincreasing at Tg.

Analogous conditions are valid for strict and strong monotonicity.
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The following scheme summarizes these results:

fis 7
Fis (Zy-4+) PN .]E— 7+f\is N
f=7"rfis 7,
Fis N
Fis (Zy-4+) PN z—7+fis Va
=71 is N

Remark 3.1.3. In terms of the endpoint functions f~ and I+, given by
= f f, fr= f + f, the conditions in (3.11), after a few simple steps,
can be written as

fH) — fH(xo) + 7 (2) = f(20) <O
r<zg = § (1=9")(fH(z) = fF(20) = A +1) (f () = [ (20))
(L=7)(fT (@) = fT(x0) S (A +77) (f () — f(x(og)m

and the conditions on f+~and f~, for the monotonicity of F are less intuitive
than the ones on f and f:

ft+fis /2
Fis (Zy-4+) / PN (1= fr = Q4T is N\
(T=)fr=Q 4+ )f s 2,
frefas N\
Fis (Zy-4+) — (L= =+ fis
(T=) =+ is N\

If we divide the three inequalities in (3.10) by =z — zg < 0, we obtain,

for F' to be (<, ,+)-nondecreasing at xo,

F@) ~ Jao)

=0
_ _ r — X0 - -
ﬂ?:ﬁm)<¢<ﬂ2:§mv -

@) = fay) (@) = fo)
T — T - T — T '
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Analogously, for F' to be (,\,,y ~+)-nonincreasing at xo, we obtain

f(@) = f(wo)

<0
_ _ r — X - -
f(xi — g%) >t f(xi — £§x0)> (3.14)

J@) = o) - (f(fv) - f(rco)>
L r — X0 Tr — X0
Suppose now that f and f have both left and right (finite) derivatives
at xo; denote them by fl (z0), f(w0), fl (z0), f,,(a:o) Taking the limits
in (3.13) and (3.14) with z  zp and = \, zp, we obtain the conditions
for (Z,- -+ )-monotonicity of F' in a neighborhood of x¢, as stated in the
following proposition.

Proposition 3.1.5. (/84]) Let F : [a,b] — K¢ be given, F(x) = (f(a:), f(:v))

and assume that ]? and fv have left and right derivatives at an internal point
xo €]a,b[. The following are necessary conditions for local monotonicity:
(i-n) if F'is (X~ o+ )-nondecreasing or (Z.- o+ )-increasing in a neighborhood
of xg, then

fi(xzo) 20, fi(zo) 20
frlwo) < v fi(xo) o fi(wo) <A fi(x0) (3.15)
+(x0) =7~ filwo) , fi(xo) = v~ fi(z0);

(ii-n) if F'is (S~ 4+)-nonincreasing or (Z,- ,+)-decreasing in a neighbor-
hood of xq, then

Fita) <0, Fiao) <0
ilzo) > 7+ (o ). (@0) > 7 f(x0) (3.16)

Fil@o) <77 fi(wo) . fi(xo) <y filwo):
The following are sufficient conditions for local strong monotonicity:
(i-s) if
N fi(x0) >0, fi(z0) >0
o) < v+ Fl(xo)  fi(wo) <~ fl(wo) (3.17)
Fi(wo) > v~ fi=0) » fl(wo) >~ (o),
then F is strongly (<.~ +)-increasing in a neighborhood of xo;
(ii-s) if
filwo) <0, fi(zo) <
(o) > v fl(wo) , f(wo) > ’Y+fz €) (3.18)
Fi@o) <7~ filxo) » Fl(z0) <~ fl(wo),

then F' is strongly (<~ ,+)-decreasing in a neighborhood of xq.
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If fA"(a:) and f'(z) exist on |a, b], then the conditions for monotonicity
can be expressed in the obvious way as for elementary calculus, in terms
of the derivatives f’(x), f(z) — ’y+f’(x) and f/(z) — ’y‘f’(ﬂ:). Therefore,
the necessary conditions for nondecreasing F'(x) are

_ J@z0
f(x) — fy+fA’(a:) <0 (3.19)
flx) =y f(x) =20

@)~ ](a) >0 (3.20)

o~ ~ o~

With reference to Example 3.1.1, the functions f(z), f(z) — v*f(z)

~ ~

and f(x) —~~ f(x) are pictured in Figure 3.5 and their derivatives are in

Figure 3.6; the partial order is fixed with v~ = —1 and 7" =1, i.e., Z1v-
f(z)
4F T T T T T m
e s , :
i o P =8
‘1 —0‘5 0 0‘5 1I 1‘5 2‘ 25
(@) v f(@)
4F T T 7; T o
2f — -///i— D S 7
—‘1 —(::5 [‘) 0‘5 1I 1.‘5 2‘ 25
fle) v f(@)
4 T T =
2k e - - — 25 =
0>\ \\_\—;—(ﬂ/, SR
—‘1 —0‘5 [‘) 0‘5 1I 1.‘5 2‘ 25

o~ ~ ~ ~ ~

Figure 3.5: Functions f(z), f(z) — " f(x) and f(z) —~~ f(x) in Example 3.1.1.

Now, but only for the case of a partial order 3, - + with the condition
that v~ +~9" = 0, i.e., v7 = —y~ = 4 > 0, we can establish a strong
connection between the monotonicity of F' and the sign of its gH-derivative
Fy j(x). Denote the corresponding partial order 35—,  simply by 2.

Proposition 3.1.6. Let F :|a,b|— K¢ be given, F(x) = <f(m), f(m)) and

assume I has gH-derivative Fyy () at the internal points x €la,b[. Lety >0
be fixed. Then
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~ ~ ~ ~ ~

Figure 3.6: Derivatives of functions f(z), f(z) — T f(z) and f(z) — v f(z) in
Example 3.1.1.

(1) if F' is (Zy)-nondecreasing on la,b[, then Fyy(x) Zy 0 for all x €]a,b[;
(2) if F is (Z)-nonincreasing on la,b[, then Fyy(z) 3y 0 for all x €la, b.

Proof. We prove only (1).
By Definition 3.1.4, F, ;;(z) = fllli%%[F(:c +h)©gn F(x)] and F is continuous.
If F' is nondecreasing, then, for sufficiently small A > 0, we have:

F(z) 2+ F(z + h) and so, by part (3) of Lemma 2.2.1,

0 2 F(x+h)Syn F(x) which, dividing by &, gives 0 2 Flz+h) Sgn F(z).
by taking the limit for h \, 0, according to Proposition 3.1.2, Wehobtain:
limpeo 0 <o Timpe o LT 1) Catt @) o6 02 Fly().

On the other hand, for h < 0, we have F'(z + h) <, F(z),
F(z 4+ h) Ogn F(x)

ie., F(z+h)Syn F(r) 0 which gives =<~ 0; by taking

the limit for A 7 0, we get (—F7} ;;(2)) 2y 0 and, changing sign on both sides,
it is F () 24 0.
The proof of (2) is similar. O

An analogous result is also immediate, relating strong (local) monotonicity
of F' to the "sign” of its left and right derivatives

F(/l)gH(x) = (ﬁ(-’z)a E’(x)D and F(’T)HH(Q;) - <}Z(m),

@)

at the extreme points of [a,b], we consider only right (at a) or left (at b)
monotonicity and right or left derivatives. Again we assume the condition
YT =—"=7>0.
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Proposition 3.1.7. Let F : [a,b] — K¢ be given, F(x) = (f(ac),f(x)) with
left and/or right gH-derivatives at a point xy € [a,b]. Then

i.a if 0 <, F(/l)gH(:L'o), then F' is strongly (<.)-increasing on [xo — 0, o
for some 6 > 0 (here xg > a);

i.b if 0 <, F(’T)gH(xo), then F is strongly (<-)-increasing on [xg, xo + 0]
for some § > 0 (here zo < b);

ii.a if 0 >, F(’l)gH(aro), then F is strongly (<~)-decreasing on [xo — 6, xo
for some § > 0 (here zg > a);

ii.b if 0 >, F(’r)gH(axo), then F is strongly (<.)-decreasing on [xg,zo + 6]
for some § > 0 (here zg < b).

Proof. We prove only (i.a).
From 0 <, F(/l)gH(l‘o), that is, <fl’(x),

E’(x) D >~ 0, with a procedure similar

Ti(@o)| < (o),

R N N R ~ f@o) >0

Le., fj(zo) > 0and —vf/(z0) < f/(x0) < vf](x0), namely, L(xo) > —'yAfl’(Jco)
fi(xo) < f(z0).

From conditions (3.17), we have that F' is strongly (<,)-increasing at x;

therefore, consequently, the conclusion also follows. ]

to that seen in (2.36), we have: fl’(xo) > 0 and

We conclude this subsection with the following

Example 3.1.2. Function F : [a,b] = K¢, F(x) = <J/”\(m),f(x)>, for x €
[a,b] = [—2,4], is defined by f(x) = — 23422321 and f(x) = ‘:L’Q —z— 2’
(see Figure 3.7).

Remark that function flx) is differentiable on ]a, b| with F(z) = —32% +
8z + 3 and f(x) is differentiable with f'(x) = (2x — 1)sign(z? — x — 2) for
xr # —1 and x # 2; at these two points the left and right derivatives erist:
fl/(_]-) = -3, f;'(_l) =3, fl,(Z) = -3, f1/“(2) = 3.

Function F(x) is gH-differentiable on ]a,b[ (including the two points
r=-1landz=2)and F,(z) = (—32% + 8z + 3; |2z — 1|) (see Figure 3.8).
Also right and left gH-derivatives exist at a = —2 and b = 4, respectively.
Considering the points a; = —0.527525, ao = —0.189255, ag = 2.527525
and ay = 3.522588, the corresponding gH-derivatives are (approzimately)
Fly(ar) = [~4.11,0), F!p(az) = [0,2.757), Fly(az) = [0,8.11], F!p(ar) =
[—12.09,0]. Indeed, from 0 to (a1) and from (as) to 4, Fyy <ruv 0 and F is
(Zrv) N while from as to (a3), Fypy =rv 0 and F is (Zru)

Note also that when ]?(x)/ =0 (see when, at the top of Figure 3.8, the red
curve intersects the green line), it follows that (f(z))~ = (f(z))" = f(z)
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Functions f(z) and f(z)

T T T e
15 \

I I I L
—

-2 -1 0 1 2 3 4

Interval function F(z) = [f~(z), f(z)]

~

Figure 3.7: (Top) functions f(z) = —23 + 422 + 3z — 1 and f(z) = |2? — 2z — 2|
(respectively drawn in black and red). (Bottom) interval-valued function F(z) =

[F(@) = (@) @) + ().

Functions (f)(z) (k) and (f)(z) (r)

-2 -1 0 1 2 3 4

gH-derivative F;y(z) in interval form
T

o~ ~

Figure 3.8: (Top) derivatives of f(x) at all points (black) and of f(z) at = # —1
and x # 2 (red). (Bottom) gH-derivative of function F(x); points a;, i = 1,...,4,
are marked in red.

(corresponding to the intersection of blue curves in the bottom part of the
same figure). R N
With vt = —y~ =1, i.e., with (Jpu )-order, the functions f(x), f(x) —
7+f(ac) and f(z) — 7‘f($) are pictured in Figure 3.9.
According to Proposition 3.1.4, necessary conditions for nonincreasing
F(x) are satisfied on [a,a1] and [aq,b] and for nondecreasing F(z) are sat-
isfied on lag, as]. Corresponding necessary conditions using the sign of the
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~ ~ o~ ~ ~

Figure 3.9: Functions f(z), f(z) — " f(x) and f(z) — v~ f(z) in Example 3.1.2.

o~ ~ o~ ~ o~

derivatives of functions f(x), f(z)—~T f(x) and f(x)—~~ f(z) can be checked
in Figure 3.10; at the points x = —1 and © = 2 we can apply the conditions

involving left and right derivatives of f(x).

20— :

-20

20

-20¢

20— T

o~ ~ ~ ~ ~

Figure 3.10: Derivatives of functions f(z), f(z) — " f(z) and f(z) — v~ f(z) in
Example 3.1.2.

Finally, according to Proposition 3.1.7, it is easy to check that the suf-
ficient conditions for strong <py monotonicity are satisfied: decreasing on
[—2, a1] and [a4,4], increasing on [az,as). In the remaining points x €]ay, as|
and = €lag,as| the sufficient conditions for strong <. monotonicity are
not satisfied (the interval-valued gH-derivatives of F(x) contain zero as an
interior value as also shown in Figure 3.8).
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3.1.5 Extrema of interval-valued functions

The three concepts of monotonicity defined in Subsection 3.1.4 (simple, strict
and strong), based on the orders ér,yh Zy- 4+ and <-4, translate into
different concepts of extrema. We will adopt the following terminology.

Definition 3.1.7. If F(x0) 3~ o+ F(x), we say that F(x9) dominates F'(x)
with respect to the partial order 3, 1+ (F(x0) (- 4+)-dominates F(z) for
short), or equivalently that F(x) is (3~ 4+)-dominated by F(xo).

We say that F(x) and F(xo) are incomparable with respect to 3.~ + if
both F(xg) Zo- o+ F(x) and F(z) 2~ 4+ F(x0) are not valid.

Analogous domination rules are defined in terms of the strict and strong
order relations Zo~ ,+ and <.— .+, respectively.
Remark 3.1.4. Observe that if F(xo) 3 4+ F(x) and F(x) - 4+ F(20),
i.e., if F'(x) and F(xo) are (Z- 4+ )-dominating each other, then F(x) =
F(z0) and vice-versa, i.e., reciprocal dominance is equivalent to coincidence;
the same remains true if the two orders for the dominance are obtained
with different pairs (v7,7), (5,7 ), % < 0 and v;F > 0 (i = 1,2),
i.e., if F(xo) gvfﬂf F(z) and F(x) é’YQ_”Y;_ F(xg), then F(x) = F(xg) and
vice-versa.

Let us now introduce the important definitions of order-based minimum
and maximum points for an interval-valued function.

Definition 3.1.8. Let F' : [a,b] — K¢ be an interval-valued function and
xo € [a,b]. Consider the order Z.- ,+ with v~ < 0, vt > 0. We say that,
with respect to Z- 4+,

(1) zg is a local lattice-minimum point of F' (min-point for short) if there
exists 0 > 0 such that F(xo) 3~ 4+ F(x) for all z €]xo—0, 20+0[N[a, b],

i.e., if all F'(x) around xo are (5.~ +)-dominated by F(xo);

(2) xq is a local lattice-maximum point of F' (max-point for short) if there
exists 0 > 0 such that F(z) 3~ o+ F(x0) for all z €]xo—0, x0+0[N[a, b],
i.e., if all F'(x) around xo (Z,- 4+)-dominate F'(xg).

In case (1) we say that xq is a (v, ")-min-point for F' and in case (2)
we say that xq is a (y~,7")-max-point.

Conditions (1) or (2) in Definition 3.1.8 imply that if there exists 2’ €
[a,b] such that f(2') = f(zo) and f(2') # f(zo), then it is impossible to
have F(xzo) 3y~ 4+ F(2') nor F(z') 21~ 4+ F(x0) (unless v~ = —oo and
vt = +00); this means that, except for trivial cases, if f(z') = f(azo), then
F(2') and F(zo) are (Z,- ,+)-incomparable or coincident.

Remark that a lattice-type extremal value corresponds, locally, to the
smallest or greatest elements in the lattice (K¢, Sy~ ,+); it is clear that

o~
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condition (1) implies that a min-point z,, of F is necessarily a local minimum
of the midpoint function f, while condition (2) implies that a max-point
of F'is a local maximum of f It follows that a min-point or a max-point of F’
are to be searched, respectively, among the minimum or the maximum points
of the midpoint function f\ But this is not sufficient; indeed, lattice-type
minimality and maximality, with respect to the partial order gv*ﬁ*? can be
recognized exactly in terms of the three function

f7 f_7+fa‘ndf_7_f7
as we will see in this section.

It will be useful to explicitly write the conditions for (3~ ,+)-dominance
of a general interval F'(z), with respect to the intervals F(z,,) and F(zyy),
that characterize the minimality and the maximality of a point x,, (for min)
or a point x)s (for max).

Without explicit distinction between strict or strong dominance, from (3.9)
we have

F(2) 3t Flzn) = { [(2) 2
<

and, similarly,
F(z) Tyt Fzm) = { (@)

With reference to the three conditions in (3.22), we have that:
- the first, f( ) > f(xm) says that z,, is a local minimum of f;

- the second, f(g‘) - fyif(;t) < f(@m) =y f(m), says that z,, is a local
maximum of f — T f;

- the third, f(:xN) - fy_f(a:) > flam) — fy‘f(a:m), says that x,, is a local
minimum of f —~7 f.

By making a similar reasoning also for the conditions of (3.21), we obtain:
- the first, f( ) < f(xM) says that 7 is a local maximum of f;

> flay) — 7+f(a:M), says that xps is a local

- the second, f( ) — ’yA
minimum of f — " f;

- the third, f(z )= ji( ) < flaa) — ’y_f(xM), says that x )/ is a local
maximum of f —~~ f.
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What has just been seen can be summarized in the following result.

Proposition 3.1.8. (/85]) Let F : [a,b] — K¢ be an interval-valued function.
Then

(i) Ty € [a,b] is a min-point of F' if and only if it is a minimum off and
f y f and it is a maximum off 7+f

(i) xp € [a,b] is a max-point of F' if and only if it is a mazimum off
and f v f and it is a minimum off 'y+f

In particular, for the Zrp order, obtained with v~ = —1, 7 =1, we
have:
f=rtf=f-f=-(-H=-f7

f=yf=f+F=r+r=r"
So the conditions to have a min-point are equivalent to having simultaneously
a minimum for fand fT as well as a maximum for —f7, i.e., a minimum
for f~ and f* (and automatically for £); on the other hand, max-point
conditions are equivalent to have the same maximum points for f~ and fT
in the ordinary sense.

The discussion above highlights the restricting notion of a lattice-extreme
point, as 1t 1s not frequent that Slmultaneous extrema occur for the three
functions f f ~y f and f T f The following definition is more general,
as it considers the possibility that intervals F'(x) for different x are locally
incomparable with respect to the actual order relation.

Definition 3.1.9. Let F : [a,b] — K¢ be an interval-valued function and
Tm,xy € [a,b]. We say that, with respect to the order 3. .+ and the
corresponding strict order 3, .+,

(¢) xm is a local best-minimum point of F (best-min for short) if:

(c.1) it is a local minimum for the midpoint function f, and

(c.2) there exists § > 0 and no point © €|xy, — 0, Ty + 0[N[a, b] with
F(z) # F(xm) such that F(x) 3~ A+ F(zm);

(d) xar is a local best-mazimum point of F (best-max for short) if:

(d.1) it is a local mazimum for the midpoint function f, and

(d.2) there exists § > 0 and no point x €|xpr — §, xpr + 0[N[a, b] with
F(x) # F(xp) such that F(xyr) Zq- 4+ F().

Remark 3.1.5. Definition 3.1.9 is clearly valid also for points xy € [a, b
coincident with one of a or b. It is also evident that a lattice-type extremum
1$ also a best-type extremum.



106 Real and complex interval-valued functions

Definitions of strict and strong (local) extremal points can be given by
considering the strict 3, .+ or the strong <.~ .+ orders associated to the

: o~
lattice order Ry oyt

Definition 3.1.10. Let F : [a,b] — K¢ be an interval-valued function.
With respect to an order 3.~ .+ and the associated strict order 3. .+ or
strong order <.- .+, we say that

- a best-min point x,, is a strict (respectively strong) best-minimum
point if there exists § > 0 and no point x €|xy, — 0, xm + d[N[a, b] with
F(z) 24~ 4+ Fzm) (or F(x) <y~ 1+ F(xm), respectively);

- a best-max point xpr is a strict (respectively strong) best-mazximum
point if there exists 6 > 0 and no point x €|z — 6, xpr + 6[N[a, b] with
F(xar) 2y 4+ F(x) (or F(zar) <4- 4+ F(x), respectively).

Remark 3.1.6. It is clear that the definitions of lattice-type and best-type
extremality do not require any assumptions on continuity of the interval-
valued function F' on [a,b]; in the case of continuity (or left/right continuity)
the existence of extreme points is also related to the local left and/or right
monotonicity of F' (with respect to the same partial order Z.- .+ ).

In order to illustrate basic properties of the various concepts of min/max
(- 4+ )-extremality, we will consider a continuous function F : [a,b] — K¢
and will suppose that there exist two points ,, xps € [a, b] such that z,, is
a local minimum point and x; is a local maximum point in one of the types
defined above.

In the half-plane of points (2; %), z > 0, the intervals F(z,,) and F(zps)
have midpoint representation, respectively,

~ ~

Few) = (F@n)i F@n)) and Flea) = (Faa): fla). (323)

It is immediate that if x,, € [a, b] is a lattice-minimum point, i.e., there

exists a neighborhood of x,, such that all F'(z) satisfy (3.22), then none
of such F(z) is incomparable with F'(z,,); analogously, if zy € [a,b] is a
lattice-maximum point, i.e., there exists a neighborhood of z;; such that
all F'(z) satisfy (3.21), then none of such F(z) is incomparable with F'(zr).
We can express this fact by saying that the (local) min-efficient frontier for
the min-point z,, is concentrated into the single interval F'(z,,); analogously,
the (local) maz-efficient frontier for the max-point x )/ is concentrated into
the single interval F'(zpr).
Let us remember that, as reported in [43], the concept of efficient frontier,
also known as the “Pareto optimal set”, is defined as the set of all Pareto-
efficient situations, that is when in a situation there is no scope for further
improvement without making another worse off.
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When instead x,,, and xj; are best-type extrema and not lattice-type,
then it is important to identify the intervals F'(z), in particular with z in
a neighborhood of z,, or z);, that are not min-dominated by F(z,,) (or
do not max-dominate F'(xys)); clearly, these F'(x) are necessarily (<, +)-
incomparable with F'(z,,) (or with F'(xs), respectively).

Corresponding to a minimum and to a maximum point of F, we are then
interested in identifying the locally (min/max)-efficient intervals F'(x) and
what we will call the local min or max efficient frontier for F(x,,) and F(zr)
around points x,, and xjs, respectively.

In the half-plane (2;%) the conditions to recognize the (Z,- ,+)-based
dominance and incomparability, assuming v~ < 0 and v > 0, can be written
by considering the two lines through F(x,,) with equations

o) 7= flam) +7" (2= flam)
" E= )+ (2 Flem)

and the two lines through F(z)s) with equations

| E= )+t (3_ ﬂmM))
F(xar) : > f(a?M) +A~ (3— J/c\(xM)) )

For any z € [a,b] define the following sets of points (sets of intervals in
midpoint representation )

D;(x§7_77+) = {Z|F(x) gw*,w* Z} )
DF(HCW_,W) = {Z|Z é'y*,'y* F(x)}

The intervals Z = (Z; Z) belonging to Dy (z;y~,v") are (- +)-dominated
by interval F'(z) (as shown in Figure 3.11) and the ones belonging to
D} (z;7~,~") are (X, ,+)-dominated by interval F(z).

If x,, and x 7 are not lattice-type extrema of F', that is, when the efficient
frontier does not simply consist of the single point x,, (respectively, x/),
then there exist some z € [a,b] around z,, (respectively, x;s) such that
F(x) € Dp(zm;y~,v") (respectively, F(z) € Df(xa;7~,7T)). See Figure
3.11 as an example of the case of minimum.

According to Definition 3.1.10 and by the fact that both sets Dy (zm;y~,7")
and Df(za;77,7") are indeed intervals (eventually singletons), we obtain
Proposition 3.1.9, which represents the first step in finding the efficient fron-
tier for a strict minimum and a strict maximum (for this purpose, Figure 3.12
offers a useful representation in the midpoint plane).

Proposition 3.1.9. (/85]) Let F' : [a,b] — K¢ be an interval-valued function
with values in the lattice (Kc, Sy 4+ ), with vy~ < 0,97 > 0. Let &, zp €
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Figure 3.11: Set of intervals Dz (2.,;7~,7") in the midpoint plane.

hat-har representation of fit): v =1 " =1

incomparability

\
incomparabiljt
with F(xm) g I\ :

with F(x,bnl
5

Figure 3.12: Points of F'(x) incomparable with F'(x,,) and F(x,s), respectively to
the left and right of the curve.

[a,b] be local strict best-min and local strict best-maz points of F. Then,
there exist

ek <ap, o >, 2l <zyoand 28 >y

(all belonging to [a,b]) such that, respectively,

1. F(z) is incomparable with F(xy,), for all x € [zk 28] x # z,,;

2. F(z) is incomparable with F(xyr), for all x € [z, 2], x # 2.

~

With reference to Example 3.1.1, function f(x) has a local minimum

point z,, = —0.215 and a local maximum point z; = 1.549 as shown in
Figure 3.13. Here, with the partial order Jrp (i.e., v~ = —1 and 4+ = 1),
the locally non-dominated points corresponding to (L, z2] and [z%;, 2%

are black colored in the top picture, which means that black intervals are
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not dominated by F(z,,) = (—1.113;1.110) for the local min and are not
dominated by F(zpr) = (1.631;1.424) for the local max.

Note also that the domain subintervals [zZ  z1] = [-0.672, —0.003] and
(2%, 28] = [1.029,1.916]) are marked with vertical red colored lines around

Ty, = —0.215 and xp; = 1.549 in the bottom picture.

mid-point representation of F'(x)

25F T o o

Function F(z) and f min-max points
T T T T

Figure 3.13: Local min and max points of F(z) in Example 3.1.1 represented in
the midpoint half-plane (top) and endpoint plane (bottom).

The intervals [z, 22] for a minimum, or [z}, #{] for a maximum, are
not difficult to determine. For example, for a minimum point x,,, a simple
algorithm is to move on left and right of x,,, by small steps of length h > 0 at
points x,, —kh, k = 1,2,... as long as F(z,, —kh) is not (<, - ,+)-dominated
by F(x,,) and at points x,, + kh, k = 1,2,... as long as F(z,, + kh) is
not (3, .+ )-dominated by F(z,); if F(zy, — kL h) is the first dominated
value on left and F(x,, + kZh) is the first dominated value on right, then
the extremes $£’n and wffl are found by appropriate bisection iterations to
refine the search up to a prescribed precision.

An analogous procedure can be designed for a maximum point x4,
by moving on the left and right until points x»; — kﬁh and zps + kﬁh with
F(xpn — kih) and F(xas + kiyh) dominate F(zyy), i.c., they are (T,- 4+)-
dominated by F(zjs); in this case the extremes x%, and 21, are found by
bisections up to a prescribed precision.

A first consequence of Proposition 3.1.9 is a sufficient condition for a

lattice-type extremal point.

Proposition 3.1.10. (/85]) Let F : [a,b] — K¢ ; if xm (respectively, xpr) is
a minimum point (a mazimum point) of function f(z) and vk =z, = 28
(or 2k, = xp = 2,), then x,, is a lattice min-point (respectively xpr is a
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lattice maz-point) of F(z) and vice-versa.

Indeed, in this case we have:
Dp(@m;y ™7 ") = {F(zn)} and Di(za ™, 7)) = {Flawm)}-

A second consequence of Proposition 3.1.9 is that the efficient interval
F(z), relative to the best-min point x,, or to the best-max point z, in the
case where they are not lattice extrema, are to be searched among the points

x € [zL 28] and z € [2f;, 2], respectively.

3.1.6 Efficient frontier for the extrema of an interval-valued
function

The next step is now to characterize the points of the domain subintervals
[zl xB] and [2%,, 2§] that contain, respectively, a minimum point z,, and a
maximum point z s of the interval-valued function F' : [a, b] — K¢ and which
are such that all the corresponding F'(z) define the local efficient frontier of
F around F'(z,,) and F'(x);), respectively.

We start with a formal definition of the min/max efficient frontier (the
details can be found in Figure 3.14 where an example of a min-efficient

frontier and a max-efficient frontier are shown).

L=

18—

7=

16—
1.5 oy
14
13
izt

Tt

Figure 3.14: Example of Epin(F, ) and Epax(F,zpr): set of efficient solutions

"

(K- 4+ )-incomparable to each other. The interval [z}, ],

] is the min-efficient
region while the interval [z, 2/,] is the max-efficient region of F(z).

Definition 3.1.11. (/84]) Let F' : [a,b] — K¢ be an interval-valued function
and let Ty, xpr € [a,b] be local strict best-min and local strict best-maz points
of F' with respect to the partial order éﬂﬁqﬁ, 7y~ <0,7T >0.
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(a) The (local) min-efficient frontier of function F associated to the best-
min point T, (or to the best-min interval-value F(x,,)) is the set
Enin(F, zy,) of interval-values F(x) such that:

(a]) F($m) S Emin(Fa xm);

(a.2) if ' 2" € [a,b] and F(z'), F(2") € Emin(F, ) then F(z') and
F(z") are (2.~ ,+ )-incomparable,

(a.3) no other set E' containing Emin(F, zm) has property (a.2).

The set of points © € [zk 2] such that F(z) € Epn(F, ) are

m? m
the local min-efficient points corresponding to x,, and is denoted by

effmin(F; xm)

(b) The (local) mazx-efficient frontier of function F associated to the best-
max point xp (or to the best-mazx interval-value F(xzpr)) is the set
Enax(F,zpr) of interval-values F(x) such that:

(b]) F(JTM) S Emax(FaxM):

(b.2) if ', 2" € [a,b] and F(2'), F(2") € Enax(F,zn) then F(z') and
F(2") are (2, ,+ )-incomparable,

(b.3) no other set E' containing Epax(F,xar) has property (b.2).

The set of points x € v, xl] such that F(x) € Emax(F,zp) are

the local maz-efficient points corresponding to xpr and is denoted by

effmaX(F§ xM)

Clearly, the efficient frontiers ef fuin(F'; xm) and ef fiax(F;xpr) are sub-
sets of the intervals [z%, 2f] and [2%,, 2] introduced in Proposition 3.1.9;
but their characterization is not easy, as we can imagine in cases where
the function F'(z) has possible inflexion or angular points, tangency of high
order, multiple nodes, fractal-like or complex pathological patterns (see,
e.g., [74]). In those cases it is not immediate to determine which points
are not dominated by others of the same interval, or possibly the efficient
frontiers may not be intervals.

In the case where function F'(z) represents locally a convex plane curve,
standard results in elementary differential geometry (see, e.g., [5], chapter 2)
are of help in our context.

We recall briefly some facts.

Let Cr be a curve in the half-plane (z;2) with parametric equations

~ ~

z = f(x), z = f(z) and parameter x € [a,b] and assume that the curve
is simple (no multiple points) and differentiable (i.e., both f(z) and f(z)
are differentiable at internal points); one says that the curve Cp has the
convexity property if each of its points is such that the curve lies on one side

of the tangent line to this point.
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In our setting, the convexity of C'r is required only locally, by considering
the restriction of F'(z) to points around x,, (or xas). More precisely, let
us fix the notion of local convexity of C'r by distinguishing the case of a
minimum to the case of a maximum point.

Function F(z) in midpoint plane (f; f)

Figure 3.15: Example of the convex set Py (%) in the midpoint plane (Z; 2).

Assumption 3.1.1. For a min point T, (not a lattice min) we will assume
that there exist 6,0, > 0 (not both equal to zero) such that the curve

m?rm
corresponding to the restriction of F(x) to the interval [wm - 5;n,xm + 6;;1

1s simple and convex; this happens if the portion of plane on right of the
curve, i.e., the set

Ponen) = U {GEI@)Ezfw} 629

me[mm—&n,xm—k&%]

is convez (as shown in Figure 3.15); in this case, the following portion of the
half-plane is convexr and bounded

szn(zm) == mzn xm ﬂ{ Z E) |zm7,n S 2 gmaz and gmin < z g gmaac}
(3.25)
where

Zmin = 1IN { A(a: )|z € {xm — (5;m:vm + 5;:1} },
Zmaz = max{A( )|z € [xm — Oy T A+ O | 0
Znin = min { f(@)| € (2 — 8, + 07

Znaw = maxx { [(@)|@ € [2m = 81y, 2m + 8,

. ——

It is not restrictive to assume that interval |y, — 6., Tm + 5,/7/1} is the biggest

subinterval of [xk  xE] where the curve F(x) 1s locally convex.

m
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Assumption 3.1.2. For a max point zp; (not a lattice mazx), assum-
ing the existence of 5;\4,5}(4 > 0 such that the curve F(x) on interval

[xM — 5;\4,.%]\/[ + 5;(4 is stmple and convex, we obtain that the portion of
plane on left of the curve, i.e.,

Poaloa) = U {BI@)E<f@} 620

ze [xM —6;1 TM +6X{]

18 conver; in this case, the following set is convex and bounded

Smax(l'M) = Pmax(:I:M) m {(27 z) ygmzn < z < /z\maz and zm'm <z < zma:z:}
(3.27)

where, this time,

~

Zomin = min{f(:n)|1: S [$M — 5;\/[,@\/[ +5X/l} },

Znae = max { fl@)l € [oar = 8y a0 + 07 }

and similarly for Zmin and Zmae in terms of f(x).
1t is not restrictive to assume that interval {:):M — 5;\4, Ty + 5;(4 1s the biggest

subinterval of (x4, %] where the curve F(x) is locally conver.

Under Assumptions 3.1.1 or 3.1.2 (using the same notation) we can prove
the following results:

Proposition 3.1.11. Let 3.~ -+ be a partial order on K¢ and F : [a,b] — K¢

be such that x,, €|a,b| is a local min point of f(x) and Assumption 3.1.1 is
satisfied. Then there exist two points x\,, 2" € [z 2E] with 2!, < 2 < 2,

m’'m [ m?“m
such that, for x € [mm — 6,/71, Tm + (5;:1] ,
(1) either x,, mazimizes flz)— 7+f(:n) and xl, minimizes flz) — v_f(:n),
(2) or x, minimizes f(z) — v~ f(x) and 2, mazimizes f(z) — v f(z).
Furthermore, interval (2], 1] is the local min-efficient frontier e f fmin(F; m,)
of Definition 3.1.11.

In particular, if ), and !, are internal to the local convezity region

~ ~

[mm — 81y T+ 5;;] and f(z), f(x) are differentiable, then

{ @) =7 f ) { fh) :7?(‘%) (3.28)

"(@m)-

Proof. Consider the two lines with equations z = ¢ +~y%Z and 2 = ¢~ +77Z;
as 2 = f(x) and zZ = f(z), points of the curve F'(z) in common with one of
the two lines will satisfy the equations

~ o~ ~ ~

e (x) = f(z)—q¢" =7 f(x) =0 and ¢~ (z) = f(x) —¢~ =7 f(z) = 0.
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Solving for ¢ and ¢~ one obtains

~ ~

¢t = flz) =7 f(z) and ¢~ = f(z) — 7 f(z)

and at such common points the two lines have equations

~ ~ ~ ~

Z=f) =7 f(x)+v"Z2 and Z= f(z) — v f(z) +" 2.

Now, by Assumption 3.1.1, the intercepts ¢ and ¢, as functions of z, are
monotonic around z,,; then the maximum value ¢, of the ¢™(x) is attained
at a point z;} and the ¢~ (x) has a minimum value ¢, attained at a point
x

m

b, it is clear that

By taking x/, = min {z,,,z}} and 2/, = max {z
conclusions (1) or (2) are satisfied.

If the points z;} and z,, are internal to the local convexity region
[xm — (5;71,:):m + 5;}, then the derivatives of ¢7 and ¢~ at the attained
max and min points (respectively) will be zero:

F'() =7 f(ar,) =0 and F(a) =57 F(a},) =0
or

Flan) =y ) =0 and f(x),) =y f(a},) = 0;
this proves conditions (3.28).

Basically they mean that the line of equation z = ¢;” + 77 is tangent to
the curve F(x) at point F(x;}) and the line zZ = g, +~~Z is tangent to F(x)
at point F'(z,,).

As shown in Figure 3.14 (left side), the proof concludes by observing

that the efficient region is exactly the interval = € [z, ! |; indeed, by local
convexity, we have that:

(a) no points F(z) with z € [2],, 2!},

points in the same interval, and

] are dominated (or dominate) other

(b) points F(z) with < ], and = > z],, (if any) are dominated by F(x},)
and by F(z!'), respectively.

O]

Proposition 3.1.12. Let 3.~ o+ be a partial order on K¢ and F': [a,b] — K¢

~

be such that xpr €la,b] is a local max point of f(x) and Assumption 3.1.2 is

satisfied. Then there exist points z'y;, 2"t € [xh,, o] with o, <z < 27,

such that, for x € [acM — 5}\4,@\4 + 6;(4 ,

~

1 either 'y, minimizes flz)— 'y+fA‘(x) and ', mazimizes @)=~ f(=),

~ —~ ~ ~

2 or xy; mazimizes f(xz) —~~ f(x) and zy; minimizes f(z) —~* f(x).
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Furthermore, interval [z, 2y] is the local maz-efficient frontier e f fumaz(F'; xar)
of Definition 5.1.11.
In particular, if 2y, and zy; are internal to the local convexity region

[mM — 8y T+ 5}(4 and f(az), f(x) are differentiable, then
{ P =vFah) { P =7 T (50
).

Proof. We proceed analogously to the proof of Proposition 3.1.11; note
that, in this case, under Assumption 3.1. 2, two points z;, and m& are
obtalned by minimizing the intercept gt =f (x) —~T f(az) and by maximizing
= f(z) —~ f( ), respectively.
Therefore, taking 2}, = min{z},, 2}, } and 2j; = max{z;,, z},}, the tan-
gency conditions with the curve F'(x) are exactly the ones in (3.29). The
situation is well represented graphically in Figure 3.14 (right side). O

A procedure for the efficient frontiers corresponding to a minimum or
maximum point can be obtained in a similar way as for determining the
intervals [zl 22 or 2], 2%]; e.g., for a minimum, we move on left and
right of x,, by small steps x,, — kh and z,, + kh, k = 1,2,... until the
monotonicity of intercepts ¢ or ¢~ is interrupted in two consecutive points
or, equivalently, until a point is found which dominates the next one.

Also in this case, we can refine the search by appropriate bisections.

A complete example with several possible situations is presented in
Section 3.1.8.

With reference to Example 3.1.1, the efficient frontiers are
ef fmin(F; —0.215) = [—0.473,—0.109] and
ef fmaz(F;1.549) = [1.279,1.742], as pointed out in Figure 3.16.

Here, in particular, the top pictures show the efficient frontier for z,,
(left) and for xp; (right) with the tangent lines to the curve F', while in the
bottom picture the efficient frontiers are delimited by vertical red segments
containing the min and the max points.

On the other hand, in Figure 3.17 the first derivatives of the three
functions f( ), f(z) — + f( ) and f(z) —~ f( ) are visualized (the second
is changed in sign w1th respect to the notation in Assumptions 3.1.1 and
3.1.2); by checking appropriate monotonicity of the three derivatives, we see
that condition 3.1.1 is satisfied in a neighborhood of x,, and condition 3.1.2
is valid around x ;.

Corresponding to the relevant points, the derivatives of the three relevant
functions f( ), f(z)— +f( ) and f(z)—~ f( ) (black, red and blue curve
respectively) are zero, according to Propositions 3.1.11 and 3.1.12 (picture
on top), while in the bottom, similarly to the previous case, the efficient
frontiers are delimited by vertical red segments.
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Around local min point Around local max point

— T =
i
18
16
14
12
0.6 12 14 1.6 18

min/max nondominated intervals
T T T T

Figure 3.16: Efficient frontiers for min and max points of F(z) in Example 3.1.1.

Zeros of (f (-, (- ’YT(JE)’ niand (y —Ivf(f)’ )

-1 -0.5 0 0.5 1 1:5 2 25

~ ~ ~

Figure 3.17: Correspondence between the derivatives of f(z), f(z) — v f(z) and
f(x) —~~ f(z) and the efficient frontier for min and max points of F(z) in Example
3.1.1.

Example 3.1.3. Consider the function F(z) = (cos(2mz);1 + |z|sin®(rz))

27
F(z) = [f(x), fT(x)] in interval form (top picture) and in midpoint form

F(z) = (F@): [(2)) (vottom).

The point xpr = 0 with F(xp) = (1;1) = [0,2] is a local mazimum of

1
(midpoint notation) for x € [— 1} Figure 3.18 contains the graph of
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~ 1 3 5 1
function f and the point x,, = B with F(xy,) = <—1; ) = [— ] is a

local minimum of ]/”\

Function F(z) = [f (z), f(z)]

Function F(z) = (f(ﬂ“) f(z))

Figure 3.18: Interval (top) and midpoint (bottom) representations in the plane
(z,y) of function F(x) from Example 3.1.3.

1
Let us chose, e.g., v~ = —1 and v+ = 5 Figure 3.19 shows the (é_l’%)-

dominance for the interval-values F(x) with x around x,, and xp;, where

function f(x) has a minimum point at x,, = 3 and a mazimum at Ty = 0.

In midpoint representation F(x,,) appears on the left portion of the top
picture of Figure 3.19 and F(xpr) on the right portion; the parallelogram
contains the intervals F(x) (in red color) of the graph of F' that are (é—l,%)'
dominated by F(xy,) and (;717%)—d0minated by F(zpr).

We can also note that black colored intervals in midpoint representation
(top picture) are not dominated by F(xy,) for the local min and are not
dominated by F(xpr) for the local mazx. They correspond to the domain
subintervals delimited by vertical red lines in the bottom part of the figure.
Indeed, the lower part of the picture marks the intervals F(x,,) and F(xpr)
and shows the intervals [z%, xE] and [z, 2] corresponding to the points
around x,, and xy; with dominated interval-values.

Clearly, xpr results in a local (and global on the considered domain

1
[2, 1] of F') lattice-mazimum point of F, while x,, is a local (and global)

best-minimum point.
Note that [z%,, 21| reduces to the single point xp;r while [xL,, 22] is the
interval [0.4670,0.5329], approxzimated numerically as it is depending on the
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mid-point representation of F(x)

=
~

-~

Function F(z) and f min-max points
T

AN

2+ 4

05 0 05 1

Figure 3.19: Local min and max points of F(x) from Example 3.1.3 in midpoint
representation in the half-plane (Z;2) (top) and in interval representation in the
plane (x,y) (bottom): black intervals in midpoint representation are not dominated
by F(z,,) for the local min and are not dominated by F(z)s) for the local max and

correspond to the domain subintervals [zZ 2] and [z%,, 2] delimited by vertical

red lines in the interval representation.

actual values of Y~ and 7.

Moreover, the local min-efficient frontier corresponding to the best-min
POint Tpy,, i.e., the points in ef fiin(F; ), can be easily computed (see below)
and are pictured in Figure 3.20.

The top picture shows the efficient frontier for x,, with the tangent lines
to the curve F': here the green points are the ones min-dominated by x,,,
corresponding to the points in [xk  xR] and the efficient frontier By (F; )
is identified in the midpoint graph of F(x) by the green points intercepted
by the lines with angular coefficients v+ > 0, v~ < 0 and “tangent” to the
graph of F'.

On the other hand, in the bottom part of the picture, the efficient frontiers
are delimited by vertical red segments containing the min and maz points (the
mazx point is lattice type maximum); so the min-efficient frontier is evidenced
by vertical lines around x,,, corresponding to the points x € ef fimin(F; Tm,).

We conclude this section to see how local extremality of a point x,,
(minimum) or xj; (maximum) is connected to the left and/or right gH-

F@o)|)s Flgr(wo) = (Fiwo)s | Fitao))
or to the gH-derivative Fy (o) if the two are equal.
Let F': [a,b] = K¢ and 3~ ,+ be a partial order.

Suppose first that zo €]a,b[, F,y(zo) = (ﬁ(ﬂ?o);ﬁ;p(l‘o)) exists (here

derivatives F( (o) = (]?[(330);
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Around local min point

-1 -098 -096 0.94 -092

min/max nondominated intervals

N N
/

0+

05 0 05 1

Figure 3.20: Local min-efficient frontier Euni, (F; x.,) from Example 3.1.3 in mid-
point representation in the half-plane (z;%) (top) and in interval representation
in the plane (x,y) (bottom): the points between the tangent lines in midpoint
representation correspond to interval [z, 27 ], that is ef fumin(F; €., ), delimited by

vertical red lines in the second representation.

wr(zg) = ‘E’(wg)‘ = ﬁ,(azo) , according to (3.5)).
As well represented in Figure 3.4 (by the two points highlighted in red),
we have that if 2 is a local minimum or maximum, then f’(z) = 0 so that

i (20) = (0;Wr(w0)) ;

as a consequence, a necessary condition for a local min or max at a point of
differentiability is that 0 € F ;(z0).

If also @ (o) = 0 (ie., if f'(z) = 0), then FY g (20) = (0;0) = 0. Other-
wise, if wp(zg) > 0, it follows the continuity of f(:no), which in turn implies
the existence of a neighborhood of zy where F(z) is (3~ ,+)-incomparable
with F(zg).

So, we have the following Fermat-like property:

Proposition 3.1.13. Let F :Ja,b[— K¢, xo €]a,b[, such that F is gH-
differentiable at xo and Z.- ,+ be a partial order on K¢.

1 If xq is a lattice extremum for F (a lattice-min or a lattice-max point),
then Fy y(x0) = 0;

2 If xg is a best-extremum for F (a best-min or a best-max point), then
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In the cases where F' has left or right gH-derivatives at z¢ (or they are
not equal), necessary conditions for a lattice-min or a best-min (respectively,
a lattice-max or a best-max) can be easily deduced according to (3.15) and
(3.16) in Proposition 3.1.5.

Proposition 3.1.14. Let F : [a,b] — K¢, xo € [a,b] and 2.~ ,+ be a partial
order on K. Suppose that F' has left and right gH-derivatives at xq (if xo = a
or xg = b we consider only the right or the left gH-derivatives, respectively).

l.a If g is a lattice minimum point for F, then F(’l)gH(azo) Sy 4+ 0 and
F(/r)gH(xO) ;7_7’Y+ 0.

1.b If zg is a lattice mazimum point for F, then F(’l)gH(xg) Zny—~+ 0 and
F(IT)gH(x()) §777’7+ 0.

2.a If xg is a best-minimum point for F, then 0 € F;H(xo).

2.b If zg is a best-mazimum point for F, then 0 € F;H(azo).

According to (3.17) and (3.18), the following are sufficient conditions
based on the “sign” of left and right gH-derivatives, analogous to the well
known situation for single-valued functions.

Proposition 3.1.15. Let F' : [a,b] — K¢, xo € [a,b] and 3.~ ,+ be a partial
order on K. Suppose that F' has left and right gH-derivatives at xq (if xo = a
or xg = b we consider only the right or the left gH-derivatives, respectively).

(a) If'F.(’l)gH(xo). <}—’7}0 and F(,T)gH(:EO) =y ~+ 0, then o is a best
minimum point for F'.

(b) If F(’l)gH(xo) >—7f—77}0 and F(,r)gH(ZUO) =y-~+ 0, then xq is a best
mazximum point for F.

3.1.7 Concavity and convexity of interval-valued functions

We have three types of convexity, similar to the monotonicity and local
extremum concepts.

Definition 3.1.12. Let F : [a,b] — Ko be a function and let 3. -+,
v~ < 0,77 >0 be a partial order for intervals. We say that

(a-i) F is (Z- 4+ )-conver on [a,b] if and only if Yr1,29 € [a,b] and all
A€ [0,1],

F((1= N1+ Aza) S0 o (1= NF (1) + AF(2);
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(a-ii) F is (- o+ )-concave on [a,b] if and only if Va1, x9 € [a,b] and all
A€ [0,1],

F((l — )\)acl + )\1‘2) ;7*?74' (1 — )\)F(l‘l) + )\F(%Q)

(b-i) F is strictly (3~ ,+ )-convex on [a,b] if and only if Va1, x2 € [a,b] and
all X €]0,1],

F((l — )\)."L‘l + )\1'2) fj,y—’,y+ (1 — )\)F(l’l) + )\F(l‘Q);

(b-i1) F is strictly (3, 4+ )-concave on [a,b] if and only if Va1, 2 € [a,b]
and all X €]0, 1],

F((l — )\)xl + )\.TQ) ,>;7777+ (1 — )\)F(.Tl) + )\F((L’Q)

(c-i) F is strongly (<~ .+ )-convex on [a,b] if and only if Va1, z2 € [a,b]
and all X €]0, 1],

F((l — )\).2171 + )\lEQ) =y= 4t (1 — )\)F(wl) + )\F(xg);

(c-ii) F is strongly (<~ 4+ )-concave on [a,b] if and only if Vaq, 2 € [a,b]
and all X €]0, 1],

F((1 =Nz + Ar2) = o+ (1 = A\)F(z1) + AF(22).

The convexity of a function F' = (f, f) is also related to the concavity
of function —F = (—f, f)
Indeed, according to Proposition 2.2.11 ,we have that for intervals A, B €
Ko, it is
AZ - 4+ B if and only if (—=B) 3

Rt

(—A);

note that in the last partial order, the roles of v~ and 4™ are interchanged
by changing their sign so that —y* < 0 and —y~ > 0.
Therefore, as a consequence, we have the following property.

Proposition 3.1.16. Let F' : [a,b] — K¢ and Z,- .+ be a given partial

order with v~ < 0, vT > 0. Consider also the partial order Sty

Then F = <f, f) is (Zy- o+ )-convex if and only if —F = (—f,f) is
(K—~+,—~- )-concave.
In particular, if yv© = —y~ =~ > 0, then F is (Zy)-convez if and only if
—F is (Z+)-concave.
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Proof. According to Proposition 2.2.11, we have that for intervals A, B € K¢
it is A 3~ + B if and only if (=B) Z_,+ _,- (—A); in the last partial
order the roles of v~ and 4" are interchanged by changing their sign so that
—~T < 0 and —y~ > 0. The proof follows immediately. O

The next result expresses the (Z,- 7+) convex1ty of F' in terms of the
convexity of functions f, f —~*f and f — v~ f:

Proposition 3.1.17. Let F = (f, f) ta,b] = Ko and 2.~ 4+ be a given
partial order; then
1. F isfgw_ﬁi)—conve:v if and only if f s convexr, f— 7+f 1§ concave
and f —~~ f is convex;
2. F isﬁv(grﬁi)—concave if and only iff\ 18 concave, f— fy+f 1§ convex
and f —~~ f is concave.

Proof. We prove 1. Let x1, 22 € [a,b] and X € [0, 1]; from the definition of
convex function we have that I is (Z,- ,+)-convex if and only if

F((1 =Nz + Aze) 3 (1 =XN)F(x1) + AF(z2).

~y T

Therefore, denoting
Ty = (1 — )\)331 + Az,

we have that F'is (Z,- ,+)-convex if and only if
F(a:,\) g,y*{y“r (1 — )\)F(l’l) + )\F(CIZQ)

which, according to (3.9), means

Fa) <=Nfe)+Af@)
Flon) = (1= N F () + Af() + 7+ (Flan) = (1= M) = Afla)
. .

Fla) < (1= N)flan) + Af(@2) + 7~ (Flan) = (1= N Flar) = Af(a2)) 5

From the first inequality it follows that fis convex; instead the second
inequality can also be written as

Flon) =74 F ) = (0= 0 () =7 Flan) + 4 (Fwa) =7 AF(@2))

ie., f(z)— 7*;‘\(1‘) is concave. Finally, the third inequality becomes

Flon) =47 Fan) < (=) (Flo) =y Flwn) + A (Fle) = v Af(@2))

ie., f(z)— v_f(:z‘) is convex.
To prove 2., we can proceed in a similar way. ]
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Strict (N’Y 7+) convex1ty (respectlvely, concavity) of F in terms of func-

tions f , f—~T f and f v f can be easily deduced; in this case we have:
- the midpoint function f is strictly convex (respectively, concave);

- function f — 1 f is concave (respectively, convex);

o~

- function J?— ~~ f is convex (respectively, concave).

Strong convexity of F' corresponds to strict convexity and/or concavity

of f, f—~Tfand f—~"f (in the right way). L
It is interesting to remark that an interval-valued function F' = (f; f)

which is both (Z,- ,+)-convex and (,\,7 ~+)-concave on [a,b] exhibits a
strong linearity, in the sense that both f and f are linear on [a, b]; indeed,
from F((1 — AN)z1 + Ax2) = (1 — N F(21) + AF(22), i.e

F(zy) = (1 —=AN)F(z1) + A\F(z2),

we have

) flaa) = (1= Nf(a) +Af(x2) .
Flon) = (1= N F () + Af(za) + 9+ (Flan) = (1= 0 F(n) = Afla2))

Fax) = (1= N F@a) + Af@) +7~ (flea) = (1= V() - Af(@)

so, from the second and third equality, we obtain exactly

~

FU(1 = Na1 + M) = (1= N\ f(@1) + M (22),
FQ =N+ Aza) = (1= N f(1) + M (@2).

Proposition 3.1.18. Let F' = (f, f) 2 [a,b] = K¢ be (2~ 4+ )-convex or

(2~ ~+)-concave; then F' is continuous on la, b|.

Proof. From Proposition 3.1.17, the three functions f, gt = f— ’y*f and
g~ = f —~~ f are convex or concave, hence they are continuous on the
internal pomts of [a, b].

As f = g + V+f and both gt and f are continuous, so f is too, we
obtain that f and f are both continuous which implies that F' itself is
continuous. O

From Proposition 3.1.17, several ways to analyze (Z,- ,+)- convexity

(or conca\nty) in terms of the first or second derivatives of functions 7,
—(f - 7+f) +f f and g~ = f ol f can be easily deduced.

Proposition 3.1.19. Let F' = (f, f) :Ja, b[— Ko with differentiable f and
f; the following facts hold.
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1 If the first order detivatives f’ and f’ exist, then:

I-a F is (Zy- o+ )-convex on |a,b[ if and only if 7, 'y+f’ — ¥ and
' —~~f are increasing (nondecreasing) on |a, b[;
1-b F is (- o+ )-concave on ]a, bl if and only if f’, ’y“‘f’ — f’ and

"=~ f" are decreasing (nonincreasing) on |a, b|;

2 If the second order derivatives f” and f” exist and are continuous,
then:

2-a F is (3~ ,+ )-convex onla, b[ if and only =0,y " —f" >0
and f" —~f" >0 on la, bl;

2-b Fis (3~ 4+ )-concave on ]a, b] if and only i <0,y =" <0
and f" —~~F" <0 on Ja,bl.

Proof. The proof follows from well-known results in classical calculus. [

In order to connect concavity and convexity with the monotonicity of the
gH-derivative and, for a partial order <, with v > 0, with the “sign” of the
second-order gH-derivative, we need the following well known result on real
convex functions:

Lemma 3.1.1. For a function g :]a,b[— R to be convex on |a, b, a necessary
and sufficient condition is that for all xo €la,b[ the incremental function

goo 0, b\{z0} — R, defined by g (z) = I =9(T0)

T — X0
x €la,b\{zo}.
Furthermore, g admits left and right derivatives at any xo €a, b and g;(zo) <
/
9r (.1‘())

, 18 nondecreasing for

Proof. Consider z1 < zo (both different from xg); after simple manipulations,

we have
9o (£1) = guo(w2) _ (21 — o) (9(22) — 9(0)) — (w2 — wo) (9(x1) — g(0))
1 — T3 (g — 21)(x2 — @) (21 — o)

(3.30)

_ (@1 — m)g(x0) + (w2 — 20)g(x1) + (w0 — x1)g(22)
(21 — @2)(22 — w0) (20 — 21) '

On the other hand, from the convexity of g, according to definition of
convex functions, for all z € [z1, z2] we have

g(x) —gla1) _ g(a2) — g(z1)
T — T S xe—m

that is,
g(x2) — 9(331)(

T —x1);
Tro9 — I1

g(r) < g(x1) +
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taking z1 < zp < x2 (this is not restrictive because the right-hand side in
(3.30) is symmetric with respect to zg, x1 and x3), we obtain

(z2 — 21)g(20) < (22 — 20)g(21) + g(22) (20 — 21)
and, combining with the second line in (3.30),

Joo(21) = guo(22) _ (22 = 20)g(21) + (o — 21)g(x2) — (22 — 21)g(20) _
T1 — T2 (z2 — z1)(22 — 20) (w0 — 21) -

To prove the last part, the incremental function z — g, (z) is nonde-
creasing and admits left and right limits at xg with

G = mli/nxlog:co (x) < xli\nagogxo (CL‘) = Gr;
on the other hand, clearly, G| = gj(zo) and G, = g,.(z0) and this completes
the proof. ]

Proposition 3.1.20. Let F': [a,b] — K¢ for all zg €]a,b[. Consider the
incremental functions of f and f, defined for x €]a,b[, x # xo by

o~ ~ ~

hasao) = 1O =@ Ty = J@) = /(@)

T — o T — xq
and let EJr(ﬂC; o) and h™(z;x0) be the incremental functions of v* f — f and
f =~ f respectively, given by

E+(az; xo) = 7+71(x;x0) - 71(3:;3;0), Ef(a:;xo) = }Nz(g;;g;o) — 7*’};(1;; 20).
Then

1. F is (Z,- 4+ )-convex on [a,b] if and only if h(x;20), b (2;30) and
h™(x;20) are nondecreasing in ]a, b[\{zo}.

2. Fis (Zy- o+ )-concave on [a,b] if and only if h(z; o), bt (2;30) and

h™(z;x0) are nonincreasing in |a,b[\{xo}.

Proof. From Proposition 3.1.17, the three functions ]?7 'y+f— fand f— v_f
are convex (in case 1.) or concave (in case 2.); by virtue of Lemma 3.1.1,
their incremental functions h(z;zo), h* (z;20) and h™(x;x0) are either non

decreasing (in case 1.) or non increasing (in case 2.) and the conclusion
follows. O

Proposition 3.1.21. Let F = (f, f) Hla,b]— K¢e and let v~ <0, vt > 0.
If Fis (- 4+ )-convex or (3~ .+ )-concave on ]a, b], then F(,l)gH and F(’T)gH
both exist on ]a, bl.

If f| = f, then also E’ = ﬁﬁ and F(/l)gH =F/

(o = Fomr
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Proof We know that F'is (Z,- ,+)-convex if and only if f, +]? f and

f v f are convex; from the second part of Lemma 3.1.1, their left and
right derivatives exist so that also fl and f’ exist.
It follows that

)

with f} < fl, v*f = i <vFf = T and J] -~ fl <f-vf
If fl = then we have —fl < —f) and fl < fI, that is, fl = r;
therefore, f’ exists. O

1l

= (B[] onad Bl = (7

Remark 3.1.7. Analogously to the relationship between the sign of second
derivative and convezity for ordinary point to point functions, we can establish
conditions for convexity of interval-valued functions and the sign of the
second order gH-derivative F;’H(;U), for example, a sufficient condition for
strong <ru-convexity (i.e., with respect to the partial order éfrnﬁ with
vt = —y~ =1) is the following (compare with Proposition 3.1.19):

1. if Fily(wo) <pu 0, then F(x) is strongly concave at xo;
2. if Fyy(z0) =ru 0, then F(z) is strongly convez at xo.

A simple case is the function F(x) of Example 3.1.2, for which the second-
order gH-derivative exist for all x € [~2,4] with Fjy(v) = (—6x + 8;2) =
[-6x + 6, —62 + 10].

)
F(z) is strongly convex for x €] —2, 1] and strongly concave for x € } 3 4 [; if

x € 1,; , we have 0 € [—6x + 6, —6x + 10] so that F(x) cannot be strongly

CONveTr nor concave.

3.1.8 Complete discussion of an example

We conclude this Section with a complete discussion of an example where all
the results described so far will be applied.
Let consider function F': R — K¢ defined by

o~

f(z) = cos(x) + 2COS(§) and f(z) = 1.2 + sin(z)

3 3
4’4

Remark that both f(z) and f(z) are differentiable so that, in midpoint
notation, the first order gH-derivative is F, ;(z) = (J?’(a:), |//(x)|) and the

second order gH-derivative is Fy/y(z) = (F"(): |f"(x)]) (see [80]).

for z € [a,b] = [ } In addition, we choose v~ = —1.2, v© = 0.8.
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All computations are performed with a precision of at least five deci-
mal digits.

~

Internally to [a, b], we consider eleven points where f(x) is locally minimal
or maximal (we will ignore the first and last ones as too near to boundaries
a and b). They are marked in Figure 3.21 by a diamond symbol and are
denoted x;,7 =1,2,...,11, corresponding to the rows in Table 3.1.

Function F(x)

= [f" (=), F7(z)]

0.2

Figure 3.21: Interval-valued function F'(x) of the complete example (top). Bottom

~

picture gives functions f(x) (black color) and f(x) (red).

i x; F(x;) Fop(xi) Fop(xi) Type  Efficient Region
1 —0.637302 (0.549;1.506) (0.0;0.735) (—73.71;35.18)  max [—0.6433, —0.6078]
2 —0.490592 (0.184;1.089) (0.0;3.842)  (78.26;7.600) min [—0.5619, —0.4425]
3  —0.382304 (0.358;0.807) (0.0;0.726) (—76.13;41.61) max [—0.3987,—0.3753]
4 —0.245329 (0.046;1.029) (0.0;2.956)  (79.91;0.844) min [—0.2755, —0.1930]
5 —0.127422 (0.262;1.252)  (0.0;0.0) (—77.31;38.70)  max {—0.127422}

6 0.0 (0.0;1.0) (0.0;3.142) (80.46;0.0) min ,, [-0.0523,0.0334]
7 0127422 (0.262;0.748)  (0.0;0.0) (—77.31;38.70)  max {0.127422}

8  0.245329  (0.046;0.971) (0.0;2.956)  (79.91;0.844) min [0.2125,0.2905]

9 0.382304  (0.358;1.193) (0.0;0.726) (—76.13;41.61) max xp [0.3769,0.4174]
10 0.490592  (0.184;0.911) (0.0;3.842)  (78.26;7.600) min [0.4176,0.5328]
11 0.637302  (0.549;0.494) (0.0;0.735) (—73.71;35.18)  max [0.6241, 0.6453]

Table 3.1: Relevant points of F'(x) in the complete example.

The two points x,, = 0 and xj; = 0.3823, corresponding to a local

~

minimum and maximum of f(x) and marked, in the (z, y)-plane, with a square
symbol, will be analyzed in detail. The vertical segments in top of Figure 3.21
represent intervals F(x,,) = [—1,1] and F(zpr) = [—0.8356, 1.5506].



128 Real and complex interval-valued functions

Figure 3.22 gives the first order gH-derivative of F(z); remark that,
according to fourth column in Table 3.1, we always have 0 € Fg’ g (x;) and
Fly(s5) = Fly(wr) = 0.

In Figure 3.23 the gH-derivative is pictured in midpoint half-plane (Z;2);
the points where f’(z) = 0 are marked in correspondence with the value 2
on the abscissa (compare also with Table 3.1).

gH-derivative F, () in interval form
\

Figure 3.22: First order gH-derivative Fy; () in interval form; black curve is f/(:n)

F} () (mid-point)

Figure 3.23: First order gH-derivative Fy;(x) = (f’(m),

f’(w)D in midpoint form.

The second order gH-derivative, represented in Figure 3.24, shows that
the intervals I (2), as expected, are entirely positive at the minima and
negative at the maxima. Remark that in no points the first and second

~

derivatives of f(x) are simultaneously zero.

~ ~

In this example, where both f(z) and f(z) have continuous second
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gH-derivative F/y(z) in interval form
T

80

40 - A

20 q

20 F -
-40 |
60 4
-80 =

=100 - =

-06 -04 -0.2 0 0.2 0.4 0.6

Figure 3.24: Second order gH-derivative F); () in interval form; the black curve

is f" ().

order derivative, the convexity region is particularly simple to identify, due
to a well known theorem based on the sign of the curvature of curve Cp
associated to F'(x) (for details see [5]). We consider the following function
k(z) = fl(2)f"(z) — f"(x)f (z) (its sign coincides with the sign of the
curvature of Cp at ). We then search for the points, on the left and right of
Zm, at which the sign of x(z) has the same sign of x(x;,). Analogous result
is valid for x),.

In our example we find the interval [—0.14535,0.07545] around z,, and
the interval [0.37170,0.41745] around x s (see Figure 3.25, where the values
of x corresponding to local convex portion of F(x) are delimited by red
vertical lines in the bottom picture).

From the local convexity of the curve Cp, the efficient regions corre-
sponding to x,, and zj; are computed under Assumption 3.1.1 for min
and Assumption 3.1.2 for max; the resulting intervals are, respectively,
[—0.05235,0.03345] around x,, and [0.37695, 0.41745] for xps. In Figure 3.26
the efficient regions around the min and max points are delimited by vertical
red lines.

The next Figure 3.27 gives the three functions

~ ~ ~

f@), v f@) = f@), f@) =7 flo)

as we have seen in Subsection 3.1.4; their sign gives information on the
monotonicity of F'(x).

In particular, if all three functions (observe that the second function
is changed in sign with respect to the properties in Subsection 3.1.4) have
the same sign (hence are also not zero) at a point z, then F(x) is strictly
increasing or decreasing with respect to the partial order 3.~ +. The same
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mid-point representation of F(z)

0 0.1 0.2 0.3 0.4 0.5

Figure 3.25: Local convexity of curve Cg corresponding to ,, and x ;.

min-efficient Frontier max-efficient Frontier
12 —

1.1

—_
T

—
>

0.9

0.8 i
0 0.1 0.2 032 033 034 035 036

min/max Efficient Region

0.6 -0.4 02 0 0.2 0.4 0.6

Figure 3.26: Efficient regions corresponding to z,, and x,; obtained by tangency
conditions.

information can be eventually deduced from the sigh of the tree derivatives

Fla)y, v F@) - ), fla)—y f()
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f@) (black), f(z) = 7" f(@) (red)., F(2) = v fla)

-~ ~ ~ ~ o~

Figure 3.27: Functions f(z), " f(z) — f(z) and f(z) — v~ f(x).

given in Figure 3.28; at points where the three derivatives have different

signs, then function F'(x) is not 3 -monotonic.

hareas

gf)’(r) (black), (f)’(lr) - ﬂfg'(ﬂ (red), () (=) - fy-(f)’(r;

Figure 3.28: Functions f'(z), v* f'(z) — f'(z) and f'(z) — v~ f'(x).

The results of our analysis, as described for the min and max points z,,
and x )7, are visualized in Figure 3.29, giving the midpoint representation of

Here, we see the position of point F(x,,), with the delimiters F(z!,),
F(2') of the efficient region E,,in(F;2,,) (in green color); analogously,
the position of the max point F(zps) is evidenced, with the delimiters
F(zy), F(z,) of the efficient region Ep,q.(F;xar). Clearly, the two points
correspond to local best-min and best-max points (not of lattice type).

The last three Figures (3.30, 3.31 and 3.32) summarize, respectively,
the computations for all the local minima and maxima considered in Table 3.1.
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Efficient Regions at min, max points

141 1
13+ .
-
12¢ ) |
Xg) =W

0 005 01 015 02 025 03 035 04 045 05

o
<

Figure 3.29: Function F(z) is represented in midpoint form, together with the
efficient points corresponding to x,, and x;.

Efficient Regions at min, max points

2= T

i \\—\ /\ N\ //\ |

05 ;/‘*\

0k N ~r
ABIVANINA
7
'1 J—.\.‘J Il \ / |\\-/\ | |
0.6 04 0.2 0 0.2 04 06

Figure 3.30: Function F'(z) is represented in interval form and all the zeros z; of
f(z) are classified as min or max points.

In particular, Figure 3.30 reproduces F(x) in interval form, with the
visualization of the six local maxima and the five local minima, classified
according to the computations.

The points x;, i = 1,2,...,11 in the first column of Table 3.1, together
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(/)'(x) (black), 7*(f)'(x) - (F)(@) (red), (fY(z) =~ (f)(x)

Figure 3.31: Functions f'(z), v" /' (z) — f'(z) and f'(z) — v~ f'(z) evaluated at

classified min and max points.

Efficient Regions at all min,
T

max points

1.5_ T T T T

1471

13

12

1

0.9

0.8

0.7

08

05 C L | l | l |

MIF(0.3823)

——1F(-0.6373)

.

>

0 005 01 015 02 025 03

«—1F(0.6373)

Figure 3.32: Function F'(z) is represented in midpoint form, with all the points

F(z;) and the corresponding efficient regions.

with corresponding interval values F(z;), i = 1,2,...,11 (as in the second
column) are marked with a vertical segment in black color. Correspondingly,
the efficient regions are delimited by vertical lines (cyan-colored for six max
points and magenta for five min points). There are two local maxima, cor-
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responding to x5 = —0.127422 with F'(z5) = (0.262;1.252) = [-0.99, 1.514]
and z7 = 0.127422 with F(z7) = (0.262;0.748) = [—0.486, 1.01] which are
lattice max-points: the efficient frontier coincides with the point itself and
the two maximal intervals dominate locally all the near intervals F'(z) (in
the figure, the black and cyan vertical lines are coincident).

This is also visible in Figure 3.31 in terms of the values of the three
derivatives f'(z), v f'(x) — f'(x) and f'(z) —~~ f'(x) evaluated at x; and at
the points defining the efficient regions: for the two lattice maxima, the three
derivative are zero, while in the other minima or maxima only f’(x;) is zero
and the other two derivatives do not have (at least generally) the same sign
(but one or both may possibly be zero). Note that the corresponding efficient
frontiers are delimited by vertical lines (cyan-colored for max and magenta
for min points).

Finally, Figure 3.32 summarizes all the computations by the midpoint
visualization of our function F(x) and all local minima (five points) and
maxima (six points) are marked together with corresponding efficient regions.

3.1.9 Periodic interval-valued functions (and famous plane
curves)

Before continuing, let us recall that a function f: D C R — R is said to be
periodic if there exists a real number T # 0, called period of f, such that
D+ T =D and f(x +T) = f(x) for every z € D, ie., when f repeats
its values at regular intervals. In the following the periods will be always
assumed to be positive unless otherwise stated. The smallest positive period
of f (if such exists) is called fundamental (see [61] for details).

On the other hand, geometrically, a periodic function can be defined as a
function whose graph exhibits translational symmetry, i.e., a function f is
periodic with period T if the graph of f is invariant under translation in the
z-direction by a distance of T'.

Considering points where the trajectory of an interval-valued function
F(z) = (f(z); f(z)) crosses itself, i.e., z1, z2 exist with F(z1) = F(x2)
(equivalently f(x1) = f(z2) and f(x1) = f(x2)), it follows that periodicity
of F' is also easy to describe.

Definition 3.1.13. A function F : [a,b] — K¢ is said to be periodic if, for
some nonzero constant T €]0,b — al, it occurs that F(x +T) = F(x) for all
x € [a,b] with x + T € [a,b] (i.e., for all x € [a,b—T]).

A mnonzero constant T for which this is verified, is called a period of the
function and if there exists a least positive constant T with this property, it
18 called the fundamental period.

Clearly, if I’ has a period T, then this also implies that

~ ~

(fle +T); flz + 1)) = (f(x); f(2))
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so that f(x +7T) = f(m) and f(z+T) = f(z) for all = € [a,b — T, i.e., f
and ]7 are periodic with period T'.

Remark that if T" is the fundamental period of F', this does not necessarily
imply that T is fundamental period for both f and f. On the other hand,
the periodicity of f and fdoes not necessarily imply the periodicity of F.

Proposition 3.1.22. Let I : [a,b] — K¢ be a continuous function such that
F(x) = (f(:v); f( )) with f periodic of period T and f periodic of period T.
Then it holds that:

~ o~

~ ~ T T
(1) if the periods T and T are commensurable, i.e., 7 € Q (with 7 = ]3,
q

such that p and q are coprime), then the function F is periodic of
period T = lcm(f, f), i.e., T 1s the least common multiple between T
and T (that is T = pf = qf) even if T does not necessarily correspond
to the fundamental period of F';

~

_ ~ T
(2) if the periods T and T are not commensurable, i.e. = ¢ Q, then

function F is not periodic.

Example 3.1.4. Consider the function F : R — K¢ defined by periodic
functions f(az) = 5sin (—356 + %) and f(z) = cos(Zm)‘. Figures 3.33 and

3

On this interval, function f(aj) has two minimal and two maximal points
(see bottom picture in Figure 3.33).

We have chosen x,, = 0.8726 with F(z,,) = (—5;0.3825) and zp =
4.014 with F(xp) = (5;0.9238), located in Figure 3.34, where also the
points corresponding to efficient regions ef fmin(F; xy) = [0.8243,0.9169]
and ef faz(F,xpr) = [3.993,4.032] are given in green color. Here v~ = —1
and vT =1 giving the (Zru)-order.

3.8/ picture F(x) for x € [a,b] = [0, 477] .

Example 3.1.5. (Siamese fishes). Function F : R — K¢ is defined by
periodic functions f(x) = 5cos(x)— (v2—1) cos(5z) and f(x) = 1.5+sin(4z).
Figures 3.35 and 3.36 picture F(x) for x € [a,b] = [0, 27].

Internal to this interval, function f(m) has two minimal and three mazimal
points (see bottom picture in Figure 3.35); we have chosen x,, = 2.7489
with F(xy,) = (—4.7779;0.5) and xpr = 0.3911 with F(zp) = (4.7779;2.5),
located in Figure 3.36, where also the points corresponding to efficient regions
ef fmin(F; ) = [2.1828,2.7489] and ef fmaz(F, xpr) = [0,0.3927] are given
in green color. Here v~ = —1 and v+ = 0.5.
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Function F(z) = [f~(z), [T(z)]

Figure 3.33: Graphical representation of periodic function F(x) of Example 3.1.4
in the plane (z,y) in interval notation (top) and in midpoint notation (bottom).
Marked points correspond to x,, and s, where the two functions are differentiable.

Efficient regions at min, max points

0.8
07
06
05
04k Fx,,)
03
02

0.1

Figure 3.34: Graphical representation of periodic function F(z) of Example 3.1.4 in
the half-plane (z;2z). Marked points are F'(x,,) and F(x)s) and the efficient regions
are marked in green color.

Example 3.1.6. (Big fish). Function F : R — K¢ is defined by periodic

functions f(x) = cos(z) + 2008(%) and f(x) = 1.2 + sin(x). Figures 3.37
and 3.38 picture F(x) for x € [a,b] = [0, 47].
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Function F(z) = [f~(z), fT(x)]

0 1 2 3 4 5 6

Function F(z) = (f(:r) flz)

Figure 3.35: Graphical representation of periodic function F(z) of Example 3.1.5
in the plane (z,y) in interval notation (top) and in midpoint notation (bottom).
Marked points correspond to x,, and s, where the two functions are differentiable.

Efﬁcignt Regions at min, max }eoints
T T

25§ T T T T T ) F(XM)
2
15 ! Fa)=F(b)

Figure 3.36: Graphical representation of periodic function F'(x) of Example 3.1.5 in
the half-plane (Z;2z). Marked points are F'(x,,) and F(x);) and the efficient regions
are marked in green color.

o~

Internal to this interval, function f(x) has two minimal and one maximal
points (see bottom picture in Figure 3.37); we have chosen xz,, = 8.378
with F(xy,) = (—1.5;2.066) and zp = 27 with F(zpy) = (—1,1.2), lo-
cated in Figure 3.38, where also the points corresponding to efficient regions
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Function F(z) = [f~(z), fT(z)]

Py T T T T

10 12
, Function F(z) = (f(ﬁ“) f(T))
. ]
17
N ]
1= A ]
0 2 4 6 3 10 2

Figure 3.37: Graphical representation of periodic function F(z) of Example 3.1.6
in the plane (z,y) in interval notation (top) and in midpoint notation (bottom).
Marked points correspond to x,, and x,;, where the two functions are differentiable.

Efficient Regions at min, max points
T T T T T

|6=(a)=F(b)

Figure 3.38: Graphical representation of periodic function F'(x) of Example 3.1.6 in
the half-plane (z;2z). Marked points are F'(x,,) and F(x,;) and the efficient regions
are marked in green color.

ef fmin(F; ) = [8.1568,8.8555] and ef fumax(F,xrr) = [5.4488,7.1176] are
given in green color. Here v~ = —2 and v+ = 2.
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3.2 Other uses of interval-valued functions

This second part of the chapter will be mainly dedicated to the presentation
of new possibilities of use and application of the interval-valued functions.
In particular, starting from the graphical representations outlined in Section
3.1, a new notation for representing complex intervals will be presented,
the peculiarities and advantages of which will be fully exploited through an
unprecedented visual approach.

Afterwards, an interesting application will be proposed concerning one
of the most recent studies on the so-called g-calculus which, through an
innovative approach, will be analyzed from an interval point of view.

3.2.1 A new approach for complex-valued intervals

In this section a new notation to represent complex intervals will be pro-
posed, also showing, through examples and graphical representations, the
peculiarities and benefits associated with its use.

Different notations for complex intervals

According to Subsection 1.3.5, it is possible to extend to complex numbers
the same concepts of real intervals by defining a complex valued interval as
the set (or box) of complex numbers corresponding to interval real part and
interval imaginary part.

This means that, according to Definition 1.3.6, a complex interval is

defined as
Z=A+iB={z=a+ib:Jac A, Fbe B} CC (3.31)
where
- A=l[a",a™] = (a@;a) is the interval real part of Z;
- B=[b",b"] = (b;b) is the interval imaginary part of Z;
- i = [i,4] = (¢;0) stands for the interval imaginary unity.
We also remember that the set of complex intervals has been denoted by

Ke(C)={z=a+ib | ac A, be B, A, Be K¢}

so that we can write: Z € K¢ (C).
This means that, using the endpoint notation, we can define a complex
valued interval as

Z=|z,z"]=a" +ib ,a" +ib"] (3.32)

with a= < a™, b~ < b* all belonging to R, such that
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-z~ =a~ + b~ represents the complex lower endpoint of Z;
-z =a™ +ibT represents the complex upper endpoint of Z.

However, in addition to this notation, it is also possible to use the
midpoint one, thanks to which we can define a complex interval as

7 = (2;7) = (4 + ib;a + ib) (3.33)
with a,/l; € R and Zi,g > 0, such that
~Z=a+ib represents the complex midpoint of Z;
_Z=a+ib represents the complex radius of Z.

Clearly the two notations are interchangeable; indeed, since via the
midpoint notation we have

Z = (2:%) = (@ +ib;a + ib)

+ - ~ + _ g —~ bt b= ~ bt — b
with @ = % and a = % (similarly b = —;A, f = T)
so that, as usual, a~ = a@—a and a™ = a@+a (similarly b~ = b—b, b" = b+b);

then, using endpoint notation, we clearly obtain

Z=|z,z"]=[a" +ib ,a" +ibT], asitis

2 —Z=a+ib—(G+ib)=a—a+i(b—b)=a" +ib;

I
)

2t

I
)

+Z=Ga+4ib+ @+ib)=a+a+i(b+0b)=at+ibt.

In particular, while z = G+ib € Cis exactly an ordinary complex number,
on the other hand, z = a + ib cannot be considered as such since @ and b
represent two widths and not two point values.

However, we could also consider z = a+ib belonging to CT, i.e., z = G+ib
belongs to the first quadrant of the Gauss plane.

Taking a further step, it is even possible to consider both z and z as
complex numbers but in such a case the interval Z should still be understood
in relation to the lattice (C, <), where, given two complex numbers z; =
a1 + iby and zo = ag + ibe, the order < is defined as follows:

71 < Z2 & a1 < ay and blgbg.

So we can conclude that, given a complex number z = a + ib in the
classical complex plane (as indicated on the right side of Figure 3.39), all the
complex numbers x represented by the points belonging to the highlighted
area to the right of z, are such that z < x; while all complex numbers y such
that y < z, graphically belong to the area on the opposite side with respect
to z.
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Therefore, if we consider the interval (expressed in endpoint notation)
Z=[z",z"|=[a +ib ,a" +ibT]={z€C 127 <z<z"}
or, which is the same,

Z=A+iB=[a",a"|+ib,b ] witha™ <at, b~ <bT,

then Z can be easily represented graphically through the rectangle shown
on the left side of Figure 3.39, that is, a complex interval is a rectangle of
certainty (see [17]).

z=a+ib

7=[z",z%]

bt 2= a* + b /

W

Figure 3.39: Representation in the classical complex plane of a complex number
z = a + ib, as a point (right), and of an interval complex number Z = [z—,z 7], as a
rectangle (left).

A new representation for complex intervals

As we have just seen, in general, a complex interval, expressed in endpoint
notation, can be represented by a rectangle in the complex plane, that is a
kind of rectangle of certainty.

On the other hand, using the midpoint notation, it is possible to define a
new type of representation since the real-part intervals (@;a) can be placed
in the upper real half-plane as usual, while to represent the imaginary-part
intervals (3, 75) it is possible to think of adding a new half-plane in the lower
section as shown in Figure 3.40.

Therefore, the plane is thus divided into two distinct halves:

- the upper half-plane, whose points represent the real-part intervals
A = (a;a);
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- the lower half-plane, whose points correspond to the imaginary-part
intervals B = (b; b).

X
S ® . A= (a;a)
o @ a
<5
O
a3
o~
»~ X
b >

s = a
=2 3
m Q@
= 0q
24
o =
=

- ~

o e b

= BZ(b;b)

, IX

Figure 3.40: Representation of a complex interval Z = A+4B in midpoint notation.

The following numerical example clarifies the situation.
Example 3.2.1. Consider the complex interval
Z = (2;2) = (@+ib;a+ib) = (2 — 3i;1 + 2i)
which corresponds to Z = A+ 1B, such that
A= (@a) = (%1) and B = (bd) = (~3;2),
i.e., Z is an interval of complex numbers of the type
z=a+1ib, witha € (2;1) =[1,3] and b e (—3;2) = [-5,—1]

as shown in Figure 3.41. Here the interval is represented by two points lying
respectively on the real part (upper half-plane) and on the imaginary part
(lower half-plane) of the midpoint complex plane (left side of figure); however,
in accordance with the classical theory (see also Subsection 1.3.5), a complex
interval s also conceived as a 2-dimensional interval vector, such that it can
be represented by a rectangle in the complex plane with sides parallel to the
azes (right side of figure).
In particular, in the example considered we have that:

Z=A+iBor Z=(A,B)

where, referring to the midpoint complex plane (left side of figure):
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AN

X Im
Imaginary part .
intervals 2;1) ~
-5 -1 X 1 a 3 Re\
= rd
1 I 3
Real part -1
_a. intervals R
(-3;2) b /(2—3i;1+2i)
E{
Vix -5

Figure 3.41: Graphic representation of the complex interval (a + ig;ﬁ + z'~) =
(2 — 3i;1 + 24) as two different points in the midpoint complex plane (left) and as a
rectangle in the classical complex plane (right).

A = (2;1) is the real-part interval, belonging to the upper half-plane,
B = (=3;2) is the imaginary-part interval, in the lower half-plane,

as well as, considering the the classic complex plane (right side of figure):
A =[1,3] is the real interval element, parallel to the horizontal azis,
B =[5, —1] is the complex interval part, parallel to the vertical axis.

Clearly, in the second (classical) case the complex interval is represented by
the well known rectangle of certainty.

The complex-valued curve

Similarly to the real case (see Definition 3.1.1), we give the definition of
interval-valued functions in the complex case.

Definition 3.2.1. An interval complez-valued function (or complex interval-
valued function) is defined to be any

F :la,b] — Kc(C)
with F(z) = [f~ (), fT(z)] € Kc(C) and f~(z) < fH(x) for all z € [a,b] C

R, where we define

(@) = fro(@) +ifi,(x) and f*(x) = fl(x) +ifi (2).

Otherwise, using midpoint notation, we write F'(x) = (f(x), f(x)), where:
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- F(@) = Fre(®) + i fim(x) € C is the midpoint value of interval F(x);

- f(z) = fre(®) + ifim(z) € CTU{0} is the nonnegative half-length
of F(x).

As in the real case, we have that

oy @)+ (@) 7 @) - f(2)
2

fla) and fo) = 0L 50

and so

[ (@) = f(z) = f(z) and [T (2) = f(z) + f(2).
In Section 3.1, referring to the real case, we frequently used a graphical
representation of an interval-valued function

F:la,b) — K¢

obtained in the so-called midpoint half-plane where each interval F(z) is
identified with the point (f(x), f(z)) and the arrows give the direction of
moving the intervals for increasing x € [a, b].

Therefore, we are interested in verifying whether even in the complex
case it is possible to carry out a similar procedure.

We can first consider the complex-valued curve defined as follows:
f(@) = fre(@) + ifim(x) (3:34)

with = € [z, z1]. R

It is interesting to observe that the real-part of function f,. and the
imaginary-part of function f;, can be represented in the complex plane in
parametric form as

Yre = J/{T\e (z)
with @ € [z, z1] as shown in Figure 3.42.
Note that each point (fre(z), fim(z)) represent the complex midpoint

fA‘(x) of the complex interval F'(z) and, as in the real case, the arrows give
the direction of moving the intervals for increasing z: they started at point

~

f(xo) and terminate at f(z1).
Moreover, as shown in Figure 3.43, for a generic x, the complex interval

F(z) = (f(2); f(2))
is represented by a rectangle centered at the point
f(@) = Jre(@) + ifim(x) = (Fre(@), fim(2))
whose dimensions are identified by the radial component of the interval

f(@) = fre(@) + ifin(@) = (fre(@), fim(2))

where:
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Yim

f(xﬂ f(xo)

Yre

Vv

Figure 3.42: Parametric representation in the complex plane of the real-part of
function f,. and the imaginary-part of function fi.,.

Tyim
fGxp)
\ flxo)
Fr] fin) ]—ﬁm(x)
F(x)~T \
2Lk \ Yee
;ET_J:() k_,/

o~

Figure 3.43: Representation of the complex interval F(z) = (f(z); f(z)) for a

~

generic x as a rectangle centred at the point f(z).
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- fre(z) = 0 is the orizontal side of the box;
- fom(x) > 0 is the vertical side of the box.

The rectangle specifically follows the movements of the arrows (as ex-
pressed in both Figures 3.42 and 3.43), thus giving a completely new graphical
approach to the concept of complex-valued intervals.

3.2.2 Interval-valued ¢-calculus

This section suggests a possible example of application of interval analysis to
a topic, the g-calculus, which nowadays holds great interest in the scientific
community and, therefore, could be taken into consideration also for future
research.

In particular, we will try to revisit the most recent studies on the ¢-
calculus (where ¢ stands for quantum) from an interval point of view, making
use of the midpoint notation. To do this we will rely on the g-calculus
approach outlined by Victor Kac and Pokman Cheung in [41] as well as the
one used by Agnieszka B. Malinowska and Delfim F.M. Torres in [59].

We have chosen this topic as we consider it very interesting from many
points of view, in particular because of its recent applications in different
areas of mathematics such as orthogonal polynomials, basic hypergeometric
functions, combinatorics and calculus of variations, even if, as pointed out
by Thomas Ernst in [22], it seems that the majority of scientists who use
g-calculus are physicists: from statictical mechanics to theory of relativity, up
to the concepts of g-heat and g-wave recently introduced in [9]. Furthermore,
in the last period, g-calculus is receiving significant attention from researchers
who belong to the most varied fields and several new results can be found in
[94] and other references cited therein.

Basic results on ¢-calculus

We present a brief overview of some basic concepts and definitions regarding
g-calculus for real-valued functions.

Basically, the regular calculus uses limits in calculating the derivatives of
real functions; nevertheless, the quantum calculus, also known as the calculus
without limits, substitutes the classical derivative by a quantum difference
operator which allows to deal with sets of nondifferentiable functions.

Let remember that despite, historically, in the eighteenth century Euler
himself obtained the basic formulas in g-calculus, however, the first to
introduce the notion of the definite g-derivative and g-integral was Frank
Hilton Jackson (see [39]) in the early 1900s.
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Definition 3.2.2. ([/1]) Considering an arbitrary function f(x), its g-
differential is defined as

def (z) = f(gz) — f(z) (3.35)
where q is a fived number, q €]0, 1].

So that we have in particular: dgx = (¢ — 1)z.
With the differential introduced in (3.35) it is possible to define the
corresponding g-derivative.

Definition 3.2.3. ([41]) Let f(z) be an arbitrary function, the expression

df(z) _ flqz) — f(z)

D =1 = .

is defined as the Jackson q-difference operator, also called the g-derivative of
the function f(x).

Note that if f(z) is differentiable, then

. _df(z) _
D7) = T = ')
and the g-derivative of f at 0 is defined by D, f(0) = f(0).

From (3.36) it follows that, from any positive integer n, the g-derivative

of f(z) =a™is

Dya"™ =[]z (3.37)
where, applying the basic rules of power series, it is

def q" —1 n—1
= =1+4...

which represents the g-analogue of n and, as ¢ — 1, according to the basic
rules of the limits, we have
¢" —1

;l—%[n]q:gl—% qg—1 -

Furthermore, the g-factorial [n],! of a positive integer n is given by

in],! = 1 if n=0
Tl Mg x2]g X ..o x[n]g i n=1,2,...
This turns out to be very useful, as for example in the definition of the

g-analogue of the classic exponential function e® which, as explained in [41],

becomes
oo

er = x—] (3.38)
172
However, in addition to the one already seen, there is also another type
of quantum difference operator, associated to the so-called h-calculus (see
[33] and [59]).
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Definition 3.2.4. Considering an arbitrary function f(x), its h-differential
is defined as

dnf(x) = f(z+h) - f(z) (3.39)

where h is a fized number, h > 0.

So that we have in particular: dpz = h.
With the differential introduced in (3.39) it is possible to define the
corresponding h-derivative.

Definition 3.2.5. Let f(x) be an arbitrary function, the expression

Dif(x) = d’;{l(j) _ft hiz —J@ R (3.40)

is the h-derivative of the function f(x).

Note that if f(z) is differentiable, then

: . df (x)
1 D = 1 D = .
s Dl () = Jimg Drf(x) = =4
d
Here it clearly emerges how, while Leibniz notation Z(:c) consists of a ratio

of two “infinitesimals”, so rather confusing, on the othef hand, the notions of
g-and h-differentials are obvious as the g- and h-derivatives defined in (3.36)
and (3.40) are plain ratios.

And even better, the h-derivative and the g-derivative can also be unified
(in the limit) by the so-called Hahn operator.

Definition 3.2.6. Considering a real function f(z), defined on an interval
I containing wq, the expression

flgz +w) — f(z)
(¢—Dr+w

Dyuf(x)= (3.41)

where x # wp, wy = %, q €]0,1] and w = 0 are all real numbers, is called
—q
Hahn operator.

Remark 3.2.1. As described in [3], [33] and [70], it is possible to introduce
the foreward difference operator

Aa,b(‘r) =

T —b

where o(z) = ar+bwitha > 1, b >0, a+b>1 and p(x) =

its inverse, so that

represents
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This way we can define f on a mized-time scale

{....p%(a), p(a), o, 0(a),0%(a), ...}, a> La

which, instead of being continuous, is a discrete subset of R.
Now if we consider

B(a) = go+w
we obtain that Dy ,[f|(z) = f(qqxx+_ng+£(x) = f(ﬁﬁ((x;;_i($), which

means that for every x it is possible to introduce a general quantum difference

operator defined by
Dy () = LEN= )

with B(z) # = and Dgf(z) = f'(x), such that:
if f(z) is differentiable, then
lim Dﬁf({l,‘) = Zg.

T—T0

Interval-valued ¢-derivative

Making use of the concept of gH-difference, a procedure similar to the one
just seen can also be applied to an interval-valued function

o~

F :a,b] — K¢ such that F': z — (f(x); f(x)).

Definition 3.2.7. Considering an arbitrary interval-valued function, ex-
pressed in the midpoint notation F(x) = (f(x); f(x)), its (¢H, q)-differential
is defined by the gemeralized Hukuhara difference as:

dyr,oF(2) = F(qz) Sgr F(z) = (flqz) — f(2);f(gz) — f(z)])  (3.42)
with q €]0,1[ and x # 0.

As in the classical case, with the differential introduced in (3.42) and
remembering that dy(z) = (¢ — 1)z, it is also possible to establish the
corresponding ¢-derivative for the interval case.

Definition 3.2.8. Let F(z) = (f(x); f(z)) be an arbitrary interval-valued
function represented in midpoint notation, the expression
dgiqF'(z) _ Fl(qt) Sgu F(z)

Dy oF(x) = ey a1 (3.43)

is called the interval-valued (gH,q)-derivative of the function F(x) with
x # 0.
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Moreover, if the following limit exists, we define
Dy qF(0) = ilg%DgH,qF(l")

where, if F' is gH-differentiable at z, we have

dy F(x)
lim D F = 9 .
q1_>1 g, (2) dgz gH(UU)

Furthermore, the Hahn ¢-difference operator can be extended too.

~

Definition 3.2.9. Considering the interval-valued function F(x) = (f(z); f(x)),

the expression

F(qr + w) ©gn F(x)
(g—1zr+w

Dy gwF () = (3.44)

where ¥ # wg, wy = L, q €]0,1] and w > 0, is called Hahn (gH,q)-
q

) |

Remark 3.2.2. In case Minkowski-type subtraction ©Oy; is used, we may

operator.
Note that, using midpoint notation, we always have:

flaz +w) - f(x)
(g—Dzr+w

Fgr+w) 0gn F(x) _ [ flgr+w) — [(2),
(g—Dr+w -z +w

consider
Ao F(x) = F(gr) S F(@) = (Fla2) = fla): Flaw) + @)

but it seems that this form of a difference is not useful as a q-differential,
similarly to the fact that the M-difference F(x + h) ©pr F(x) is not adequate
as a h-differential where, according to [41], by h-differential of an arbitrary
function f(x) we mean (3.39) and therefore, by h-derivative we mean (3.40).

Consider now the two interval-valued functions F' = (f, f)and G = (g;9)
on the same domain X = [zg, z1] and let x € X.
For a,b € R the gH-linear combination of F' and G is

(a,6) @y (F.Q)T = (af + b3

af+ bﬁ’) )
More generally, for any a = (a1, as,...a,) € R" and any vectors

F = (Fy,...F,) of functions F; : R — K¢(R),

) |

we define the gH-linear combination of Fi,...F}, to be

aQqHF (Zazfz
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As a consequence we have that, applying one of the basic properties of
absolute value, i.e., ||A| — |B|| < |A — B|, to the quantities

A= af(gz) + bi(gr) and B = af(x) + bj(x).

we obtain

dgH,q((% b) OgH (F, G)T) - adgH,q(F) DgH bdgH,q(G) (3-45)

which means that dyp 4 is (9H, q)-subadditive with the additional property
that the midpoint values of the left and the right intervals in (3.45) are the
same.

We also have that, for all k € R,

dgH,q(kF(ff)) =k- dgH,qF("E)

and so dgp 4 is (9H, q)-sublinear.
Indeed, we have

kF = (kF: k1)
and then, according to (3.42), it is

~

dytra(kF (2)) = kE(qr) S kF () = (kf(qw) = kf();

[kl F(at) — Ik F()])

~

=k (flo2) - fla);

Flaw) = F@)|) = k- dynig F(@).

Interval-valued ¢-integration

Considering quantum integration, we first recall the notion of g-antiderivative
of a function (see [41]).

Definition 3.2.10. Considering an arbitrary function f(x), its g-antiderivative
s a function, denoted by

0p() = [ fa)dya

so that
Dyays(x) = f(x).

In order to construct this in an operational way some concepts concerning
linear operators are necessary.

Indeed, we consider the linear operators M, and n, on the space of
polynomials whose actions are respectively to bring ¢ inside the polynomial
f(x) and to insert a variable x outside it, as shown below:
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M,[f(2)] = f(qz)
and

na[f(2)] = 2 f(2).

Therefore, for any polynomial f(x) we have

Myne([f (2)]) = Mgle f(2)] = qzf(qr) = qna[f(qz)] = qneMq[f(2)],

so, we obtain

Mgng = qna M. (3.46)

Hence, as the g-antiderivative as(x) of a given function f(x) is such that

_ _ ay(gz) — as(x)
f(z) = Dyag(z) = Wa

this can be expressed in terms of the M, operator as follows:

@) = af(qr) —ap(x)  Mylag()] —as(x) 1 M, — 1) a(a),

@Dz ~ (G-Dz @1z

i.e., using the geometric series expansion,

@) = 53 (0= Ve (@) = (-a) =g af(@) = (1-0) M (@)

Jj=0

=(1—q)) daf(dz)=(1-qz) ¢ f(d).

J=0 J=0

By Definition 3.2.10, we obtain the following series which is called Jackson
integral of f(x):

[ H@dae = (1= 92y (o). (3.47)
§=0
Supposing now 0 < a < b, the definite ¢g-integral is defined as

b [ee]
/0 F@)dgr = (1— b S ¢ F(eb)

J=0

/abf(x)dqx = /Obf(m)dqx - /Oa f(@)dga.

and
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At this point we are able to construct the interval-valued form of Jackson
integral, using the midpoint notation of an interval-valued function

(eventually f(z) = |wy ()| with wy : R — R ) and the notion of g-differential
defined by (3.42).

Considering 0 < a < b, the definite interval-valued g¢-integral of F' is
defined by

b 0 O
/ F(z)dga = < (1—q) > q"flbg");b(1 —q)Zq’“f(bqk)> . (3.48)
0 k=0 k=0

/obF(x)dqt - ( /Ob f(@)dge; /0 'F (fﬂ)dqw> (3.49)

where the g-integrals on the right side are the standard ones for fand ]7
Likewise, we have

/b F(z dx_/F dx@gH/aF(x)dqx
(/f dx—/f d:v/f d:n—/f )dg

Furthermore, considering the function

ie.,

) (3.50)

g : R —= R, where dyg(x) = Dyg(z)dgx

applying (3.36) and (3.47), we get the following more general formula:

/ F(x)dgg(z) = / () Dyg(e)dgr = (1 — )z S ¢/ F(') Dag(a)

J=0

= (1—q)z i qu(qjx)g(qj+1x) —9(@z) _ (g i qu(qjx)g(qjx) — gl a)

(¢—Dg/z (1-q)qz
=Y F(¢x) (9(¢’x) — g(¢’ M) (3.51)
=0

It is assumed that the series in (3.51) converges and that the term

F(¢'z) (9(¢’x) — g(¢’ ')

corresponds to the interval

(F(a'®) (9(a'2) = g(a"12)) s (') (9(a’x) — g(a’ 1)) )
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~ ~

Lastly, if a(x) and af(x) are antiderivatives of f(x) and f(x) respectively,
i.e.,
as(a) = [ Fladye = (1= gy o fla's)
=0

and

is(a) = [ Fladye = (1= gy o' fla's) > 0
j=0

and the two series converge for all z €]0,t], then, under the additional
condition that f and f are bounded on |0, ¢], we have that

- arp(x) = (af(x);ar(x)) is an interval-valued g-antiderivative of F'(z) =
(F)i 7))
- ap(z) is continuous at z = 0 with ar(0) = 0 (as an interval).

These results can be expressed through the following theorem whose proof is
similar to that of the analogous theorem for real numbers (see [41], Chapter
19).

Theorem 3.2.1. Let consider an interval-valued function F(x) = (]?(QU)7 f(w))

Iff and f are bounded on the interval |0,t], then the Jackson interval-valued
integral of F' converges to a function ap(x) = (ay(x);ar(x)) which is a q-
antiderivative of F(x).

Moreover, ap(x) is continuous at x = 0 with ap(0) = 0.

Fundamental theorem of g-calculus for interval functions

Remember that, just as in the ordinary calculus where the concepts of
derivative and definite integral are related through the Newton-Leibnitz
formula, also in the g-calculus there is a similar relationship between the
g-derivative and the definite g-integral, as expressed by fundamental theorem
of g-calculus (see [41]).

Theorem 3.2.2 (Fundamental theorem of g-calculus). ([41]) Considering a
function f(x) and its q-antiderivative a¢(x) which is continuous at x = 0,
then, if 0 < g < x1 < 00, we have that

/xl f(x)dqx = af(x1) — ap(zo). (3.52)

In a very similar way it is possible to determine an analogous result
for the interval case; therefore, the fundamental theorem of g-calculus for
interval-valued functions can be stated as follows.
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Theorem 3.2.3 (Fundamental theorem of interval-valued g-calculus). If
ap(x) = (ay(x);ar(x)) is the interval-valued q-antiderivative of the interval-

valued function F(z) = f(m), f(:c)) and ap(x) is continuous at © =0 (i.e.,

both ay and ay are continuoue at x = 0), then we have

/I1 F(x)dqa: = ap(xl) OgH ap(xo) (3.53)

0

with 0 < xog < 21 < 00.

The proof follows from the definition of ffol f(z)dqx and from Theorem
3.2.2 applied to fand f

Remark 3.2.3. Note that, in terms of Minkowski operations, (3.53) means
one of the two following equalities

ar(z1) = ap(zg) Dy /m1 F(x)dgz or ap(zo) = ar(z1) Sm /w1 F(x)dgz.

The complex-valued ¢-difference and ¢g-derivation

As already seen in Subsection 3.2.1, each complex valued function F(z) can
be identified by:

- the real-part interval F(z) = (ﬁe(m), fre(2));
- the imaginary-part interval Fy, () = (fim(2); fim(x));

therefore, based on what has been introduced so far, the complex-valued
g-difference and g-derivation can be defined as follows.

Definition 3.2.11. The (gH, q)-difference on the real and imaginary parts
of complex interval-valued function F(x) € K¢(C), are respectively:

Ayt Fre(@) = (Jrelaz) = Fre(@);

Frelar) = Fe@)])  (354)
and

dytt g Fin(@) = (Fim(02) = Fim(@);

fim(qz) — f;m(x)() . (3.55)

Definition 3.2.12. The (gH, q)-derivative of a complex interval-valued
function F(x) € Kc¢(C) is the complex interval identified by

dgH,qFre(w) + Z-dgH,qum(f’f)'

D F =
gH.q () dqx dgx

(3.56)
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Definition 3.2.12 also means that the (gH, q)-derivative of a complex
interval-valued function F(z) € K¢(C) is the complex interval identified by
the two intervals:

dyrr g fre(®) | dgt.gfre
- DypgFre(x) = < ngle ($)7 gH,;:; (z) ) for the real part;
dyrr g fim (@) | dgrrq fim
- Dy gFim(z) = < nglf:m (:/c)’ gH’(ZZLZx (z) ) for the imaginary part,

also expressible as the box:

DgH,qF(fU) = DgH,qFre(fE) + iDgH,qum(x)-



Part 11

New perspectives in interval
analysis






Chapter 4

An advanced algebraic setting
for intervals

As well described by Svetoslav Markov in [58], on many occasions it has
been useful and natural to introduce arithmetic operations and relations
for intervals in the same way as we introduce operations and relations
for real numbers. Indeed, in IA there is a natural tendency to follow the
development of real arithmetic: from the study of algebraic properties to the
classification in algebraic systems, up to axiomatization, etc. On the one
hand the intervals, through addition, subtraction, multiplication and division,
are treated as real numbers, on the other hand the n-dimensional intervals
are added and multiplied by scalars as if they were real vectors. However, the
intervals produce neither rings nor vector spaces; therefore, over the years
many authors have tried their hand at studying the algebraic properties
of intervals, in search of algebraic systems within which to configure them
(see, e.g., [42], [88], [92]) and, more recently, Markov himself has greatly
contributed with an interesting attempt to develop an axiomatic algebraic
system alternative to the one based on Moore’s principle of extension (see
[58]).

Nevertheless, even today the algebraic structures of intervals have not
been completely axiomatized. Therefore, what we intend to do is help fill this
gap by introducing some innovative approaches towards the determination
of interval algebraic systems.

A first step in this direction is represented by the attempt to broaden
the concept of order analyzed in the first part of the work, introducing a
new one with the aim of obtaining a sort of polarity between the two types
of orders considered which, moreover, will also allow us to determine a very
important completion of the lattice KC¢.
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4.1 Polar orders

In this section we will try to broaden the concept of y-order 3.~ -+, introduc-
ing a new order, the y-inclusion &, _+, capable of giving a set interpretation
of ordering with the aim of obtaining a sort of polarity between the two
types of orders.

Before doing this, however, some additional considerations should be
made on the concept of interval of intervals (introduced in (2.29)) and on
how this makes it necessary to define a polar order with respect to y-order.

4.1.1 Bounded subsets in K¢

Now let A, B € K¢, as already mentioned in Subsection 2.2.7, according to
(2.28), the “segment” joining A and B is the set of intervals

S(A,B)={(1-t)A+tB|te[0,1]}

with S(A, B) = S(B, A).

Note that this concept can also be used to define the convexity of a subset
of K¢ like the one delimited by the three intervals A, B and C' shown in
Figure 4.1.

Figure 4.1: Segments that define a convex subset of K¢ joining comparable and
incomparable intervals with respect to <.~ ,+-order.

In the same picture is also possible to see how, in case two intervals
are (év‘,ﬁ) — comparable, such as A and B are, we have further relevant
notions.
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Definition 4.1.1. If S is a set of intervals in K¢ and A, B € K¢ are fized
with A 3~ ,+ B, we say that set S lies between A and B as follows:

A é'y‘,’y* S é'y‘,’y‘*‘ B < A é’y‘ﬂ"' S é’fﬁ*’ B, VSeSs.
The following property is obvious.
Proposition 4.1.1. Let A, B € K¢. We have that
A év’w* Bs A é7777+ S(A, B) §77ﬁ+ B

and, assuming A év‘w* B, we define (with respect to the partial order
= .
Ryt )

- A= infév—,w S(A, B), also denoted as minéw—,ﬁ S(A, B);
- B= supg S(A, B), also denoted as maxg S(A, B).

On the other hand, if two intervals are (<~ +) — incomparable, such
as A and C' in Figure 4.1, then (and only then):

1) Aand S(A,C) = {(1 —t)A+tC} are incomparable V¢ €]0, 1];
2) C and §(A,C) = {(1 —t)A +tC} are incomparable Vt € [0, 1].

In addiction, in case of incomparability, it is possible to evidence the
presence of other two important points which represent the extrema in
reference to segment S(A, C') with respect to y-order:

P = inféfﬁ+ S(A,C) and Q = supg S(A,C).
Taking into consideration (2.29), we can rephrase it with the following
definition.

Definition 4.1.2. In (K¢, Sy~ ,+) we define an interval (of intervals) with
extreme A, B € K¢, assuming that A év‘fﬁ B, to be the set of all intervals
X € K¢ such that A 3\ + X Zy- 4+ B, i.e.,

[[A’ B]]gv_,w = {X € Ke | A é'y—,'ﬁ X é'y‘,’y‘*‘ B}'

We simply denote it by [[A, B]],~ ,+ in case there are no other types of
orders besides .~ +.
If A and B are (Z,- ,+) — incomparable, we may define

[A,Bllx _ , =linf<_ . S(AB)supz _ S(AB)lz _ .. (41)

YooY
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Referring again to Figure 4.1 (as well as to Figure 2.14 in Subsection
2.2.7) and assuming A 3.~ ,+ B, it is trivial to verify that:

infs _ (ABls_ =4,

sups . [[A, B]]= = B.

Ry~ oyt

By defining (4.1), we always have

S(A,B) € [[A, B]]

= .
Ry= ot

Furthermore, as it has already been introduced in Subsection 2.2.7, if
A C K¢ is bounded (see the representation in Figure 4.2), we always have:

. = =< .
1) mféf’ﬁ AZ -t A supg A;

2) AC [[inf;wi7+ A, sups

AT Ry=oat =

xU

[[infA, supA]]

¥,

.

Figure 4.2: The bounded subset A C K¢ with L = inf, - .+ Aand U = SUp., -+ A.

Eventually, we can even consider a kind of lexicographic order in Kg¢.

o~ ~

Definition 4.1.3. Let A, B € K¢. For A = (a;a), B = (b;b) we define:

T a=0

1 AZlL. B zﬁa<bor{a<g
2AZ B iffa<b a=b
e B iff a<bor =23
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N
MW
NN

o>
x>

Figure 4.3: The lexicographic order in K¢: the set of intervals X such that X 5. A
(left) and such that X 32, A (right).

Definition 4.1.3 is well represented in the Figure 4.3.

Moreover, we have that the diameter (or length) of an interval of intervals
[[A, B]]ér 4 in (Ke, 24~ 4+) can be defined in several ways, depending on
its usefulnéss; a simple definition, analogous to real intervals (see Subsection
2.1.2), not depending on the chosen order, is the following:

len([[4, Bl ) = du(A, B) = || A Sy Bl

év*ﬂﬁ)

where, as usual, dg stands for the Pompeiu—Hausdorft distance
dy : Ko XKc—)R+U{O}.

Now let (K¢, 3~ 4+) be fixed and, for A,B € K¢ with A 3.~ ,+ B,
consider the interval [[A, B]] o+ having length (diameter) dg(A, B). As
shown in Figure 4.4, a sub-interval [[A', B']|5 - of [[A, B]]
easily defined by taking A’ B’ € [[A, B]] so that

=
Ny~
~ can be
Ry~ ot

=<

Ry~ ot

(4 Bz _ . CIlA Bllg

Ryt Ry~ ot

Note that [[A’, B/]]év*,ﬁ requires (4.1) if A" and B’ are (3, +)-incomparable.

Definition 4.1.4. A sequence of intervals in (K¢, Sy- +),
Ly = [[An, Bu]ly- 4+ with Ap S~ 4+ Bny n2 1 (4.2)

is said to be decreasing if In+1 C In,Vn > 1.
This requires that, equivalently,

AL Dyt Az Byt Byt An Dyt Bo Bt o Byt Bre (43)
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Figure 4.4: Sub-interval [[A’, B'[]<x of [[A, B]]
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4.1.2 Lattices as algebraic structures

In Subsection 2.2.1 we have recalled the basic notions concerning lattices
in classical theory but, before proceeding, it is advisable to remember their
dual nature, logical and algebraic, as it will be of fundamental importance
in order to delineate an algebraic interval theory.

Indeed, it is well known that a lattice is a non-empty ordered set (L, <)
such that, for each =,y € L, the extreme lower inf{z,y} and upper sup{z,y}
exist in L, but at the same time it is possible, in an equivalent way, to regard
lattices as algebraic structures of the type (L, V,A). In fact, if (L, <) is a
lattice, we can define two lattice operations V and A, for each z,y € L, in
the following way:

zVy = sup<{z,y},
r ANy =inf<{z,y},

such that, as will be better explained later, the following algebraic properties
hold.

(1) V and A are commutative:

(i) zVy=yVa, K Vx,y € L;
(i) xAy=y Az ,Vo,y € L.

(2) V and A are associative:

(i) zV(yVz)=(xVy) VzVe,y ze€L;
(i) A (yAz)=(xAy) Az Ve,y,z € L.
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(3) The absorption laws apply:

(i) 2V (zAy) ==z, Va,y € L;
(ii) zA(zVy) =z, Yo,y € L.

(4) The laws of idempotence hold (that is, every element of L is idempotent
with respect to both V and A):

(i) xvVa =z, Vx e L;
(ii) ANz =x,Vz € L.

Note that property (4) is a direct consequence of the other three.

If, conversely, (L, V,A) is an algebraic structure in which V and A are
two binary operations that verify (1), (2) and (3), then we can define in L a
binary relation < so that, for each x,y € L,

ry&sSr=xANy

and we verify that < is an order relation that makes (L, <) a lattice.
Furthermore, for each x,y € L we have

zVy =sup<{z,y} and x Ay =inf<{z,y}.

Thus, V and A turn out to be the lattice operations in (L, <).

At the same time, if V and A are the lattice operations defined in a lattice
(L, <), it is clear that the relation < defined above coincides with <.

In summary, given a non-empty set L, we can say that if R is the set of
relations of order < such that (L, <) is a lattice and O is the set of pairs
(V, A) of binary operations in L that verify conditions (1), (2) and (3), then
we can define two different applications between R and O:

1 a: R — O, which associates the ordered pair (V,A) € O to an order
relation < € R, where V and A are the lattice operations of upper
bound and lower bound in (L, <);

2 B: O — R, which associates the order relation < € R, defined like
above, to each (V,A) € O.

This means that « and g are inverse of each other, so they are bijective.

The most obvious consequence of the existence of such bijections causes
the study of lattices (considered as ordered sets) and that of the algebraic
structures (L, V, A) for which conditions (1), (2) and (3) hold, is fully equiv-
alent.

For this reason we refer to these structures by calling them “algebraic
lattices”. Therefore, from now on, to indicate a lattice we will indifferently
refer to the ordered set structure, indicating the lattice as

(L <)
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or to the algebraic structure, indicating the lattice as
(L,V,N)

where the first operation represented is that of the upper bound and the
second that of lower bound. It can also be convenient, and we will often do
so, to designate a lattice as

(L,V,N\, <)

to specify in synthetic way both the order relation and the lattice operations.
Therefore, the following property holds.

Proposition 4.1.2. An algebraic structure (L,V,\), consisting of a set L
and two binary, commutative and associative operations V and N\ on L, called
join (or vel) and meet (or et), respectively, is a lattice, named algebraic
lattice, if the following axiomatic identities, known as absorption laws, hold
for all elements x,y € L:

-xV(xAy) =x;
-z A (xVy) =

The following two identities, called idempotent laws, are also usually
regarded as axioms, even though they follow from the two absorption laws
taken together:

-xzVzr=zx Vr €L
-xANzx=ux, Vx € L.

Recall that also the two possible notions of isomorphism for lattices as
ordered sets and lattices as algebraic structures coincide.

However, it should be noted that even the notion of sublattice is algebraic,
in the sense that it can only be defined in terms of lattice operations.

Indeed, if (L, <) is a lattice, a sublattice is, by definition, a non-empty
subset K of L that is closed with respect to the lattice operations V and A
of L. The operations induced in K by V and A continue to verify conditions
(1), (2) and (3) and then make K a lattice with respect to the order relation
induced by < on K (this last observation is guaranteed by the fact that the
order relation of the lattice is determined by lattice operations:

Vr,y € L, we have z <y < x=zAy).
The notions of minimum and maximum also have an algebraic interpretation.

Lemma 4.1.1. Let (L,V,A, <) be a lattice. An element m € L is the
minimum in L if and only if m is the neutral element with respect to V, i.e.,
m is the identity element for the join operation:

mVze=xVm=uxVr € L;
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while m is the maximum in L if and only if m is the neutral element with
respect to A\, i.e., m is the identity element for the meet operation:

mAxz=x/Am=ux,Vr € L.

In particular, we have the following statements.

Definition 4.1.5. A bounded lattice is an algebraic structure of the form
(L,V,N\,0,1,<) such that (L,V,N\) is a lattice, O (the lattice’s bottom) is
the identity element for the join operation V and 1 (the lattice’s top) is the
identity element for the meet operation A:

xV0=0Vax =2 and xAN1=1ANx ==z, foreveryx € L.

Definition 4.1.6. Let L be a set equipped with two binary operations, denoted
by V and N. We define an algebraic lattice the structure (L,V, ), such that

1) V and N are commutative:
(i) tVy=yVzx K Vr,y€lL,
(ii) cANy=yANX , Vr,y € L;
2) V and N\ are associative:
(i) xV(yVz)=(xVy)Vz Vr,y,z €L,
(i) x AN(yAz)=(xANy)AzVr,y,z € L;
3) the absorption laws hold:
(i) xV(x ANy) =z Vz,y € L,
(ii)) x AN (xVy)=aNr,y € L;
4) the idempotent laws hold:
(i) xVx=uz,VrelL,
(ii)) x Ne =z, Vx € L.

In addition we can conclude that, since meet and join both commute and
associate, a lattice can be viewed as consisting of two commutative semigroups.
Moreover, for a bounded lattice (i.e., with minimum and maximum), these
semigroups are in fact commutative monoids. So, the absorption law is the

only defining identity that is peculiar to lattice theory.
We complete this segment with the following further definition.

Definition 4.1.7. A (meet-)semilattice is an algebraic structure (S, \) con-
sisting of a set S with a binary operation N, such that for all members x,y
and z of S, the following identities hold:
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-xANyNz)=xA(yAz) (associativity );
- x ANy =y Az (commutativity);
- x ANx =z (idempotency ).

A (meet-)semilattice (S, N) is bounded if it includes a neutral element is such
that x Nig =is Ax =x for all x in S.

Remark 4.1.1. If the symbol V replaces A in the definition just given,
the structure is called a (join)-semilattice. One can be ambivalent about the
particular choice of symbol for the operation, and speak simply of semilattices.

Note that in a bounded meet-semilattice, the neutral element is the
greatest element of S. Similarly, in a join-semilattice is the least element.

According to Definition 4.1.7, we can also say that a semilattice is a
commutative, idempotent semigroup, i.e., a commutative band, as well as a
bounded semilattice, being equipped with a neutral element, is an idempotent
commutative monoid.

Eventually, it is possible to introduce a partial order relation on a meet-
semilattice by setting z < y whenever x A y = x, while, for a join-semilattice,
the order is induced by setting x < y whenever x Vy = y.

Finally, we conclude this subsection with some notions of the theory of
distributive lattices (see [6], [13] and [67] for more information).

Definition 4.1.8. A De Morgan Algebra is a bounded distributive lattice
(L, <) with a unary operation ¢ : L — L such that:

(d1) () =z, Vx € L;
(d2) v <y = y* <z Ve,yeL.

A De Morgan algebra is called a Kleene algebra if it satisfies the Klene
condition:

(k) x Nx¢ <yVyc, Ve,y € L.
We will use, for a De Morgan algebra L, the notations:
- Wo(L) ={o€ L:0o<0° (weak zeros);
- Wi(L) ={u € L:u>u} (weak units).
It is easy to see that:
Wo(L) ={x Nz 2z e L} (4.4)

and
Wi(L) ={xVa:z e L} (4.5)
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Using this notation, the Kleene condition may be reformulated:
Vo € Wy(L),Vu € Wi(L) : 0 < u.

Therefore, Wy (L) N Wi(L) contains at most one element.
We end with the following definition.

Definition 4.1.9. A Kleene algebra L is called a Boolean algebra iff
xNzx¢=yANy® forall x,y € L, (4.6)

i.e., iff Wo(L) = {0}.

4.1.3 Incomparability with respect to 3,- ,+-order

Let consider A = (a;a) € K¢. According to Definition 2.2.13, we say that:

- interval A dominates interval X (with respect to 3.~ ,+) if and only
if A §7777+ X;

- interval A is dominated by interval X (with respect to 3.~ ,+ ) if and
only if X Z.- .+ A.

This can be represented in the midpoint plane as shown in Figure 4.5.

Figure 4.5: Interval A dominates interval C' and is dominated by interval D with
respect to order Z— .

In particular we define
Ap:T=a+~y (T—-4d) and A,:T=a+~" (Z —Q) (4.7)

the lines for A with angular coefficients respectively v, v" (see Figure 4.5).
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o~ ~

Consequently, considering two intervals A = (a;a) and B = (b;b) in K¢,
with A # B, according to (4.7), we call A,,, A, and B,,, Bp, the lines for
A and B with angular coefficients respectively v~,~". If the intersections
(points) between A,, and B, as well as between A, and B,, exist in K¢ (see
Figure 4.6), we indicate with:

- A, B, (or B,Ay,) the point of intersection between A,, and By;
- A,B,, (or B, Ap) the point of intersection between A, and By,.

We also have the parallelism A,,||B,, as well as A,||B, (possibly A,, = By,
or A, = B, but not both coincidences verified at the same time).

2
x>

Figure 4.6: Examples of pairs of intervals aligned (A, C and A, D), unaligned (A, B

and A, £ ), comparable (A 3, .+ B), incomparable (A [|x ~  E).
Ry Ty

We can also introduce the following definitions.

Definition 4.1.10. Two intervals A, B € K¢ are said to be incomparable
with respect to Z.- + (o1 Zoy- 4+ -incomparable) if and only if A # B and
neither A 3~ o+ B nor B S~ + A are verified, which is denoted by

A Hér,ﬁ B.
Definition 4.1.11. Let A, B € K¢ such that A # B and v~ ,y* € R:

- if A, = By, (orif Ay, = By, we say that the two points, i.e., elements
of K¢, are aligned;

- if A, # By and A,, # By, we say that the two points, i.e., elements
of K¢, are unaligned.
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From now on it will be useful to consider K¢ = K¢ U {—o00, +00}, where:

—00 = [~00, o] = (—00;0) Z infs

Ke

—at

and
def

+00 = [+00, +00] = (+00;0) = supg _ Kc.

;'Y+
This means that, using endpoint notation for intervals, we have:

AeKec e A=la",a"] witha ,a™ €R, a~ < a™ or A = [~00,—00] or

A = [400, ).

On the other hand, using midpoint notation for intervals, we have:

AeKece A= (a;a) withZ € R,a>0or A= (—00;0) or A= (+00;0).
We obtain that the poset (K¢, §7—77+) is a complete, bounded lattice,

ie., VXY € K¢ , Elinféﬂ/_’w {X,Y}, supy {X,Y}.

We will use the common notation:

X Vi Y = sups . {X,Y}, (4.8)
X AT Y = mfér,w {X,Y}, (4.9)

and we simplify the notation with X VY and X A'Y when v~,v" are fixed
and no confusion is possible, calling, as usual, V the join or vel and A the
meet or et.

In addition, we know that in lattices these two operations are both binary,
which means that they can be applied to a pair of elements X,Y € K¢ to
yield again an element of K¢.

So, we can define the following internal operations:

V: K¢ x Ke — Ke such that: (X,Y) - X VY;
A Ke x Kg — K¢ such that: (X,Y) — X AY.

In particular the definition below examines all possible cases of pair of
intervals in K¢.

Definition 4.1.12. Let A, B € K¢. We have the following cases.
1. If A and B are 3~ +-comparable and A # B:

lLaif A3, ,+ B, then AV B =B and ANB = A;
1.bif B3, 4+ A, then AV B =A and ANB = B;

2. If A and B are 3.~ +-incomparable and A # B:

2.0 if AyBy S 4+ AmBy, then AV B = Ay By and ANB = A,Byy,;
2.0 if Ay By Zy- 4+ ApBm, then AV B = AyBy, and ANB = ApBy;

3. IfA=DB, then AVB=AANB=A=B.
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=

Figure 4.7: The two operations V and A associated to a generic order .- ,+ (left).
The operations V and A when the order associated is the LU-order Z_q 41 (right).

The two operations are shown in the left side of Figure 4.7, while, if

we consider the LU-order, i.e., (y7,7") = (—1,+1), the situation is well
described in the right side.

Consequently, as it is immediate to verify, we obtain that the lattices

(Ke,V,A) and (K¢, A, V), considered as algebraic structures, have the follow-
ing properties:

1) V and A are commutative: VX,Y € K¢

la XVY =Y VX,
b XAY =Y AX;

2) V and A are associative: VX,Y,Z € K¢
2a (XVY)VvZ=XV(YV2Z2),
2b (XAYIYNZ=XANYNZD);
3) the absorpion identities are satified: VX,Y € K¢
3a XV(XAY)=X,
3b XAN(XVY)=X;
4) the idempotency is satisfied for both V and A: VX € K¢
4a XVX=X,
4b X ANX =X.

It is also easy to verify that (K¢, V,A) and (K¢, A, V) are distributive
algebraic lattices:

5.a) V is left and right distributive over A: VA, B,C € K¢
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5.4 AV(BANC)=(AVB)AN(AV(O),
5.a.i (AANB)VC =(AVC)A(BVCO);

5.b) A is left and right distributive over V: VA, B,C € K¢

5bi AN(BVC)=(AAB)V(AANC),
5biil (AVB)ANC =(ANC)V (BACQ).

4.1.4 The &,-  +-inclusion order

Let us now focus our attention on classical set inclusion order C and make
something similar to what we have just done for the partial order relation
<+ 4+, to define a corresponding partial inclusion order, denoted as

C._
=yt

with v7,7" € R such that v~ < 4". Then we will analyze its properties
with respect to intervals in detail and compare it with the partial order
relation S ,+.

Let consider the extended set

K2R = Kc U {2} U{R}

where, using midpoint notation, & and R denote the two intervals (0; —c0),
a notation for the empty set, and (0; +00). We can define, with respect to
the inclusion order,

— (0 def . oR
@ =(0;—00) = mfgr’W/CC
and def
— (0 ‘e oR
R = (0;400) = Sngr,ﬁKc .

Using midpoint notation for intervals, this means that:
X elch@X: (Z;7) withZ € R, 2> 0 or X = (0; —00) or X = (0; +00).
According to (1.6) and (1.8), we also introduce the two operations:

- AwB Y conv(A U B), which is the convex hull interval of AU B,
- AN B, which is the usual intersection between intervals A and B.

More generally, let v, 7" be fixed such that v~ < 0 < 4T and, according
to (4.7), consider in the half-plane (7;) of intervals (in midpoint repre-
sentation) the two lines A,, and A,, with angular coefficients v~ and "

respectively, passing through the point A = (a,a):

T=a+~vy (z—a) and T=a++" (T —a),
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which intersect the horizontal axis at points

. a . a
A= (a—’y_;()) and A+ = <a_’y+;0>'

We define the generalized (&, ,+)-inclusion by saying that interval B
includes interval A when the correspondent intersections with the horizontal
axis do the same (see Figure 4.8):

a a ~ b ~ b
i——a——|C|lb——,b——]|. 4.10
[ o 7‘} [ o 7‘] (4.10)
X
~J F=atyt@-a)

X=d+y (R-a)

By A Ay By. %

Figure 4.8: Generalized & - ,+-inclusion: interval B includes interval A when the
correspondent intersections with the horizontal axis do the same, just as all intervals
Y include A and intervals X are included in A.

More precisely, we have the following definition.
Definition 4.1.13. Let A = [a—,a*] = (@;a), B = [b~,b"] = (b;b) € K¢
and v~ < 0,7" > 0 (eventually v~ = —oo and/or v+ = +o00 ), we define the
following order relation, denoted &, - .+,

a<b
s b - a
AC, w B q 7T A ST (4.11)
a- <ot
7 v

It is immediate that, carrying out some passages, the (4.11) corresponds
to
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b+t (a-D) (4.12)

Referring again to Figure 4.8, if we consider an interval A = (a;a) € K¢
and the intersections between the midpoint axis and the two lines passing
through A with coefficients v~ and y*, we can say that:

- an interval X € K¢, so that X &~ _+ A, is included in interval A with
respect to the inclusion order & - .+, equivalently, we say that A is
€, y+-dominated by X;

- an interval Y € K¢, so that A &,- ,+ Y, includes interval A with
respect to the inclusion order &, - .+ , equivalently, we say that A
€, ,+-dominates Y.

We can also conclude that:

- interval A is dominated by interval X (with respect to &~ .+ ) if and
only if X & - + A;

- interval A dominates interval Y (with respect to €
A g'y‘rﬁ Y.

+— ~+) if and only if

In general, similarly to what was done in the case of order 3. - .+, we
can provide the following definition.

Definition 4.1.14. For a given interval A = (a;a), we define the following
sets of intervals X which are

(a) (&~ +)-dominated by A:

Dc(A;y7 ") ={X eKc|AC,- + X} (4.13)
(b) (& 4+)-dominating A:

DD(A;7_a7+) = {X € Ke | X g'y—,'y'*‘ A}: (4'14)

(c) (&4 4+)-incomparable with A:

Ic(A;77,7") ={X € Ko | X ¢ Dc(A;77,7%), X ¢ D5 (A;77,71)}
(4.15)

In the midpoint plane this is well represented in Figure 4.9.
Similarly to Definition 4.1.10, also in this case we have the following
notions.
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\ / .E

Figure 4.9: Interval A dominates interval C, is dominated by interval D and is
incomparable with interval £ with respect to order .- ,+.

Definition 4.1.15. Two intervals A, B € K¢ are said to be incomparable
with respect to S .+ if and only if A # B and neither A S~ .+ B nor
B &~ ,+ A are verified, which is denoted by

A Hg7 . B.

It is immediate to prove that &, .+ represents a partial order relation
(it is reflexive, antisymmetric and transitive) and, as in the case of partial
order §7_77+, we can distinguish the three cases of lattice-order, strict-order
and strong-order as follows.

Definition 4.1.16. Let v~ < 0 and v* > 0 be fized and consider two
intervals A, B. We distinguish the following three cases.

1. (Lattice-order): The partial order (S~ ,+) will be called the lattice-
order as in Definition 4.1.13 and equation (4.12). This corresponds

to the lattice-type concept of dominance as in points (a) and (b) of
Definition 4.1.14.

2. (Strict-order): We say that interval A strictly dominates B, or equiva-
lently that B is strictly dominated by A with respect to (S, +) if and
only if AS, — ,+ B and A # B; this means that in (4.12) at least one
of the inequalities is strict. We write

AC,- .+ Bifand only if (AS,- ,+ B and A # B). (4.16)

3. (Strong-order): We say that interval A strongly dominates B, or equiv-
alently that B is strongly dominated by A with respect to (S~ +) if
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and only if in (4.12) the three inequalities are strict, i.e.,
a<b
~ g + o~ _ -~
AC, + B+ a <j?+ v (G b) (4.17)
a<b+n~y~ (a—b) .
The strong-order implies that interval B is not located on the two lines
with angular coefficients v~ or vT and passing through A.

In particular, when v+ = +1 and v~ = —1, we have that:
- the lattice-order &_; 41 coincides with the standard inclusion A C B;

- the strict-order C_; 41 coincides with the standard strict inclusion
AC B;

- the strong-order A C_; 41 B implies, additionally, that no endpoint of
A coincides with an endpoint of B, i.e., b~ < a~ and b™ > a™.

According to (4.10), is also evident that
AC 11 B&a,a"|Cb,bT,] & ACB
as shown in Figure 4.10, where X C A and A C Y’; indeed it is

[ac_,:r+] - [a_7a+] C [y_,y+]-

xR
=<

AT,

A +

a” ~ at +
y L K x X | y

Figure 4.10: Example of inclusion order £_7 11: X C Aand ACY.

As in the case of poset (K¢, <+ ~+), even with generalized inclusion we
see that the structure (K2X, C.- ,+) is a complete lattice, which means that

2R -
VX,Y € K2°, 3mfgw_’ﬁ{X,Y},supgw_’ﬁ{X,Y}.
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We will use the notation:
X We L Y = supc _ . {X,Y}, (4.18)

X ﬁgv Y = H‘Lfgw_”y+ {X, Y}, (4.19)

—At

simplified to X WY and X N'Y when no confusion is possible on .- +.

These can be applied to a pair of elements X,Y € ICgR to yeld again an
element of ICCQR so that we can define the following internal operations:

W KR x KEF — K2F such that: (X,Y) - X WY,
N: K2R x KEF — K2F such that: (X,Y) —» X NY.

Moreover, in order to give a correct and more precise definition of W and
N in K¢, we can use lines A,,, A, and B,,, B, passing through A and B, as
defined by (4.7), and we denote by

A By, (or ByAy,) and By, A, (or AyBy,)

the respective points of intersection of such lines.
As usual, we have that A,,||B,, as well as Ap||B, (possibly A,, = B, or
A, = B, but not both coincidences verified at the same time).

Remark 4.1.2. If A, = B, and A # B, then A,, # By, and Ap||By,. So
A and B are 3., +-comparable, that is, A 3~ .+ B or B 3~ ,+ A.
Similarly, if Ay = By and A # B, then Ay, # By, and Ap||B,. So, A

and B are 3.~ ~+-comparable, that is, A Z.,~ .+ B or B 3.~ ,+ A.

The definition below examines all possible cases of pair of intervals in
Ke.

Definition 4.1.17. Let A, B € K¢. We have the following different cases.
1. If A and B are 3.~ ~+-comparable and A # B:

Laif AZ,- 4+ B, then AW B = A,By, and AN B = Ay, By;
1.b if B3~ 4+ A, then AW B = Ay B, and AN B = ApBpy,;

2. If A and B are 3.~ +-incomparable:

2.0 if ApBr Zy- 4+ AmByp, then AW B = A and ANB = B;
2.0 if AyBp 3~ 4+ ApBm, then AW B = B and AN B = A;

3. If A= B, then AWB=ANB=A=D0B.
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x1

AtB

x>
x>

Figure 4.11: The two operations & and N for a generic inclusion order &, - .+ (left).
The operations & and N when the order associated is the LU-order &_; 41 (right).

It is possible to visualize the two operations as shown in the left side of
Figure 4.11, while, if we consider the LU-order, i.e., (y,7") = (=1,+1),
the situation that we obtain is well described in the right side.

In particular, in this second case, for each interval X = (Z;z) it is
easy to visualize the corresponding intervals, expressed in endpoint notation
X = [z7,2"], whose extremes coincide exactly with the intersections between
the straight lines and the horizontal axis. The same type of observation can
be done for the operations of intersection and convex hull of intervals.

The algebraic structure of the lattices (K2%,w,N) and (K28, N, W) are
obtained from the following properties:

1) @ and N are commutative: ¥X,Y € K&*

la XWY =Y wX,
b XNY =YnNX;

2) W and N are associative: VX,Y, Z € ICgR

2 (XwWY)WZ=Xw(YWZ),
2b (XNY)NZ=Xn(YNZ),

3) the absorpion identities are satified: VX,Y € ICgR

3a XW(XNY) =X,
3b XN(XWY)=X;

4) the idempotency is satisfied for both vV and A: VX € ICgR

f4a XWX =X,
4b XNX = X.
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It is also easy to verify that:
5.a) W is left and right distributive over N:
5.1 AW (BNC)=(AwB)N (AW C),VA, B,C € KZE,
5.aii (ANB)WC = (AwC)N(BWC),YA,B,C € K&,
5.b) N is left and right distributive over W:
5bi AN(BWC)=(ANB)W(ANC),VA,B,C € K28,
5bii (AWB)NC =(ANC)w(BNC),VA,B,C € K&~

So (ICgR, W, N) and (IC%R, N, W) are distributive algebraic lattices.
We end this section with some additional interesting properties.

Proposition 4.1.3. Let A and B be two intervals in K¢ such that A # B.
They are (3 +) —incomparable if and only if AS,- .+ B or BS. -+ A.

The property rises intuitively simply by considering the situation repre-
sented in Figure 4.12, where the examples previously analyzed are taken up.

x?

Figure 4.12: Examples of comparable and incomparable intervals with respect to
the orders 3.,- ,+ and &~ .+, assuming that v~ < 0 and v* > 0:

D Zy- 4+ AZy- 4+ Caswellas A ngaw Cand A ||gﬁW+ D (left);

DCE -+ AC,- + Caswellas A ||§77’7+ Cand A ||é77,7+ D (right).

Indeed, assuming that v~ < 0 and v > 0, in the right side of the figure
we can see how interval A is included in interval C' (i.e., A &~ ,+ C), that is,
A dominates C' with respect to the order £, .+, but they are incomparable
with respect to the order 3.- ,+(ie., A Héw—,ﬁ () ; similarly, interval
A includes interval D (i.e., D &,- .+ A), that is, A is dominated by D
with respect to the order &,- .+ and, however, also in this case there is
=<~ 4+-incomparability (i.e., A Hér,ﬁ D).

On the contrary, in the left side of the figure we see that A 3~ + C,
that is, A dominates C' with respect to the order 3.~ .+, but clearly there is
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€.~ ,+-incomparability (A |c__ . C)aswellas D - .+ A, which means
b :r\/ Y ~ b
that A is dominated by D with respect to the order 3.~ .+, but there is an

_ c . e
evident &, - +-incomparability (A Hgf’7 . D).

In this regard, going into more detail and recalling that A+ = (Zi — %; 0)
v

—~ a .
and A,- = <a - —; 0>, we can consider the sets
Y

[A7+, Awf] N [B’Y+7 Bwf] and [A7+, A,yf] W [B,YJr7 Bwf],

which, as shown in Figure 4.13, correspond, respectively, to

ANB and AW B.

Cy+ By+ CY‘ A‘Y*‘ ANB By- Ay—

AWYB

AWC

Figure 4.13: Examples of intersection and convex hull of intervals: AN B # &,
AW Band AWC .

We have the following relevant properties.

Theorem 4.1.1. Let be A and B two unaligned intervals in K¢ such that
A# B and v~ ,yt € R withy~ < 0,77 > 0. Then we have:

AZy- gt BorBZy- v Ao BEy v Aand AL, .+ B

(i.e., two intervals A and B, A # B, are (Z- ,+) — comparable if and only
if they are (S~ ,+) — incomparable (A H;_WJF B).

Vice-versa, A and B are (S~ ,+) — comparable if and only if they are
(X +) — incomparable (A H;W_ - B).

x>
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Proof. Direction <« is obvious, so we will prove only direction =-.

a<b
Suppose A 3.~ ,+ B, by (2.33), this is equivalent to azb+y" (Zi - b)
5<g+7_ (ZL\—/I;) .

According to (4.12), the second inequality implies that A gV_:’W' B, while
the third one, developing the passages, is equivalent to b > a + vy~ (b — a)
which implies that B %ﬁ/i“ﬁ A. O

An immediate consequence of theorem 4.1.1 is represented by the following
proposition.

Proposition 4.1.4. Let A, B € K¢, such that A # B. Then A 3.~ ,+ B iff

(i) A ng* " B, that is, A and B are (S~ +)-incomparable;

(ii) @ <b.

4.1.5 Polarity and its main features

At this point it is time to introduce a new notion, called polarity.
Note that the term polarity has already been used in the past (see [72])
but with a different meaning from the one assigned to it here.

Definition 4.1.18. We say that two orders <1 and <o such that
-z <y y ez andy are <g-incomparable (i.e., x ||<, y),
-x<sy<ex andy are <i-incomparable (i.e., x ||<, y),

satisfy the polarity property (or they are “polars”).

Remark 4.1.3. The two orders év‘,ﬁ and S~ o+ are “polars”. Indeed,
for a fixed A € K¢, consider:

Tév*ﬂ* A= {X’A é'yﬂ'y* X} :]A7 +OO[ (4'20)

T
which, according to definition 2.2.13, corresponds to D<(A;vy~,y");

by A={YY %y e A} =] — 00, AL (4.21)

vyt

which, according to definition 2.2.183, corresponds to D~ (A;~y~,yT);

te_  A={TIAS, - T} =]A, +oolc (4.22)

At

which, according to definition 4.1.14, corresponds to De(A;~v~,yT);
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le A={Z1ZS,- + A} =] — 00, Alc _ (4.23)

At

which, according to definition 4.1.14, corresponds to D~ (A;~v~,yT).

So A is the separating element in all cases (see also Figure 4.14).

><>

Figure 4.14: In the midpoint plane the interval A acts as separator element between
the sets 1< A, < A, 1c Aand |c A.
Ryt Ryt =y~ 4t =~

~t

We can even introduce the operators that represent the boundary points
as infimum and supremum (see Figure 4.15 ):

- Anc . B=infc _  {A, B}, called meet (or et) with respect to
=7 7 =7 7

gwwh represents the infimum and we simply denote it by

AN B;

- A\/g’y_ B = conv(AU B) = supc__ ~+ {A, B}, called join (or vel)
- Y =
with respect to &, ,+, represents the supremum, also denoted by

AW B;

-ANg . B = inf;wi# {A, B} called meet (or et) with respect to

YooY
<+ ~+, stands for the infimum, simply denoted by

AN B;

- Avs B = supz {A, B} called join (or vel) with respect to

Ryt

=<+ ~+, stands for the supremum, simply denoted by

AV B.
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X

supgyiw{A, B}

=Ave, . B
L AWUB

mf‘;y_w{_A, B}
=ANg _ B
infe, , {AB} = AAB
=4 Acy_ys B

“LANB

x>
N

Figure 4.15: Examples of infimum and supremum with respect to inclusion order
S, - 4+ (left) and 3, - ,+-order (right).

Finally, we can define the following sets of intervals (which are not unique,
as shown in Figure 4.16):

A = supy {(X[ANX =2, X 3, + A},

A" = Z.nfév*,ﬁ {Y|AﬂY =a,Y ;777’y+ A}

Figure 4.16: Sets A’ and A” for a generic interval A in the (3, ,+)-case.

Note that A" and A” do not represent only two intervals, but all the
intervals lying below or exactly on the lines that intersect the midpoint axis

. a . a
respectively at points (a - O> and (a - — 0>.
8 v
If we now try to consider the particular case of (<ri7)-order, that is when

(v~,7") = (—1,+1), and its analogous inclusion order C_; 1, it is possible
to define the following sets:
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TéLU A = {X|A éLU X}7 ‘l/éLU A = {Y|Y éLU A})
e A={TIAS 11 T}, lc,, A={Z]Z &1 A},

which are shown in Figure 4.17.

Figure 4.17: The interval A acts as the separator element between the sets 1< A,
LgLU A7 Tgilvl A and \1/271,1 A

Obviously it is possible to define the following operators which represent
the boundary points as infimum and supremum with respect to Jry-order
and inclusion order &_q ;.

- AAc_, B =infc_ {A, B}, called meet (or et) with respect to &1 1,
represents the infimum, also denoted as A N B;

- AVc_ | B = conv(AU B) = supc_, {4, B}, called join (or vel) with
respect to &_1 1, represents the supremum, also denoted as A W B;

- ANg, B =infs,  {A, B} called meet (or et) with respect to Jru,
stands the infimum, also denoted as A A B;

- AVg, B = supg, {A, B} called join (or vel) with respect to Jru,
stands for the supremum, also denoted as A V B.

Similarly to the generic case, we can define the following set of non-unique
intervals:

A= supg, AX[ANX =2, X Zv A},

A" =infs, AYIANY =2,Y v A}
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Of course, in this case A’ and A” represent all the intervals lying below

or exactly on the lines that intersect the midpoint axis respectively at points
(a;0) and (at;0).

4.1.6 Order polarity in intervals of intervals

Before concluding this section it is interesting to provide some notions which
opens the way to a new algebraic interpretation of the sets of intervals. Using
notations (4.8) and (4.9), we reformulate Definition 4.1.2 as follows.

Definition 4.1.19. In (K¢, 3, ,+) we can define an interval (of intervals)
with extreme intervals A, B € K¢, to be the set of all intervals X € K¢ such
that ANB S~ o+ X and X 3~ ,+ AV B, denoted by

[[A, B]]é {XG/Cc‘A/\B =~y 7+)(f\,7 V+A\/B}

(or simply by [[A, B]]7_77+ if there are no other types of orders besides Z— + ).

More in detail, we also have the following notion.

Definition 4.1.20. Let C = [[C",CV]|5 _ _+ be an interval of intervals with
CN = (M) and CV = (¢V;¢Y). We deﬁne

S min.— (O Vs,
as the O—element related to the interval of intervals C = [[C", C’V]]éf 4
v Y maz, - [[C", CV])<

-

as the I—element related to the interval of intervals C = [[C",CV]|<

Ryt

This means that the poset

(C, gv*ﬁ*)’

with C = [[C",CV]]5 _ _+ ¢can be considered as a closed, bounded lattice (see
left picture of Flgure 4.18).

Indeed, if we consider (C, jw ~+), we have that for all X,Y €C,
JXVY = supg_ AX, Y} and XAY = mf< _ {X Y}
Therefore, C is a lattlce with maximum CV and minimum C*,

On the other hand, if we consider the algebraic structure of the form
(C’ \/? /\’ 07 ]')

such that (C,V,A) is a lattice, 0 is the identity element (zero) of the join
operation V and 1 is the identity element (unity) of the meet operation A
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1
=
5

Figure 4.18: Representation of [[C",CV]],- ,+ (left) and [[C",CY]],- .+ (right)
in the midpoint plane.

(ie, XVO=X and X A1l = X for all X € C), we obtain a bounded lattice
too.

The same can be done in the case of the inclusion order &~ +. In fact
we have already highlighted (see Subsection 4.1.1) that also the structure
(IC?R, S, +) is a complete lattice; therefore, we can extend to it the notion
of interval of intervals too, in a way quite similar to what is described in
Definition 4.1.19.

Definition 4.1.21. In (K¢, &~ 1+) we can define an interval (of intervals)
with extreme intervals A,B € K¢ (with AN B # @), to be the set of all
intervals X € K¢ such that ANB S~ + X and X &~ ,+ AU B, denoted
by

[ABllc_ ,={X€Kc|ANBE,- ,+ XS~ + AUB}

(or simply by [[A, B]],~ ,+ in case there are no other types of orders besides
Ct)
=7t/

Assuming A &~ ,+ B, it is also trivial to verify that:

infe _ A Bllc_ , =4

Y

supc _ [[A.Blc __, =B,

=y, ~t

and
S(A,B) C[[A Bl _

At

Furthermore, we have the following facts.

Definition 4.1.22. Let C = [[C", CU]]%_ L+ be an interval of intervals with
C" = (c;¢") and C¥ = (¢V;¢Y). We define:

def .
cn < mmw,,ﬁ[[(j’ﬁ,CUng_'ﬁ
as the 0-element related to the interval of intervals C = [[C", CUH%— vt
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¥ maz, - 0,0,

as the Z-element related to the interval of intervals C = [[C", OUHEW— e

This means that the poset

(Cv g'y—,'y"')a

with C = [[C", CY]]c can be considered as a closed, bounded lattice (see

S- 4t
right picture of Figu;eyzl.18).

Indeed, if we consider (C, &~ ,+), we have that for all X,Y € C,
JXUY = supc_ XYY and XﬂY mfc _ {X Y}
Therefore, C is a lattlce with maximum CY and minimum C".

On the other hand, if we take into account the algebraic structure of the
form

(C7 U? m? 07 1)

such that (C,U,N) is a lattice, 0 is the identity element (zero) of the join
operation U and 1 is the identity element (unity) of the meet operation N
(e, XUO=X and X N1 = X for all X € C), we obtain a bounded lattice
too.

We conclude this section by noting that an interval of ¢ (which so far
we have referred to as an interval of intervals) can be expressed indifferently
using the 3~ ,+-order or the & - +-order.

Indeed, according to Definitions 4.1.19 and 4.1.21, it is simple to verify
that, for each A, B € K¢ (with AN B # @), we have

A, Bllz ~, =[[A;Bllc

Ry Ty =y— 4t

(4.24)

More in details, given two intervals A and B in K¢, such that AN B # &,
then:

- if A Z,- 4+ B (which corresponds to the case where A and B are
incomparable with respect to inclusion order &.- . +), as

AANB=A and AV B=B8,
then, referring to Definition 4.1.2, we can simply consider
[A,Bls _ , ={X|AZ 1+ X 3y o+ BY:
- if A &~ ,+ B (which corresponds to the case where A and B are
incomparable with respect to order 3 - 7+) as
ANB=A and AUB =B,
then we consider

[[A»B]]g - {X‘A =yt X < =vy— .t B}
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In such cases we have that (4.24) can also be written, respectively, as:

[4,Bllz _ , =[ANB,AUBlc (4.25)

and
[[A, B]c + = [[AANB,AV B]]

=7

(4.26)

=
Ry~ ot

As shown in Figures 4.19, the two areas represent the same interval of
intervals.

X /N XN

Figure 4.19: Interval of intervals in the general (y~,~vT)-case:
[[A, Bij— i [AnB,AU BH;_ - (left side)
and [[A,B]lc , =[[AAB,AV B (right side).

=<
Ry~ 4T
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4.2 Interval lattice completion

According to [24], lattices are more interesting structures than general posets
as they allow us to take the join (or vel) and the meet (or et) for any pair
of elements in the set.
In particular, as mentioned in Definition 2.2.2; a complete lattice (X, <)
enables us to take the join and the meet of all arbitrary subsets Y C X.

It is also well known that finite lattices are always complete while if
X is infinite then the structure (X, <) may be a lattice but not complete.
Therefore, it is interesting to analyse in detail the peculiarities of the complete
lattices introduced in Section 4.1, also discussing the question of how to
embed any poset into a complete lattice, thus arriving at the notion of lattice
completion which is useful for both finite and infinite posets, and then apply
it to the interval case. However, in order to do this we first have to recall
some basic definitions of partial orders.

4.2.1 Basic definitions of partial orders applied to interval
case

According to what is reported in [24], we define, for an element x € X, the
following sets (see Figure 4.20 for the interval case).

1) Down-set of x :
Dl) = {y X |y < z}. (4.27)

Referring to the interval case, the down-set D[A] of A € K¢ with
respect to the orders 3. - .+ and S - 4, according to (4.21) and

(4.23), corresponds respectively to the well-known sets :
iéf,w A={X|X Z,- 4+ A} and igfﬁJr A={X|X S -+ A}

2) Up-set of z :
Ula] = {y € X | o < y}. (4.28)

Referring to interval case, the up-set U[A] of A € K¢ with respect to the

orders 3, 4+ and &~ .+, according to (4.20) and (4.22), corresponds

respectively to the well-known sets :

Téf’ﬁ A={Y[|AZ,- 4+ Y} and T%—,w A={Y|AS,- + Y}
Moreover if S C X is a subset of X, we also define the sets below.

(i) Lower bounds for S:

Sl={reX|z<sVseS} (4.29)

(ii) Upper bounds for S:

St={reX|s<uzVseS} (4.30)
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>

DIy

// :

Figure 4.20: Down-set D[X] and up-set U[X] of interval X € K¢ considering the
lattice (K¢, Sy- 4+)-

Let now recall the following definition too.

Definition 4.2.1. ([2/]) A subset Y of a partial ordered set (X, <) is said:
- an order ideal ifVe,y € X, yeY andzx <y) =z €Y;
- an order filter ifVe,yeX, (yeY andz>y) =z €Y.

According to (4.30) and (4.29) and from Definition 4.2.1, it follows that
Dix] is an order ideal (the principal ideal of x) while U[z] is an order filter
(the principal filter of z).

Similarly, in the interval case, we have the property listed below.

Proposition 4.2.1. Considering the lattices (K¢, S~ 4+) and (Ke, Sy~ 4+),
we have that:

(i) Léf,w A and igf,w A are order ideals;
(i1) Térmﬂr A and Tgr,ﬁ A are order filters.

Moreover, if z and y are elements of the poset (X, <) and S C X is a
subset of X, then:

(a) <y =Uly] C Ulal;
(b) = = supS & Ulx] = ,eq Uls].
Analogously, referring to intervals, we have the following statement:
Proposition 4.2.2. If X,Y are elements of € K¢, then:
) < .
(@) X ot Y2 (15 V) C 12 X);

~

Ry~ oyt
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(b’) X = supSe¢, with S¢ C K¢ & (Téviﬂﬁ X) = ﬂSESC(TéW77y+ S)
Similarly:

(07) X Syt Y= (Tc . V) C(Tc - X);

(b”) X = supSc, with S¢ C K¢ < (T%_NJr X) = ﬂSeSc(T%—,ﬁ S).

4.2.2 Dedekind-McNeille completion

It is well known that good structures tend to have multiple equivalent ways
of defining them, thus providing us with more possibilities to characterize
them. As stated in [24], this is also the case for complete lattices since there
are alternative definitions for complete lattices such as the one based on
closure operators.

In this regard, let remember that, denoting by 2% the set of all subset of
X, a map

cl: 2% — 9%

is a closure operator if and only if:

1. ACcl(A) for all ACX (increesing);

2. if A C B then cl(A) C cl(B) for all A,B CX (monotone);

3. c(cl(A)) =cl(A) for all AC X (idempotent).

For example, if we consider a poset (X, <) and any Y C X, we have that
c(Y) ={z € X|3y € Y with x < y} is a closure operator.
We now want to find a complete lattice that embedded the poset (X, <) using
the so-called Dedekind — MacNeille completion (DM completion for short),
also called normal completion or completion by cuts. This completion is
based on a closure operator and, since closure operators are equivalent to
complete lattice, we obtain that applying DM completion to a specific poset
will give us the desired result.

Nevertheless, before continuing, the following significant definitions and
facts must be recalled.

Definition 4.2.2. (/24]) If S C X, we say that S is a cut of X if and only
if (SY)! = 8S.

Let remember that a cut can be defined also in terms of a pair (S,T")
with S, 7 C X such that S* =T and T' = S.

Definition 4.2.3. (/24]) For a given poset (X, <) the Dedekind-MacNeille
completion is the poset formed with the set of all the cut of X under the set
of inclusion, i.e.,

DM(X) = ({A C X|(AY)! = A}, g) . (4.31)
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We have that DM (X), with respect to inclusion C, is a complete lattice
and the original poset (X, <) is embedded in (DM (X), C)

Lemma 4.2.1. (/24]) If S,T are cuts, then so is SNT.

It is interesting to note that another completion can be obtained using
the ideals; the embedding by ideals yields in general a larger lattice than by
DM, as DM (X) is the smallest complete lattice that embeds X.

If we consider S C X, assuming inf.S exists or supS exists, we have that,
Ve, y € X:

-z <infSexr<sVseS,
-y>supS &y >s,Vs eSS,
-r<ye (z<zr=z2<y),VzeX
Proposition 4.2.3. For all x € X, we have D[z] € DM[X], i.e.,
(Dl])")! = D).

Proof. As D[z]" = {y € X|z < y,Vz € D[z]}, we consider y € D[z]", i.e., by
definition of upper bounds, (z € D[z] = z < y).

According to (4.27), this is equivalent to say (z < z = z < y), which implies
that x < y. This means that y € U[x], so we have D[z]"* = Ulz].

By duality is easy to show that U[z])' = D[z]. So ((D[z])*)! = D[x]. O

In particular we have that the map from X to DM (X)
x — Dix]

preserves all L.u.b. (least upper bound) and g.l.b. (greatest lower bound) in
X, i.e., if infS exists, then

() DIs| = Dlinf5).

seS

Indeed, we have

x € ﬂD[s] iff © € D[s],Vse S, thatis, x <s,Vse S,
ses

but this also means that < infS; therefore, by (4.27), we have
Dis] ={zx € X |z < s} and then x € D[infS] ={z € X |z <infS}.
This means exactly that (.. g D[s] = D[infS].

The property that DM (X) is the “smallest” completion of X can be
proved by showing that DM (X) contains only the elements necessary to
complete X, which is what we want to show now.

Based on what is stated in [24], we can reformulate the following definition.
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Definition 4.2.4. Considering two posets X and Y, we say that:

(a) X(CY) is join-dense in Y iff every x € Y is expressible as the join of
a subset S C X, that is,

VyeY =35 CX|y=supS,;

(b) X(CY) is meet-dense in Y iff every v € Y is expressible as the meet
of a subset S C X, that is,

VyeY=35CX|y=infS.

An important step for the construction of a completion of X is represented
by the following theorem.

Theorem 4.2.1. ([24]) Let (X,<) be any poset and f : X — DM (X)
be defined by f(x) = Dlz|. Then f(X) is join-dense (and meet-dense) in
DM (X). Moreover, if L is a complete lattice such that X is meet-dense and
join-dense in L, then L is isomorphic to DM (X)

At this point we are ready to provide a completion algorithm of a poset
in the discrete case, the so called Dedekind-MacNeille completion algorithm
(DM algorithm for short).

When X = {z} is a singleton, then its completion is itself:

DM ({x}) = {x}.

- If we add an element y to X, i.e., X = {z,y},x # y, we can obtain the
completion of {z,y} adding to DM ({x}) the elements inf(x,y) = x Ay
and sup(z,y) =z Vy:

DM({z,y}) ={z,y,x Ny, z Vy}.

- If now we add an element z to X, i.e., X = {z,y,2}, 2 Ay <z <z Vy,
we have that:

DM({z,y,2}) ={z,y,x Ny, 2 Vy,z.a,b,cd}
wherea =z Ay, b=2zVy,c=axVzandd=xA z.

- If again X = {z,y, z,w}, we have to add six new elements obtained
by considering w At and w V t, for all t € DM ({x,y,z}) that are
incomparable with w.
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Figure 4.21: Example of the first three steps of the algorithm for Dedekind-
MecNeille completion of the poset (K¢, Z,- ~+)-

X X

N N

x>
x>

Figure 4.22: Interval A as down-set and up-set separator:
case of (K¢, Zy-4+): A=supD< [A]=infUg [A], VA € K¢ (left);
case of (K¢, &y +): A= sungv_' [A] = inngw_’ [4], YA € K¢ (right).

~t ~+

Referring to the interval case, the algorithm for the Dedekind-MacNeille
completion of the poset (K¢, é,y—,ﬁ) is represented graphically in Figure
4.21, where the first three steps are clearly highlighted.

Furthermore, in Figure 4.22, it is pointed out that each interval A
separates D 3.~ o+ [A] and U 2, 4+ [A] in a unique way and we have:

A= supDsg _ —+ [A] = infU<

YT, Ry~

[A]

As far as poset (Ke¢, 27777@ is concerned, we can proceed in a dual way
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so that we can write:

Al

_’,Y_’_[

A =supDc _ _ [A] =infUc
=7 Y =7

In conclusion, it is clear that the DM completion of the two algebraic
lattices (Kc, A, V, Zy- 4+) and (Kg, N, 8, S~ ,+) defined in Section 4.1 are
isomorphic; this means that the two polar orders 3.~ .+ and &, .+ produce

the same Dedekind-MacNeille completion.

4.2.3 Further properties related to polar orders

In this final Subsection, for semplicity and graphical needs, we will restrict
our work to the particular cases of LU-order and 2_171—order.

As shown in Figure 4.23, the following relations between down-set and
up-set of an interval hold.

Proposition 4.2.4. Let A= (a;a) = [a™,a] € K¢. Considering the Zru-
order and the S_; j-order, we have that:
(1) D< [CL—] - DéLU[A] - DéLU[a+]7

~LU
Ué aﬂ - UéLU [A] € UéLU[ai];

LU[

x>

+1

Dz la7] U, le] ol l@1=@ b la*12 (0}

Figure 4.23: Relations between down-set and up-set of interval A with respect to
Sru-order (left) and to &_; ;-order (right).

It is also easy to verify that:
(a) D, [Al = Dg,,la”1U(Uc_,,[a"]\ Uc_, ,[A]),
(b) Uz, [A] = Uz, [a"TU (Uc_, ,[a*]\ Uc_,, [4]),

~LU ~LU
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(¢) Dc_,,[A] = Dx [at]\ D=, (Al = Ug, ,[a” ]\ Ug, , [A]

~LU

Moreover, as shown in Figure 4.24, we even highlight that all the intervals

B = (b;b) = [b7,b"], having an extreme in common with A = (a;a) =
[a™,a™], belong to the intersections between down-set and up-set of X.

_A
X

7
A
X

Figure 4.24: Intervals (having an extreme in common with interval A) lying on
the intersections between down-set and up-set of interval A.

More specifically, if B is such that:

-b” =a” and bt > at, then B € Uc_, | [A]N U, [A] (yellow line);
- 0" =a” and b* <at, then B € Dc_, [A]N D, [A] (green line);
- 0" =a" and b~ < a7, then B € Uc_ [A]N D, [A] (blue line);

- 0" =a" and b~ > a7, then B € Dc_, [A]NUg,  [A] (ved line).

Eventually, we can also define up-sets and down-sets in a “strict” sense
as follow:

UC[A] = {Z|Z € UQ[AL Ziaer ¢ {a77a+}}7
U<[A] ={Z|Z € U4[A], 27,2zt ¢ {a”,a"}}.

Similarly:
Dc[A]={Z|Z € Dc[A], 2~,z" ¢ {a”,a"}},

D[A]={Z|Z € D[A], 2=, 2" ¢ {a",a"}}.
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Chapter 5

Interval algebraic structures

In this chapter the concepts introduced in the previous ones will be applied in
order to outline some aspects of the basic algebraic structures, in an attempt
to enrich the theory, thus overcoming the limitation and narrowness that up
to now has been found in the literature whenever one has tried to introduce
and define non-trivial interval algebraic structures.

Furthermore, in the attempt, on the one hand to maintain the validity
of important properties, on the other to explore new ones, more types of
approaches will be proposed, from which as many interval algebraic structures
will arise.

In particular, thanks to the concept of polarity between orders, it will
be possible to determine algebraic structures hitherto unexplored in interval
theory, some quite well-known, such as semirings or pre-semirings, others
more unusual, ranging from lattice-ordered semigroups to the so-called
clodum.
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5.1 Interval semirings

We will begin our process of building and redefining algebraic interval struc-
tures starting from what was introduced in Section 4.1, but, before going on,
it is necessary to recall some classical definitions. In particular we will refer
to those used in [25] and [26].

5.1.1 Semirings in classic algebra

Definition 5.1.1. We define semigroup (G, *) a nonempty set G equipped
with an associative operation *.
A semigroup (G, %) is a monoid with neutral element (or identity) e if

Vo € G, de € G, such that x xe = x.

A monoid (G,x*) is a group if each of its elements has an inverse, that is,
Vo € G, 32, such that x x2' =e.

If * is commutative (i.e., xxy =y =z, Yx,y € G), then the structure is said
to be commutative (or abelian, in case it is a group).

Definition 5.1.2. Let PS be a nonempty set equipped with two binary
operations, denoted by + and - (called addition and multiplication). We define
a pre-semiring the structure (PS,+,-), such that the following conditions are
satisfied.

1) (PS,+) is a commutative semigroup:

(i) operation + is associative: (x+y)+z=x+(y+2),Vz,y,z € PS;
(ii) operation + is commutative: x +y =y + z,Vo,y € PS.

2) (PS,-) is a semigroup:
operation - is associative: (x-y)-z=uz-(y-2),Vx,y,z € PS.
3) Multiplication - is left and right distributive over addition +:
(i) - (y+2)=(z-y)+ (z-2),Yr,y,2z € PS;
(it) (x+y)-z=(z-2)+ (y-2),Vr,y,z € PS.

If also multiplication - is commutative (i.e., x -y =1y - z,Vr,y € PS), then
the pre-semiring is said to be commutative.

Remark 5.1.1. We observe that in the above definition, we do not assume
the existence of neutral elements. If it does exist, then, depending on the
case, we will talk about:
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- pre-semiring with zero (which includes the existence of the neutral
element with respect to addition + );

- pre-semiring with unity (which includes the existence of the neutral
element with respect to multiplication -);

- pre-semiring with zero and unity (which includes the existence of both
neutral elements with respect to addition + and multiplication -).

In the latter case, according to [26], we can also define a pre-semiring as
a tuple (PS,+,-,0,1) where + and - are binary operators on PS for which
(PS,+,0) is a commutative monoid, (PS,-,1) is a monoid, and - distributes
over +.

Definition 5.1.3. Let H be a nonempty set equipped with two binary oper-
ations, denoted by + and - (called addition and multiplication). We define
a hemiring the structure (H,+,-), such that the following conditions are
satisfied.

1) (H,+) is a commutative monoid with neutral element 0:

(i) operation + is associative: (x+vy)+z=z+ (y+2),Vz,y,2 € H;

(ii) operation + has a neutral element 0 € S: 0+x = 240 = z,Vo € H
(called additive identity or zero or 0-element of the hemiring);

(iii) operation + is commutative: x +y =y + x,Vr,y € H.
2) (H,-) is a semigroup:
operation - is associative: (x-y)-z=z-(y-2),Yx,y,z € H.
3) Multiplication - is left and right distributive over addition:
(1)) x-(y+2)=(x-y)+(x2),Vo,y,z € H;
(i)) (x+y)-z=(x-2)+ (y-2),Vr,y,2 € H.
4) 0 is the absorbing element for multiplication:
O-x=2-0=0,Vz € H.

If also multiplication - is commutative (i.e., x -y =y z,Vo,y € H), then the
hemiring is said to be commutative.

Definition 5.1.4. Let P be a set equipped with two binary operations, denoted
by + and - (called addition and multiplication ). We define a pseudoring or
non-unitary ring, the structure (P,+,-), such that the following conditions
are satisfied.

1) (P,+) is an abelian group with neutral element 0:
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(i) operation + is associative: (x+y)+z=x+ (y+ 2),Vx,y,z € P;
(ii) operation + has a neutral element0 € P : O+x =240 =2z,Vz €
P (called additive identity or zero or 0-element of the pseudoring);

(iii) existence of the opposite or symmetric element with respect to +:

Vo € P, 32/ (= —x), such that x+ 2’ =0 (called additive inverse
of the pseudoring);

(iv) operation + is commutative: © +y =1y + x,Vx,y € P.
2) (P,-) is a semigroup:
operation - is associative: (x-y)-z=x-(y-z),Yx,y,z € P.
3) Multiplication - is left and right distributive over addition +:
(i) z-(y+2)=(x-y)+ (z-2),Vzr,y,2 € P;
(i) (x+y) - z=(x-2)+(y-2),Vr,y,z € P.
4) 0 is the absorbing element for multiplication:
O-z=2-0=0,Vz € P.

If multiplication - is commutative (i.e., x -y =y - z,Vx,y € P), then the
pseudoring is said to be commutative.

Definition 5.1.5. Let S be a set equipped with two binary operations, denoted
by + and - (called addition and multiplication). We define a semiring the
structure (S,+,+), such that the following conditions are satisfied.

1) (S,+) is a commutative monoid with neutral element 0:

(i) operation + is associative: (x +y)+z=xz+ (y + 2),Vx,y,z € S;

(ii) operation + has a neutral element0 € S : 0+z = z+0 =x,Vr € S
(called additive identity or zero or 0-element of the semiring);

(i1i) operation + is commutative: x +y =y + z,Vr,y € S.
2) (S,-) is a monoid with neutral element 1:

(i) operation - is associative: (x-y)-z=z-(y-2),Yx,y,z € S;

(ii) operation - has a neutral element 1 € S: 1-x =z-1=xz,Vzx € S
(called multiplicative identity or unity or I1-element of the semir-
ing).

3) Multiplication - is left and right distributive over addition +:

(i) v-(y+2z)=(r-y)+(z-2),Vz,y,2 €5;
(i) (x+y)-z=(x-2)+ (y-2),Yz,y,2 € S.
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( At ) pre-semiring | hemiring | pseudoring | semiring | ring
>0 (com.) (com.) (com.) (com.) | (com.)
semigroup monoid group monoid group
(A,+)
com. com. ab. com. ab.
+ associative X X X X X
+ commutative X X X X X
neutral element 0 b X X X
additive inverse X X
semigroup semigroup | semigroup monoid | monoid
(Av )
(com.) (com.) (com.) (com.) (com.)
- associative X X X X X
neutral element 1 X X
(- commutative) (x) (x) (x) (x) (x)
- distributive wrt + X X X X X
0 absorbing for - X X X X

Table 5.1: Classification of the main algebraic structures with their associated

properties. ab. = abelian, com. = commutative.

4) 0 is the absorbing element for multiplication:

O-z=x2-0=0,Vz € 85.

If also multiplication - is commutative (i.e., x -y =1y -x,Ya,y € S), then the
semiring s said to be commutative.

Remark 5.1.2. Note that:

(i) in order for a pre-semiring (with zero and unity) to be a semiring, 0
(the neutral element for +) must be absorbing for -;

(ii) in order for a hemiring to be a semiring, the multiplicative identity 1
(i.e., neutral element for -) must exist;

(11i) the well known ring structure (R,+,-) results to be given by a combina-
tion of the pseudoring and semiring structures as it is defined by the
following conditions:

- (R, +) is an additive abelian group;

- (R, ) is a multiplicative monoid;

0 is the absorbing element for multiplication.

multiplication - is left and right distributive over addition +;

Table 5.1 provides a classification of the algebraic structures defined in

this subsection and the properties associated with.
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We now denote the set of all additively-idempotent elements of a semiring
S by
IYS)={ieS|i+i=i}.

This set is nonempty since it contains the 0-element of the semiring. We also
denote the set of all multiplicatively-idempotent elements of .S by

“S)y={ieS|i-i=1}.
This set is nonempty too since it contains the 1-element of the semiring.

Definition 5.1.6. The semiring (S,+,-) is said to be doubly-idempotent
(or simply idempotent) if and only if is both additively and multiplicatively
idempotent (i.e., if and only if S =I7(S)NI*(S) ).

Remark 5.1.3. Note that if the zero element and the unity element of a
semiring S coincide, i.e., 1 =0, then s=s-1=1s-0=0 for each element s
of S and so S = O . In order to avoid this trivial case, we will assume that
all semirings under consideration are nontrivial, i.e., 1 £ 0.

Definition 5.1.7. A semiring (S, +,-) is said to be zero-sum-free or antineg-
ative if and only if, given x,y € S, we have

r+y=0=>zx=y=0. (5.1)
Antinegative semirings are also called antirings.

Definition 5.1.8. A semiring (S,+,-) is said to be zero-divisor-free or
entire if and only if, given x,y € S, we have

z-y=0=>z=00ry=0. (5.2)
We can also redefine some general notations as follows.

Definition 5.1.9. Let S be a set equipped with two binary operations, oy
and og. We define a semiring the structure (S, o1,02), such that the following
conditions are satisfied.

1) (S,01) is a commutative monoid with neutral element i :

(i) operation oy is associative;

(ii) operation oy has the neutral element iy (called 0-element of the
semiring);

(111) operation oy is commutative.
2) (S, 02) is a monoid with neutral element iy:

(i) operationoy is associative;
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(ii) operation oy has the neutral element io (called 1-element of the
semiring).

3) Operation og is left and right distributive over oq:
(i) x oz (yo12) = (xory)or (xo22),Va,y,2 €5;
(ii) (xo1y)ogz=(xogz)o;1(yosz),Vr,y z€S.
4) iy is the absorbing element for og :
1109 = T 0911 = i1,Vr € S.
If also og is commutative, we say that the semiring (S, o1, 02) is commutative.
Definition 5.1.10. An element z of a semiring (S, 01,09) is defined:
- additively idempotent (or oi-idempotent) if and only if

roix=x1inS,;

- multiplicatively idempotent (or os-idempotent) if and only if
Togx=2x1inS.
We denote the set of all additively-idempotent (or oj-idempotent) ele-

ments of S by
I'(S)={zeS|zxoyz =1z}

This set is nonempty since it contains the 0-element of the semiring S. We
also denote the set of all multiplicatively-idempotent (or og-idempotent)
elements of S by

I?(S)={z e S|xogz =2z}

This set is nonempty too since it contains the 1-element of the semiring S.

Definition 5.1.11. The semiring (S, 01,02) is idempotent if and only if
is both additively and multiplicatively idempotent (i.e., if and only if S =
I°1(S)yNnI°2(S) ).

Definition 5.1.12. A semiring (S,01,02) is said to be zero-sum-free or
antinegative if and only if, given x,y € S, we have

ToOlYy=1 => T =1y =11. (5.3)
Antinegative semirings are also called antirings.

Definition 5.1.13. A semiring (S, 01,02) is said to be zero-divisor-free or
entire if and only if, given x,y € S, we have

T ooy =141 = T =11 Or Y = i1. (5.4)



206 Interval algebraic structures

5.1.2 Interval structures as semirings

As already done in Section 4.1, we consider
Kic =K U {—OO, —l—OO}
where, for all v~,7" € R such that v~ <+, we define:

—00 = [—00, —0] = (—00;0) = mfér,wlcc;

+00 = [+00, +00] = (+00;0) = sup3 _ Ko,

that is, in midpoint notation:
AeKee A= (G;a)witha e R,a >0 or A= (—00;0) or A= (+00;0).

Then we proceed by considering K¢ associated with the well known
partial order 3.~ ,+; in particular, when 4~ = —1 and vt = +1, we can
denote the Zry-order (where Zry==<-1,1) simply with 3.

It is well known (see Subsection 2.2.7) that (K¢, 3, ,+), or more specif-
ically (K¢, V, A, Sy~ 4+), is a complete lattice with:

(i) —oo = (—00;0) as the 0§7_77+—element;

(ii) +00 = (4+00;0) as the 1< -element;
Ry~

(iii) operations V and A are defined, according to (4.8) and (4.9), for all
A, B in K¢ (see also Figure 4.15), by:
def :
AV B = supg {A, B};

def .
ANB =in gr’ﬁ{A,B}.

It follows immediately that:

al) AA (+00;0) = A,VA € K¢ (this means that (+00;0) can be consider-
ated the neutral element for A);

a2) AV (—o0;0) = A,VA € K¢ (this means that (—oo;0) can be consider-
ated the neutral element for V);

bl) AA(—o0;0) = (—o0;0),VA € K¢ (so (—00;0) is the absorbing element
for N);

b2) AV (+00;0) = (+00;0),VA € K¢ (so (+00;0) is the absorbing element
for Vv);

c) A and V are associative, commutative and distributive (left and right
and each-other).



5.1 Interval semirings 207

Therefore, we obtain the following proposition.

Proposition 5.1.1. (K¢, V,A) and (Ko, A, V) are commutative, idempotent
$emirings.

Proof. (K¢, V,A) is a commutative, idempotent semiring, as:

la) (K¢, V) is a commutative, idempotent monoid with neutral element
(—00;0):
(i) V is associative: (AVB)VC = AV (BVC),VA,B,C € K¢ ;

(ii) V has a neutral element iy, = (—00;0) € K¢ : AV (—00;0) =
(—00;0) VA = A VA € K¢ (s0, (—00;0) is the O-element of the
semiring (K¢, V, A));

V is commutative: AV B =BV A,VA, B € K¢;
V is idempotent: AV A= A,VA € K¢.

(iif)
(iv)

2a) (K¢, A) is a commutative, idempotent monoid with neutral element
(+00;0):
(i) A is associative: (AAB)AC = AA(BAC),VA,B,C € Kc;

(ii) A has a neutral element in = (+00;0) € K¢ : A A (+00;0) =
(+00;0) N A = A,VA € K¢ (s0, (+00;0) is the 1-element of the
semiring (K¢, V, A));

(iii) A is commutative: AA B = BA A,VA, B € K¢;
(iv) A is idempotent : AN A= A,VA € K¢.
3a) A is left and right distributive over V:
(i) AN(BVC)=(AAB)V(AAC),VA,B,C € K¢;
(ii) (AVB)AC =(ANC)V (BAC),VA,B,C € Kc.
4a) (—o00;0) is the absorbing element for A:
AN (=00;0) = (—o0;0) A A = (—o0;0),VA € K.

Analogously, we have that also (K¢, A, V) is a commutative, idempotent
semiring, as:

1b) (K¢, A) is a commutative, idempotent monoid with neutral element
(+00;0):

(i) A is associative: (AAB)AC =AA(BAC),YA,B,C € K¢;

(ii) A has a neutral element in = (+00;0) € K¢ : A A (+00;0) =
(+00;0) A A = A VA € K¢ (s0, (400;0) is the 0-element of the
semiring (K¢, A, V));
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iii) A is commutative: AA B = BA A, VA, B € K¢;

(i)
(iv) A is idempotent: AN A = A, VA € K.

¢, V) is a commutative, idempotent monoid with neutral element
;0

2b) (
(_007 ):

(i) V is associative: (AV B)VC = AV (BVC),VA,B,C € K¢;

(ii) V has a neutral element i, = (—00;0) € Ko : AV (—00;0) =
(—00;0) VA = AVA € K¢ (s0, (—00;0) is the 1-element of the
semiring (K¢, A, V));

(iii) V is commutative: AV B = BV A,VA, B € K¢;
(iv) V is idempotent : AV A = A,VA € K.
3b) V is left and right distributive over A:
(i) AV(BAC)=(AVB)A(AVC),VA,B,C € K¢;
(i) (AANB)VC=(AVC)A(BVCO),VA, B,C € Kc¢.
4b) (+00;0) is the absorbing element for V:
AV (+00;0) = (+00;0) V A = (+00;0),VA € K.
U

In some cases it could be interesting to define (K¢, V, A) and (K¢, A, V)
just as pre-semirings without assuming —oco and +oo as the 0-element and 1-
element for the first structure and, vice-versa, as the 1-element and 0-element
for the second.

Indeed, (K¢, V,A) is a commutative, idempotent pre-semiring, as:

la) (K¢, V) is a commutative, idempotent semigroup:
(i) V is associative: (AV B)vVC = AV (BVC),VA,B,C € K¢;

(ii) V is commutative: AV B = BV A,VA, B € K¢;
(iii) V is idempotent: AV A= A,VA € K.

2a) (K¢, A) is a commutative, idempotent semigroup:
(i) A is associative: (AAB)AC = AN (BAC),VA,B,C € K¢;
(ii) A is commutative: AA B = BA A VA, B € K¢;
(iii) A is idempotent: AN A= A,VA € K¢.
3a) A is left and right distributive over V:
(i) AN(BVC)=(AAB)V(AAC),VA,B,C € K¢;
(ii) (AVB)AC =(ANC)V (BAC),VA,B,C € K.
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Likewise, (lCic, A, V) is a commutative, idempotent pre-semiring, as:
1b) (K¢, A) is a commutative, idempotent semigroup:
(i) A is associative: (AAB)AC = AN (BAC),VA,B,C € K¢;
(ii) A is commutative: AA B = BA A,VA, B € K¢;
(iii) A is idempotent: AN A= A,VA € K¢.
2b) (K¢, V) is a commutative, idempotent semigroup:
(i) V is associative: (AV B)VC = AV (BVC),VA,B,C € K¢;
(ii) V is commutative: AV B = BV A,VA, B € K¢;
(iii) V is idempotent: AV A= A,VA € K¢.
3b) V is left and right distributive over A:
(i) AV(BAC)=(AVB)A(AVC),VA,B,C € K¢;
(i) (AAB)VC =(AVC)A(BVC),VA, B,C € Kc.

Similarly, it might also be interesting to consider (K¢, V, A) and (K¢, A, V)
just as hemirings without assuming, respectively, +00 and —oo as the 1-
elements of the structures.

Now, according to what was introduced in Section 4.1, we repeat the
reasoning for the case of inclusion order .- . +.

In this regard, let consider

K2R = Kc U {2} U{R}
where, for all y~,7" € R such that v~ <", we define:
= (0;—0) = mf%—,w KgR;
R = (0;4+00) = supc _ ICgR,
that is, in midpoint notation:
A€ ng]R < A= (a;a) withaeR,a>0 or A= (0;—00) or A= (0;+00).

Then we consider ICgR associated with the well known partial order &, - +;
in particular, when v~ = —1 and v* = +1, we can denote the C_ 1 ;-order
simply with C.

It is well known (see Section 4.1) that (KZ¥, S, ~+), or more specifically

(ICgR, W,N, S~ ,+), is a complete lattice with:
(i) @ = (0;—00) as the ng_’w—element;

(i) R = (0;400) as the I _ . -element;
= il
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(iii) operations W and N are defined, according to (4.18) and (4.19), for all
A, B in KZF (see Figure 4.15), by:

AwB Y supc _ . {A,B} = conv(A U B) is the convex hull
interval of AU B; 7

AnB Y in fgf " {4, B} stands for the usual intersection of

intervals.
It follows that:

al) AN(0;+00) = A,VA € KZF (this means that (0; +00) can be considered
the neutral element for N );

a2) Aw(0; —00) = A, VYA € KZF (this means that (0; —oo) can be considered
the neutral element for & );

bl) AN(0; —o0) = (0; —00),VA € ICgR (so (0; —o0) is the absorbing element
for N);

b2) AW(0; +00) = (0; +00), VA € KEF (so (0; +00) is the absorbing element
for W);

¢) N and W are associative, commutative and distributive (left and right
and each-other).

Therefore, we obtain the following proposition.

Proposition 5.1.2. (ICgR,LJd,ﬂ) and (ICgR,ﬂ,LJrJ) are commutative, idempo-
tent semirings.

Proof. (ICgR, W,N) is a commutative, idempotent semiring, as:

la) (K2 W) is a commutative, idempotent monoid with neutral element
@ = (0; —00):
(i) W is associative: (AW B)WC = AW (BW(C),VA,B,C € IC%R;
(ii) W has a neutral element iy = & € IC%R: TJWA =AWz =A VA€
ng]R (so, @ is the 0-element of the semiring);
(iii) W is commutative: AW B = B A VA, B € K2k,
(iv) W is idempotent: AW A = A,VA € KZF.

2a) (ICgR, N) is a commutative, idempotent monoid with neutral element
R = (0; 400):
(i) N is associative: (ANB)NC = AN(BNC),VA,B,C € KZ%,

(ii) N has a neutral element in, =R € K&%: RNA=ANR=A,VA €
K2R (so, R is the 1-element of the semiring);
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(iii) N is commutative: AN B = BN A,VA, B € K&%;
(iv) N is idempotent: AN A= A,VA € KZF.

3a) N is left and right distributive over W:
(i) AN(BYC)=(ANB)W(ANC),YA,B,C € K2F;
(i) (AwB)NC=(ANC)w (BNC),VA,B,C € K2~
4a) @ is the absorbing element for N:
oNA=ANo=2,VAc K2~

In an analogous way we have that (IC(%R, N, 4, ) is a commutative, idempotent
semiring, as:

1b) (K&F,N) is a commutative, idempotent monoid with neutral element R:

(i) N is associative: (ANB)NC =AN(BNC),VA,B,C € K2E;

(ii) N has a neutral element in =R € ICgR: RNA=ANR=A,VA €
K2 (s0, R is the O-element of the semiring);

(iii) N is commutative: AN B = BN A,VA,B € ICgR;
(iv) N is idempotent: AN A = A,VA € KZF.

2b) (KZF, W) is a commutative, idempotent monoid with neutral element :

(i) W is associative: (AW B)wC = Aw (BwWC(C),YA, B,C € K&¥,

(ii) @ has a neutral element iy = @ € K& : WA = AW = A, VA €
/CgR (so, @ is the 1-element of the semiring);

(iii) W is commutative: AW B =BWA,VA, B € ICgR;
(iv) W is idempotent: AW A = A,VA € KZF.

3b) W is left and right distributive over N:
(i) AW(BNC)= (AW B)N(ANC),YA,B,C € K2F;
(i) (ANB)WC =(AwC)N(BWC),VA,B,C € K&F.
4b) R is the absorbing element for W:
RWA=AWR=R,VA e KZF
O

Also in this case it may be useful to consider (KZ¥,w,N) and (K&F, N, w)
just as pre-semirings, without assuming @ and R as the 0-element and 1-
element for the first structure and, vice-versa, as the 1-element and 0-element
for the second.

Indeed, (IC%R, W,N) is a commutative, idempotent pre-semiring, as:
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la) (IC%R, W) is a commutative, idempotent semigroup:
(i) W is associative: (AW B)wC = AW (BwWC),VYA, B,C € K&%,
(ii) W is commutative: AW B =BWA VA B € K2R,
(ili) @ is idempotent: AW A = A,VA € K2
2a) (ICgR, N) is a commutative, idempotent semigroup:
(i) N is associative: (ANB)NC =AN(BNC),VYA,B,C € K&%
(ii) N is commutative: AN B = BN A, VA, B € ICgR;
(ili) N is idempotent: AN A = A,VA € KZF.
3a) N is left and right distributive over W:

(i) AN(BWC)=(ANB)W(ANC),YA,B,C € KZF;
(i) (AwB)NC=(ANC)w (BNC),VA,B,C € K2~
Similarly, (ICgR, N, W) is a commutative, idempotent pre-semiring, as:
1Db) (ICgR, N) is a commutative, idempotent semigroup:
(i) N is associative: (ANB)NC =AN(BNC),YA,B,C € K&%,
(ii) N is commutative: AN B = BN A,VA B € ICgR;
(iii) N is idempotent: AN A = A, VA € IC(%R.
2b) (KZ%,w) is a commutative, idempotent semigroup:
(i) W is associative: (AW B)WC = AW (BwC),VA, B,C € K2F;
(ii) @ is commutative: AW B = BW A,VA, B € K2F;
(iii) & is idempotent: AW A = A VA € ngR.
3b) W is left and right distributive over N:

(i) AW(BNC)= (AW B)N(AwC),YA,B,C € K2F;
(i) (ANB)WC =(AWC)N(BWC(C),VA,B,C € K2~

Moreover, even in this case it can also be interesting to consider (ICgR, W, N)
and (ICgR, N, W) just as hemiring without assuming, respectively, R and @&
as the l-elements of the structures.

Eventually, it is possible to take into account the addition in K¢, defined
as the classical Minkowski operation for intervals (defined in Subsection
2.1.1):

XoY=Z+7y;2+79) (5.5)
(with X = (7;2),Y = (7;9) € K¢) and extend it to the sets Ko and IC?R as
it follows:

@ : Ko x Ko — K¢ such that: (X,Y) — X @Y
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®: ICgR X ICgR — ICgR such that: (X,Y) — X &Y.
However, establishing some conventions:
1) T4 (+00) =400 and T+ (—o0) = —o0, VT € R,
2) (—o0) + (+0) =0, 0-(—00)=0 and 0-(4o00) =0,

the result is that (K¢, ®) and (/CgR, @) are both commutative monoids, as
they are associative, commutative and (0;0) can be interpreted as the neutral
element.

Moreover, if we consider the 3~ ,+-order associated to Ke, it is easy to
verify, even graphically, that, for all A, B,C € K¢, we have:

- @ is distributive with respect to V: (AVB)®C = (A C)V (BaC) ;

- @ is distributive with respect to A: (AAB)@C =(A®C)N(BaO).

On the other hand, it is also trivial to prove that the vice-versa is not
valid as A, B, C' € K¢ such that:

- (A@B)ANC #(ANC)@ (BAC);
-(A®B)VC #(AVCO)® (BVCO).

In a similar way, considering the & - ,+-order associated to KR, we
have that, for all A, B,C € K¢7F:

- @ is distributive with respect to W : (AW B)®C =(A® C)y(Bd C);
- @ is sub-distributive with respect to N : (ANB)&C C (AeC)N(B&C).

Remark 5.1.4. Note that only if we consider intervals X,Y, Z that are not
mutually disjoint, then the addition & is distributive with respect to N.

Lastly, we conclude by pointing out that also in this case the vice-versa
is not true, as 34, B, C € K7, such that:

-(AeB)WC # (AwC) @ (BwO);
- (A@B)NC #(ANC)® (BNC).

To complete the discussion, we try to further refine the structures by
defining, in addition to the well-known set K¢ = K¢ U {£o0}, also the
following two sets:

K5 Ko U {400} and K Ko U {—oo}.

We can even suppose that
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400 = [+00, +00] = (400;0) def sups 7JrlCic coincides with

(+0050) = (+003 ), ¥a > 0

while J
—00 = [—00, —00] = (—00;0) lef infz _ Kc coincides with
Ry ™,y

(—00;0) = (—o0; ), Vo = 0.
Therefore, for all A = (a;a), B = (E, E) € K¢, considering the operations
defined so far, i.e.,
- AVB= supg (A, B);
- ANB= z'nféf,W+ (A, B);

- A®B=(a+ba+b),
we have that the following facts hold.

Proposition 5.1.3. the structures (K5, V,®) and (K ™, A, @) are com-
mutative semirings.

Proof. (K;%,V,®) is a commutative semiring, as:
la) (K;°°,V) is a commutative monoid with neutral element i, = (—00;0):

(i) V is associative;

(ii) V has the neutral element iy = (—00;0) € K, : AV (—00;0) =
(—00;0) VA=A VA€ K;% (so, iy = (—00;0) is the O-element
of the semiring);

(iii) V is commutative.
2a) (K,°°,®) is a commutative monoid with neutral element ig = (0;0):

(i) @ is associative;

(ii) @ has the neutral element i = (0;0) € K;°°: X @ (0;0) =
(0;0) @ A=A, VA € K, (so0, igy = (0;0) is the 1-element of the
semiring);

(iii) @ is commutative.
3a) @ is left and right distributive over V:

(i) A (BVC)=(A@B)V(A®C),YA,B,C € K;*;
(i) (AVB)®C=(A®C)V (B&C),VA,B,C € K.

4a) iy = (—00;0) is the absorbing element for @:
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(—00;0) ®A=A® (—00;0) = (—00;0),VA € K.
Analogously, also the structure (Kgoo, A, @) is a commutative semiring as:
1b) (KF*, A) is a commutative monoid with neutral element i, = (+00;0):

(i) A is associative;

(ii) A has the neutral element iy = (+00;0) € KI™ : A A (400;0) =
(+o00;0) NA=A, VA € IC(J{OO (so, in = (+00;0) is the O-element
of the semiring);

(iii) A is commutative.
2b) (K%, @) is a commutative monoid with neutral element ig = (0;0):

(i) @ is associative;

(ii) & has the neutral element i = (0;0) € KI™: A& (0;0) =
(0;0) ® A=A, VA € KI™ (so, ig = (0;0) is the 1-element of the

semiring);

(iii) @ is commutative.
3b) @ is left and right distributive over A:

(i) A& (BAC)=(A®B)A(A® C),VA,B,C € K}™;
(i) (AAB)®&C=(AaC)A(B®C),VA,B,C € K}*™.

4b) ip = (400;0) is the absorbing element for &:
(+00;0) B A = A® (400;0) = (+00;0),VA € K.
O

Thus, starting with the lattice (K¢, <~ 4+), we can obtain two commu-
tative semiring structures:

a) (K;°,V,®) where K, = K¢ U {—o0}, with:

- 0-element (—o00;0) = —oo (neutral element for V and absorbing
element for @);

- l-element (0;0) = 0 (neutral element for ).
b) (KF%, A, @) where KF™ = K¢ U {400}, with:

- 0-element (+00;0) = +o00 (neutral element for A and absorbing
element for &®);

- l-element (0;0) = 0 (neutral element for @).
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It is easy to verify that the same type of costruction can be repeated in
the case of inclusion order, by defining, in addition to the well-known set
K&® = Ke U {@} U{R}, also the following ones:

d d
k2 Y ke u{o} and KB Ko U (R}
Eventually, we can also suppose that:
@ = (0; —o0) = infc _ +IC?R coincides with
= Y

(0; —00) = (a; —0), Vaa € R

and
R = (0; +00) = supc _ IC?R coincides with

(0 4+ o) = (a5 +00), Va € R.

Therefore, for all A = (a;a), B = (/b\, N) € IC?R, considering the operations
below:

- AWwB = supc (A, B) = conv(AU B);

- ANB=infc (A B);

- A®B=(a+ba+b),
we have that the following statements hold.
Proposition 5.1.4. The structure (Kg, W, ®) is a commutative semiring.
Proof. (Kg, W, ®) is a commutative semiring, as:
1) (KZ,w) is a commutative monoid with neutral element iy = (0; —00) = @:

(i) W is associative;

(ii) W has the neutral element iy = (0; —0c0) € K¢ : AW (0; —00) =
(0;—o0) W A=A, VA€ KE (so, iy = (0; —00) is the 0-element of
the semiring);

(iii) ¥ is commutative.
2) (Kg,®) is a commutative monoid with neutral element ig = (0;0) = 0:

(i) @ is associative;

(ii) @ has the neutral element ig = (0;0) € KZ: A® (0;0) = (0;0) @
A=A VAeKE (so,ig = (0;0) is the 1-element of the semiring);

(iii) & is commutative.

3) @ is left and right distributive over W:
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i) Ao (Bw(C)=(AeB)yW(A®C),VA,B,C € KG;
(i)  AvB)aC=(AaC)y (Y ® Z),VA,B,C € K§.

4) iy = (0; —00) is the absorbing element for &:
(0; —00) ® A= A® (0; —00) = (0; —0),VA € K§.
O

Thus, in this case too, starting with the lattice (K¢, &~ +), we can
obtain a commutative semiring structure:

(Kg,w,®) where KF = K¢ U {@}, with:

- O-element (0; —c0) = @ (neutral element for W and absorbing
element for @);

- l-element (0;0) = 0 (neutral element for ).

Remark 5.1.5. We note that it is not possible to do the same for the structure
(KI(R}, N, ®) which does not originate a semiring due to the subdistributivity
of ® with respect to N. Indeed, as already mentioned in Remark 5.1.4, just
in case the intervals are not mutually disjoint the addition @ is distributive
with respect to N.

At this point, using Definitions 5.1.12 and 5.1.13, we can further improve
the concepts introduced so far giving the following properties.

Proposition 5.1.5. (K¢, V,A) and (K¢, A, V) are zero-sum-free semirings
(or antirings).

Proof. The proof is immediate since, for definition, we have

VA,B e Ke, AVB= supy (A, B), it follows that:

AV B = (—00;0) = —0c0= A =B =(—00;0) = —0o0.

Similarly, as VA, B € K¢, ANB = mféw—,w (A, B), it follows that:

ANB = (400;0) = +00 = A= B = (+00;0) = +00. ]

Proposition 5.1.6. (IC?R, W,N) and (IC?R, N, W) are zero-sum-free semirings
(or antirings).

Proof. Proceeding in the same way as in Proposition 5.1.5, we have that,
since VA, B € IC?R, AW B = supc _ (A, B), it follows that:

AWB = (0;—00) =0 =A=B=(0;—00) =02.

Similarly, as VA, B € K&%, AN B =in fe . (A,B), it follows that:
ANB = (0;+0) =R=A=B=(0;4+00) =R. O

Proposition 5.1.7. (K;%°,V,®), (K;®,A,®) and (KZ,W,®) are zero-
sum-free semirings (or antirings).
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Proof. See the proofs of Proposition 5.1.5 and Proposition 5.1.6 (only first
part). O

Proposition 5.1.8. (K¢, V,A) and (K¢, A, V) are zero-divisor-free (or entire)
Semairings.

Proof. The proof is immediate since, by definition, we have

VA,B € Ke, ANB = inféf’7+ (A, B), it follows that:

ANB = (—00;0) = —00 = A= (—00;0) = —0c0 or B = (—00;0) = —00.
Similarly, as VA, B € K¢, AV B = supg . (A, B), it follows that:

AV B = (+00;0) = +00 = A = (+00;0) = +00 or B = (+00;0) = +oo0. [

Proposition 5.1.9. (Kg%, N, W) is a zero-divisor-free (or entire) semiring.

Proof. Proceeding in the same way as Proposition 5.1.8, we have that, since
VA,B e IC?R, AW B =supc _ (A, B), it follows that:

=
AW B = (0;+00) =R = A = (0;+00;0) =R or B = (0;+00;0) =R. O

Remark 5.1.6. Note that (K?R, W,N) is not a zero-divisor-free structure
since VA, B € IC?R, AN B = (0;—c0) = @ does not necessarily imply that
one of the two intervals is equal to .

Proposition 5.1.10. (K;*,V,®) and (K™, A, ®) are zero-divisor-free (or
entire) semirings.

Proof. The proof is immediate since, by definition, we have
A®B=(a+b;a+b) VA, B e Kz, it follows that:

A® B =(—00;0) = —00 = A= (—00;0) = —00 or B=(—00;0) =—00.
Similarly, A® B = (+00;0) = +00 = A = (+00;0) = 400 or B = (+00;0) =
+00, VA, B € K}™. O

Proposition 5.1.11. (KZ,W,®) is a zero-divisor-free (or entire) semiring.

Proof. Proceeding in the same way as proposition (5.1.10), we have that:
A®B = (0;—x0) = @ = A = (0;—00) = For B=(0,—0) =g,
VA,B e K¢. O

We also add that the semirings (K¢, V, A), (K¢, A, V) and (ICC@R, N, W) as
well as (Kz%,V,®), (KF®, A, @) and (KZ,,®), being zero-sum-free and
zero-divisor-free, are said to be information algebras (see [47]).

Moreover, K, ICér e IC? and IC%Q are also additively-idempotent; specif-
ically, we have that:

- K™ is V-idempotent, as VA € K>, it is AV A = A;
- ICZOO is A-idempotent, as VA € ICZ,FOO, itis AN A= A;

- IC? is W-idempotent, as VA € IC?, itis AW A = A;
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- ICEQ is N-idempotent, as VA € KX, it is AN A = A.

On the other hand, some of the semirings described above (specifi-
cally (Kz™®,V,®), (KF®, A, @) and (KZ,d,®)) are all not multiplicatively-
idempotent (or @-idempotent); indeed 0 is the only @-idempotent element
as

000=0and ApA=A< A=0.

However, the following statements can still be made.

1) (Kz%,V) is an idempotent, commutative monoid with neutral element
—o0 (called V-identity), as:
(la) V is associative;

(Ib) V has the neutral element (the so-called V-identity): iy = (—o00;0) =
—00 €K, —AViy =iy VA=A VA K;>;

(1c) V is commutative;
(1d) V is idempotent, as: VA € K;°°, AV A= A.
2) (K&, A) is an idempotent, commutative monoid with neutral element
+o00 (called A-identity), as:
(2a) A is associative;

(2b) A has the neutral element (the so-called A-identity): in = (+00;0) =
+oo € KI® | ANin=inNA=A VA e KI™;

(2¢) A is commutative;
(2d) A is idempotent, as: VA € K®, ANA = A.
3) (Kg,w) is an idempotent, commutative monoid with neutral element
& (called W-identity), as:
(3a) W is associative;

(3b) W has the neutral element (the so-called W-identity): iy = (0; —o0) =
@EK? | AH‘JZ@:Z&JH‘JA:A,VAGK:?,

(3c) W is commutative;
(3d) W is idempotent, as: VA € K&, AW A= A.
4) (K%,N) is an idempotent, commutative monoid with neutral element
R (called N-identity), as:
(4a) N is associative;

(4b) N has the neutral element (the so-called N-identity): i~ = (0; +00) =

(4c) N is commutative;
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(4d) N is idempotent, as: VA € K&, AN A= A.

Finally, we consider the possibility of infinite (or at least countably-
infinite) sums in such types of semirings as it would be very important in
applications (see [25]).

We remember, in accordance with [44], that if T is a non-empty finite
subset of an idempotent semiring S, the sum of its elements is its supremum.
By analogy, if T' is any non empty subset of S, we denote by

Z t
teT

the supremum of T, if it exists. This notation is justified since, in particular,
the supremum of 7'U 7" is the sum of the suprema of T and T’, where
T,T' C S are non empty.

Therefore, remembering that an ordered set is complete if each of its
subsets has a supremum, we give the follow definition.

Definition 5.1.14. A semiring (S, +,-) is said to be complete if it is complete
as an ordered set and satisfies the following distributivity conditions:

(Zt) 5= (t-s) and s (Zt) => (s1),

teT teT teT teT
forany T C S, s€S.

In other words an idempotent semiring (.5, +, -) is complete if it is closed
for infinite sums (i.e., if the sum of infinite numbers of terms is always
defined) and if the product distributes over infinite sums too.

Hence, considering the semiring (IC(J{OO, A, @), we know that:

- the corresponding ordered set (K5, 3, ,+) is a complete lattice as
each of its subsets has a supremum;

- for any non empty subset 17 C ICér . the operation:

N A= N\{AlAeTr> C Kt~}
AT+

is such that, for all B € ICZr . we have

N\ AleB= A (4eB) and Ba| A A|= A (BaA).
AgT+oo AET+oe AgTtee AeT+ee

Analogously, considering (IC;*°,V, ®), we still have that:

- the corresponding ordered set (K>, éf/iw) is a complete lattice;
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- for any non empty subset 77°° C K;°°, the operation:

\V A=\/{4lAeT > CK;~}

AeT—

is such that, for all B € K;°, we have

\/ AleB= \/ (4@B) and Ba| \/ A|= \/ (BoA).

AeT— AeT— AeT— AeT—

We reason in a similar way for the semiring (IC? W, @) as well as for the
semirings (K¢, V, A), (K¢, A, V), (ICCQR,&J,O) and (ICC@R,H,LH).
As a consequence of this we obtain that the following proposition holds.

Proposition 5.1.12. (K¢, V, A), (K¢, A, V), (KE%,6,0), (KZ%, N, W) (Kz°,V, ®),
(ICé“OO,/\, ®) and (KZ,W,®) are complete semirings.

To sum up, if we analyze in detail all the structures identified in this
section, we have that:

1) (Ke,V,A; —00, +00, <+ ~+) is a commutative, idempotent, zero-sum-
free, zero-divisor free and complete semiring, as:
1.1 V is associative;
1.2 V is commutative;
1.3 V has the neutral element: —oco (zero of the semiring);
1.4 V is idempotent, as: VA € K¢, AV A = A;
[so (K¢, V) is a commutative, idempotent monoid]
1.5 A is associative;
1.6 A is commutative;
1.7 A has the neutral element: +oo (unity of the semiring);
1.8 A is idempotent, as: VA € K¢, ANA = A;
[so (K¢, A) is a commutative, idempotent monoid]
1.9 A is distributive with respect to V;
1.10 —oo is the absorbing element for A
[so (K¢, V,A) is a commutative, idempotent semiring ]
1.11 (K¢, V, A) is zero-sum-free: AV B = —00 < A= B = —o0;
1.12 (K¢, V, A) is zero-divisor-free: AN B # —o0 & A # —oc0 # B;
1.13 (K¢, V,A) is complete: V distributes over infinite A;
[so (K¢, V,A) is a zero-sum-free, zero-divisor-free, complete semir-
ing]
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2) (K¢, A, V; 400, —00, =<y~ 4+) is a commutative, idempotent, zero-sum-

free,

2.1
2.2
2.3
24

2.5
2.6
2.7
2.8

2.9
2.10

2.11
2.12
2.13

zero-divisor free and complete semiring, as:

A is associative;
A is commutative;
A has the neutral element: +o00 (zero of the semiring);
A is idempotent, as: YA € K¢, AN A = A;
[so (K¢, A) is a commutative, idempotent monoid]
V is associative;
V is commutative;
V has the neutral element: —oo (unity of the semiring);
V is idempotent, as: VA € K¢, AV A = A;
[so (K¢, V) is a commutative, idempotent monoid]
V is distributive with respect to A;
400 is the absorbing element for Vv
[so (K¢, A, V) is a commutative, idempotent semiring ]
(K¢, A, V) is zero-sum-free: AN B = +00 < A= B = +0o0;
(K¢, A, V) is zero-divisor-free: AV B # +00 < A # 400 # B;
(Ke, A, V) is complete: A distributes over infinite V;
[so (K¢, A, V) is a zero-sum-free, zero-divisor-free, complete semir-
ing]

3) (/C?R, W,N; @, R, &~ +) is a commutative, idempotent, zero-sum-free
and complete semiring, as:

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

3.9
3.10

W is associative;
W is commutative;
@ has the neutral element: @ (zero of the semiring);
W is idempotent, as: VA € IC?R, AW A=A

[so (IC?R, W) is a commutative, idempotent monoid|
N is associative;
M is commutative;
N has the neutral element: R (unity of the semiring);
N is idempotent, as: VA € IC?R, ANA=A;

[so (IC?R, A) is a commutative, idempotent monoid|
N is distributive with respect to W;

@ is the absorbing element for N
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[so (KZ®,w,N) is a commutative, idempotent semiring |
3.11 (KZ%,w,N) is zero-sum-free: AW B =0 < A= B =g;
3.12 (IC?R, W, N) is complete: W distributes over infinite N;
[so (KZ%,w,N) is a zero-sum-free complete semiring]
4) (IC?R, N,W;R,@,E,- . +) is a commutative, idempotent, zero-sum-free,
zero-divisor free and complete semiring, as:
4.1 N is associative;
4.2 N is commutative;
4.3 N has the neutral element: R (zero of the semiring);
4.4 N is idempotent, as: VA € IC?R, ANA=A;
[so (KZ%,N) is a commutative, idempotent monoid]
4.5 W is associative;
4.6 W is commutative;
4.7 @ has the neutral element: @ (unity of the semiring);
4.8 W is idempotent, as: VA € /C?R, AW A=A;
[so (KZ®,w) is a commutative, idempotent monoid]
4.9 W is distributive with respect to N;
4.10 R is the absorbing element for W;
[so (KZ%,N, ) is a commutative, idempotent semiring |
4.11 (K?R, N, W) is zero-sum-free: ANB=R< A= B =R,
4.12 (IC?R, N, W) is zero-divisor-free: AW B #R < A # R # B;
4.13 (K?R, N, W) is complete: N distributes over infinite W;
[so (IC? RN, W) is a zero-sum-free, zero-divisor-free, complete semir-
ing]
5) (K™, V,®; 00,0, 34~ 4+) is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:
5.1 V is associative;
5.2 V is commutative;
5.3 V has the neutral element: —oo (zero of the semiring);
5.4 V is idempotent, as: VA € K,*°, AV A= A4;
[so (K%, V) is a commutative, idempotent monoid]
5.0 @ is associative;
5.6 @ is commutative;

5.7 @ has the neutral element: 0 (unity of the semiring);
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[so (K%, @) is a commutative monoid]
5.8 @ is distributive with respect to V;
5.9 —oo is the absorbing element for &;
[so (K;°°,V,®) is a commutative semiring]
5.10 (KC;>°,V,®) is zero-sum-free: AV B = —00 & A =B = —o0;
5.11 (K;%°,V,®) is zero-divisor-free: A® B # —o0 & A # —o0 # B;

5.12 (K;%°,V,®) is complete: it is closed for infinite sums and Vv
distributes over infinite sums;

[so (K;°°,V,®) is a zero-sum-free, zero-divisor-free, complete

semiring]

6) (lCér N, ®;+00,0, 3~ 4+) is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:
6.1 A is associative;
6.2 A is commutative;
6.3 A has the neutral element: 400 (zero of the semiring);
6.4 A is idempotent, as: VA € IC&H’O, ANA=A;
[so (ICZFOO, A) is a commutative, idempotent monoid|
6.5 @ is associative;
6.6 @ is commutative;
6.7 @ has the neutral element: 0 (unity of the semiring);
[so (KF*, @) is a commutative monoid]
6.8 @ is distributive with respect to A;
6.9 +o0 is the absorbing element for ¢;
[so (K£™°, A, @) is a commutative semiring]
6.10 (lCé”X’, A, @) is zero-sum-free: AN B = +o00 < A= B = 4o0;
6.11 (ICZ?OO, A, @) is zero-divisor-free: A ® B # +o00 < A # 400 # B;

6.12 (K >, A, @) is complete: it is closed for infinite sums and A
distributes over infinite sums;

[so (ICZT A, @) is a zero-sum-free, zero-divisor-free, complete

semiring]

7) (K&, w,®; 2,0, €, ,+) is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:
7.1 W is associative;
7.2 W is commutative;

7.3 & has the neutral element: @ (zero of the semiring);
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Semiring 0 — element 1 — element Properties
(Ke,V,A) | —o00 = (—00;0) | +00 = (+00;0) | C, ZS, ZD, L, E
(Ke, A, V) | 400 = (+00;0) | —co = (—00;0) | C, ZS, ZD, I, E
(KE%,w,n) | @ =(0;—00) R = (0; +00) C, 7S, L E
(K%, N,w) | R=(0;4+00) | @=(0;—00) |C,1ZS,2ZD,LE
(K™, V,®) | —00 = (—00;0) 0= (0;0) C,ZS,7ZD, E
(KE®, N, @) | 400 = (+00;0) 0 = (0;0) C, 7S, ZD, E
(K&, w,®) @ = (0; —00) 0= (0;0) C, 7S, 7D, E

Table 5.2: Classification of interval semirings. C = commutative, ZS= zero-sum-free
(or antinegative), ZD= zero-divisor-free (or entire), I = idempotent, E=complete.

7.4 W is idempotent, as: VA € K7, AW A = A;
[so (K¢, W) is a commutative, idempotent monoid]
7.5 @ is associative;
7.6 @ is commutative;
7.7 & has the neutral element: 0 (unity of the semiring);
[so (KZ,®) is a commutative monoid]
7.8 @ is distributive with respect to W,
7.9 @ is the absorbing element for @;
[so (KZ, W, ®) is a commutative semiring]
7.10 (KZ,d,®) is zero-sum-free: AW B =@ < A= B = g;
7.11 (KZ, 4, ®) is zero-divisor-free: A® B # @ < A # & # B;
(

7.12 ICCg , W, @) is complete: it is closed for infinite sums and W dis-
tributes over infinite sums;

[so (K&, ®) is a zero-sum-free, zero-divisor-free, complete semir-
ing]

Table 5.2 summarizes the different types of interval semirings we have
defined in this section and the properties associated with.
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5.2 Alternative approaches to interval semirings

The problems encountered in Subsection 5.1.2, many of which arise when the
intersection of intervals is an empty set, i.e., when intervals are disjointed,
led to the development of alternative interpretative approaches; these in turn
give rise to further types of algebraic structures, semirings and more, which
will be extensively analyzed in this Section.

In fact, different approaches will be introduced both to overcome the
aforementioned problems but also to search for structures with further
interesting properties in addition to those already seen.

5.2.1 The dual approach

As regards the search for structures with additional properties compared to
those analyzed so far, a first attempt is represented by an extension of the
set of intervals K¢, introducing a sort of dual structure and redefining the
set itself as indicated below:

K& =Ke={(@a)|a,acR,a=>0}
which represents the classic set K¢ of proper intervals considered so far
A= (a;a) with @>0 or A=[a",a"] with a~ <a™;
similarly, we define
. ={(a;—a)|a,a e R,a> 0}
which stands for the set of what we call the dual intervals, denoted by
A= (@;—a) with a>0 or A=[a",a”] with a~ <at,

where A = (@;a) = [a™,a™] € K.
Finally, we consider the union

KE=Kfukg (5.6)

where K} NK; =R and (a;0) = [a,a] = {a}.
For the elements A € lCé[ we denote by A* € ICCi the dual of A, defined
(in endpoint notation) by

A*=[at,a”] with A= [a",a"] (5.7)
or (in midpoint notation) by
A* = (a; —a) with A = (a;a) (5.8)

so that
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-if A = (@;a) = [a,a"] € K}, that is, a= < a™ and @ > 0, then
A* = (a;—a) = [aT,a"] € K; (see Figure 5.1);

-if A = (a;a) = [a,a"] € K7, that is, a= > at and @ < 0, then
A* = (a;—a) = la",a"] € K.

x

Figure 5.1: Interval A = [a~,a*] = (@;a) € K and its dual A* = [aT,a7] =
(@; —a) € K; in the midpoint plane (Z; ).

Remark 5.2.1. According to (5.7) and (5.8), interval A* cannot be inter-
preted as complementary to A as can be easily deduced from Figure 5.1.

Since we are interested in defining an order in IC?, the most logical choice
is to try to consider some sort of extension of the gamma order 3. - .+ with
v~ < 0and vt > 0 fixed. .

Let A = (a;a) and B = (b;b) be two intervals in /CéE, with A # B;
according to (4.7), we define as usual A,,, A, and By,, B, the lines for A
and B, with angular coefficients respectively v~,~", i.e.,

Ap:T=a+~y (T—-4d) and A,:T=a+~" (Z—Q)
as well as

By, iz =b+~" (55—/13\) and Bp:fzg+7+ (f—@),

where @, E,/b\,g € R (see Figure 5.2).
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bat4

Am

Bp

Figure 5.2: The lines for A and B, with angular coefficients respectively v, ~v":
Ay, Ay and By, B, in KZ.

Before proceeding, it should be noted that, considering a pair of intervals
A and B in lCé[, there are four different cases which correspond to the four
different positions, as represented in Figure 5.3, in which the two intervals
can occur:

(1

)
(2)
(3) Ae K and B € Kg;
(4) A€ K; and Be K/.

Let us start by considering case (1): A = (a;a), B = (g,g) € K} (top left
of the picture of Figure 5.3).
We can define the order éfy, L+ 8S follows:

AZ- + B AZ,-+B (5.9)

where, according to (2.33), it is

a}g—l—’ﬁ a-b ~ SR - S
Agy_’7+B<:> - SN <:>b+’y+<a—b><a<b+'y_<a—b)
a<b+~y (a—b
or, which is the same,
b<a+~t(b—a B N~ SO
A§7_7+B<:> ~ N <:>a+7_<bfa><b<a+'y+(b—a)
’ b>a+~vy (b—a
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B 5;—},4- A

-
B Syt A

0

Figure 5.3: The four different cases in which a pair of intervals A and B can lie
relative to each other in ICgE with respect to order A fny_ - B.

so that we obtain

a1+~ (a—7) r<a+~T (z—a)
< a=z
sz,wX‘:’{agfﬂ—(a—f) T\ Fza+r @)
and
i>b+~t (2-0 3<5+7+<Z—§>
X3 - +Be=q - N =~ S
' T<b+y (T—0b b}x—i—’y*(b—x),
therefore, we can write
E+’y‘(fc\—a)<a~:<b+7_<’x\—g>
5+7+<f—ﬁ><fga+y+(§—a)

Referring now to the other three cases identified, we have that the
situation is analogous.
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Specifically, as shown in Figure 5.3, considering any A = (a;a) and
B = (b;b) in KZ with A < -+ B it follows that, as A = (a;—a) and

= (b, b), it is trivial to Verlfy that
<k * <%k *,
A Ry— ot BeB Ry— ot A%
therefore, the next proposition follows.
Proposition 5.2.1. Let A, B € ICéE, then
<* * <* *
AZ- gt Be B & AT
The following statement summarizes the situation.
Proposition 5.2.2. let A and B be any two intervals of ICZTL.
(1) If A,B € K}, then (5.9) holds;

(2) FA,BEKg, then AS'_ . B B 5, A%

(3) if A€ K& and B € K, then A éf‘y_ -+ B always holds;
(4) if A€ K; and B € K}, then B éf{,’ﬁ A always holds.

Thanks to what has just been seen, we have that the order < NA/, L+ turns
out to be a partial order as it satisfies the reflexive, the antisymmetric and
the transitive properties; therefore, the set ng endowed with the partial
order <: L+ isa poset

a lattice, as any of its elements A and B have a supremum supg* . {A, B}
~y Ty
and an infimum in f<- {A B} in lCi
~T

At this point, as occurred in the case of K¢, it becomes necessary to
introduce the following set:

K¢ € KU (2o},

where, as usual, —oo = (—00;0) and +o00 = (+00;0). We also define

—00 = (—00;0) = inf<= /Cé[
Ry— oyt

as well as L
(—00)* = (—00;0)" = sup<= K,
Ry— oyt
so that, for all v~ < 0 and v > 0, it is:

o e XS —o0)*, VX € KF

NW W(
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Figure 5.4: Representation of the elements A, A*, —oco and (—o0)* in Fg

(see Figure 5.4).

What we have just seen means that the lattice (Kici,, é§* 7+) has a mini-

mum, denoted by —oo, and a maximum, denoted by (—oc)*, which satisfy the

inequality —oo éfy_wL X é;_’w (—o0)* for every X € K7, i.e., (ICéE, S )

is a bounded lattice.
Furthermore, according to Definition 2.2.2, we can also add that the

structure (IC?, é,*y_ 7+) is a complete lattice, as the following proposition
holds. ’

Proposition 5.2.3. Consider a partial order §§* S on ICiéE and let S C ICici
be any nonempty bounded subset of intervals. Then, there exist both inf(S),
sup(S) € Kz such that for all X € S

inf(S) £~ .+ X 5~ 1+ sup(S).

Proof. Similar to the proof of Proposition 2.2.10. 0
On the other side, since it is possible to consider lattices also as algebraic
structures, we can look at (ICéE, é:_ 7+) as a structure of the type (ICéE, V, A)

where the lattice operations V and A stand for supremum and infimum of
two elements XY € ICéE:

X VY =sup<x  {X,Y},
Ry= vt



232 Interval algebraic structures

XANY =inf<s {X,Y}.
Ry— 4t
This means that we have the following binary functions:
Vi KE x KE = Kg such that: (X,Y) = X VY = supge {X,V};
~yT oy
N:KE x KF = KZ such that: (X,Y) = X AY =infee {X,V}.
~yT oy

In particular, the definition below examines all possible cases of pairs of
intervals in ICé[.
Definition 5.2.1. Let A, B € ICé[. Let us consider the following cases.

1. If A,B € ng or A, B € K; we have:

la ifAf:,w B, then AVB =B and ANB = A;

1.b if B éj’;_w A, then AV B=A and AN B = B;

L.cif A| é;*,ﬁB and ApBy, éi‘;,ﬁ+ A By, then AV B = A, By, and
ANB = A,By;

1.d if AHE:, 7+B and Ap, B, §§,77+ ApBy,, then AV B = A,By, and

ANB = ApnB,.

2. IfAe K} and B € K; (thereforeAgj;_ + B ), we have AV B = B
and ANB = A.

8. IfA€K; and B € K} (thereforeri, o A ), we have AV B = A
and ANB = B.

4. IfA=DB then AVB=AAB=A=B.

Regarding the two operations introduced above, it is easy to verify that
the following properties hold:

1 V and A are commutative: VA, B € Fg

la AVB=BVA,
1b AAB=BA A:

2 V and A are associative: VA, B,C € E

2.4 (AVB)VC =AV(BVC),
2b (ANB)AC = AN (BAC);

3 the absorption laws apply: VA, B € Fg
3a AV(AANB)=A,



5.2 Alternative approaches to interval semirings 233

3b AN(AV B) = A
4 the idempotency is satisfied for both V and A: VA € E

da AV A=A,
Ab ANA=A.

It is also easy to verify that:
5.a V is left and right distributive over A:
5.ai AV(BAC)=(AVB)A(AVC),VA B,C € K2,
5aii (AANB)VC =(AVC)A(BVC),YA,B,C € K&;
5.b A is left and right distributive over V:
5b.i AN(BVC)=(AAB)V(AAC),VA,B,C € kg,
5.bii (AVB)AC =(AAC)V (BAC),YA,B,C € K.

So, according to Definition 4.1.6, the structure (ICéE, V, A, é:,WQ is an
algebraic distributive lattice and, having —oo and (—oc0)* as minimum and
maximum, it is also bounded.

In this regard we can also add that:

6.a —oo (the lattice’s bottom) is the neutral element for the join operation
Vi AV (—00) = A, VA € KZ;

6.b (—00)* (the lattice’s top) is the neutral element for the meet operation
Ar AN (—o0)* = A, VA € KZ;

6.c —oo is the absorbing element for the meet operation A:
AN (=) = (—0), VA € KZ;

6.d (—o0)* is the absorbing element for the join operation V:
AV (—o0)* = (—o0)*, VA € KE.

All this allow us to state the following proposition.

Proposition 5.2.4. The structure (FCi, V, A, (—00), (—o0)*, é;, 7+) as well

as (Fg, AV, (—o0)*, (—00), é:, v+) are commutative, idempotent semirings.
Proof. (E, V, A) is a commutative, idempotent semiring, as:

la) (@, V) is a commutative, idempotent monoid with neutral element
(—o0):

(i) V is associative: (AV B)VC =AV (BVC),VA,B,C € Fg;
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(ii) V has a neutral element iy = (—o00) € @ AV (—o00) = (—o0) V
A = A VA € KE (so, (—0) is the O-element of the semiring
(K& Vo A);
(iii) V is commutative: AV B= BV A, VA, B € Fg;
. - ) _ =T
(iv) V is idempotent: AV A= A, VA € K.
2a) (Fg, A) is a commutative, idempotent monoid with neutral element
(—o0)*:
(i) A is associative: (AAB)AC = AN (BAC),VA,B,C € Kz;

(ii) A has a neutral element i, = (—o00)* € Fg D AN (—o0)f =
(—00)* N A = A YA € K5 (s0, (—00)* is the 1-element of the
semiring (ng, V,A);

(iii) A is commutative: AN B =BA A, VA, B € Fg;
(iv) A is idempotent: ANA = A, VA € KF.
3a) A is left and right distributive over V:
(i) AN(BVC)=(AAB)V(AANC), VA, B,C € K&;
" -
(i) (AVB)ANC=(ANC)V(BAC),YA,B,C € K.
4a) (—o0) is the absorbing element for A:
AN (—o0) = (—00) A A = (—o0), VA € KE.

Analogously, we have that also (Kig, A, V) is a commutative, idempotent
semiring, as:

1b) (Fg, A) is a commutative, idempotent monoid with neutral element
(—00)™:
(i) A is associative: (AAB)AC = AN (BAC),VA,B,C € K&;

(ii) A has a neutral element i, = (—00)* € FJCE D AN (—o0)t =
(—00)* AA = A VA € K& (s0, (—00)* is the O-element of the
semiring (K3, A, V) );

(iii) A is commutative: ANB =BA A, VA, B € Fg;
. . . _ pe=n
(iv) A is idempotent: ANA = A, VA € K.

2b) (Fg, V) is a commutative, idempotent monoid with neutral element
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(i) V is associative: (AVB)VC =AV (BVC),VA,B,C € Fg;
(ii) V has a neutral element iy = (—00) € Fé: AV (—00) = (—00;0)V
A = A VA € KF (so, (—0) is the 1-element of the semiring
(K& A V)
(iii) V is commutative: AV B = BV A,VA, B € K¢;
(iv) V is idempotent: AV A= A VA € lCif(E
3b) V is left and right distributive over A:
(i) AV(BAC)=(AVB)A(AVC),VA, B,C e K&;
(i) (AAB)VC =(AVC)A(BVC),VA,B,C e K&.
4b) (—o0)* is the absorbing element for V:
AV (—00)* = (—00)* V A = (—00)*,VA € KE.
O

Finally, thanks to the particular construction of the above structures and
to the Proposition 5.2.1, it is easy to verify that other properties are also
valid, such as:

(1) (A")* = A, VA € KZ;
(2) ASi. B=B'g'_, A", VA BeKg.

From these properties, according to Definition 4.1.8, we obtain the next
proposition.

Proposition 5.2.5. The structures (Fg, V, A, é,*y_ 7+) and (Kig, AV, é:_ ot )
are De Morgan Algebras.

As a consequence of Proposition 5.2.5, the following well-known laws also
hold:

* * * E.
(3.a) (AVB)*=A*ANB*, VA,B € Kg;
* * * E.
(3.b) (ANB)* = A*V B*, YA, B € K;
Besides, it’s easy to check that the Kleene conditions are also valid, i.e.:
* * * 7:‘:
(4) ANA gw,ﬁ BV B*, VA, B e Kg.

This means that, again according to Definition 4.1.8, the following statement
holds.
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Kleene algebra 0 — element 1 — element
(K& VoA & ) | =00 =(=5030) | (=00)" = (~00;0)"
(K3 AV ) | (200 = (=030 | =00 = (—00i0)

Table 5.3: Classification of interval Kleene algebras with zero and unity.

Proposition 5.2.6. The structures (Fg, V, A, g;, 7+) and (Fg, AV, é:, o+ )
are Kleene algebras.

Therefore, based on (4.4) and (4.5), according to Definition 5.2.1, it is
possible to define:

- WolKE) = {XAX*: X e KT} = KF = K U {00, +00};
S WIKE) = {XVX*: X e KF} = K = Kg U{(—00)*, (+00)*}.

Hence, the Kleene condition can be riformulated as

VX € Wo(Kg), VY e Wi(Kg): X €5

K¢ o Y
that is, L L
VX €KL, WY eKs s X1 LY.
Accordingly,
Wo(KZ) N Wi(KE) = KF NKg = [—o0, +00] = R.

Table 5.3 summarizes the structures defined in this subsection.
Lastly, similarly to (2.28), it is also possible to consider the “segment” in
ICéE defined as

S(A,B)={X|X;=(1—-t)A®tB, t€[0,1]},

where @ stands for Minkowski’s addition.
In other words, we have:

X, = ((1 —t)a+th (1 — t)a+t?5> .
Definition 5.2.2. A subset X of IC(jjE 1s said to be convex if and only if
S(A,B) CX, VA,BeX

Remark 5.2.2. [t should be noted that the structures outlined here undoubt-
edly possess interesting properties but, at the same time, it is impossible to
succeed in defining any other type of structure with “polar” characteristics
with respect to them, as the order considered here does not lend itself to this
type of formulation.
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5.2.2 The polar approach

What we are interested in doing now is trying to overcome the problems caused
by disjoint intervals, which emerged in Subsection 5.1.2, also keeping the
characteristics of polarity between different orders valid, in all possible cases
previously analyzed; it is therefore a question of considering the structures
examined in Subsection 5.1.2 and expandmg them to the set ICC

Let us first consider the set IC to which, however, unlike the one intro-
duced in (5.6), the following notatlons are associated:

K¢ =Ke={(@a)|a,acR,az>0}
which represents the set of intervals denoted by
A= (a;a) with a>0 or A=[a",a"|T;

similarly, we define

; ={@-a)|a,a€R,d> 0}
which stands for the set of intervals denoted by
A= (a@;—a) with a>0 or A=[a",at]".
As usual, for each element A = (a;a) € IC we denote its “dual” with
A* = (a;—a) € IC?.
After that, for all A = (a;a) and B = (b;b) in ICéE, we define the order

< .
Ny—y+ as follows:

A é’YT’Y*' B+ A é,y—,»y-«- B

so, according to (2.33), it is

or, which is the same,

b <a+y (B — a)
A é’y‘rﬁ B4 ~ ~
b>a+~ (b — a) .

It is simple to verify that the order 5.~ .+ turns out to be a partial order
as it satisfies the reflexive, the antisymmetric and the transitive properties;
therefore, the set ICjE endowed with the partial order < S+ A+ 18 a poset.

Moreover, accordlng to Definition 2.2.1, the structure (lCé[, Sy ~+) isalso
a lattice, as any of its elements A and B have a supremum sups {4, B}

. . . +
and an infimum mféy—,w {A,B} in K7
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At this point, as happened in the other cases considered up to now, it is
useful to define the following set:

E def ot
where, as usual, we define
—00 = (—00;0) = infév_’frlciéE and + 0o = (400;0) = supév_‘ﬁ/CizF,
so that, for all v~ < 0 and v > 0, it is:
—00 Syt X Sy o+ 00, VX € KE

(see Figure 5.5).

>

R= (D'T

= [a”,a']"=(a@ )

Figure 5.5: Representation of the elements —oo and +o0 in Fg as well as @ and
R in K}g R,

What we have just seen means that the lattice (K, S+ ~+) has a mini-
mum, denoted by —oo, and a maximum, denoted by +oo, which satisfy the
inequality —o0 Sy 4+ X - 4+ F00 for every X € KZ, ie., (KZ, N
is a bounded lattice.

Furthermore, according to Definition 2.2.2, we can also add that the
structure (Két, S+ ~+) is a complete lattice, as the following proposition
holds.
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Proposition 5.2.7. Consider a partial order éfﬂ* on ICigE and let'S C Fg
be any nonempty bounded subset of intervals. Then, there exist both inf(S),

sup(S) € /Cici such that for all X € S
inf(S) Sy 4+ X Sy 4+ sup(S).

Proof. Similar to the proof of Proposition 2.2.10. O

On the other side, since it is possible to consider lattices also as algebraic

structures, we can look at (ICéE, S+ ~+) as a structure of the type (ICéE, V,A)
where, in this case, the lattice operations V and A stand for supremum and

infimum of two elements X,Y € Kigz
XVY = supg . {X,Y},
XANY = mféw—,ﬁ {X,Y}.
This means that we have the following binary functions:

R S N = . _ .

V: Kz x K — Kz such that: (X,Y) = X VY = supéf,ﬁ{X, Y}
R T N . —

N Kg x K — Kz such that: (X,Y) = X AY = mfév_’ﬁ{X, Y}

Regarding the two operations introduced above, it is easy to verify that
the following properties hold:
1 V and A are commutative: VA, B € Fg

la AVB=DBVA,
1.b ANB=BAA,;

2 V and A are associative: VA, B,C € E

2.4 (AVB)VC =AV(BVC),
2b (AAB)AC = AN (BAC);

3 the absorption laws apply: VA, B € Fg

3.a AV(AAB)=A,
3b AAN(AV B) = A

4 the idempotency is satisfied for both V and A: VA € E

da AV A=A,
4b ANA= A

It is also easy to verify that:
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5.a V is left and right distributive over A:
5.ai AV(BAC)=(AVB)A(AVC),YA, B,C € K,
5.aii (AANB)VC = (AVC)A(BVC),VA,B,C € Ks;
5.b A is left and right distributive over V:
5bi AA(BVC)=(AAB)V(AAC),VA,B,C € K2,
5.bii (AVB)AC =(AANC)V (BAC),YA,B,C € Kz,
So, according to Definition 4.1.6, the structure (Fg, V, A, Sy 4+) is an
algebraic distributive lattice and, having —oo and 400 as minimum and

maximum, it is also bounded.
In this regard we can also add that:

6.a —oo (the lattice’s bottom) is the neutral element for the join operation

Vi AV (—o0) = A, VA € KF;

6.b +oo (the lattice’s top) is the neutral element for the meet operation A:
AN (400) = A, VA € KZ;

6.c —oo is the absorbing element for the meet operation A:
AN (—0) = (—0), VA € KZ;

6.d +oo is the absorbing element for the join operation V:
AV (+00) = (+00), VA € KZ.
All this allow us to state the following proposition.

Proposition 5.2.8. The structure (E, V, A, (—00), (+00), Sy 4+) as well

as (/Ciét, AV, (+00), (—=00), Sy 4+) are commutative, idempotent semirings.
Proof. (E, V, A) is a commutative, idempotent semiring, as:

la) (Kig, V) is a commutative, idempotent monoid with neutral element
(—o0):
(i) V is associative: (AV B)VC =AV (BVC),VA,B,C € K
(ii) V has a neutral element iy = (—o00) € /Cig AV (—00) = (—o0) V
A = AVA € KE (so, (—0) is the O-element of the semiring
(KG Vs A
(iii) V is commutative: AV B= BV A, VA, B € Fg;
. - . _ —I
(iv) V is idempotent: AV A = A, VA € K.
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2a) (@, A) is a commutative, idempotent monoid with neutral element
(+00):
(i) A is associative: (AAB)AC =AAN(BAC),VA,B,C € Kig;
(ii) A has a neutral element iy = (+00) € @ : AN (+00) = (+00) A
A= AVA e lC% (so, (+00) is the 1-element of the semiring
(K& Vo A);
(iii) A is commutative: AN B =BA A VA, B € Fg;
(iv) A is idempotent: ANA = A VA € Fg
3a) A is left and right distributive over V:

(i) AN(BVC)=(AAB)V(AANC), YA, B,C € K&;
(ii) (AVB)AC =(AANC)V (BAC),VA,B,C € K&.
4a) (—o0) is the absorbing element for A:
AN (—00) = (—00) A A = (—00), VA € KE.

Analogously, we have that also (Kié,/\,\/) is a commutative, idempotent
semiring, as:

1b) (@, A) is a commutative, idempotent monoid with neutral element
(+00):
(i) A is associative: (AAB)AC =AAN(BAC),VA,B,C € Kig;
(ii) A has a neutral element i, = (+00) € Kifcc i AN (400) = (F00) A
A= AVA e ng (so, (+00) is the O-element of the semiring
(K& AV );
(iii) A is commutative: AN B = B A A,VA,B € IC%E;
. . . - peen
(iv) A is idempotent: AN A= A, VA € K.
2b) (Fg, V) is a commutative, idempotent monoid with neutral element
(—o0):
(i) V is associative: (AV B)VC =AV (BVC),VA,B,C € Fg;
(ii) V has a neutral element iy = (—o00) € Fg: AV (—00) = (—00;0)V
A = AVA € KE (so, (—0) is the 1-element of the semiring
(K& A V));
(iii) V is commutative: AV B = BV A,VA, B € K¢;
(iv) V is idempotent: AV A= A, VA € IC7$
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3b) V is left and right distributive over A:

(i) AV(BAC)=(AVB)A(AVC), VA B,C € K5;
(i) (AAB)VC = (AVC)A(BVC),VA, B,C € K.

4b) (400) is the absorbing element for V:

AV (+00) = (+00) V A = (+00), VA € KE.

O]

It is interesting to note how, in this case, it is possible to introduce a
concept of polarity similar to the one analysed in Section 4.1.

In addition, we can even define two new operations of union and intersec-

tion, now denoted by U and M, that extend those examined in Section 4.1 as
shown in Figure 5.6.

W x>

Figure 5.6: Example of union LI and intersection M in ICéE.
Let A, B € K¢, then:
-ifANBe ICZf , then it represents the proper intersection;

- if AN B € K, then it represents the “dual” interval that convexifies
AUB,ie, AUB=(AUB)U(ANB)*.
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Moreover, it should be remembered that, considering A é7_77+ B, there
are four distinct possible positions that A can assume with respect to B
in lCé[, as shown in the example represented in Figure 5.7, where, more in
detail, it is possible to identify the following situations:

-if A=[a",a]",B=[b",b"|" € K} (top left of the picture),
then AUB = [a™,b"]" € K}
and ANB=[b",a"|" € K} or ANIB = [a",b7]" € K;

-if A=[a",a™]",B=[b",bT]” € K; (top right of the picture),

then AUB =[aT,b7|t € K or AUB =[b",a"]” € Kg

and AMB = [a",b"]” € Kg;

-if A=[a",aT]T € K} and B = [b—,b"]” € K (bottom left),
then AUB = [a™,b7]" € K and AT B = [aT,b]” € K;

-if A=[a",aT]” € K; and B = [b—,b"]T € K} (bottom right),

then AUB = [aT,b"|" € Kf and ANB=[a",b"]” € K.

AUB

%
L ch

A" B®
;
LUB*
A" UB* AU B
ALB B B
A& A: | /
A A

A°TB 4 AM'B or

AN.B Anp

Figure 5.7: Example of the four different positions of A and B in K
A - 4+ B) and the respective operations of union L and intersection 1.

+
(

(with
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In order to give a correct definition of union and intersection in lCé[ we
can consider, as usual, lines A,,, A, and B,,, By, passing through A and
B, as defined by (4.7), with A,,||By, and Ap||B, (possibly A,, = B,, or
A, = B, but not both coincidences verified at the same time).

Remark 5.2.3. If A, = B, and A # B, then A,, # By, and Ay||By,. So
A and B are S~ +-comparable, that is A S\~ ,+ B or B Sy~ 4+ A.

Similarly, if Ay, = By, and A # B, then A, # B, and Ap||Bp. So A and
B are 3 +-comparable, that is A Sy~ 1+ B or B Sy + A.

In any case, the intersections (points) between the two lines A,, and B,
as well as between A, and B,,, are always well defined; therefore, as stated
in Section 4.1, we indicate with:

- A B, (or B,Ay,) the point of intersection between A, and By;
- A,B,, (or B, Ap) the point of intersection between A, and B,y,.

Be that as it may, we have A,,B,, A,B,,¢€ ICéE. Also, analogously to Defini-
tion 4.1.11, we have the notion below.

Definition 5.2.3. Let A, B € lCé[ such that A # B and yv~,v" € R:

- if A, = By, (orif Ay = By, we say that the two points, i.e., elements
of IC?, are aligned;

-if Ap # By, and A, # By, we say that the two elements of lCé[ are
unaligned.

Lemma 5.2.1. Let A,B € ICCi such that A # B and v,y € R with
v~ < 0,77 >0, then, considering the order é,y—mﬂr, we have that:
A and B are S +-incomparable < Ap, By and ApBp, are S - .+ -comparable.

Proof. Similar to theorem 4.1.1. O
Now, we can give the following definition.

Definition 5.2.4. Let A, B € ICéE. There are several different cases.
1. If A and B are S~ +-comparable and A # B, we have:

lLaif ASy- 4+ B, then AUB = AyBy, and AT B = Ay, By;
1.b if B Sy o+ A, then AUB = Ay By and AT B = ApBp,.

2. If A and B are éﬁy—,ﬁ -incomparable, we have:

2.a if ApBm Sy 4+ AmByp, then AUB = A and AT B = B;
2.b if ApBy So- 4+ ApBp, then AUB = B and AN B = A.

3. IfA=DB then AUB=ANB=A=B.
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Note that the operations U and 1M of Definition 5.2.4 depend on the order
<y ~+ chosen for ICE—L and give rise to the polarity between <, .+ and the
inclusion order C-+ defined by:

AC

C_..B©ANB=Aand AUB=B.

(5.10)

As an obvious consequence of (5.10) and Definition 5.2.4 , we also have
that:
AUB=ANB & A=B.

As shown in Figure 5.8, the above definitions are also valid when A = {a}
and/or B = {3} In this case we have {a}* = {a}, Va € R.

Figure 5.8: Examples of special cases in which A = {a} with A 5, ,+ B (left),
A ={a} and ApBy, So- o+ AmB, (center), A = {a} and B = {3} (right).

Definitely, for every A, B € ICéE, we define the order ;'y‘ L+ 8s follows:

AC

:'y—,’\ﬂ'B — A g’y_,’y"' B

so, according to (4.12), it is

Agv,wB = (5.11)

This means that:

- an interval X € ICéE such that X ;7_ N +A, is included in A with respect
to inclusion order C- .+

- an interval Y € lCéE such that Agv_ 7+Y, includes interval A with

respect to inclusion order S

Note that Figure 5.9 offers an example of operations V, A and LI, M applied
to intervals A and B in ICE*L in the particular LU-order case where 4y = +1
and v~ = —1.
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More in details we have that, given A = (a;a), B = (B;N) € lCé[ and

A* = (a;—a), B* = (Z, —E) IS ICéE, the following properties are valid, as will
be better explained later on.

-a- =ANA* (as well as b~ = B A B¥);
- at = AV A* (as well as b = BV B*);

- A*NMB=(AUB*)* and A*U B = (AN B*)* (De Morgan rules).

W

Figure 5.9: Examples of operations V, A and L, M with respect to the orders Sru

and C..

Similarly, the following facts are easily obtained from Figure 5.10, which
offers another interesting example of how V and A, as well as U and T,
operate on X € IC?. Specifically, for the points By, ...Bs we have:

-AUBy, = A ANBy = By, AUB3 = B3, ANNBg = A (they are
incomparable with respect to S, 4+ );
- Bi S A, AZ By, Bs S A (they are 5~ ,+-comparable).
In addition, we also have

ANB; e K} ANBy ek, ANBs e K,
B1§A|‘IB1§A, A§A|_|34§B4, B5§A|_|B5§A
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X

AAB,

Figure 5.10: Examples of operations L and I in case intersection belongs to g or
to K .

Moreover, according to Definition 4.1.10, the two orders satisfy the
polarity property.

Proposition 5.2.9. Two unaligned intervals A, B € ICé.E are incomparable
with respect to ;7, ot if and only if they are comparable with respect to
Sy ~+- This is denoted by

A H;ﬁ_ﬁ . B.
Vice-versa, they are incomparable with respect to év‘,er if and only if they
are comparable with respect to ;7_ . This is denoted by

)

Alls_ . B

So, also in this case we have that the order C__ | turns out to be a
partial order as it satisfied the reflexive, the antisymmétric and the transitive
properties; therefore, the set ICCi endowed with the partial order ;7,77 L isa
poset.

Furthermore, according to Definition 2.2.1, the structure (IC?,;Wi7 L) s
also a lattice, as any of its elements A and B have a supremum SUpc {A, B}
and an infimum infc ~  {A, B} in ICéF.

At this point, also Win’:c/his case, it becomes necessary to define the following
set:

Ko K u{o R},
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— (0N — +oR —_ (N _ +oR
where @ = (0; —o0) = angr,ﬁ Kz“" and R = (0;+o00) = SUPEVWJJCC
with

R = 2" and @ =R"

(see Figure 5.5) so that, for all v~ < 0 and v* > 0, it is:

+oR
oL — +XC _ R, VX e Kg™"

This means that the lattice (ICCig RC , +) has a minimum, denoted by &,

and a maximum, denoted by R, which saitisf’y the inequality @;7 XC R

Tt =yt

for every X € K?QR, ie., (K?QR,QV_ 7+) is a bounded lattice.
Again, according to Definition 2.2.2, we can also add that the structure
(ICéE@R C__ ) is a complete lattice as, similarly to Proposition 5.2.3, the

)y =

following statement holds.

Proposition 5.2.10. Consider a partial order ET —c lCé[@R and let

S C ICCiQJR be any nonempty bounded subset of intervals. Then, there exist
both inf(S), sup(S) € ICéFQR such that for all X € S

inf(S);7 AXE sup(S).

="y

Moreover, since we can also consider lattices as algebraic structures, it is
possible to look at (ICCi@R,gT,W) as a structure of the type (lCéEgR, LI, 1)
where the lattice operations U and M stand for supremum and infimum of
two elements X,Y € ICéEZR:

Xuy = supc__ {X,Y},
XNy = infgf’ﬁ{X,Y}.
This means that we can define two binary functions:
U K?QRXICéEQR — ICéE@R such that: (X,Y) — XUY = supc _ {X,Y};
M KF7RCEPR - KF7® such that: (X,Y) — XMV = in fe  AXYY
It is immediate to verify that the following properties hold:

1 U and I are commutative: VA, B € ICéE@R

l.a AUB=BUA,
1.b AN B=BMNA,;

2 U and M are associative: VA, B,C € lCéEg]R

2.2 (AUB)UC = AU (BUC),
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2b (ANB)NC=AnN(BNC);
3 the absorption laws apply: VA, B € K? oR
3a AU(ANB)=A,
3b AN(AUB) = A4;
4 the idempotency is satisfied for both L and M: VA € ICé[zR
4da AUA=A,
4b ANNA=A.

It is also easy to verify that:
5.a U is left and right distributive over IM:
5ai AU(BNC)=(AUB)N(AUC),VA,B,C € K3°%,
5.aii (ANB)UC =(AUC)N(BUC),VA,B,C € KZ°%,
5.b M is left and right distributive over LI:
5bi AN(BUC) = (ANB)U(ANC),VA,B,C € K%,
5.bii (AUB)NC =(ANC)U(BNC),VA,B,C € KF7.

So, according to Definition 4.1.6, the structure (ICCi@R, L, m, EW*W*) is an
algebraic distributive lattice and, having @ and R as minimum and maximum,
it is also bounded.

Lastly, we can also add that:

6.a @ (the lattice’s bottom) is the neutral element for the join operation
U AUu@ = A, VA € KF7%,

6.b R (the lattice’s top) is the neutral element for the meet operation
ANR = A, VA € KF7%,

6.c @ is the absorbing element for the meet operation IM:
ANg =2, VA € K%,

6.d R is the absorbing element for the join operation LI
AUR =R, VA € KZ7%.

All this allow us to state the following.

Proposition 5.2.11. The two structures (IC?QR,I_I,I_I,Q,R,;T 7+) and

(,nglR’ ML, R, @’;7, 7+) are commutative, idempotent semirings.

Proof. (lCéEg R, LI, M) is a commutative, idempotent semiring, as:
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la) (K%Z R U) is a commutative, idempotent monoid with neutral element
g
(i) U is associative: (AUB)UC =AU (BUC),VA,B,C € ICiQR ;

(ii) U has aneutral element i, = & € ICiQR Al = gUA=A VA€
ICng]R (so, @ is the 0-element of the semiring (KZ7%, L, M));

(iii) U is commutative: ALUB = BUA,VA, B € /CigR
(iv) U is idempotent: AUA = A VA € KigR.
2a) (K%g R M) is a commutative, idempotent monoid with neutral element
R:
(i) M is associative: (AN B)MNC =AN(BNC),VA,B,C € ICiQR'

(ii) Mhas a neutral element in =R € Ki@R ANMR =RMA=A,VA €
KZP® (so, R is the 1-element of the semiring (KE7%, U, M));

(iii) M is commutative: AT B = BM A,VA,B € IC%QR,
(iv) M is idempotent: AN A= A,VA € KE7F.

3a) M is left and right distributive over LI:
. +oR,
(i) AN(BUC)=(ANB)U(ANC),YA,B,C € K57%;
. +oR
(ii) (AUB)NC =(ANC)uU(BMNC),VA,B,C € K57~
4a) @ is the absorbing element for M:
ANo=onNA=0,VAc K7

Analogously, we have that also (IC%Z ,M,1) is a commutative, idempotent
semiring, as:

1b) (IC%‘a R M) is a commutative, idempotent monoid with neutral element
R:
(i) M is associative: (AN B)MNC = AN (BNC),YA,B,C € K57,

(ii) Mhas aneutral element in =R € Ki@R AR =RMA = A VA €
lCiQR (so, R is the 0-element of the semiring (lCimR n,u) );

(iii) M is commutative: AN B =BMNAVA B € /CigR
(iv) M is idempotent: AN A= A VA € KE7F.
2b) (lCé‘a R 1)) is a commutative, idempotent monoid with neutral element
g
(i) U is associative: (ALIB)LUC = AU (BUC),VA, B,C € oRKZ;

(ii) U has aneutral element i, = @ € Ki@R AUl =gUA=AVAc
ICjE@R (so, @ is the 1-element of the semiring (/Ci@R M I_J))
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(iii) U is commutative: AU B = BU A,VA,B € IC%,@R;
(iv) U is idempotent: AU A = A,VA € KE7F.
3b) U is left and right distributive over
(i) AU(BNC)=(AUB)N(AUC),YA, B,C € KF7%,
(i) (ANB)LUC =(AUC)N(BUC),VA,B,C € KF°%.
4b) R is the absorbing element for LI:
AUR=RUA=R,VA € K57~

Finally we note that other properties are also involved:
(1) (A*)* = A, VA € KF7%;
* * +oR
(2) Agv_ﬁJrB = B ;TNJFA , VA, Be K57
From these properties, according to Definition 4.1.8, we have the next
proposition.

Proposition 5.2.12. The structures (K?ZR, u,mE - 7+> and (ICCi@R, muc - 7+)
are De Morgan Algebras. 7 ’

As a consequence of Proposition 5.2.12, the following well-known laws
also hold (as it can be clearly seen in the example shown in Figure 5.9).

* * * +oR,
(3.a) (AU B)* = A*M B*, VA, B € K57
* * * +oR
(3.b) (AN B)* = A* LI B*, VA, B € K%,

Remark 5.2.4. Note how in the case of structures (Fg,v, A Sy 4t) and

(Fg, NV, Sy 4+ ) we do not obtain De Morgan algebras since the condition
(d2) of Definition 4.1.8 is not satisfied. Indeed, in this case we have:

ARyt Be= A" 554 B

Lastly, just like in Subsection 5.1.2, let consider again Minkowsky addition,
defined in (5.5), extending it to sets ICE—L and ICéE@ R as it follows:

@:Kigx%%@ such that: (X,Y) — X @Y,
D : ICgQR X leé@R — K%QR such that: (X,Y) — X @Y.

with the usual conventions.

The result is that (ICch, @) and (lecE@ R @) are both commutative monoids,
as they are associative, commutative and (0;0) can be interpreted as the
neutral element. L

Moreover, if we take into account the §7_77+—0rder associated to K, it

is easy to verify, even graphically, that, for all A, B,C € Fg, we have:
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- @ is distributive with respect to V: (AVB)®C = (A C)V(B®C) ;

- @ is distributive with respect to A: (AAB)@C = (A®C)AN(BaO).

In a similar way, it is possible to consider the ;7, N -order associated to
Ket2R. Also in this case for all A, B,C € Ket®, we have:

- @ is distributive with respect to U: (AUB)@C = (Ae& C)U(Ba C);
- @ is distributive with respect to M: (ANB)&C=(AaC)N(B& C).

Remark 5.2.5. Note that, unlike what happened with K% where the
addition @ is distributive with respect to N only if the intervals are not
mutually disjointed (as described in Subsection 5.1.2), considering KCotoR
we have that distributivity is always valid for both orders, §7—77+ and ET’VJF
This depends on the fact that, considering the whole plan, there are no
problems of disjunction between intervals.

7

Proposition 5.2.13. The structures (E, V,®, Sy 4+) and (Fg’ NB, Sy At )
are commutative semirings.

Proof. (Fg, V, @) is a commutative semiring, as:

la) (E, V) is a commutative monoid with neutral element iy, = (—00;0):
(i) V is associative;
(ii) V has the neutral element iy = (—oc; O)iICig:
AV (=00;0) = (—00;0) VA=A, VA € K
(so, iy = (—00;0) is the 0-element of the semiring);

(iii) V is commutative.
2a) (Kig, @) is a commutative monoid with neutral element ig, = (0;0):

(i) @ is associative;

(ii) @ has the neutral element ig = (0;0) € Fg:
X @ (0;0) = (0;0) @ A=A, VA€ KZ
(so, ig = (0;0) is the 1-element of the semiring);

(iii) & is commutative.
3a) @ is left and right distributive over V:
(i) A® (BVC)=(A® B)V(A®C),YA, B,C € K¢;
(i) (AVB)®C=(A®C)V (B®C),VA,B,C € KZ.

4a) iy = (—00;0) is the absorbing element for @:
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(—00;0) B A= A® (—00;0) = (—00;0),VA € 7.

Analogously, also the structure (E, A, @) is a commutative semiring as:

1b) (ICéE, A) is a commutative monoid with neutral element i, = (+00;0):

(i) A is associative;
(ii) A has the neutral element i = (400;0) € E:

AN (+00;0) = (+00;0) NA = A, VA € KT
(s0, in = (+00;0) is the 0-element of the semiring);

(iii) A is commutative.
2b) (Fg, @) is a commutative monoid with neutral element iq, = (0;0):

(i) @ is associative;
(ii) @ has the neutral element ig = (0;0) € E:

A®(0;0) = (0;0) @ A=A, VA€ KF
(so, iy = (0;0) is the 1-element of the semiring);

(iii) & is commutative.
3b) @ is left and right distributive over A:
(i) A® (BAC)=(A@B)A (A& C),VA,B,C € KX,
(i) (AAB)®C = (A®C)A(B®C),YA,B,C € KZ.
4b) ip = (400;0) is the absorbing element for @:
(400;0) @ A =A@ (400;0) = (+00;0),VA € Kié:
O

Proposition 5.2.14. The structures (KggR, U@, - 7+) and (KgQR, ne,c - 7+)
are commutative semirings.

Proof. (KggR, LI, @) is a commutative semiring, as:
1) (KggR, L) is a commutative monoid with neutral element i, = (0; —00) = @

(i) U is associative;

(ii) U has the neutral element i\, = (0; —o0) € KggR: AU (0; —oc0) =
(0;—c0) UA = A, VA € KZ® (so, i, = (0; —00) is the 0-element
of the semiring);

(iii) U is commutative.

2) (KEE@R, @) is a commutative monoid with neutral element iy = (0;0) = 0:
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(i) @ is associative;

(ii) @ has the neutral element ig = (0;0) € KigR. A® (0;0) =
(0;0) ® A= A, VA € KZ7® (so, ie = (0;0) is the l-element of

the semiring);

(iii) & is commutative.
3) @ is left and right distributive over L

(i) A@(BuC’):(AEBB)u(A@C),VA,B,CeKéE@R;
(ii) (AUB =(AeC)U(Y ®Z),YA,B,C € K57~

) &

4) iy = (0; —00) is the absorbing element for &:

(0;—00) A=A (0;—c0) = (0;—00),VA€Ki®R.
(

Analogously, also (K ok 0 , @) is a commutative semiring, as:

1) (KZ?%,M) is a commutative monoid with neutral element iry = (0; +00) =

(i) M is associative;

(ii) M has the neutral element in = (0; +00) € KiQR AT(0;+00) =
(0;4+00)MA=A VA€ Kj:@]R (so, in = (0; +oo) is the 0-element

of the semiring);

(iii) U is commutative.
2) (KZ7%, @) is a commutative monoid with neutral element ig = (0;0) =

(i) @ is associative;

(ii) @ has the neutral element ig = (0;0) € KZ7%: A @ (0;0) =
0:0)® A=A, VA € KR (s0, iz = (0;0) is the l-element of
C D
the semiring);

(iii) @ is commutative.
3) @ is left and right distributive over

(i) Ae (BNC)=(A®B)N(A® C),YA,B,C € K;7%,
(i) (ANB)eC=(AeC)N(Y @ 2),YA,B,C € KZ°~.

4) in = (0; 400) is the absorbing element for &:
(0;+00) @ A = A (0; +00) = (0; +00), VA € KZ7%.
O

Now, according to Definitions 5.1.12 and 5.1.13, we have the following
properties.

R:
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Proposition 5.2.15. (ICC VA, Sy At
sum-free semirings (or antirings).

an ALV, S +) are zero-
d ’CC Ry~

Proof. the proof is immediate since, for definition, we have

VA,BeKE:, AvB= sups (A, B), it follows that:

AV B = (—o0; O)——oo:>A B = (—00;0) = —oc.

Similarly, as VA, B € K, AAB =in fs, (A B), it follows that:

ANB = (400;0) = (+00) = A= B = (+00;0) = (+0). O
Proposition 5.2.16. (ICCiQR, u,mE - +) and (ICéEQR, M, L, Ev‘ v+> are

) )

zero-sum-free semirings (or antirings).

Proof. Proceeding in the same way as Proposition 5.2.15, we have that, since
VA,B e K7°%, AuB = supc (A, B), it follows that:
AUB=(0;—0) =2 = A= B= (0; —c0) = @.

Similarly, as VA, B € K?ZR, ANB= inf;fv7+ (A, B), it follows that:
ANB=(0;4+00)=R=A=B=(0;+0) =R. O

Proposition 5.2.17. (ICCi,\/ ®, Sy 4+) and (IC?;[,/\ ©, Sy 4+) as well as
(’CigR, L, @’;7*,7+) and (lCi@R, M, EB,;TWQ are zero-sum-free semirings
(or antirings).

Proof. As the proof of Proposition 5.2.15 and Proposition 5.2.16. O

Proposition 5.2.18. (ICé[,\/ A Sy H+) and (ICCi,/\ V, Sy ~+) are zero-
diwvisor-free (or entire) semirings.

Proof. The proof is immediate since, for definition, we have

VA,BeK:, ANB=in f<. ., (A B), it follows that:

ANB = (—00;0) = o= A= (—00;0) = —00 or B = (—00;0) = —o0.
Similarly, as VA, B € IC , AVB = supg . (A, B), it follows that:

AV B = (+00;0) = +00 = A = (+00;0) = +00 or B = (+00;0) = +00. [
Proposition 5.2.19. (/CéEQ’R,I_I,I—l,gTﬁQ and (K?QR,I_I,I_I,ET ,Y+) are

)

zero-divisor-free (or entire) semirings.

Proof. Proceeding in the same way as Proposition 5.2.18, we have that, since
VA,B € Kz”%, ANB=infz (A, B), it follows that:
=7 7

ANB=(0;—00) =2 = A= (0;—00) = @ or B = (0; —00;0) =
Similarly, as VA, B € ICjE@R AUB= Supc__ . (A, B), it follows that:
AUB = (0;+00) =R = A= (0;+00) = RorB (0;400;0) = R. O

Proposition 5.2.20. (ICE*L,\/ D, Sy 4+) and (ICéE,/\ D, Sy 4+) are zero-
divisor-free (or entire) semirings.
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Proof. The proof is immediate since, for definition, we have
A®B=(a+b;a+b), VA, B € KZ, it follows that:

A® B =(—00;0) =—00=A=(—00;0) = —00 or B=(—00;0) = —o0.
Similarly, A®@ B = (+00;0) = +00 = A = (+00;0) = 400 or B = (400;0) =
+o0, VA, B € K7 0

Proposition 5.2.21. (IC?ZR,I_I,EB,;T 7+) and (IC(}:@R,I_I,EB,QT 7+) are
zero-divisor-free (or entire) semirings. 7 7

Proof. Proceeding in the same way as proposition (5.2.20), we have that:
A B=(0;—0) =0 =A=(0;—c0) =@ or B=(0;—00) =0

as wellas A@® B = (0;+00) =R = A= (0;+00) =R or B=(0;+00) =R,
VA, B € KF7®. O

We also add that the semirings (ICC A (K, AV, St )
(ICi@R u,neE - 7+) (lCiQR,I_I,I_I,;V_ 7+>’ as well as (Ki,v,@,éf’ﬁ),
(/CC,/\ D, Syt )5 (KEZE, U,@,E - +) and (KE7X, M,®,E - _+), being
zero-sum-free and zero-divisor-free, are Information Algebras (see [47]).

Moreover, Fg and ICéEQ R are also additively-idempotent, specifically we
have that:

- IC is V-idempotent, as VA € lCi, itis AV A=A,

- IC is A-idempotent, as VA € lCi, itis ANA = A;
- ICci@R is L-idempotent, as VA € K?gR, itis AU A = A;
- IC?QR is M-idempotent, as VA € ICéEZR, itis AMA = A.

On the other hand, some of the semiring described above (specifically
(]Ci, V,®D, éfy*,'ﬁ)a (/Ci, N, D, §7777+) (’CigR U, &, =y ’Y+) (’Ci@R n,e, L =~ »y+))
are not multiplicatively-idempotent (or @-idempotent) as only 0 is @-idempotent:
0d0=0and ApA=A< A=0.

Furthermore, since an idempotent semiring (.5, +, ) is complete if it is
closed for infinitive sums and if the product distributes over infinite sums
too (see Subsection 5.1.2), we have that all the semirings just considered are
complete; therefore, the following proposition holds.

Proposition 5.2.22. The structures (ICC VA Sy ) (ﬁi, A
+oR +oR +

(,Cic@ ,u,l_l,;,y_ﬁJr), (ICc® 7|_|7U’£~/—,~,+) as well as (Kz,V,®, 5y 4+ ),

(KZ, A, @, Syt )s (/Céch, U,@,E - ’W) and (/Cg@R,I_h S, E - ~,+) are com-

plete semirings.

Again, the structures examined in this Subsection can be summarized as
follows.
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1) (Kig, V, \; =00, 400, Sy~ -+ ) is a commutative, idempotent, zero-sum-
free, zero-divisor free and complete semiring, as:
1.1 V is associative;
1.2 V is commutative;
1.3 V has the neutral element: —oo (zero of the semiring);
1.4 V is idempotent, as: VA € Fg, AV A=A
[so (Fg, V) is a commutative, idempotent monoid|
1.5 A is associative;
1.6 A is commutative;
1.7 A has the neutral element: +oo (unity of the semiring);
1.8 A is idempotent, as: VA € E, ANA=A;
[so (Kig, A) is a commutative, idempotent monoid|
1.9 A is distributive with respect to V;
1.10 —oo is the absorbing element for A
[so (ﬁ, V,A) is a commutative, idempotent semiring |
1.11 (Fg, V, A) is zero-sum-free: AV B =—00 & A= B = —o0;
1.12 (Fg, V, A) is zero-divisor-free: AN\ B # —oo0 < A # —o0 # B;
1.13 (E, V, A) is complete: V distributes over infinite A;

[so (]Cé[, V, A) is a zero-sum-free, zero-divisor-free and complete
semiring]

2) (Kici, A, V; 400, =00, Sy 4+) is a commutative, idempotent, zero-sum-
free, zero-divisor free and complete semiring, as:
2.1 A is associative;
2.2 A is commutative;
2.3 A has the neutral element: (—o0)* (zero of the semiring);
2.4 A is idempotent, as: VA € E, ANA=A;
[so (ﬁ, A) is a commutative, idempotent monoid|
2.5 V is associative;
2.6 V is commutative;
2.7 V has the neutral element: —oo (unity of the semiring);

2.8 V is idempotent, as: VA € ﬁ, AV A=A

[so (Fg, V) is a commutative, idempotent monoid]
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2.9 V is distributive with respect to A;
2.10 (—o0)* is the absorbing element for V
[so (Fg, A, V) is a commutative, idempotent semiring |
2.11 (ICi,/\ V) is zero-sum-free: AN B = 400 < A = B = +0o0;
2.12 (ICi, A, V) is zero-divisor-free: AV B # 400 < A # +o00 # B;
2.13 ( =, /\,V) is complete: A distributes over infinite V;

[so (ICc , A\, V) is a zero-sum-free, zero-divisor-free and complete
semiring]

3) (ICMR U, o, R, II +) is a commutative, idempotent, zero-sum-

free,

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

3.9
3.10

3.11

3.12
3.13

3.14

zero-divisor- free and complete semiring, as:

LI is associative;
Ll is commutative;
Ll has the neutral element: @ (zero of the semiring);
Ll is idempotent, as: VA € ICéEQR, AUA=A;
[so (IC(jjEg R 11) is a commutative, idempotent monoid]
M is associative;
M is commutative;
M has the neutral element: R (unity of the semiring);
M is idempotent, as: VA € /ngR, ANMA=A;
[so (ICCirzj R M) is a commutative, idempotent monoid]
M is distributive with respect to L;
& is the absorbing element for M
[so (Kig R 1,M) is a commutative, idempotent semiring ]
(ICig]R L, M) is zero-sum-free: AUB =0 < A=B = @;
(ICZTL@R L, M) is zero-divisor-free: AN B # & < A # @ # B;
(Kz KE2® 1,M) is complete: LI distributes over infinite

[so (Kig R U,M) is a zero-sum-free, zero-divisor-free and complete
semiring]
KE2% U, M) is a De Morgan algebra:
C
(A7) =Aand AT __,B=>B'C___ A" VA Be€ KEPR.

4) (/Ci@R MU;R,@,C _ ) is a commutative, idempotent, zero-sum-

free,

4.1

zero-divisor free and complete semiring, as:

M is associative;
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4.2
4.3
4.4

4.5
4.6
4.7
4.8

4.9
4.10

4.11

4.12
4.13

4.14

M is commutative;
M has the neutral element: R (zero of the semiring);
M is idempotent, as: VA € ICCizR, AMA= A
[so (K%, M) is a commutative, idempotent monoid]
LI is associative;
Ll is commutative;
Ll has the neutral element: @ (unity of the semiring);
Ll is idempotent, as: VA € ICéEQR, AUA=A;
[so (lCéEg B 1) is a commutative, idempotent monoid]
Ll is distributive with respect to I1;
R is the absorbing element for LI
[so (ICCi,(a R M,U) is a commutative, idempotent semiring ]
(K?QR, M,U) is zero-sum-free: AMMB=R < A=B=R;
(IC?QR, M, ) is zero-divisor-free: ALUB #R < A # R # B;
(ICé,EQ R, LJ) is complete: M distributes over infinite LJ;
[so (ICéEg R M,0U) is a zero-sum-free, zero-divisor-free and complete
semiring]

(ICCi,@R, M,U) is a De Morgan algebra:
(A)*=Aand AT, B=B'C__ A" VAB€ KPR,

5) (ICjE7 V,®; —00,0, 5y~ 4+ ) is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:

5.1
5.2
5.3
5.4

9.5
5.6
0.7

5.8
9.9

5.10

V is associative;
V is commutative;
V has the neutral element: —oo (zero of the semiring);
V is idempotent, as: VA € E, AV A=A
[so (E, V) is a commutative, idempotent monoid|
@ is associative;
@ is commutative;
@ has the neutral element: 0 (unity of the semiring);
[so (Kici,, @) is a commutative monoid]
@ is distributive with respect to V;
—oo is the absorbing element for &;
[so (Fg, V, @) is a commutative semiring]

(Fg, V, @) is zero-sum-free: AV B =—-00 & A= B = —o0;
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5.11
5.12

(Kiéc, V, @) is zero-divisor-free: A@® B # —oc0 < A # —o0 # B;

(ﬁ, V, @) is complete: it is closed for infinite sums and V dis-
tributes over infinite sums;

[so (ICCi, V, @) is a zero-sum-free, zero-divisor-free and complete
semiring]

6) (K=, A, &;+00,0, S ~+) is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:

6.1
6.2
6.3

6.4

6.5
6.6
6.7

6.8
6.9

6.10
6.11
6.12

A is associative;
A is commutative;
A has the neutral element: +00 (zero of the semiring);
A is idempotent, as: VA € ﬁ, ANA=A;
[so (Fg, A) is a commutative, idempotent monoid|
@ is associative;
@ is commutative;
@ has the neutral element: 0 (unity of the semiring);
[so (Fg is a commutative monoid]
@ is distributive with respect to A;
400 is the absorbing element for &;
[so (Kiéc, A, @) is a commutative semiring]
(Fg, A, @) is zero-sum-free: AN B = +o00 & A= B = +o0;
(Fg, A, @) is zero-divisor-free: A @ B # 400 & A # 400 # B;
(E, A, @) is complete: it is closed for infinite sums and A dis-
tributes over infinite sums;

[so (KZ, A, @) is a zero-sum-free, zero-divisor-free and complete
semiring]

7) (Kfz R,® 2,0, c-, ) is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:

7.1
7.2
7.3
7.4

7.5

LI is associative;
Ll is commutative;
LI has the neutral element: @ (zero of the semiring);
U is idempotent, as: VA € ICéE@R, AU A= A;
[so (IC?QJ R ) is a commutative, idempotent monoid]

@ is associative;
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7.6 @ is commutative;
7.7 @ has the neutral element: 0 (unity of the semiring);
[so (K7, ®) is a commutative monoid]
7.8 @ is distributive with respect to L;
7.9 @ is the absorbing element for ®;
[so (KEZ®, 1, @) is a commutative semiring]
7.10 (ICCi,@R, L, &) is zero-sum-free: ALUB =@ < A= B = o
7.11 (ICCiQR, LI, @) is zero-divisor-free: A @ B # @ & A #+ & # B,

7.12 (ICéE@R,l_I,@) is complete: it is closed for infinite sums and LI
distributes over infinite sums;

[so (KEZ%, 1, @) is a zero-sum-free, zero-divisor-free and complete

semiring]

8) (IC?ZR, M, &;R,0, gvf,v” is a commutative, zero-sum-free, zero-divisor-
free and complete semiring, as:
8.1 MM is associative;
8.2 M is commutative;
8.3 MM has the neutral element: R (zero of the semiring);
8.4 M is idempotent, as: VA € ICCigR, AMA=A;
[so (ICCi.Q R M) is a commutative, idempotent monoid]
8.5 @ is associative;
8.6 & is commutative;
8.7 @ has the neutral element: 0 (unity of the semiring);
[so (K7, @) is a commutative monoid]
8.8 @ is distributive with respect to M;
8.9 R is the absorbing element for &;
[so (leE@IR M, @) is a commutative semiring]
8.10 (K; KEPR 1L, @) is zero-sum-free: ALUB =R & A= B =R;
8.11 (ICiQ]R M EB) is zero-divisor-free: A® B # R < A # R # B;

8.12 (ICéEgR,I_I,@) is complete: it is closed for infinite sums and M
distributes over infinite sums;

[so (IC?Q R M, @) is a zero-sum-free, zero-divisor-free and complete
semiring]

Table 5.4 summarizes the different types of interval semirings we have
defined in this subsection with the properties associated with.
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Semiring 0 — element 1 — element Properties
(ICC,\/ A Sy-t) | —00 = (—00;0) | 400 = (+00;0) C,7ZS,7ZD, 1, E
(KE, AV, Sy t) | 00 = (400;0) | —00 = (—00;0) C,7S,7ZD, L E

(7" unC )| @=(0-00) | R=(0;+00) |C,ZS, 27D, 1, E, DM
(2%, n,u,C ) = (0; +00) @ = (0;—0c0) | C, ZS, ZD, 1, E, DM
(K2, V, B, Sy +) | —00 = (—00;0) 0= (0;0) C, 7S, ZD, E
(KE, A @, Sy o+) | +00 = (+00;0) 0 = (0;0) C, 7S, 7D, E
(K7 0@, 5 )| @=(0;-) 0 = (0;0) C, 7S, 7D, E
(K7 me, 2 ) | R=(0;+00) 0 = (0;0) C, 7S, 7D, E

Table 5.4: Classification of interval “polar” semirings.

C= commutative, ZS=

zero-sum-free (or antinegative), ZD= zero-divisor-free (or entire), I= idempotent,

E= complete, DE= De Morgan algebra.

5.2.3 The barycentric approach (intervals of intervals)

Besides the one examined in Subsection 5.2.2, it is also possible to consider
a different approach to interval structures, such that the validity of the
distributive property is still ensured.

This second modality foresees the use of the concept of interval of intervals

introduced in Subsections 4.1.1 and 4.1.6.

Therefore, according to Definitions 4.1.19 and 4.1.21, for each A, B € K¢
such that AN B # & with respect to inclusion order &, ,+ defined in (4.11),

we can consider the set:

—{XEICc’A/\B ~y ,Y+XN7 7+A\/B}

[4, B3 -
or, respectlvely,

(A.Ble, .

:{XEICclAﬁBg,yf7,y+Xg,yf,,y+ AUB}

Moreover, according to (4.24), we also know that

A8 .

= [[4, Bllc

¥t

(5.12)

(5.13)

which, in case A .- ,+ B, from (4.25), it can also be written as

4Bz,

or,if AS. -

~+ B, from (4.26), as
[[4, Bllc

=[[ANB,AUB]|c

=[[AANB,AV Bl

Syt

Ry~ yt
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Therefore, since the two different notations can be represented by the
same interval of intervals (as well described by Figure 4.19), from now on, in
case no misunderstandings arise, we could also choose to simply write

[[A, B]]'y*,'y*
instead of [[A, B]] or [[A, B]]gf‘ﬁ.

It is interesting to note that in the case where A N B # &, being the
elements of the set [[A, B]],- .+ two-by-two non-disjoint intervals, a great
advantage is obtained in validating the distributive property.

Furthermore, as the classic Minkowski addition is not an internal opera-
tion to the interval [[A, B]],- .+, instead of such addition, it is more suitable
to introduce the “barycentric function” of X = (z;7) and Y = (¥;y) in K¢,
defined as

-
Ry

def <§+—§_E+—§) (5.14)

xXmy ¥ :
2 2

and extend it to the set [[A, B]] as follows:

Y=ot

B HA7 B]]'y*,'y* X [[A’ BH’y*,’y* — [[AvBHﬁF,ﬁﬁ

such that: (X,Y) —s X BY — (9”“/-:”“’).

2 72

Hence, as a consequence of the fact that all the elements of [[A, B]],- .+
are two-by-two non-disjoint intervals (i.e., for all X,Y € [[A, B]],- 4+ it is
X NY # @), we have that the left and right distributive property of B with
respect to U and to M holds for all X,Y, Z € [[A, B]|,- ,+:
la) XB(YUZ) = (XBY)U(XBZ) and (XUY)BZ = (XBZ)U(YBZ);
1b) XB(YNZ) = (XBY)N(XBZ) and (XNY)BZ = (XBZ)N(YBZ).

Moreover, it goes without saying that the same property is valid if the
set [[A, B]],- 4+ is associated with operation V as well as with A; indeed for
all X,Y, Z € [[A, B]],- 4+ we have:

2.2) XBH(YVZ)=(XBY)V(XHBZ) and (XVY)BZ = (XBZ)V(YBZ);
2b) XB(YANZ)=(XBY)AN(XHBZ) and (XAY)BZ = (XBHZ)AN(YHBZ).
It is also trivial to check the validity of the following properties:
3) XBY =YBX,VX,Y €[4, B]],- 4+ (commutativity);
4) XB(YBZ)=(XHY)BX, VXY, Z € [[A, B]]

4 ~+ (associativity);

5) XBX =X, VX € [[4, B]],- ,+ (idempotency).
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Consequently, according to Definition 4.1.7, the following propositions

hold.

Proposition 5.2.23. Let A, B € K¢ such that AN B # @. The structure
([[A, B]] B) is a semilattice.

Yoot
Proof. ([[A, B]],- ,+,H) is a semilattice, as:
(1) BB is associative;

(2) B is commutative;

(3) B is idempotent.

Proposition 5.2.24. Let A, B € K¢ such that AN B # @.

i) If A 3~ + B, then we have that the structures ([[A, B]]
([[A, Bll3

V) and

=

Ry~ 4t

B +,A) are bounded semilattices. k

YooY

ii) If A S~ .+ B, then we have that the structures ([[A, BH%—
([[A, Bllc

U) and

+7
Y
B +,ﬁ) are bounded semilattices.
YooY

Proof. According to Definition 4.1.7, we have that if A 3.~ ,+ B, then
([[4, B]5 V) is a bounded semilattice, as:

— 7
Y=ot

la) V is associative;

3a

(1a)

(2a) V is commutative;
(3a) V is idempotent;
(4a)

4a) V has aneutral element iy, = A: AVX = XVA =X, VX € [[4, B]]

~ .
Ry~ vyt

Likewise, (][4, B]]gf e A) is a bounded semilattice, as:

1b

A is associative;

2b

A is commutative;

3b) A is idempotent;

(1b)
(2b)
(3b)
(4b) A has a neutral element in = B: BAX = XAB =X, VX € [[A, B]]

= .
Ry~ ot

Similarly, in case A &~ ,+ B, then ([[A, B]|c
tice, as:

__,»U) is a bounded semilat-
YO

(1c) U is associative;

(2¢) U is commutative;
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(3c) U is idempotent;

(4c) Uhasaneutral element iy = A: AUX = XUA =X, VX € [[4, B]]gr

At

Finally, ([[4, B]]c N) is a bounded semilattice too, as:

— M
vt

1d

N is associative;

2d

(1d)

(2d) N is commutative;
(3d) N is idempotent;
(4d)

4d) Nhas aneutral element in = B: BNX = XNB = X, VX € [[A, B]]gv_

At
O

According to Definition 5.1.2, other important results concerning the
structures associated with intervals of intervals are the following.

Proposition 5.2.25. Let A, B € K¢ such that AN B # @.

i) If A -4+ B, then the two structures ([[A,Bllz . ,V,H) and
’ Ry~
([[4, B]];VW+ ,N\,8), are commutative, idempotent pre-semirings with
zero.

i) If A S~ ,+ B, then the two structures ([[A, B]]gﬁ/_ WJF,U,EEI) and
(4, BH%— o H) are commutative, idempotent pre-semirings with

ZETro.

Proof. If A 3~ + B, then ([[4, BJ]5
tent pre-semiring with zero, as:

oV, ) is a commutative, idempo-
Y

la) ([[A, Bll3

S V) is a commutative idempotent monoid:
(i) V is associative;
(ii) V is commutative;
(iii) Vv has the neutral element iy = A € [[4, B]]
XVA=X,VX €[[A, B]]
the pre-semiring);

—< : A V X -
. Syt

< _ . (so0, iy = Ais the O-element of
Ry~ Ly

(iv) V is idempotent.

2a) ([[4, Bll3

S H) is a commutative, idempotent semigroup:
(i) B is associative;
(ii) B is commutative;

(iii) B is idempotent.
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3a) H is left and right distributive over V:
(i) XBYVZ) =(XHBY)V(XEBZ),VX,Y,Z < [[A, B
i) (XVvY)BZ=(XBZ)v(YBZ),VX,Y,Z € [[A, B]]

Ryt
Roy=
Similarly, ([[A, B]]ér,ﬁ , A\, H) is a commutative, idempotent pre-semiring

with zero, as:

1b) ([[A, Bll2 A) is a commutative, idempotent monoid:

Yoyt !
(i) A is associative;
(ii) A is commutative;
(iii) A has the neutral element in = B € [[A, B]]
X AB=X,VX € [[A,B]
the pre-semiring);

+:B/\X:

=<
Ry T,y
S0, in = B is the 0-element of

Ra= it (

(iv) A is idempotent.
2b) ([[4, Bllz

S H) is a commutative, idempotent semigroup:
(i) B is associative;
(ii) B is commutative;
(iii) B is idempotent.
3b) H is left and right distributive over A:
() XB(YAZ)=(XBY)A(XBZ),YX,Y,Z € [[A,B]
i) ( XAY)BZ=(XB2Z2)ANYHBZ),VX,Y,Z € [[A, B]]

Ryt
Syt
In a similar way, if A &~ .+ B, we have that ([[A,B]]gf W+,U,EE) is a

commutative, idempotent pre-semiring with zero, as:

Le) ([[A, B]c

_ _,»U) is a commutative, idempotent monoid:
YooY

(i) U is associative;
(ii) U is commutative;
(ili) U has the neutral element iy = A € [[A, B]]gw_’7+ AUX =
XUA=X,VX € [[4, B”%—,fr (so, iy = A is the O-element of
the pre-semiring);

iv) U is idempotent.
(iv)

H) is a commutative, idempotent semigroup:

20) ([|4. Blc.

-t
(i) B is associative;

(ii) B is commutative;
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(iii) B is idempotent.
3c) B is left and right distributive over U:
(i) XBYUuUZ)=(XHY)U(XHBZ),VX,Y,Z € [|A, B]]gw_
i) ( XUY)BZ=(XB2Z2)U(YBZ),VX,Y,Z € [[A,B]]gf

s
e
Likewise, we have that ([[A, B]]gf gt H) is a commutative, idempotent

pre-semiring with zero, as:

1d) ([[4, B]lc__ _,,N) is a commutative, idempotent monoid:
=7

(i) N is associative;
(ii) N is commutative;
(iii) N has the neutral element in = B € [[A’B]]gf,ﬁ :BNX =
XNB=X,VX ¢ [[A,B]]gr’7+ (so, in = B is the 0-element of
the pre-semiring);

(iv) U is idempotent.

2d) ([[4, B]lc__ . ,H) is a commutative, idempotent semigroup:
= Y

(i) H is associative;
(ii) B is commutative;
(iii) B is idempotent.
3d) H is left and right distributive over N:
() XB(YNZ)=(XBY)N(XBZ),YX,Y,Z € [[4,B]lc_
(i) (XUY)BZ=(XBZ)N(YBZ),¥X,Y,Z € [[4,B]lc _

ot
At

O
Remark 5.2.6. Note that in Proposition 5.2.25 we considered the classical
set union U instead of the convexr union W that we had used in Subsection
5.1.2 because, as all the elements of [[A, B]],- ,+ are intervals not disjoint

from each other, it follows that the use of such an operation is no longer
justified.

Proposition 5.2.26. Let A, B € K¢ such that AN B # @.

i) If A Z,-,+ B, then the two structures ([[A,B]]éf A/Jr,\/,/\) and
([[A,B]]gﬂ{_’ﬁ,/\, V) are commutative, idempotent semirings.

i) If A S, ,+ B, then the two structures ([[A,B]lc _ . ,U,N) and
’ =7
([[A,B]]gr 7+,ﬁ,U) are commutative, idempotent semirings.
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Proof. If A3, ,+ B, we have that ([[A, B]]<

,V,\) is a commutative,
Ry~ oyt

idempotent semiring, as:

la) ([[A,Bl]x _ .,V) is a commutative, idempotent monoid with neutral
Ry~ oy
element iy, = A:

(i) V is associative;
(i) V is commutative;
(iii) V has the neutral element iy = A € [[A, B]]
AV X =X, VX € [[A,B]
the semiring);

—< : X V A =
. oyt

< _ . (so0, iy = Ais the O-element of
Ry ™,y

(iv) V is idempotent.
2a) ([[4, Bll3

_ _,»/) is a commutative, idempotent monoid with neutral
Ry~ ,y

element i, = B:

(i) A is associative;
(ii) A is commutative;
(iii) A has the neutral element in = B € [[A, B]]
BAX =X,VX € [[A,B]
the semiring);

+:X/\B:

=
RyT L,y
so, in = B is the 1-element of

Sy
(iv) A is idempotent.
3a) A is left and right distributive over V:
i) XAYVZ)=(XAY)V(XAZ)VX,Y,Z € [[A, B]
i) XVY)ANZ=(XANZ)V(YANZ)VX,Y,Z € [[A, B]

Rym ot
Roy=
4a) iy = A is the absorbing element for A:

ANX =XNA=AVX €[[A B3 _

Y=ot

Likewise, ([[4, B]|<

VAN V) is a commutative, idempotent semiring, as:
Ry =,y

1b) ([A.Bllz _ ..

element i, = B:

A) is a commutative, idempotent monoid with neutral

(i) A is associative;
(ii) A is commutative;
(iii) A has the neutral element in = B € [[A, B]]
BAX =X, VX €[[A,B]
the semiring);

er:X/\B:

=
=T,
(so, in = B is the 0-element of

=<
Ry~ ot

(iv) A is idempotent.
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2b) ([[A, B]3

< __.,V) is a commutative, idempotent monoid with neutral
~Y Y

element 7, = A:

(i) V is associative;
(ii) V is commutative;
(iii) Vv has the neutral element iy = A € [[4, B]]
AV X =X, VX € [[A,B]
the semiring);

St : X VA=

< _ . (so,iy=A1s the 1-element of
Ry~ v

(iv) V is idempotent.
3b) V is left and right distributive over A:
i) XVYANZ)=(XVY)AN(XVZ),VX,Y,Z € [[A,B]]
i) ( XAY)VZ=(XVZ)NYVZ)VXY,Zc]ADB]

Ry= )
Ry= it
4b) i = B is the absorbing element for V:

BVX=XVB=BVX€[AB]_ .
Ry~ vy

Similarly, if A &, -+ B, then ([[A4, B]]gw_ﬁ,u, N) is a commutative, idem-

potent semiring, as:

Le) ([[4, Bllc

=yt
element i, = A:

U) is a commutative, idempotent monoid with neutral

(i) U is associative;
(ii) U is commutative;
(iii) U has the neutral element iy = A € [[A,B]]lc _ . : XUA =
=7

At
AUX =X, VX € [[4, Bng (so, iy = A is the 0-element of
the semiring);

At

(iv) U is idempotent.

2¢) ([[4, B]lc__ . ,N) is a commutative, idempotent monoid with neutral
=7 Y

element i = B:
(i) N is associative;
(ii) N is commutative;
(iii) N has the neutral element in = B € [[A,B]]lc _ . : XNB =
=

At
BnNnX =X,VX €A, B]]gf (so, in = B is the l-element of
the semiring);

At

(iv) N is idempotent.

3c) N is left and right distributive over U:
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(i) XN(YUZ)=(XNY)U(XNZ),YX,Y,Z € [[A,Bllc__
(i) (XUY)NZ=(XNZ)U(YAZ),YX,Y,Z € [[A, Bl _

At ;
e
4c) iy = A is the absorbing element for N:

ANX =XNA=AVX €[4 B]c

At

Likewise, ([[A, B]]g7

o, U) is a commutative, idempotent semiring, as:
- Y

1d) ([[4, B]lc__ _,,N) is a commutative, idempotent monoid with neutral
= Y
element i = B:

(i) N is associative;
(ii) N is commutative;
(iii) N has the neutral element in = B € [[A, B]]gw_ 4 XNB =
BNX =X,vX €[[A,Blc_
the semiring);

St (so, in = B is the O-clement of

(iv) N is idempotent.

2d) (([A Bllc__ .
element iy, = A:

U) is a commutative, idempotent monoid with neutral

(i) U is associative;
(ii) U is commutative;
(ili) U has the neutral element iy = A € [[A, B]]gv—,ﬁ c XUA=
AUX =X, VX € [[4, B]]gr’7+ (so, iy = A is the 1-element of
the semiring);

(iv) U is idempotent.
3d) U is left and right distributive over N:
i) Xu¥YnN2)=XUY)N(XU2),VX,Y,Z € [[A’BH%—
i) (XNY)UZ=(Xu2Z)n(YUZ),VX,Y,Z € [[A,B]]g7

ot

S

4d) in = B is the absorbing element for U:
BUX=XUB=DB,VX € HA’BH%—

At
OJ

Furthermore, according to Definitions 5.1.12 and 5.1.13 , we have that
the following properties hold.

Proposition 5.2.27. Let A, B € K¢ such that ANB # &, then the structures
([[4, B]]= V,A) and ([[A, BHéw— YAr V) are zero-sum-free semirings.

~

Ry~ .yt
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Proof. Considering the case in which A 3, ,+ B (the other cases are
analogous), the proof is immediate since, for definition, we have

VXY €[4, BH , XVY = supg +(X, Y), it follows that:
XVY—A=> X"V -4 K

Similarly, as VX,Y € [[A4, B]]érnﬁ’ XAY = mfér,ﬁ (X,Y), it follows

that: XAB=B=X=Y =DB. O
Proposition 5.2.28. Let A, B € K¢ such that ANB # &, then the structures
([[A, B]]g ~ +,U,ﬂ) and ([[A, B]]g ~ ,ﬂ,U) are zero-sum-free semirings.

Proof. Con&dermg the case in Wthh A S, ,+ B (the other cases are
analogous) and proceeding in the same way as Proposition 5.2.27, we have
that, since VX,Y € [[A, B]]gr’ﬁ, XUY = supc (X,Y), it follows that:
XUY=A=X=Y=A

Similarly, as VX, Y € [[A4, BHEV,#’ Xny = z'nfgr’W+ (X,Y), it follows
that: XNY=B=X=Y =08. O

As a consequence of Propositions 5.2.27 and 5.2.28, we also have the next
one.

Proposition 5.2.29. Let A, B € K¢ such that AN B # &.
i) The two structures ([[A, B]]éf 7+7\/,E) and ([[A, B]]=

= )
Ry~ T

A, B) are
zero-sume-free pre-semirings.

it) The two structures ([[A, B]]gf er,U,Eﬂ) and ([[A, B] N,H) are

zero-sum-free pre-semirings.
Proposition 5.2.30. Let A, B € K¢ such that ANB # &, then the structures
([[A, Bl]= V,A) and ([[A,B]]-éw_ 7+,/\,\/) are zero-divisor-free semir-
ings.

-
=yt

~_+7

Proof. Considering the case in which A Z,- ,+ B (the other cases are
analogous), the proof is immediate since, for definition, we have

VX,Y € [[A, Bl XNY = znf< _ +(X, Y), it follows that:
XAY —A=X-Aory— A K

Similarly, as VX, Y € [[A, B”évaw’ XVY = supg . (X,Y), it follows
that: XvVY =B=X=BorY = B. O

Proposition 5.2.31. Let A, B € K¢, then the structures ([[A, B]]
and ([[4, B]]g gt U) are zero-divisor-free semirings.

U,N)

c
=yt

Proof. Con&dermg the case in which A &,- .+ B (the other cases are
analogous) and proceeding in the same way as Proposition 5.2.30, we have
that, since VX,Y € [[A, BH%—,#’ XNnY = mf%—,w (X,Y), it follows that:
XNY=A=X=AorY =A.

Similarly, as VX,Y € [[4, Bl]c , XUY = supc_ _ +(X, Y), it follows
that: XUY = B= X = Bor ¥ - B. : O
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Now, on the basis of what has been analysed so far and taking into
account the polarity highlighted between the two orders 3, ,+ and &, +
(see Section 4.1 ), it may be interesting to try placing them in the same type
of structure. What we get are the following statements.

Proposition 5.2.32. Let A, B € K¢ such that AN B # @.

i) The structures ([[A, B]]< 5oV U) and ([[A,B]]éf’ﬁ,/\, U) as well as
([[4, B]}éﬂ/_’ﬁ,\/, N) and ([[A, B]]§7_7W+,A, N) are commutative, idem-
potent pre-semirings with zero and unity.

it) The structures ([[A, B]]g'y_,’y"’ ,U, V) and ([[4, BH%—MF ,M, V) as well as
([[A,BH;V_’#,U, A) and ([[A, B]]gv_’w,ﬂ, A) are commutative, idem-

potent pre-semirings with zero and unity.

Proof. In the demonstration of part i) we only consider the case in which
A Z,- 4+ B (the other cases are analogous). Therefore, we have that
([[A, B]];W_ oV U) is a commutative, idempotent pre-semiring as:

A, Bllx _ ,V) is a commutative, idempotent monoid with neutral
R ot
element 7, = A:

(i) V is associative;

(ii) V is commutative;

(iii) V has the neutral element iy, = A € [[A4, B]]; :
XVA:AVX:X,VXE[[AB]]é (so iv = A is the
0O-element of the pre-semiring);

(iv) V is idempotent.

2a) ([[A, B]]N ~ +,U) is a commutative, idempotent monoid with neutral
element ZU =ANB:

(i) U is associative;
(ii) U is commutative;
(iii) U has the neutral element iy, = AN B € [[A, B]] S
UANB) =(ANB)UX = XVXG[[A,B]]
iy = AN B is the 1-element of the pre-semiring);

=
Ryt (so,

(iv) U is idempotent.
3a) U is left and right distributive over V:

(i) Xu(¥Yvz)=(XUY)Vv(XUZ2),VvX,Y,Z € [A, B]<

~ o — b
Ry~ T

(i) ( XvY)UZ=(XUZ)Vv(YUZ),VX,)Y,Z € [[A, B]<

Ry— 4t
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Likewise, ([[A, B]]j’y

Dot A, U) is a commutative, idempotent pre-semiring as:

1b) (4. Blls _ ..
element i\ = B:

A) is a commutative, idempotent monoid with neutral

(i) A is associative;
(ii) A is commutative;
(iii) A has the neutral element i, = B € [[A, B]]
XAB=BAX =X, VX € [[A B
0O-element of the pre-semiring);

=<
Ry~ oyt

< (so, in = B is the
Ry~ ot

(iv) A is idempotent.

2b) ([[4, Bllz

C U) is a commutative, idempotent monoid with neutral
Ry~ ,y
element iy, = AN B:

(i) U is associative;

(ii) U is commutative;

(iii) U has the neutral element iy, = AN B € [[4, BJ|5

77 + :
XU@ANB) = (ANB)UX = X, VX € [A Bz, (s,
iy = (AN B) is the 1-element of the pre-semiring);
(iv) U is idempotent.
3b) U is left and right distributive over A:
(i) XUYAZ)=(XUY)AN(XUZ),VX,Y,Z € [[A’B]]ér .
(i) (XAY)UZ=(XUZ)A(YUZ),YX,Y,Z €[4 B]s _ ..

Similarly ([[A, B]] S V,N) is a commutative, idempotent pre-semiring as:

le) ([[A,Bllz _ . ,V) is a commutative, idempotent monoid with neutral
Ry T,y

element iy = A as the 0-element of the pre-semiring (verified in 1a).

2¢) ([[A, BJg

S N) is a commutative, idempotent monoid with neutral
element in = AU B:
(i) N is associative;

(ii) N is commutative;

(iii) M has the neutral element in = AU B € [[4, B]|g
XN(AUB) = (AUB)NX = X, VX €|
in = AU B is the 1-element of the pre-semiring);

(iv) N is idempotent.

3c) N is left and right distributive over V:
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() XN(YVZ)=(XNY)V(XNZ),VX,Y,Z € [|A,B]
(i) (XVY)NZ=(XNZ)V(YNZ),VX,Y,Z € [[A, B]

3 )
Ryt
= .
Ryt

Likewise, ([[4, B]]<

S A,N) is a commutative, idempotent pre-semiring as:

1) (14, B)l=_ .,
element i, = B as the 0-element of the pre-semiring (verified in 1b).

A) is a commutative, idempotent monoid with neutral

2d) ([[A, B]]
element in = AU B as the 1-element of the pre-semiring (verified in
2¢).

< _ _.,N)is a commutative, idempotent monoid with neutral
Ny T,y

3d) N is left and right distributive over A:
) XNn(YANZ)=(XNY)AN(XNZ),VX,Y,Z € [[A, B
i) ( XAY)NZ=(XN2)ANYNZ)VX,Y,Z € [[A, B

3 )
Ryt
= .
Ry~ T

In a similar way, in the demonstration of part ii) we only consider the case
in which A &~ + B (the other cases are analogous). Therefore, we have
that ([[4, B]]gw_ Y V) is a commutative, idempotent semiring as:

1e) ([A.Bllc ..
element iy = A:

U) is a commutative, idempotent monoid with neutral

(i) U is associative;

(ii) U is commutative;

(iii) U has the neutral element iy, = A € [[A’B]]gw—wL c XUA =
AUX =X, VX € [[4, B”gw—,ﬁ (so, iy = A is the 0-element of
the pre-semiring);

(iv) U is idempotent.

2e) ([[A, B]]gv_,W .»V) is a commutative, idempotent monoid with neutral
element 7y, = A A B:

(i) V is associative;
(ii) V is commutative;
(iii) V has the neutral element i = AA B € [[4, B]]gf,ﬁ t XV(AA
B):(A/\B)\/X:X,VXG[[A,B]]gf (so, iy = AN B is
the 1-element of the semiring);

At

(iv) V is idempotent.
3e) V is left and right distributive over U:

() XV(YUZ)=(XVY)U(XVZ),YX,Y,Z €[4 Bl _

)
At
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(i) (XUY)VZ=(XVZ)U(YVZ),YX,Y,Z €A Bllc _

At

Likewise, ([[A, B]lc _ . ,N,V) is a commutative, idempotent pre-semiring as:
=7

1) (A Bl _ ..
element i = B:

N) is a commutative, idempotent monoid with neutral

(i) N is associative;
(ii) N is commutative;
(iii) N has the neutral element in = B € [[A,B]]gw_ e XNB =
BNX =X,VX € [[4,Bllc__
the pre-semiring);

S+ (so, in = B is the 0-element of

iv) N is idempotent.
(iv)

2%) (4Bl ..
element i, = AA B as the 1-element of the pre-semiring (verified in 2e).

V) is a commutative, idempotent monoid with neutral

3f) V is left and right distributive over N:

() XV(¥YNZ)=(XVY)N(XVZ),YX,Y,Z €[4 Bl _
(il) (XNY)VZ=(XVZ)N(YVZ),VX,Y,Z € [[A, B]c

==t

;
At

Similarly, ([[4, Bﬂgv

_ oY, A) is a commutative, idempotent semiring as:
)Y

1g) ([[A, Bllc__ .,U) is a commutative, idempotent monoid with neutral
= Y
element iy, = A as the 0-element of the pre-semiring (verified in le).

2g) ([[A, B]]gf 4 A) is a commutative, idempotent monoid with neutral
element i, = AV B:

(i) A is associative;
(ii) A is commutative;
(iii) A has the neutral element in = AV B € [[A, B]]gw_‘7+ c XAN(AV
B):(A\/B)AX:X,VXG[[A,B]]gf (so, in = AV B is
the 1-element of the pre-semiring);

At

(iv) A is idempotent.
3g) A is left and right distributive over U:

() XA(YUZ)=(XAY)U(XAZ),YX,Y,Z € [[4,Bllc__
(i) (XUY)AZ=(XAZ)U(Y AZ),¥X,Y,Z € [[A,Bllc__

At
At

Likewise, ([[A4, B]]c

S N, A) is a commutative, idempotent pre-semiring as:
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1h) ([[4, Bllc

=yt
element in = B as the 0-element of the pre-semiring (verified in 1f).

N) is a commutative, idempotent monoid with neutral

2h) ([[A, B]]gw_ . A) is a commutative, idempotent monoid with neutral
element in = AV B as the 1-element of the pre-semiring (verified in 2g).

3h) A is left and right distributive over N:
1) XAYNZ2)=(XANY)N(XA2Z)VX,Y,Z € [[A’BH%— 4
i) XNY)ANZ=(XANZ2)N (Y ANZ),VX,Y,Z € [[A,B]]gv_ e

O]

Also this time, according to Definitions 5.1.12 and 5.1.13, we have the
following statements.

Proposition 5.2.33. Let A, B € K¢ such that ANB # @&, then the structures

(A Bllz __..v,0) and ([A, Bllx . AU), asuellas ([A, Bllg __,.v,)
and ([[A, B]] Ny N), are zero-sum-free pre-semirings.
Proof. See proof of Proposition 5.2.27. O

Proposition 5.2.34. Let A, B € K¢ such that ANB # @&, then the structures
(14, Bllc.__,,U.V) and (14, Bllc.__,,N,V), aswellas ([A, Bllc .U, )

and ([[A, B]] N, \), are zero-sum-free pre-semirings.

Y
Proof. See proof of Proposition 5.2.28. O
Proposition 5.2.35. Let A, B € K¢ such that AN B # @&, then we have that
(A Blls__,,v,0) and (A, Bllz _ . AV), aswellas (4, Bllz,__,.vn)
and ([[A, B]|3 s N), are zero-divisor-free pre-semirings.

Proof. Considering the case in which A 3, ,+ B (the other cases are
analogous), the proof is immediate since, for definition, we have

VX,Y € [[A, B]] , XUY = supc _ . L (X,Y), it follows that:

XUY = A:>X AorY ASlmllarly,XUY B=X=BorY =B.
Likewise way we have that,

since VX, Y € [[A, B]]éf,ﬁ’ XNy = z'nfgr’7+ (X,Y), it follows that:
XNY=A=X=AorY =A.

Similarly, XNY =B= X =BorY = B. O

Proposition 5.2.36. Let A, B € K¢ such that AN B # &, then we have
that the structures ([[A, B]]c U, V) and ([[4, B]]gf ﬁ,ﬂ,\/), as well

=yt
as ([[A4, B]]Ef Y A) and ([[A,Bﬂgf gt N), are zero-divisor-free pre-
$emirings. ’ ’
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Proof. Considering the case in which A &,- .+ B (the other cases are

analogous) and proceeding in the same way as Proposition 5.2.35, we have

that, since VX,Y € [[A, Bl]c , XVY = supg L (X,Y), it follows that:
="

XVY=A=X=AorY = ASlmllarly,X\/Y BiX BorY =B.

Likewise way we have that,

since VX, Y € [[A, B]]c , XAY = mf« _ . (X,Y), it follows that:

XANY=A=X= Aoer ASlmllarly,X/\Y B=X=BorY =8B.
O

Finally, according to Definition 5.1.14, it is easy to verify the following
property.

Proposition 5.2.37. Let A, B € K¢ such that AN B # &.

i) The two structures ([[A, Blls _ ,V,A) and ([[4, B]|5 A, V) are
complete semirings while ([[A B]] . LV, H) and ([[4, B]]%r, LA, H)
Bl 0, (4Bl ..AU),

Héy—,w; ,\,N) are complete pre-semirings.

—t’

as well as the structures ({]

A?
([[4; Bllx B

V,N) and ([[A,

St

ii) The two structures ([[A, B]]c C b N) and ([[A, Bl]c S U) are
complete semirings while ([[A, B]] Y B) and ([[A, B]] gt H)
as well as the structures ([[A, B]]: _77+,U,\/), ([[A, B]]:W_,W,ﬂ,\/),
([[4, BH%—,~,+ ,U,A) and ([[A, B]]gw_’ﬁ,ﬁ, N) are complete pre-semirings.

Similarly to what was done at the end of Subsections 5.1.2 and 5.2.2, all
the structures examined in this paragraph can be summarized as follows.

1) ([[4, B])= V2N ANB,AY B, 2 - 4+) is a commutative, idempo-
Ry~
tent, zero—sum—free, zero-divisor free and complete semiring, as:

1.1 V is associative;

1.2 V is commutative;

1.3 V has the neutral element: A A B (zero of the semiring);

1.4 V is idempotent, as: VX € [[A,B]]x = ., X VX = X;

Ry~
[so ([[A, Bl

1.5 Ais assomatlve,

3 - +,\/) is a commutative, idempotent monoid]
1.6 A is commutative;
1.7 A has the neutral element: AV B (unity of the semiring);
1.8 A is idempotent, as: VX € [[A,B]]-éw_ o XANX =X,

[so ([[4, Bllx

< __.,/\) is a commutative, idempotent monoid]
~Y Y

1.9 A is distributive with respect to V;
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1.10 A A B is the absorbing element for A
[so ([[4, B]]éw— Vs A) is a commutative, idempotent semiring |
111 (A, Bl _
Y =AAB;
1.12 ([[4, B]]éﬁ_ Vs A) is zero-divisor-free:
XAY #AANBe X#ANB#Y;
1.13 ([[A, B]]év— e V, A) is complete: V distributes over infinite A;
[so ([[A, B]]

7Jr,\/,/\) is zero-sum-free: X VY = AANB & X =

< _ ., V, /) is a zero-sum-free, zero-divisor-free and
Ry =,y
complete semiring]
([A, Bz~ AV;AV B,ANB, 3, ,+) is a commutative, idempo-
"y~ ,y )

tent, zero-sum-free, zero-divisor free and complete semiring, as:

2.1 A is associative;
2.2 A is commutative;
2.3 A has the neutral element: AV B (zero of the semiring);
2.4 A is idempotent;
o (A Bz .

2.5 V is associative;

A) is a commutative, idempotent monoid]

2.6 V is commutative;
2.7 V has the neutral element: A A B (unity of the semiring);
2.8 V is idempotent;
so (4. Bz ..
2.9 V is distributive with respect to A;
2.10 AV B is the absorbing element for V

V) is a commutative, idempotent monoid|

[so ([[4, B]];v_ YA V) is a commutative, idempotent semiring |
2.11 ([[A, B]]gw_ :
Y =AVB;
2.12 ([[4, B]];f YA V) is zero-divisor-free:
XVY#AVB&S X #AVB#4Y;
2.13 ([[4, BHQW— e A, V) is complete: A distributes over infinite V;
[so ([[4, Bl]3

~

— )
Ry~ 4t

/A, V) is zero-sum-free: X ANY = AV B & X =

A, V) is a zero-sum-free, zero-divisor-free and

complete semiring]

([[A,Bllc _ . ,U,MmANB,AUB,S,- ,+) is a commutative, idempo-
= Y I
tent, zero-sum-free, zero-divisor-free and complete semiring, as:

3.1 U is associative;
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3.2 U is commutative;

3.3 U has the neutral element: AN B (zero of the semiring);

3.4 U is idempotent;
so ([A. Bllc__ ..

3.5 N is associative;

U) is a commutative, idempotent monoid|

3.6 N is commutative;
3.7 N has the neutral element: AU B (unity of the semiring);
3.8 N is idempotent;
so (4. B _ .
3.9 N is distributive with respect to U;
3.10 AN B is the absorbing element for N

N) is a commutative, idempotent monoid]

[so ([[4, B]lc__ ,,U,N) is a commutative, idempotent semiring |
=
3.11 ([[A,B]]gw_ 7+,U,ﬁ) is zero-sum-free: X UY = ANB & X =
Y =ANB;
3.12 ([[A4, B]];v_ oY N) is zero-divisor-free:
XNY#ANB&X#ANB#4Y;
3.13 ([[A, Bl]lc__ ,,U,N) is complete: U distributes over infinite N;
=7 Y
[so ([[A, B]]gw* Y N) is a zero-sum-free, zero-divisor-free and
complete semiring]
4) ([[A,Bllc__ .,N,U;AUB,ANB,S,- ,+) is a commutative, idempo-
7’\/ !’Y K
tent, zero-sum-free, zero-divisor free and complete semiring, as:
4.1 N is associative;
4.2 N is commutative;
4.3 N has the neutral element: AU B (zero of the semiring);
4.4 N is idempotent;
[SO (HA7 BHgf’ﬁ )

4.5 U is associative;

N) is a commutative, idempotent monoid]

4.6 U is commutative;
4.7 U has the neutral element: AN B (unity of the semiring);
4.8 U is idempotent;
o (4. Blle ..
4.9 U is distributive with respect to N;
4.10 AU B is the absorbing element for U;

U) is a commutative, idempotent monoid|

[so ([[A, BH%- o0 U) is a commutative, idempotent semiring]
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4.11 ([[A,Bllc__ _.,N,U) is zero-sum-free: X NY = AUB & X =
=7
Y=AUB;
4.12 ([[A, Bllc__ . ,N,U) is zero-divisor-free:
=7
XUY£2AUB& X£AUB#Y;
413 ([[A, B]]lc__ . ,N,U) is complete: N distributes over infinite U;
=7
[so ([[4, Bllc__ _,,N,U) is a zero-sum-free, zero-divisor-free and
=7
complete semiring]
5) (([[4, B]]éw— W+,\/,EE;A A B, 3~ 4+) is a commutative, idempotent,
zero-sum-free and complete pre-semiring with zero, as:
5.1 V is associative;
5.2 V is commutative;
5.3 V has the neutral element: A A B (zero of the pre-semiring);
5.4 V is idempotent;
50 (([4, B2

V) is a commutative, idempotent monoid|

e
5.5 H is associative;

5.6 H is commutative;

5.7 H is idempotent;

[so ([[4, B]]éfﬁJr ,H) is a commutative, idempotent semigroup]
5.8 H is distributive with respect to V;
[so ([[4, B]]gvi7+ ,V,H) is a commutative pre-semiring with zero
element A]
5.9 ([[4, B]]QW_WJF,\/,EEI) is zero-sum-free: X VY = AANB & X =
Y=AAB;
5.10 ([[A, B]]éf oV ) is complete: it is closed for infinite sums and

V distributes over infinite sums;
[so ([[A,BH;V,W,\/,EE) is a zero-sum-free and complete pre-
semiring]

6) ([[4, B]]

sum-free and complete pre-semiring with zero, as:

2o B; AVB, Z,- ,+) is a commutative, idempotent, zero-
6.1 A is associative;

6.2 A is commutative;

6.3 A has the neutral element: AV B (zero of the pre-semiring);

6.4 A is idempotent;

[so ([[4, B]|g A) is a commutative, idempotent monoid]

— )
vyt
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6.5 H is associative;
6.6 H is commutative;

6.7 H is idempotent;

[so ([[4, B]]éfwr ,B) is a commutative, idempotent semigroup]
6.8 H is distributive with respect to A;
[so ([[4, B]]ér,w , A\, H) is a commutative pre-semiring with zero
element B]
6.9 ([[4, B]]§7777+,A,Hﬂ) is zero-sum-free: X A\Y = AVB & X =
Y =AVDB;

6.10 ([[A, B]]z _ ., A,H) is complete: it is closed for infinite sums and
Ry~ Y
A distributes over infinite sums;
[so ([[4, Bllg A, @) is a zero-sum-free and complete pre-

~

— 4
. YooY
semiring]

7 (4 Blle__,.UBANB,C, -

zero-sum-free and complete pre-semiring with zero, as:

) is a commutative, idempotent,

7.1 U is associative;
7.2 U is commutative;
7.3 U has the neutral element: AN B (zero of the pre-semiring);
7.4 U is idempotent;
5o ([[A, Bllc

7.5 H is associative;

_ V) is a commutative, idempotent monoid]

YooY

7.6 H is commutative;

7.7 H is idempotent;
so ([A.Bllc__ ..

7.8 H is distributive with respect to U;

) is a commutative, idempotent semigroup]

[so ([[4, B]]gf’7+ ,U,H) is a commutative pre-semiring with zero
element A]
79 ([A.Bllc_ ..
Y=ANBkB;
7.10 ([[A, B]]gr,ﬁ ,U,H) is complete: it is closed for infinite sums and
U distributes over infinite sums;

U,HB) is zero-sum-free: X UY = ANB & X =

[so ([[A,B]]gf W+,U,EE) is a zero-sum-free and complete pre-

semiring]

8) ([[4,Bllc, _, NB;AUB, S,
sum-free and complete pre-semiring with zero, as:

) is a commutative, idempotent, zero-
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9) ([A.B)lx _

tent, zero-sum-free, zero-divisor free and complete pre-semiring with

8.1 N is associative;
8.2 N is commutative;
8.3 N has the neutral element: AU B (zero of the pre-semiring);
8.4 N is idempotent;
o ([[4. Blc

8.5 H is associative;

_ _,»N) is a commutative, idempotent monoid]

YooY

8.6 H is commutative;

8.7 H is idempotent;
so ([[A. Bllc__ .

8.8 H is distributive with respect to N;

) is a commutative, idempotent semigroup]

[so ([[4, BH%— gt ) is a commutative pre-semiring with zero
element B]

8.9 ([[A, B]]gw—,ﬁ’
Y=AUB;

8.10 ([[A, B]]gw_ 4 N, H) is complete: it is closed for infinite sums and

N distributes over infinite sums;

[so ([[4,Bllc__ _,,N,®) is a zero-sum-free and complete pre-
=7

semiring]

zero and unity, as:

9.1 V is associative;
9.2 V is commutative;
9.3 V has the neutral element: A A B (zero of the pre-semiring);
9.4 V is idempotent, as: VX € [[4, B]]x =, X VX =X
Ry~
o (14, Bll5 _ ..

9.5 U is associative;

V) is a commutative, idempotent monoid|

9.6 U is commutative;
9.7 U has the neutral element: AN B (unity of the pre-semiring);
9.8 U is idempotent, as: VX € [[A,B]lx =, XUX = X
et
so ([A. Bllz _ .
9.9 U is distributive with respect to V;

A) is a commutative, idempotent monoid]

so([[4,Bllx _ .,V,A)isacommutative, idempotent pre-semiring
Ry~ 4t

with zero and unity]

N,H) is zero-sum-free: X NY = AUB & X =

VU AANB,ANB, 3y~ 4+) is a commutative, idempo-
sy ’
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10)

11)

9.10 ([[4, B]]éfﬁ,v,u) is zero-sum-free: X VY = AANB & X =
Y=AAB;

9.11 ([[A4, B]]éw*,ﬁ’v’ U) is zero-divisor-free:
XUY#ANB& X#ANB#Y,

9.12 ([[A4, B]];v_’w,\/, A) is complete: V distributes over infinite U;

[so ([[4, Bz

VY, A) is a zero-sum-free, zero-divisor-free and
Ry~

complete pre-semiring]

([[A, B]]éw— RTANEE AV B,ANB, 3, ,+) is a commutative, idempo-

tent, zero-sum-free, zero-divisor free and complete pre-semiring with

zero and unity, as:

10.1 A is associative;

10.2 A is commutative;

10.3 A has the neutral element: AV B (zero of the pre-semiring);

10.4 A is idempotent;
so (14, Bllx_ ..

10.5 U is associative;

A) is a commutative, idempotent monoid|

10.6 U is commutative;
2.7 U has the neutral element: AN B (unity of the pre-semiring);
10.8 U is idempotent;

so ([[4, B]]< _ ,,U) is a commutative, idempotent monoid
Ry~ 4t
10.9 U is distributive with respect to A;
so ([[A, B]]x _ ., A,U)is acommutative, idempotent pre-semiring
Ry— ot
~Y Y

with zero and unity]

10.10 ([[A, B]]éfﬁ,/\,u) is zero-sum-free: X N\Y = AVB & X =
Y=AVB;

10.11 ([[A, B]]ér,ﬁ’/\’ U) is zero-divisor-free:
XUY#AVB& X #AVB#Y,

10.12 ([[A4, B]]éw—,ﬁ’/\’ U) is complete: A distributes over infinite U;
so ([I4. Bll__

complete pre-semiring]

.\, U) is a zero-sum-free, zero-divisor-free and

([4,Bllx _ sV, AANB,AUB, 3, ,+) is a commutative, idempo-
Ry~ B

tent, zero-sum-free and complete pre-semiring with zero and unity,

as:

11.1 V is associative;

11.2 V is commutative;
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11.3 V has the neutral element: A A B (zero of the pre-semiring);
11.4 V is idempotent;
so (4. Bllx .

11.5 N is associative;

V) is a commutative, idempotent monoid|

11.6 N is commutative;
11.7 N has the neutral element: AU B (unity of the pre-semiring);
11.8 N is idempotent;

so ([[4, B]]= _ ,,N) is a commutative, idempotent monoid
Ny~ vt
11.9 N is distributive with respect to V;
so ([[A4, B]]x _ . ,U,N)is a commutative, idempotent pre-semiring
Ry— ot
Ry~

with zero and unity]

11.10 ([[A4, B]]éw—,w’v’m) is zero-sum-free: X VY = AANB & X =
Y=AAB;

11.11 ([[A, B]]ér,ﬁ,u, N) is zero-divisor-free:
XNY#ANBe X#AANB#Y,

11.12 ([[A, B]]ér,ﬁ’v’ N) is complete: V distributes over infinite N;
[so ([[4, B]]

complete pre-semiring]

2 Y, N) is a zero-sum-free, zero-divisor-free and
~Y Y

12) ([[A, B]]gﬂ/_’ﬁ AN AV B,AUB, 3~ 4+) is a commutative, idempo-

tent, zero-sum-free, zero-divisor free and complete pre-semiring with

zero and unity, as:

12.1 A is associative;

12.2 A is commutative;

12.3 A has the neutral element: AV B (zero of the pre-semiring);

12.4 A is idempotent;
o ([A. Bl _ .

12.5 N is associative;

A) is a commutative, idempotent monoid|

12.6 N is commutative;

12.7 N has the neutral element: AU B (unity of the pre-semiring);

12.8 N is idempotent;
o (4. Bz,

12.9 N is distributive with respect to A;

N) is a commutative, idempotent monoid|

so ([[4, Bllx _ . ,A,N)is acommutative, idempotent pre-semiring
Ry~ 4t
with zero and unity]
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12.10 ([[A, B]]éw*,ﬁ’/\’m) is zero-sum-free: X ANY = AVB & X =
Y=AVB;

12.11 ([[A, B]]éw*,ﬁ’/\’ N) is zero-divisor-free:
XNY#AVBe X#AVB#Y,

12.12 ([[4, B]]év_’ﬁ,ﬁ, U) is complete: N distributes over infinite U;
[so ([[4, BJ]

complete pre-semiring]

A N) is a zero-sum-free, zero-divisor-free and
~Y LY

=7t
tent, zero-sum-free, zero-divisor-free and complete pre-semiring with
zero and unity, as:

13) ([[A, B]]gw_ RS ANB,ANB,C ) is a commutative, idempo-

13.1 U is associative;
13.2 U is commutative;
13.3 U has the neutral element: AN B (zero of the pre-semiring);
13.4 U is idempotent;
so ([A. Bllc_ ..

13.5 V is associative;

U) is a commutative, idempotent monoid|

13.6 V is commutative;

13.7 V has the neutral element: A A B (unity of the pre-semiring);

13.8 V is idempotent;
so (4. Blle ..

13.9 V is distributive with respect to U;

V) is a commutative, idempotent monoid|

[so ([[4, B]]gf,W .»U, V) is a commutative, idempotent pre-semiring
with zero and unity]

13.10 ([[A, B]]gfﬁ,u,v) is zero-sum-free: X UY = ANB & X =
Y=ANB&B;

13.11 ([[A4, B]]éf,ﬁ,u, V) is zero-divisor-free:
XVY#AANB& X4ANB4Y;

13.12 ([[A4, B]]gv_’w,u, V) is complete: U distributes over infinite V;
[so ([[4, B”%aﬁ ,U,V) is a zero-sum-free, zero-divisor-free and

complete pre-semiring]

14) ([[A, BH%—,w s NV;AUBANB, S r
tent, zero-sum-free, zero-divisor free and complete pre-semiring with
zero and unity, as:

) is a commutative, idempo-

14.1 N is associative;

14.2 N is commutative;
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14.3 N has the neutral element: AU B (zero of the pre-semiring);
14.4 N is idempotent;
o (14, Bllc__,.

14.5 V is associative;

N) is a commutative, idempotent monoid]

14.6 V is commutative;

14.7 V has the neutral element: A A B (unity of the pre-semiring);

14.8 V is idempotent;
so (14 Blle ..

14.9 V is distributive with respect to N;

V) is a commutative, idempotent monoid]

[so ([[4, B]]gf,ﬁ ,N, V) is a commutative, idempotent pre-semiring
with zero and unity]

14.10 ([[4, B]]gw_yﬁ,ﬂ,\/) is zero-sum-free: X NY = AUB & X =
Y=AUB;

14.11 ([[A, B]]gr,ﬁ,ﬂ, V) is zero-divisor-free:
XVY#AUB& X#AUB#Y,

14.12 ([[A, B]]gr’ﬁ,ﬁ, V) is complete: N distributes over infinite V;
[so ([[4, B]]gf‘7+ ,M, V) is a zero-sum-free, zero-divisor-free and

complete pre-semiring]

15) ([[A, B]]gﬂ/_,ﬁ JU,NANB, AV B, S~ +) is a commutative, idempo-

tent, zero-sum-free, zero-divisor-free and complete pre-semiring with

zero and unity, as:

15.1 U is associative;

15.2 U is commutative;

15.3 U has the neutral element: AN B (zero of the pre-semiring);

15.4 U is idempotent;
so (4Bl

15.5 A is associative;

U) is a commutative, idempotent monoid|

15.6 A is commutative;

15.7 A has the neutral element: AV B (unity of the pre-semiring);

15.8 A is idempotent;
o (4. B .

15.9 A is distributive with respect to U;

A) is a commutative, idempotent monoid]

[so ([[4, BH%— o U, A) is a commutative, idempotent pre-semiring
with zero and unity]
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15.10 ([[A, Bl]c U,A) is zero-sum-free: X UY = ANB & X =
=

— ) b
At

Y=ANB&B;

15.11 ([[A4, B]]év— oY N) is zero-divisor-free:
XAY#ANB&X#ANB#4Y;

15.12 ([[4, B]]gv_ Y V) is complete: U distributes over infinite A;

[so ([[A, B]]gw—,wL ,U, A\) is a zero-sum-free, zero-divisor-free and

complete pre-semiring]

16) ([[A,Bllc__ .,N,A\;AUB,AV B, S, ,+) is a commutative, idempo-
=v Y K

tent, zero-sum-free, zero-divisor free and complete pre-semiring with
zero and unity, as:
16.1 N is associative;
16.2 N is commutative;
16.3 N has the neutral element: AU B (zero of the pre-semiring);
16.4 N is idempotent;

[so ([[A, B]]c N) is a commutative, idempotent monoid|

vt
16.5 A is associative;
16.6 A is commutative;
16.7 A has the neutral element: AV B (unity of the pre-semiring);
16.8 A is idempotent;

5o ([4. Blc

16.9 A is distributive with respect to N;

__.»/\) is a commutative, idempotent monoid]
YOy

[so ([[4, B]lc__ . ,N,A)isacommutative, idempotent pre-semiring
=7

with zero and unity]

16.10 ([[A, B]]gw_ er7ﬁ,/\) is zero-sum-free: X NY = AUB & X =
Y =AUB;

16.11 ([[A, B]]gr gt A) is zero-divisor-free:
XAY#AUBS X £AUB#Y;

16.12 ([[A, Bl]lc__ ,,N,A) is complete: N distributes over infinite A;
= Y

[so ([[A, B]]gw_ ol A) is a zero-sum-free, zero-divisor-free and
complete pre-semiring]

Table 5.5 summarizes the different types of interval structures we have
defined in this subsection and the properties associated with.
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Type Structure 0 1 Properties
Semiring ([[A, B]ly- 4+, V,A) | ANB | AVB | C,ZS,ZD, 1, E
Semiring ([[A, B]]y- 4+, V) | AVB | ANB | C,Z8,7ZD, I, E
Semiring ([[A, B]l,- 4+,U,N) | ANB | AUB | C,ZS,ZD, 1, E
Semiring ([[A4, B]ly- 4+,N,U) | AUB | AnNB | C,ZS,ZD, 1, E
Pre-semiring with 0 ([[A, Blly- 4+, V,H) | ANB / C,Z5, 1LE
Pre-semiring with 0 ([[A, B]]y- 4+,A,8) | AV B / C,ZS,LLE
Pre-semiring with 0 ([[A, B]ly- 4+,U,8) | ANB / C,7ZS, I, E
Pre-semiring with 0 ([[A, B]ly- 4+,0,8) | AUB / C,ZS, I, E
Pre-semiring with 0 and 1 | ([[4, B]],- ,+,V,U) | ANB | AnNB | C,ZS,7ZD, I, E
Pre-semiring with 0 and 1 | ([[4, B]],- ,+,A,U) | AVB | AnB | C,ZS,ZD, 1, E
Pre-semiring with 0 and 1 | ([[4, B]],- 4+,V,N) | ANB | AUB | C,ZS,ZD, I, E
Pre-semiring with 0 and 1 | ([[4, B]|,- ,+,A,N) | AVB | AUB | C,ZS,ZD, 1, E
Pre-semiring with 0 and 1 | ([[4, B]],- ,+,U,V) | ANB | AANB | C,ZS,7ZD, I, E
Pre-semiring with 0 and 1 | ([[A, B]],- ,+,N,V) | AUB | ANB | C,ZS,ZD, 1, E
Pre-semiring with 0 and 1 | ([[4, B]]y- 4+,U,A) | ANB | AVB | C,ZS,ZD, I, E
Pre-semiring with 0 and 1 | ([[4, B]],- +,M,A) | AUB | AVB | C,ZS,ZD, I, E
Table 5.5: General classification of interval structures on set [[A, B]],- ,+ such that

ANc ~
=~

Y
zero-divisor-free (or entire), I= idempotent, E= complete.

. B # @. C= commutative, ZS= zero-sum-free (or antinegative), ZD=
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Interval translation

As repeatedly highlighted, in the structures examined in Subsection 5.2.3,
problems may arise when AN B = @ (with respect to inclusion order &, +)
since in that case the distributive property is not ensured; that is why it was
necessary to introduce the condition: AN B # & .

However, it is possible to overcome this drawback also without imposing
any restriction in the definition of the set [[A, B]],- ,+ but through the use
of a kind of interval translation.

For this purpose, considering, e.g., the LU-case, as shown in Figure 5.11,
for each A,B € K¢ with A 3.~ .+ B, where A = (@;a) = [a~,a™] and

o~ ~

B = (b;b) = [b™,b"], we can define

(0;0) if ANB+#o:;
_ - _ gt
A(A,B) = <0;b2a> if ANB =0.
AN
X
Al
Bl
A(AB) &
A
B
a—/ at b’ b"' y\

Figure 5.11: Translation of the set [[A, B]],- ,+ in such a way that the intersection
point between intervals A and B belongs to the horizontal axis of the half-plane.

Therefore, since K¢ is located by definition in the positive half-plane (z; 2),
then, in case AN B = @, the representation of the intersection point is not
possible as it would fall out of the half-plane; however, we can overcome this
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inconvenience by translating the entire interval of intervals [[A, B]],- ,+ in
such a way as to make the intersection “reenter” in the positive half-plane K¢.
This means that intersection can be chosen to be, e.g.,

b= +at
(5

In order to achieve this, it is necessary to carry out the following translation

=7 Lo A=A
F=3+AAB) " | BoB

such that we get
+ 4
ANB = (ﬁ;o) .

As for the intervals of intervals we have

[[Alv B/]]W*q* = HA7 B]]'y*,'y* + A(Av B)v
so, it is indifferent to consider one interval or the other in K¢, since they
maintain the same characteristics unaltered.
Therefore, henceforth it is not restrictive to consider only intervals of
intervals entirely contained in K¢, namely such that [[4, B]],- .+ C Ke.
Finally, note that, in case AN B = &, i.e., the point representing the

intersection does not belong to the half-plane K¢, if we consider the interval

% at+b- b —a"
CZ(C;®=< 5 g >

as the symmetric point of A N B in the half-plane K¢, we obtain that
convexification of union is exactly

AW B =conv(AUB)=AUBUC

which represents the smallest interval with this property.
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5.3 Interval combined structures

In abstract algebra, in addition to the common algebraic structures, there
are also particular ones, which from now on we will simply call combined
structures, characterized by the fact that three or more binary operations are
defined on the underlying set; the coexistence of these operations is ensured
by the fact that they satisfy a certain number of properties which link them
to each other.

In this section we will deal with some of them also giving an interval
interpretation as we believe that theories associated with these structures,
such as, e.g., ordered lattice monoids (see [10]), offer a conceptually elegant
and compact way to express structurally rich and articulated situations.

5.3.1 Combined structures in classic algebra

Before continuing, let us review some useful definitions of combined algebraic
structures (see also [10], [40], [53], [54] and [90]).

Definition 5.3.1. We define (commutative) lattice-ordered semigroup/monoid,
l-semigroup/monoid for short, a structure (L,V,\,*) such that:

1) (L,V,A) is a lattice;
2) (L,*) is a (commutative) semigroup/monoid;

3) the right and left distributive laws of *x over V and over A both hold:
zx(yVz)=(x*xy)V(rxz), (yVz)xx=(yxz)V(z*x),
xx(yNz)=(xxy) AN(zxz), (YAz)xz=(yxz)A(z*x),

Vr,y,z € L.

Note that a lattice-ordered group (I-group for short) is defined similarly.

Moreover, suppose now that L is also a semigroup/monoid under a dual
operation «’ that distributes over V and A too. This means that L has four
binary operations.

Definition 5.3.2. We define (commutative) lattice-ordered double monoid a
structure (L,V, A\, x, %', <) such that:

1) (L,V,N) is a lattice whose associated partial order is <;

2) (L,*) is a (commutative) monoid whose operation x distributes over \V:
zx(yVz)=(xxy)V(rxz), (yVz)rxx=(yxz)V(zxx),
Vr,y,z € L;
3) (L,*") is a (commutative) monoid whose operation ¥ distributes over A:

xx(yNz)=(xxy)AN(zxz), (YAz)xz=(yxz)A(2z*x),
Vr,y,z € L.
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To the above definitions we add the word complete if L is a complete
lattice and the distributivities involved are infinite.
In the case of a complete lattice-ordered double monoid, the structure is
simply called clodum.

5.3.2 Combined structures in interval algebra

Let consider two intervals A, B € K¢ such that AN B # @ (with respect to
inclusion order &~ ,+). According to (4.24), if there is no risk of misunder-
standing we could simply denote

[[A7B]]'y*,'y+ - [[Av B]]gv_’ﬁ = [[AaB]]gv_

At
where, according to (5.12) and (5.13), it is

[[A,BH W+:{X€]Cc‘z4/\B—< +X§77’7+A\/B}

35— R

and
[ABllc,_ ., ={X€Kc|ANBES,- + X S~ ,+ AUB}),

as shown in Figure 5.12, where the particular case A é'ri'r* B is analysed.

X ™

N
>

Figure 5.12: The interval of intervals [[4, B]l<x = = =[[C,D]]c ~  with C =
ANB,D=AUBand A=CAD,B=CVD. '

In this regard it is possible to consider the well known different kind of
operations associated with the two orders §Tﬂ+ and gmﬁ to apply them
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to the set [[A, B]]

+—~+ (of which they are internal) as shown below:
Vi [[A, Blly- 4+ x [[4, B]]y- 4+ — [[A, B}, 4+ such that: (X,Y) — X VY
A [A, Blly- 4+ < [[A, B]ly- 4+ — [[A, B]],~ 4+ such that: (X,Y) = X A Y
U: [[A, B]ly- 4+ x [[A, B]ly- 4+ — [[A, B]],~ 4+ such that: (X,Y) = X UY;
N:[[A, Blly- 4+ x [[4, B]],- 4+ — [[A, B]],- 4+ such that: (X,Y) — X NY;
B :[[A, B]ly- 4+ x [[A, Blly- 4+ — [[4, B]],- 4+ such that: (X,Y) — X BY

What we get are the following interesting properties.

Proposition 5.3.1. Let be A,B € K¢ such that AN B # &, then the
structure ([[A, BH;r VA, B) is a commutative complete lattice-ordered
semigroup. 7

Proof. ([[A, Bl _ . ,V,A, ) isacomplete and commutative I-semigroup as:
Ry~

1) ([[A, Bll2 , V, A\) is a complete lattice, according to Proposition 5.2.37;

indeed all subsets have both a supremum (join) and an infimum (meet)
which graphically correspond to the extreme left and right points of
the subset.

2) ([[A, B]]z__ . ,B) is a commutative semigroup:
Ry~

(i) B is associative;

(ii) B is commutative.

3) H is left and right distributive over V and A:

() XB(YV2Z)=(XBY)V(XB2),YX,Y,Z€ 4Bl ___;
(i) (XVY)BZ=(XB2)V(YBZ),VX,Y,Z € [[4 Bl ;+;
(i) XB(YAZ)=(XBY)A(XBZ),VX,Y,Z € [[4, B]]éwg L
(iv) (XAY)BZ=(XBZ)A(YBZ),YX,Y,Z € [[4, B]]éf:ﬁ.

O]

Proposition 5.3.2. Let be C,D € K¢, such that C N D # &, then the
structure ([[C, D]]gw_ U, B) is a commutative complete lattice-ordered
semigroup . 7

Proof. ([[C,D]lc__ _,U,N,H) is acomplete and commutative [-semigroup as:
=Y
1) ([[C, D]lc__ _,,U,N)is acomplete lattice, according to Proposition 5.2.37.
=7 Y

2) ([[c, D]]g'y_ ., @) is a commutative semigroup:
= il
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(i) B is associative;
(ii) B is commutative.
3) H is left and right distributive over U and N:
i) XBYUZ) =(XHAY)
(i) ( XUY)BZ=(XBZ)
(iii) XH(YNZ)=(XHBY)
(iv) (XNY)BZ=(XHB2)

X8 2),VX,Y, Z € [[C,D]]c

— b
=y— 4t

Y 8 2),VX,Y,Z € [[C, D]|c

=_— b
=yt

U (
U (
N(XB2),YX,Y,Z € [[C,D]|c
N

— b
=y— ot

Y 8 2),VX,Y, Z € [[C, D]|c

=yt

The following statements also hold.

Proposition 5.3.3. Let be A, B € K¢, such that AN B # &, then the struc-

tures ([[A, Bllz _ _,,V,A,U) and ([[A, B]]jf 7+,\/,/\,ﬁ) are commutative
Ry~ Ry,

complete lattice-ordered monoids.

Proof. Considering the case in which A 3.~ ,+ B (the other cases are anal-

ogous), we have that ([[4, B]]x _ . ,V,A,U) is a complete and commutative
Ry ™,y

l-monoid as:

1) ([[A, B]lz _ ., ,V,A)isacomplete lattice, according to Proposition 5.2.37.

Ry Ty

2) ([[A4, B]]N S U) is a commutative monoid with neutral element iy =

ANB:

(i) U is associative;

(ii) U has the neutral element iy, = AN B € [[4, B]];W_ o
XUANB)=(ANB)UX =X, VX € [[A, B]|<

~ o — )
Ry~ T

(iii) U is commutative.

3) U is left and right distributive over V and A:

() XU(YV2Z)=(XUY)V(XUZ)LVX.Y.Z € [[ABllx _,:
(i) (XVY)UZ=(XUZ)V(YUZ) VXY, Z€[ABs_ _:
(i) XU (Y AZ)=(XUY)A(XUZ)LVX.Y,Z € [ABllx _
(iv) (XAY)UZ = (XUZ)A(YUZ)VX,Y,Z € [[A,Blls

Ry— oyt
Likewise, ([[A, B]]x _ . ,V,A,N) is a complete and commutative [-monoid as:
Ry~ L,y

1) ([[4,Blls _ _,,V,A) is a complete lattice (see Proposition 5.2.37).
Ry T,y

2) ([[4, BH?W— e N) is a commutative monoid with neutral element in =
AUB: 7



5.3 Interval combined structures 295

(i) N is associative;

(ii) N has the neutral element in = AU B € [[A, B]]<

XN(AUB)=(AUB)NX = X, VX € [[4, B]]z::i;
(iii) N is commutative.
3) Nis left and right distributive over V and A:
() XN(YVZ)=(XNY)V(XNZ),YX,Y,Z€[[A Bl __,;
(i) (XvY)NZ=(Xn2Z)V({YN2Z),vX,Y,Z e [A Bz __,;
(i) XN (Y AZ)=(XNY)A(XN2),YX,Y,Z €[4 Bllz _
(iv) XAY)NZ=(XNZ)NYNZ)VX,Y,Z € [[A B

Ry— 4t
O

Proposition 5.3.4. Let be C, D € K¢, such that CN D # &, then the struc-

tures ([[C, D]]|c ,U,N, V) and ([[C,D]lc__ ,,U,N,A) are commutative
'Y =7

complete lattzce ordered monoids.

Proof. Considering the case in which C' &~ ,+ D (the other cases are anal-

ogous), we have that ([[C, D]]c__ . ,U,N,V) is a complete and commutative
= Y

l-monoid as:

1) ([[C, D]]c U, N) is a complete lattice, according to Proposition 5.2.37.

bl
"/W+

2) ([[¢, D]
CAND:

S V) is a commutative monoid with neutral element iy, =
=Y

(i) V is associative;

(ii) V has the neutral element iy = C' A D € [[C, D]]g7 i
XV(CAD)=(CAND)VX=X,VX €[[C,D]]c _

b
==t

(iii) V is commutative.

3) V is left and right distributive over U and N:

() XV(YUZ)=(XVY)U(XV2),YX,Y.Z€e[CDllc_ _,;
(i) (XUY)VZ=(XV2)U(YV2Z)YX,Y.Z€[C.Dlc_ _,;
(i) XVv(YNZ)=(XVY)N(XVZ),VX,Y,Z € [[C, D]]gw_’ﬁ;
(iv) (XNY)VZ=(XVZ)N(YVZ)VX,Y,Z€|[[C,D]c |

=yt
Likewise, ([[C, D]lc__ . ,U,N,A) is a complete and commutative [-monoid as:
=7

1) ([[C, D]]g’y_ ,»U,N) is a complete lattice (see Proposition 5.2.37).
= il
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2) ([I€; DJc

C _ A) is a commutative monoid with neutral element i, =
=7
CvVv D:

(i) A is associative;
(ii) A has the neutral element i, = C'V D € [[C, Dﬂgf i
XAN(CVD)=(CVD)ANX =X,VX €[[C,D]]c _

bl
==t

(iii) A is commutative.
3) A is left and right distributive over U and N:
i) XANYUuZ)=(XAY

( X ANZ)NX,Y,Z € |[[C,D]]c
i) ( XUY)ANZ=(XNZ

(

= (

:W*»WJF;
YNZ)VX,Y, Z € ][C, DHEW7 4
XNZ)WNX,Y, Z € [[C,DHEW7 4

Y A Z),VX,Y,Z € [[C, D]|c

=y~ ot

(iii) XA (YNZ)=(XAY

) )U(
) )U(
) )N (
(iv) ( XNY)YAZ=(XANZ)N(

O]

Proposition 5.3.5. Let be A,B € K¢, such that AN B # &, then the
structure ([[A, Bl]g VoAU, Sy 4+ ) 48 a commutative clodum (or

complete lattice- ordered double monoid) .

Proof. Considering the case in which A 3.~ ,+ B such that ANB ;é & (the
other cases are analogous), we have that ([[A,B]];7 SVIAUN, D )
is a commutative clodum, as:

la) ([[A, B]];W_ Vs A) is a complete lattice whose associated partial order
is S~ 4+ (see Proposition 5.2.37).

2a) ([[A, B]Lw— .»,U) is a commutative monoid with neutral element iy, =
ANB:

(i) U is associative;

(ii) U has the neutral element iy = AN B € [[A, B]]<

Sm ot -
XU(ANB) = (ANB)UX = X, VX € [[A,B]-

— )
Ry~ T

(iii) U is commutative.
2a’) U is left and right distributive over V :

(i) XUulYvZ)=(XUY)V(XUZ),VX,Y,Z € [[A’B”%— i

i) (XvY)UZ=(XUu2Z)v(YUZ),VX,Y,Z € [[A’B]]év— .

3a) ([[A, B]] S N) is a commutative monoid with neutral element in =
AU B: 7
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(i) N is associative;
(ii) N has the neutral element in = AU B € [[A, Bﬂéw— e
XN(AUB)=(AUB)NX =X, VX € [[A, B]|<

Ry~ oyt
(iii) N is commutative.

3a’) N is left and right distributive over A:
1) XNYANZ)=(XNnY)AN(XNZ),VX,Y,Z € [[A, B]]
i) ( XAY)NZ=(XNZ)NYNZ)VX,Y,Z € [[A, B

éviﬂﬁ;
Roy=

O
Proposition 5.3.6. Let be C, D € K¢, such that C N D # &, then the
structure ([[C, D]]gv_}ﬁ,u,m,v,A,gr,ﬁ) is a commutative clodum (or
complete lattice-ordered double monoid) .
Proof. Considering the case in which C' £,- .+ D (the other cases are
analogous), we have that ([[C, D]]gf U VLA, -
clodum, as:

+— 4+) is a commutative
1b) ([[C, D]lc__ . ,U,N)is a complete lattice whose associated partial order
=7
is £, 4+ (see Proposition 5.2.37).

V) is a commutative monoid with neutral element i\, =

2b) (([C, Dlle.
CAD:

— bl
At

(i) V is associative;
(ii) V has the neutral element iy = C A D € [[C, D]|c
XV(CAD)=(CAND)VX=X,VX €|[[C,D]]c

(iii) V is commutative.
2b’) V is left and right distributive over U:
i) XvYu2)=(XVY)U(XVZ2),VX,Y, Z €, DH%*
(i) (XUuY)vZ=(XVv2Z2)U(YVZ),VX,Y,Ze]C, D]]gf

ot
At

3b) ([[C, Dl]c
CvVv D:

N A) is a commutative monoid with neutral element i, =

(i) A is associative;

(ii) A has the neutral element i, = C' vV D € [[C, D]]
XAN(CVD)=(CVD)ANX =X,VX €[[C,D]]

(iii) A is commutative.

N

r= ot

n

— b
Yot

3b”) A is left and right distributive over N:
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Type Structure Properties
l-semigroup | ([[A, B]]ér,w’\/’ A, ) C, E
[-semigroup | ([[C, D]]gw—,ﬁ ,U, N, H) C, E

[-monoid ([[A, BHEV,W , VoA U) C, E
[-monoid ([[A, B]]§W7,7+ VA N) C E
l-monoid ([[C, D]]gv_,w,u, N, V) C, E
l-monoid ([IC, DH%-,W’U’ N, A) C, E
Clodum ([[A, B”gr,ﬁ’\/’ A, U, N) C
Clodum ([[c, D]]grﬁ+,u,ﬂ, V,A) C

Table 5.6: Classification of interval lattice-ordered structures. C = commutative,
E = complete.

() XA(YN2)=(XAY)N(XAZ),YX,Y,Z € [[C,D]lc__
(i) (XNY)AZ=(XAZ)N(YAZ),YX,Y,Z €[[C,Dllc__

s
At

O

Table 5.6 summarizes the different types of interval structures we have
defined in this subsection and the properties associated with.



Chapter 6

An additional interpretation
of interval structures

In this Chapter we continue the work undertaken in Chapter 5, proposing
further interpretations of interval structures. We will first focus on structures
of the Boolean type, expanding what has already been briefly anticipated,
in order to define the most common Boolean algebraic structures from an
interval point of view .

More specifically, following the study of complementation properties,
through the use of an innovative model and the related graphical representa-
tion, we will be able to configure also interval-type Boolean structures (such
as interval Boolean lattices, interval Boolean algebras and interval Boolean
rings).

After that, thanks to an ingenious definition of the equivalence relation
between intervals, we will shift the attention to the concept of quotient set;
indeed, the construction of an interval quotient set will be proposed, thanks
to which it will be possible to determine even more solid structures, up to
providing an example of an interval quotient pseudoring.
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6.1 Interval Boolean structures

We recall that three types of structures are defined whose name refers to that
of George Boole: we have Boolean lattices, which are by definition distributive
and complemented lattices, Boolean rings, i.e., rings whose elements are all
idempotents, and finally Boolean algebras, particular algebraic structures that
we have already introduced in Definition 4.1.9 but we will better redefine later
on. What links these objects together is the fact that, defining a structure
of one of these three types (Boolean ring, Boolean lattice, Boolean algebra)
is equivalent to defining one of each of the other two types; in this way the
study of Boolean rings, that of Boolean algebras and that of Boolean lattices
is completely equivalent.

Using an innovative model and its graphical representation, what we
intend to do is to carry out an accurate study of these structures from an
interval point of view.

6.1.1 Complementation

In Section 5.1 relevant properties have been analized referring to various
cases of interval semirings but nothing has been said about complementation.
We remember the following definition.

Definition 6.1.1. In a Semiring (S,+,-,0,1), an element x € S is com-
plemented if and only if Jx¢ € S such that v +z2¢ = 24+ 2 = 1 and
z-x¢=x°2=0.

Analizing the cases considered in Subsection 5.1.2 (summarized in Table
5.2), we have that:

1.1 X € K¢ is complemented in (K¢, V, A; —00, +00, Sy ) iff 3XC € Ke
such that X V X¢ = 400 = (+00;0) and X A X¢ = —o0 = (—00;0);
as —ooV+00 = 400 and —ocoA+00 = —00, it results that only —oco and
400 are complemented, with complement 4+0o and —oo, respectively.

1.2 X € K¢ is complemented in (K¢, A, V; +00, —00, Sy ) iff 3XC € Ke
such that X A X¢ = —0co0 = (—00;0) and X V X¢ = 400 = (400;0);
as +ooA—o0 = —oo and +00 A —o0 = 400, it results that only +o0o and
—o0 are complemented, with complement —oco and 400, respectively.

1.3 X € KZ® is complemented in (K&%,w,N; 2, R, C - +)iff 3X° € KZ®
such that X W X¢ =R = (0;+00) and X N X¢ =@ = (0; —00);
as WR = R and @ N R = @, it results that only @ and R are
complemented, with complement R and &, respectively.

14 X € IC?R is complemented in (IC?R, NW;R, @, & - +) iff X € /C?R
such that X N X¢ =@ = (0; —o0) and X W X¢ =R = (0; +00);
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1.5

1.6

1.7

as RNg = o and RW @ = R, it results that only R and @ are
complemented, with complement @ and R, respectively.

X € Ky is complemented in (K; ™, V, ®; —00,0, 3~ ,+) iff 3X¢ € K>
such that X vV X¢=0=(0;0) and X & X¢ = —o0 = (—0o0;0);

as —oo V0 =0 and —oco @ 0 = —o0, it results that only —oco and 0 are
complemented, with complement 0 and —oo, respectively.

X € KF® is complemented in (KF*, A, ®; +00, 0, 3 +) iff X € I
such that X A X¢=0=(0;0) and X & X¢ = 400 = (+00;0);

as +00 A 0 =0 and 400 @ 0 = +00, it results that only 400 and 0 are
complemented, with complement 0 and 400, respectively.

X e IC? is complemented in (/CC@, W,®;2,0,S,- ,+)iff IX° € IC? such
that X W X =0=(0;0) and X & X¢ =& = (0; —00);
as W0 =0 and 640 = g, it results that only @ and 0 are

complemented, with complement 0 and &, respectively.

Likewise, considering the structures analysed in Subsection 5.2.2 (sum-
marized in Table 5.4), we have:

2.1

2.2

2.3

24

2.5

X € K¢ is complemented in (IC?, V, A; =00, 400, S 4+) iff X € Ke
such that X V X¢ = 400 = (+00;0) and X A X¢ = —