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A B S T R A C T

Deep learning is nowadays considered state-of-the-art technology in many applications thanks to huge perfor-
mance capabilities. However, the accuracy levels that can be obtained with these models entail computationally
demanding resources. This results in a challenging task when such systems have to be deployed on edge devices
with tight computing, memory, and communication requirements and when energy expenditure and inference
delays have to be kept under control. Early exit is a design methodology aimed at reducing the burden of
neural networks on computational resources, trading off accuracy for latency.

In this work, we aim at exploring the use of early exit for human activity recognition tasks. In particular, we
propose an experimental assessment of the accuracy–latency trade-off on different deep network architectures
across various publicly available datasets. We also evaluate the impact of early exiting in distributed
environments by taking into account communication technologies.

Experimental results provide evidence of the significant gain provided by early exits in terms of latency (up
to 35×), without a reduction in accuracy (in most cases), confirming the viability of an adaptive approach. In a
distributed environment, early exit results are not beneficial in all situations. In particular, it is not convenient
for models that are very fast (with inference latency lower than, or as equal as, that of communication) and for
models that are forced to make extensive use of far exit points to satisfy the accuracy requirements. Therefore,
communication delays in a distributed environment shape performance in an architecture-dependent way.
. Introduction

Deep Learning has recently gained wide diffusion in many appli-
ation fields, such as computer vision, natural language processing,
ealthcare monitoring or diagnostics, and activity recognition (Good-
ellow et al., 2016; LeCun et al., 2015; Gu et al., 2021).

The adoption of this learning paradigm has reached super-human
ccuracy performance in many tasks. This has been made possible
y the increasing availability of: (i) more powerful and specialized
ardware (like graphical processing units, GPU, or specialized chips
esigned for acceleration purposes); (ii) curated datasets comprising
housands of examples, crucial for enabling the training of deep neural
etworks (DNN) models in supervised learning applications.

However, huge improvements in terms of accuracy have been
chieved with more demanding models, from the computational re-
uirements point of view. Indeed, adding layers and neurons, thus
iving rise to deeper and wider models, unavoidably increases memory
nd compute needs, which is particularly problematic for the deploy-
ent on mobile devices and embedded systems, often characterized by

trict memory, computational, communication, and energy constraints.
oreover, the number of operations needed by these types of neural

etworks to perform inference results in increased delays that could
otentially prevent their adoption in some real-time scenarios. There
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is therefore a strong need for novel solutions that could circumvent
memory and compute bottlenecks, through the design of systems that
can, at the same time, minimize network size and guarantee fast
inference without significant impact on the accuracy levels (Fedorov
et al., 2019; Banbury et al., 2021; Lattanzi et al., 2022).

Several methodologies have been developed in this context to re-
duce the burden of networks size and its impact on system performance.
Needless to say, all these approaches inherently trade-off improvements
in memory usage and latency for accuracy. From the architectural point
of view, for example, novel neural architecture search (NAS, for short)
techniques allow more efficient exploration of the huge design space of
possible network types and topologies, while sparsification and pruning
techniques could lower the memory footprint through the reduction of
the number of weights and of the synaptic links; other lines of research
aim at implementing NN with reduced precision arithmetic.

Recent approaches have tackled the problem by means of the so
called early-exit techniques. Early-exit deep neural networks (hereafter
also denoted as EE-DNN), by mimicking a mechanism that is believed
operational in humans neurobiology, adaptively trade-off accuracy for
latency by exploiting the fact that not all input samples need the same
amount of processing (i.e. they do not present the same difficulty level)
to be analyzed. Hence, this type of models is composed of a backbone
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network with additional branching exits (also known as exit points)
that depart from the backbone along its length. Exit points act as
intermediate classifiers that are progressively queried during inference.
In this way, when a given sample is processed along the backbone
network, intermediate classifications can be performed. If, according to
a predefined criterion, a specific exit condition (or policy) is met, the
prediction computed from the corresponding exit is taken as output.
Otherwise the computation is forwarded to subsequent steps.

The main feature of EE-DNN solutions is represented by their ca-
pability of dynamically adapting to different loads (easy-to-process
queries have high network exiting probabilities) and to different re-
quirements of the underlying hardware platform (the same network
could in principle be split across different distributed devices).

In recent years we have also witnessed continuous advancements
in the design, development, and industrialization of products as, for
example, smartphones or wearable devices, equipped with a wide range
of sensors that represent key enablers for large scale, fine-grained
monitoring of physical behavior (Perez-Pozuelo et al., 2021; Lattanzi
and Freschi, 2020). Human activity recognition (hereafter also denoted
as HAR) concerns the classification of the physical activities performed
by human subjects from the signals extracted from sensor devices. For
instance, HAR based on wearable/mobile sensing, aims to discriminate
between different activities, like running, walking, standing, sitting,
etc. This can be achieved through a workflow that is usually designed
as: (i) window segmentation (e.g. sliding window partitioning); (ii)
feature extraction and engineering; (iii) training of supervised learning
models.

Early exit (hereafter also denoted as EE) has been, up to today,
mainly applied to computer vision problems, which represent one of
the most successful application domains of deep learning. Conversely,
to the best of our knowledge, the adoption of early exit strategies
for deep learning models applied to HAR has not been the subject of
investigation, yet. In this work we aim at bridging this gap by making
the following contributions:

1. We propose an empirical investigation of EE-DNN in human
activity recognition tasks, across four different neural networks
architectures, namely one-dimensional and two-dimensional
convolutional networks, long short term memory networks
(LSTM), and a mixed CNN–LSTM architecture. The effectiveness
of the proposed models has been evaluated on four publicly
available datasets, which have different characteristics in terms
of data collection protocols and sensing platforms, to confer
robustness to experimental results.

2. We carefully characterize, for the architectures under study,
the trade-off between accuracy and latency during inference,
by properly varying a threshold that controls the exit policy.
The main findings of this empirical assessment are that EE does
not negatively affect accuracy (with the exception of the two-
dimensional CNN), while it enables significant speedup (up to
35× in terms of inference time).

3. We evaluate the effect of distributing EE-DNN models along
four different devices connected by means of different commu-
nication technologies. In this case, differently from the previous
setting, communication delays clearly affect the overall system
performance, showing that EE is no longer always advantageous
for some DNN architectures (namely LSTM and two-dimensional
CNN).

The remainder of the article is organized as follows: in Section 3 we
summarize the main state-of-the-art research in deep learning and in
early exit techniques applied to DNN architecture design; in Section 4
we introduce the proposed approach, we describe the adopted EE net-
works and datasets, and we illustrate training and inference procedures;
in Section 5 a description of the experimental setup used for evalua-
tion of the system is provided (together with the related performance
metrics); in Section 6 we report and discuss experimental results; in
Section 7 we end by recapitulating the main contributions, making
conclusive remarks and indicating possible future developments.
2

2. Related work

In recent years, human activity recognition has risen the interest of
both academia and industry because of its high demand in different
fields of applications. The literature is indeed rich in works that deal
with HAR, spanning different research directions, both in terms of data
source and focus of the investigation. In HAR, data might be generated
from video or live cameras, mobile phones, and wearable sensors.
Instead, in terms of investigation, topics are related to, for example:
novel model proposal, existing model improvement/optimization, per-
formance, and feature extraction improvement to cite a few. In this
section, we review related work in the application of deep learning and
EE techniques to HAR.

2.1. Hybrid deep learning for HAR

Automatic feature extraction, and more accurate and effective clas-
sification performance brought by deep learning methods pushed the
research community to adopt those latter in the HAR context. In
particular, two types of deep architectures, combined together, seem
promising solutions for HAR classification problems, that is: convolu-
tional neural networks (CNNs) and Long Short Term Memory (LSTM)
networks.

Convolutional neural networks (CNNs) are a deep learning approach
that recently became the state-of-the-art performance on several HAR
datasets. The adoption of CNNs as reference architecture for HAR
tasks coupled with HAR based on wearable/mobile sensing brings
both benefits and challenges. Deep learning brings indeed to HAR
two beneficial aspects: first, it avoids the need for manual feature
design and extraction given its feature learning capabilities; second,
it provides more accurate and, effective performance with respect to
systems based on hand-crafted features, especially for the recognition
of more complex activities (Hammerla et al., 2016; Wang et al., 2019).
Performance improvement is however paid in terms of increased model
complexity, that increased computational cost and computational re-
sources that makes harder the deployment process of deep models
on wearable and mobile devices. The most recent literature on CNNs
applied to HAR proposes several approaches to tackle the challenge
of improving the trade-off between recognition accuracy and resource
consumption. To cite a few, Tang et al. propose the adoption of a novel
CNN to learn multi-scale features representation (Tang et al., 2022).
In particular, the authors proposed a hierarchical-split convolutional
block in a convolutional network, which can capture a wide range of
receptive fields within each feature layer. The goal was to learn richer
feature representations to achieve higher accuracy while keeping model
complexity low. In line with the purpose of serving real-time HAR
applications on mobile and wearable devices, Cheng et al. proposed
a new CNN adopting conditional computation (Cheng et al., 2022).
This envisages replacing the traditional convolution with conditional
parametrized convolution, which increases model performance with-
out sacrificing inference performance. Channel-equalization is another
novel lightweight CNN proposed by Huang et al. (2022) that aims at im-
proving the ability of the network to learn useful feature representation,
thus increasing the contribution to the activity recognition.

Back in 2016, Ordóñez and Roggen (2016) proposed DeepCon-
vLSTM framework for wearable activity recognition which envisages
convolutional and recurrent layers. Performance evaluation was carried
out on the OPPORTUNITY dataset (Roggen et al., 2010), and proved to
outperform pure feedforward neural networks by 4% on average on
everyday activities recognition, and by 9% on average in an 18-class
gesture recognition task. Deep and Zheng (2019) proposed to stack two
1D convolutional layers and one LSTM layer for activity recognition
tasks. They passed smartphone data collected from the accelerometer
and the gyroscope, specifically the UCI-HAR dataset (Reyes-Ortiz et al.,
2016), through the CNN layers first, and the output is then passed
as input to the LSTM layers to predict activities. The goal was to
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prove that the proposed architecture outperformed pure LSTM and
bidirectional LSTM networks given the same dataset. Mekruksavanich
and Jitpattanakul (2021) proposed a generic HAR framework for smart-
phone sensor data, where four baseline LSTM networks are compared
to study and analyze the impact of using different kinds of smartphone
data from UCI-HAR, as well. A hybrid 4-layer CNN–LSTM network
was also proposed to improve recognition performance in terms of
accuracy. Similarly, Xia et al. (2020) proposed an architecture where
data collected by mobile sensors are fed into two-layer LSTM followed
by convolutional layers. They also applied global average pooling
layer and batch normalization immediately after in order to reduce
model parameters and speed up model convergence, respectively. Per-
formance was then evaluated on three public dataset, proving a F1
score of 95.78% (UCI-HAR), 95.85% (WISDM Kwapisz et al., 2011)
and 92.63% (OPPORTUNITY). A slightly different hybrid framework,
AttSense, was proposed by Ma et al. (2019): AttSense is a multimodal
neural network model that combines an attention mechanism via a
CNN, with Gated Recurrent Units (GRU) network to capture both
spatial and temporal domains from sensing signals. The framework
was evaluated on three public dataset, providing a F1 score of 96.50%
(Heterogeneous Stisen et al., 2015), 93.10% (Skoda Zappi et al., 2008)
and 89.30% (PAMAP2 Reiss and Stricker, 2012). Another approach that
leverages the combination of GRU and inception neural network by
using various kernel-based convolutional layers is InnoHAR (Xu et al.,
2019), which also showed good performance.

The reason behind such a successful approach is that the combined
adoption of CNN and LSTM architecture allows for capturing both
spatial and temporal features, which are two characteristics that are
typical of human activities extracted from sensor devices. Compared to
these works, our work aims at considering these state-of-the-art perfor-
mance CNN and LSTM networks for HAR and carrying out a thorough
exploration of the application of the early exit strategy methodology.
Indeed, for deep learning models applied to HAR, early exit has not
been the subject of investigation, yet. In particular, we propose an
experimental assessment of the accuracy–latency trade-off on CNN and
LSTM across various publicly available datasets. We also evaluate the
impact of early exiting in distributed environments by taking into
account communication technologies.

2.2. Early exit

The early exit (EE) approach aims at addressing higher latency
and computational costs (introduced by deeper and larger networks
at inference time) by implementing intermediate classifiers. Further
details about this technique are provided in Section 3.

EE is well investigated in literature both in its local and distributed
versions. Just to mention a few, recent literature discusses the design
methodology of early exit networks highlighting its key components
and recent advances in each of them (Laskaridis et al., 2021). Bonato
and Bouganis (2021) proposed a design methodology for designing
early exit networks by adding additional exit to a given CNN model that
acts as a baseline. The goal was to reduce computation time compared
to regular models, while maintaining, if not increasing, accuracy. Tan
et al. (2021) focused instead on the threshold determination problem:
typically, the trade-off between accuracy and latency is controlled by
thresholds; therefore, in this work, Tan et al. investigated a latency-
aware threshold optimization problem, where the goal was to maximize
the overall inference accuracy while meeting the average latency re-
quirement. Matsubara et al. (2021) surveyed the state-of-the-art in EE
strategies by presenting a comparison of the most relevant approaches.
It is worth mentioning that the survey highlights the fact that the re-
search community mainly focused on EE strategies applied to Computer
Vision and Natural Language Processing applications.

The other research direction is focused on distributed EE; in this
case, the exit point is meant to be the (vertical) architectural layer, that

is, the end-device, the edge, the fog, or the cloud layer. Here, the idea
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is that inference is carried out at the lowest level (i.e., the end-device),
unless the result does not satisfy requirements, thus requiring further
and more powerful capacity provided by higher levels. Teerapittayanon
et al. (2017) proposed a distributed deep neural network that spans
across distributed computing hierarchy, which allows fast and localized
inference leveraging shallow portions of the neural network at the
edge and end devices. Indeed, sections of the deep neural network are
mapped onto the distributed computing hierarchy; by locating a few
neural network layers on end devices or the edge, and many neural
network layers in the cloud, they demonstrated that the network is
able to scale vertically, and horizontally across multiple end devices, as
well. Zhao et al. (2018) proposed the DeepThings framework for tightly
resource constrained IoT edge clusters, whose goal was to adaptively
distribute execution of CNN-based inference applications. The authors
mainly focused on the distribution of early convolutional layers. In Li
et al. (2019), a prototype named Edgent is proposed to leverage edge
computing for deep neural network collaborative inference via deep
neural network right-sizing, that is, via early exit inference at an ap-
propriate intermediate deep neural network layer in order to accelerate
inference, thus allowing a latency–accuracy trade-off. Similarly to Ed-
gent, Laskaridis et al. (2020) proposed SPINN, a distributed progressive
inference system equipped with method of selectively partitioning CNN
execution across device and server setups, while also tuning the early
exit policy. Last, Pacheco et al. (2021) recently demonstrated that early
exit deep neural networks can classify most samples at the edge, thus
avoiding sending data to the cloud, and reducing inference time.

Despite the rich literature related to EE, the adoption of early exit
strategies for deep learning models applied to HAR has not been the
subject of investigation, yet. To cite a recent attempt in line with this
research direction, despite EE is not being explicitly mentioned, in
the work proposed by Samie et al. (2020), authors partition human
activity classes into two subsets; a hierarchical classification approach
that decomposes the problem into three classifiers into two hierarchy
layers is then proposed. The idea is that a partition can be classified
using a light and accurate classifier directly on the IoT device. The other
partition, since it might require a more complex and heavy classifier,
shall be offloaded to a gateway. In Odema et al. (2021), EExNAS,
that is, a design methodology to render one dimensional CNN-based
wearable device solutions, is proposed for designing high-performance
and resource-efficient dynamic Neural Architecture Search. Here, HAR
is used as a use case study to prove the effectiveness of the proposed
methodology on w-HAR dataset (Bhat et al., 2020). Results show that
their model incurs a 0.584% drop in accuracy, but gains 78.985% and
47.076% in memory and energy efficiency, respectively. Rashid et al.
(2022) proposed an adaptive CNN for energy-efficient HAR that makes
the early exit decision based on output block predictor (instead of
classification confidence as in traditional EE architecture).

Unlike these works, our work provides insights about the conve-
nience of adopting EE-DNN architectures in human activity recognition
tasks. We design and compare four different neural network archi-
tectures, which we then evaluate on four publicly available datasets,
those latter different in terms of data collection protocols and sens-
ing platforms. Each architecture is carefully characterized in terms of
the trade-off between accuracy and latency during inference. Besides
evaluating the local (i.e. on the same device) application of EE-DNN
strategy, we also evaluate the impact of distributing EE-DNN models in
a distributed environment (i.e. along four different devices connected
by means of different communication technologies). To the best of our
knowledge, none of the existing literature carries out such a thorough
investigation.

3. Background

This section will present a background of deep neural networks and
early exit networks. We begin with a quick introduction to two of the
most widely adopted deep neural network models, followed by a brief
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overview of early exit networks approach. The background includes
basic principles and structure for neural networks, whereas most recent
training, inference strategies, and metrics in order to properly design
an early exit network are considered.

3.1. Deep neural networks

The concept of deep neural network (DNN) originates from a classi-
cal neural network: the deepness is given by the fact that multiple levels
of a neural network can be placed between the input and the output
layers. Such evolution allows for improved accuracy and performance.
One of the most popular DNN is the convolutional neural network
(CNN), which proved to be highly successful, especially in the field of
image recognition and classification.

As detailed in Alzubaidi et al. (2021), a CNN architecture is typically
composed of: (i) a convolutional layer, (ii) a pooling layer, (iii) an
ctivation function, (iv) a fully connected layer, and (v) a classification
ayer. The convolutional layer takes as input a multi-channeled image,
n n-dimensional format, and outputs a feature map. The pooling layer
s in charge of keeping meaningful features while decreasing the size
f the feature map. The activation layer allows us to learn other things,
nd its main role is to map the input to the output; the most well-
nown activation functions are: Sigmoid, Tanh, and ReLU, to cite a
ew. The fully connected layer acts as a classifier, and is normally
laced at the end of the network, typically after the (last) pooling
ayer; the peculiarity of the fully connected layer is that each neuron
s connected to all neurons of the predecessor layer. The final classi-
ication is however carried out by the classification layer via the loss
unction, which is responsible to evaluate the error, i.e., the difference
etween the predicted output and the actual one. The most commonly
dopted function is Softmax, which provides a probability distribution
f possible outcomes by converting a vector of real numbers given as
nput to the function.

It is worth noting that normally two-dimensional (2D) convolutional
ilters are used by CNN models to process 2D images; however, one-
imensional (1D) convolutional filters can be used by CNN models
o process signals, and therefore can be employed to perform Human
ctivity Recognition (HAR). The opportunity to convert time series
ignals data to images is gaining a lot of momentum because it allows us
o apply computer vision techniques and perform classification tasks. In
AR, this means that signals gathered from the triaxial accelerometer
nd gyroscope can be properly re-coded to images so that a ‘‘visual’’
nalysis can be carried out to recognize, learn and classify patterns.
everal re-coding techniques exist (Wang and Oates, 2015; Baldini
t al., 2017; Qin et al., 2020), and in this paper we leverage the deep
earning approach proposed by Wang and Oates (2015), in which time
eries are converted to Gramian Angular Summation/Difference Fields
GASF/GADF) images. Such an approach envisages the representation
f time series as a polar coordinate system that produces one image
or the GASF and the other for the GADF. The main advantage of
uch an approach is that temporal and spatial relations are preserved.
herefore, given an ad-hoc dataset, this preprocessing phase gener-
tes six images from the accelerometer and six from the gyroscopic
ata, leading to a total of 12 square images. An example of such an
pplication is described in Section 4.

Another deep learning approach used in the HAR field is the Long
hort Term Memory (LSTM) model, which is a type of a recurrent
eural network system. As detailed in Van Houdt et al. (2020), several
ersions of LSTM exist, but the most popular version is known as
anilla LSTM. A single LSTM unit is composed of a cell and three gates:
nput, output, and forget gate. The cell is responsible for keeping track
f values over time; the input gate is responsible for combining the
urrent input, the output of the previous LSTM unit, and the value of
he cell in the previous iteration in order to decide whether to select
he potential candidate values to be added. The forget gate considers

urrent input, state on memory cells, and output at the previous time

4

tep in order to decide which information should be removed from
revious cell states. The output gate computes the output (to be sent to
he output block) by combining the output of that LSTM unit at the
revious time, the current input, and the cell value in the previous
teration. LSTM networks are able to capture temporal information
rom time series data; since CNN networks are able to automatically
xtract significant features, combining both networks to build a hybrid
rchitecture can bring benefits in terms of performance and accuracy
n the HAR context.

.2. Early exit networks

The concept of early exit (EE) networks was introduced by Teerapit-
ayanon et al. (2017) where they envisaged a distributed deep neural
etwork (DNN) over a hierarchically distributed computing infrastruc-
ure, i.e., end-devices, the edge/fog. and the cloud. Here, the idea was
o consider small neural network (NN) models (running on devices or
dge/fog) and larger NN models (running on the cloud), considering
hat also small NN models are capable of performing classification
ith a certain confidence. In such case, there is no need to rely on a

urther processing in the upper layers of the computing infrastructure,
ecause a smaller portion of the DNN placed at the lower layers of the
nfrastructure is able to provide a satisfying classification with faster
nference. The basic idea behind EE was actually first introduced in
ne of their prior work (Teerapittayanon et al., 2016), where they
efined the ‘‘Exit’’ points as additional side branch classifiers. Here, a
ackbone DNN acting as the main branch is enhanced with multiple
ide branches, i.e., classifiers; such architecture leverages the experi-
nce that earlier layers are capable of learning features and performing
nference of a large subset of the population correctly. Therefore, if

sample can be classified with high confidence and accuracy at the
ery early layers of the DNN, this allows for early exiting at these
lassifiers without the need of a deeper processing through all layers
f the original DNN.

When dealing with EE architectures, it is necessary to consider
everal design aspects, such as: (i) how many exit points, and where to
lace them, (ii) how to structure the exit portion, (iv) how to train the
etwork, and (v) the exit criteria, i.e., how to evaluate the confidence of
he prediction. Our work hinges upon the discussion provided by recent
iterature (Scardapane et al., 2020), in which Scardapane et al. explore
bove mentioned aspects in detail. According to this discussion, where
o place exit points is in general a combinatorial problem; however, in
he case of one or two exit points, those are placed at 1/3 and 2/3 of
he backbone network. The authors describe in detail the three main
pproaches that can be adopted, at training time, when a backbone
etwork comprises early exits: joint training, layer-wise training, and
ndependent training.

The joint training envisages the connection of a loss to each inter-
ediate exit, i.e., classifier; then, those losses are properly combined

nd stochastic gradient descent is performed. Variations of such an
pproach exist, such for example merging predictions instead of losses.
he layer-wise training is about layer optimization: at first, the goal

s to minimize the loss of the first intermediate exit; then, as long as is
eeded, in an iterative fashion, a single intermediate exit is trained with
he backbone layers preceding it. The independent training, also known
s classifier-wise training, envisages the training of the backbone net-
ork as a first step, which is then completely frozen; subsequently, each
f the intermediate exit networks is trained separately, as if those were
tand-alone networks. Therefore, each sub-portion of the backbone
etwork can be trained and considered independently of each other,
nd of the backbone itself, thus allowing to possibly select the early
xit point. It is worth mentioning that, since the weight matrices of the
ackbone network are already learned and frozen, the loss function of
he intermediate exit point depends only on the weight matrix of the
ntermediate classifier, thus reducing the uncoupled training (Baccarelli
t al., 2020).
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Fig. 1. The proposed 1D_CNN architecture.
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Regarding the inference strategy in early exit networks, a suitable
criteria metric in classification problems is network confidence. This
criterion leverages the confidence of the network in its prediction to de-
cide whether to exit or not at an early exit point. In Wang et al. (2017),
three exit criteria are proposed: (i) probability-based, (ii) entropy-
ased, and (iii) risk minimization. The first two approaches have in
ommon the capability to estimate the uncertainty of the model about
he outputted prediction. However, the probability-based approach uses
he probability over the predicted class to directly estimates uncer-
ainty; whereas the entropy-based approach uses a well-calibrated class
onditional probabilities to capture both overall model uncertainty and
he certainty of the dominant class. The risk minimization approach
nvisages considering the computational cost of the intermediate exit
oint in the objective function. Such an approach allows therefore
inding a trade-off between accuracy and computational cost. It is worth
entioning that both probability and entropy-based approaches aim

t searching the so-called optima uncertainty threshold. The optimal
ncertainty threshold guarantees the maximum accuracy such that
urther processing with a more complex model is not required.

. Proposed methodology

In this section, we describe the methodology proposed to evaluate
he effectiveness of the EE strategy in HAR. First of all, we present
he network architectures and the used datasets. Then we illustrate the
raining and inferencing procedures.

.1. Proposed multi-exit networks

The following neural network typologies have been chosen to be
ested: (i) 1D_CNN, (ii) 2D_CNN, (iii) LSTM, and (iv) 1D_CNN–LSTM.

A key aspect in the design of multi-exit networks regards the place-
ent of exit points. In fact, they can be positioned to be equally or vari-

bly spaced, where spacing is meant to be measured not (only) in terms
f layer depth, rather in terms of the number floating point operations
FLOPs) performed by the network up to a given position (Laskaridis
t al., 2021).

For each of the four type of networks analyzed and described below
e placed three exit branches along the backbone of the network

ccording to a logic of (almost) equally spaced placement. t

5

Fig. 1 shows the architecture of the proposed 1D_CNN with its three
xit points. The network takes in input the six signals gathered from
he triaxial accelerometer and gyroscope appropriately divided into
indows of size equal to 𝑊𝑆. Clearly, deciding the size of the time
indow is a non-trivial task because the length of the time window

mpacts the performance of classification models (Banos et al., 2014).
ndeed, it should be large enough to enable automatic recognition of the
nderlying human activity, but also not too large to include consecutive
ctivities. For HAR tasks, different window lengths have been used in
he literature, from 1 s up to 30 s (Lattanzi et al., 2022; Cheng et al.,
010; Hassan et al., 2018; Hou, 2020). In this study, we opted for a 3
time window as a reasonable choice, given the characteristics of the
dopted datasets (specified in Section 4.2), in terms of activities to be
lassified and of sampling ratios.

The segmented signals are arranged by a sequence input layer in
six-channel data chunk that is forwarded to the subsequent one-

imensional convolutional layers. In particular, the backbone network
ontains four consecutive convolutional layers followed by a single
verage pooling layer. Notice that, the output of each convolutional
ayer is processed by a ReLU and by a normalization layer that are not
hown in the figure. The last part of the network is made up of three
ifferent layers of fully connected neurons that act as a multi-layer
erceptron. Also in this case, the three dropout layers which intersperse
he neurons layer are not shown. The proposed network then terminates
ith a standard layer that computes the softmax function used by the

lassification layer to calculate the cross-entropy loss and to infer the
ctivity label.

Starting from the backbone network just described, we proposed
hree exit points with increasing complexity. The Exit 1, just after the
irst convolutional layer, applies the average pooling layer followed
y a single fully connected layer which produces the output for the
oftmax and the classification layer. The Exit 2 includes the same layer
ut it takes as input the signals produced by the second convolutional
ayer. Finally, the Exit 3 originates after the third convolutional layer
nd, unlike the first two points, it contains an extra fully connected
ayer.

Fig. 2 shows a completely similar network, with respect to the
D_CNN, which makes use of the two-dimensional convolutional layers
nstead of the one-dimensional. The only difference is represented by

he pre-processing phase which elaborates the input signals in order
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Fig. 2. The proposed 2D_CNN architecture.
Fig. 3. The proposed LSTM architecture.
to obtain twelve square images as reported in Section 3. The produced
images are then managed by an image input layer before going through
the network structure. Notice that, also the three proposed exit points
are completely identical with those used in the 1D_CNN.

In Fig. 3 a four LSTM layers network is represented. The LSTM
stacked layers precede a three-layer Perceptron network followed by
a softmax and by a standard classification layer. The three proposed
exit points are, once again, identical to those we used in the previous
networks. Notice that, both the LSTM layers and the Perceptron layers
are interspersed with dropout layers not shown in the figure.

The architecture of the last proposed network is shown in Fig. 4.
It represents a stacked convolutional-LSTM network that comprises
three one-dimensional convolutional layers followed by two LSTM
6

layers. The implemented exit points include a different number of
convolutional, LSTM, and Perceptron layers so as to constitute points
of increasing complexity.

In order to define the various hyperparameters that characterize
the different models, we referred to some of the most current works
in the literature. Starting from these, we carried out a manual tuning
of the individual parameters trying to obtain the best performance in
terms of classification accuracy. Table 1 reports, for each layer, the
number of main elements that make it up. So for a convolutional layer,
it represents the number of convolutional filters, for the LSTM layer the
number of hidden units (i.e. the amount of information remembered
between time steps), and for the fully connected layer the number of
hidden neurons. Notice that, the last fully connected layer contains a
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Fig. 4. The proposed 1D_CNN_LSTM architecture.
Table 1
Proposed models hyperparameters.

Model Layer #elements Layer #elements

1D_CNN

conv_1 128

2D_CNN

conv_1 128
conv_2 256 conv_2 256
conv_3 256 conv_3 256
conv_4 256 conv_4 256
fully conn_1 256 fully conn_1 256
fully conn_2 128 fully conn_2 128
fully conn_3 #classes fully conn_3 #classes

LSTM

lstm_1 64

1D_CNN–LSTM

conv_1 128
lstm_2 128 conv_2 256
lstm_3 256 conv_3 256
lstm_4 512 lstm_1 64
fully conn_1 256 lstm_2 128
fully conn_2 128 fully conn_1 256
fully conn_3 #classes fully conn_2 128

fully conn_3 #classes

Table 2
Networks characterization.

Size [MB] Params [#] Inf. latency [ms] Accuracy

1D_CNN 10.36 2.76 × 106 60.6 0.970
LSTM 10.02 2.67 × 106 6.6 0.937
1D_CNN_LSTM 8.11 2.01 × 106 62.8 0.973
2D_CNN 36.16 33.48 × 106 77.5 0.939

number of hidden units that directly represent the number of classes of
the classification problem so it is different for each used dataset.

4.2. Datasets

We evaluated the EE strategy on four different HAR datasets namely:
(i) WISDM, (ii) REALWORLD16, (iii) UCI-HAR, (iv) OU-ISIR.

WISDM (Kwapisz et al., 2011): this dataset includes data collected
from 51 subjects, each of whom was asked to perform 18 tasks for three
minutes each. Data (sampled at 20 Hz) contains both accelerometer
and gyroscope signals and were recorded using a smartwatch placed
on the dominant hand and a smartphone placed on the pocket during
7

the following activities: walking, jogging, stairs, sitting, standing, typing,
brushing teeth, eating soup, eating chips, eating pasta, drinking, eating a
sandwich, kicking a soccer ball, playing tennis, dribbling, writing, clapping,
and folding clothes.

REALWORLD16 (Sztyler et al., 2017): the data are based on acceler-
ation, GPS, gyroscope, light, magnetic field, and sound level collected at
a sampling frequency of 50 Hz of the following activities: climbing stairs
down and up, jumping, lying, standing, sitting, running, and walking. Each
activity was performed for ten minutes (except for jumping which was
repeated for about 2 min) by 15 subjects of different ages and gender
in real-world conditions. Each subject was instrumented with different
wearable sensors in order to capture signals generated in different body
positions such as chest, forearm, head, shin, thigh, upper arm, and
waist.

UCI-HAR (Reyes-Ortiz et al., 2016): it contains activity data gath-
ered from 30 participants of varying ages, races, heights, and weights
(aged between 18 and 48 years). The accelerometer and gyroscope
signals are sampled at 50 Hz from a common smartphone placed
at waist level. The monitored activities are: walking, walking upstairs,
walking downstairs, sitting, standing, and lying down

OU-ISIR (Ngo et al., 2014): this is a very large dataset provided
by the Institute of Scientific and Industrial Research (ISIR), of Osaka
University (OU). It contains both accelerometer and gyroscope inertial
measurements recorded at a sample rate of 50 Hz using a smartphone
on 744 subjects (389 males and 355 females) with ages ranging from
2 to 78 years. This dataset is dedicated to the study of the different
gait capabilities in age and gender of people and it contains only four
different activities which are: walking up on the slope, walking down on
the slope, walking in flat (entering), and walking in flat (exiting).

4.3. Training the model

Training a EE network needs some considerations and design
choices (see Section 3.2). This work implements the independent train-
ing of the backbone network and of each sub-networks defined by the
three exit points. First of all, the raw datasets have been split into 75%
for training and 25% for testing, then the training set has been used to
train each network independently. Partitioning the entire dataset once
and for all ensures that the backbone network and its sub-networks are
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trained with the same samples so that there is no risk that during the
inference phase, a sub-networks may have already encountered some of
them. Once the models were trained, the classification performances of
the backbone network and of the EE approach were assessed using the
testing samples. To increase the robustness of the results, the entire
procedure has been repeated five times, randomly choosing which
samples to insert in the training set and which ones in the test set.

4.4. Making the inference

In the inference phase, the EE technique traditionally allows reduc-
ing the prediction latency thanks to the fact that the best exit point
is dynamically chosen based on the classification ‘‘difficulty’’ of each
sample. As reported in Section 3.2 several policies can be applied
to drive the exit point selection. In this paper, we make use of the
normalized entropy as a measure of the prediction confidence and we
compare it with a user-selected threshold to decide whether to early
exit the architecture. According to the work presented by Wang et al.
in 2017 (Wang et al., 2017), denote by 𝑐𝑖𝑡(𝑥) the prediction of the 𝑖th
exit point on the 𝑡th class, and by 𝐶 the total number of classes. The
normalized entropy of the prediction is:

𝐻[𝑐𝑖(𝑥)] ≜
1

log (𝐶)
∑

𝑡
𝑐𝑖𝑡(𝑥) log (𝑐𝑖𝑡(𝑥)) (1)

Defining a user-selected entropy threshold 𝛽𝑖 for each exit point,
we can apply the procedure described in Algorithm 1 to obtain the
inference on a EE network. In particular, this procedure returns the
Effective Classification (𝐸𝐶(𝑥)) of a sample 𝑥 for the chosen exit point
and the Effective Inference Latency (𝐸𝐼𝐿(𝑥)) which is calculated as the
sum of latency of the chosen exit point 𝑙𝑖(𝑥) with those of the exit
points previously tested. Therefore, an EE network is more efficient the
more often it can stop the inference phase early by testing a few exit
points before finding the one that satisfies the confidence threshold.
For instance, the best case occurs when the first exit point is already
able to satisfy the confidence threshold. In this case, the 𝐸𝐼𝐿(𝑥) of
the network will be equal to the latency of the first exit point 𝑙0(𝑥).
On the other hand, in the worst case, no available exit points satisfy
the confidence threshold so the effective classification is done by the
backbone network (the last exit point). In this condition, 𝐸𝐼𝐿(𝑥) is the
sum of the inference latency of all available exit points on the network.
The efficiency of an EE network can be evaluated by calculating the
average 𝐸𝐼𝐿 defined as:

𝐸𝐼𝐿 = 𝑙0 +
𝑀
∑

𝑖=1
𝛼𝑖𝑙𝑖 (2)

where 𝛼𝑖 represents the exit ratio of the 𝑖th exit point. Obviously, 𝛼𝑖
trictly depends on the selected 𝛽𝑖 and on the prediction confidence of
ach exit point (i.e. the normalized entropy of the prediction).

. Experimental setup

In this section, we provide a description of the performance metrics
nd of the experimental setup used to evaluate the effectiveness of the
E technique.

.1. Performance metrics

Once the models have been trained on a specific dataset, we evalu-
te, both for the backbone network and for its EE version, the ability to
orrectly classify the human activities and the average network latency.
easuring the classification capability in a multi-class problem entails

he evaluation of the following quantities for each of the N classes
𝑖 ∈ [1⋯𝑁] is an index that identifies a specific class): 𝑇𝑃𝑖, the number
f true positives predicted for class 𝑖; 𝑇𝑁𝑖, the number of true negatives
redicted for class 𝑖; 𝐹𝑃𝑖, the number of false positives predicted for
lass 𝑖; 𝐹𝑁 , the number of false negatives predicted for class 𝑖.
𝑖

8

Algorithm 1 Sample prediction on EE networks
𝑀 : number of exit points in the network
𝑥 : current sample
𝛽𝑖 : entropy threshold for the 𝑖th exit point
𝑐𝑖(𝑥) : classification of sample 𝑥 by the 𝑖th exit point
𝑙𝑖(𝑥) : inference latency of the 𝑖th exit point
𝐸𝐼𝐿(𝑥) : effective inference latency of sample 𝑥
𝐸𝐶(𝑥) : effective classification of sample 𝑥

𝑖 ← 0
𝐸𝐼𝐿(𝑥) ← 0
while 𝑖 < 𝑀 do

𝐸𝐼𝐿(𝑥) ← 𝐸𝐼𝐿(𝑥) + 𝑙𝑖(𝑥)
𝐸𝐶(𝑥) ← 𝑐𝑖(𝑥)
if 𝐻[𝑐𝑖(𝑥)] ≥ 𝛽𝑖 then

break
end if
𝑖 ← 𝑖 + 1

end while
return 𝐸𝐼𝐿(𝑥), 𝐸𝐶(𝑥)

Subsequently, these indicators can be used to compute the fol-
lowing metrics (corresponding to the so called macro-averaging mea-
sures) (Sokolova and Lapalme, 2009):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

(3)

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(4)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃𝑖 + 𝑇𝑁𝑖
𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(6)

In order to calculate the performance of the EE version, first of all,
we characterize each 𝑖th exit point of the model in terms of inference
latency (𝑙𝑖) ad normalized entropy of the prediction (𝐻[𝑐𝑖(𝑥)]). Then,
or a given entropy threshold (𝛽𝑖), we applied the algorithm 1 described
n Section 4.4 to compute the 𝐸𝐼𝐿(𝑥) and the 𝐸𝐶(𝑥), for each sample 𝑥
f the testing set, from which we can easily derive 𝐸𝐼𝐿 and the metrics

of the Eqs. (3) (4) (5) (6).

5.2. Setup configuration

The network models have been implemented and tested on
Matlab2022a® platform running on a Windows® desktop pc equipped
with an Intel® Core i9 and 16 GB of RAM.

The dataset records, composed of six distinct signals, have been
divided into time windows and each of these has been considered as
a sample to be used to train and test the classifiers. We refer the reader
to Section 4.1 for the discussion about the size of the time window
decision.

6. Experimental results

In this section, we describe the proposed experiments and report
the corresponding results. First of all, we characterize the backbone
networks in terms of classification performance and computational
complexity. Then we compare these results with those obtained with
the EE technique. Notice that, the reported results have been computed
by repeating the training–testing procedure five times, randomly choos-
ing which samples to insert in the training set and which ones in the

test set.
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Fig. 5. Network classification accuracy.
6.1. Networks characterization

Fig. 5 shows the classification accuracy of the proposed backbone
networks, without the application of the EE strategy, calculated over
the four datasets. It is interesting to note that these networks obtain
very good results in all datasets, achieving an accuracy that never drops
below about 93%

Moreover, the 1D_CNN and the 1D_CNN_LSTM outperform other
networks in all conditions, reaching a maximum accuracy of about
98% respectively in UCI-HAR and REALWORLD16 datasets. Notice
that, precision, recall, and F1-score, although they have been calculated
for each experiment, they are not reported on the figure since they
do not show significant variations with respect to the accuracy which
was therefore chosen to represent the classification performance of the
models.

Table 2 reports a complete characterization of these networks in
terms of size, number of trainable parameters, inference latency, and
classification accuracy obtained by averaging the values measured in
each dataset. For what concerns the model size, the 2D_CNN shows
the largest memory occupation which is more than 3x with respect to
the size of the others. This is also highlighted by the higher number
of trainable parameters which reaches more than 33 million. From the
inference latency point of view, the LSTM network is the fastest taking
just 6 ms to classify a sample which is about an order of magnitude
lower than the time spent by others. Finally, the average accuracy
reported in the table confirms the supremacy of the 1D_CNN and the
1D_CNN_LSTM networks already seen in Fig. 5.

To better understand the relative performance of the four models,
in Fig. 6, we represent each network in an inference latency Vs. clas-
sification loss Pareto plane. Here the 1D_CNN and the 1D_CNN_LSTM
represent the best trade-off between classification loss and inference
latency but it is equally evident that, in the face of a slight classification
loss, the LSTM network entails a net advantage in terms of latency.

6.2. Early exit performance

To investigate the efficiency of the EE strategy applied to the
proposed models we used the Algorithm 1 described in Section 4.4.
Notice that, in order to reduce the degrees of freedom, in the following
experiments we applied the same threshold at each exit point (i.e. we
assumed that 𝛽𝑖 = 𝐵, ∀𝑖 ∈ [1, 2,… ,𝑀]). In these conditions, we
iteratively executed the algorithm by varying 𝐵 in the range [0,1] and
we measured the corresponding 𝐸𝐼𝐿.

Fig. 7 shows, for each network, the Pareto curves (classification
oss Vs. 𝐸𝐼𝐿) obtained when varying 𝐵 on the different datasets with

highlighted, by means of red circles, some representative values of the
9

entropy threshold 𝐵. When 𝐵 is equal to zero, the network always stops
the inference at the first exit but, on the other hand, setting it to 1
does not entail always exiting at the backbone network. In fact, even
with the threshold set at the maximum value, the network can still
stop at early exits if the prediction confidence for that sample reaches
the maximum value. Obviously, the greater the 𝐵, the greater the
likelihood of using the furthest exits, and potentially, the effectiveness
of the network. On the other hand, using more and more far exits,
while increasing the effectiveness in terms of accuracy, decreases the
efficiency in terms of prediction latency.

Interestingly, all the networks show a similar trend that identifies
as the best trade-off some points given by a value of 𝐵 in the range of
about 0.80 to 0.90 and that, using an even higher threshold, involves a
high decrease of efficiency in the face of a modest increase in effective-
ness. Another interesting result is that even using the maximum value
of 𝐵, the 𝐸𝐼𝐿 never reaches the inference latency of the respective full
network while maintaining about the same effectiveness.

The comparison between the EE strategy and the baseline (the
corresponding backbone) is reported in Tables 3 and 4 which compare,
respectively, the effectiveness and the efficiency of the networks. In
particular, Table 3 shows the accuracy variation between the baseline
and the EE approach when using the maximum (𝑚𝑎𝑥) and the optimal
(𝑜𝑝𝑡) value of 𝐵 (i.e., respectively, 1 and 0.85). In the case of using
𝑚𝑎𝑥 value, the performances are practically identical to those of the
baseline or even better (negative values). Only for the 2D_CNN a
worse in accuracy can be noticed of about 3% when using the OU-
ISIR dataset. The results change slightly when the optimal threshold
(𝑜𝑝𝑡) value is used. In this case, we recorded a maximum loss of about
8% again for the 2D_CNN on OU-ISIR, while, in the case of 1D_CNN
and 1D_CNN_LSTM, the obtained results are practically identical to the
baseline with loss of accuracy never greater than 0.4%. Finally, also the
LSTM network, except for OU-ISIR, where it loses about 3%, obtains
results in line with those of the baseline.

Table 4 shows the inference latency gain of the EE approach with
respect to the baseline. Both for 𝑚𝑎𝑥 and 𝑜𝑝𝑡 configurations, the EE ap-
proach registered a positive gain, demonstrating a significant increase
in efficiency. For instance, using the 𝑚𝑎𝑥 threshold, no model falls
below an average gain of about 2× with a maximum of about 6× for
the 1D_CNN_LSTM. Reducing the threshold to the optimal value (i.e. to
about 0.85) the latency gain increases for all networks reaching the
maximum average value of more than 20× (with a peak of 35×) using
the 1D_CNN_LSTM network.

Analyzing the results of the two tables together, it appears that
there are no conditions in which the application of the EE technique is
disadvantageous in terms of accuracy, despite significantly increasing
efficiency, if the 𝑚𝑎𝑥 value of the threshold is used. On the other hand,
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Fig. 6. Network latency Vs. classification loss.
Fig. 7. Pareto curve reporting the accuracy loss Vs. the expected inference latency (𝐸𝐼𝐿). The red circles highlight some representative values of the entropy threshold 𝐵.
Table 3
Classification accuracy variation of the EE approach with respect to the baseline for maximum (𝑚𝑎𝑥) and optimal (𝑜𝑝𝑡)
cross-entropy threshold.
Dataset 1D_CNN 2D_CNN LSTM 1D_CNN_LSTM

max opt max opt max opt max opt

WISDM −0.009 −0.004 −0.005 0.002 −0.007 0.010 −0.005 0.002
REALWORLD16 −0.004 0.003 0.007 0.027 −0.013 −0.001 −0.002 0.004
UCI-HAR −0.005 −0.001 −0.006 −0.003 −0.023 −0.013 −0.006 0.003
OU-ISIR −0.012 −0.005 0.038 0.088 −0.003 0.027 −0.003 0.002

Average −0.008 −0.002 0.008 0.028 −0.012 0.006 −0.004 0.003
by reducing the threshold to 𝑜𝑝𝑡, a further improvement in efficiency
is obtained without substantially reducing the classification capability
except in the case of the 2D_CNN network.
10
We chose the 1D_CNN network and the REALWORLD16 dataset as a
representative benchmark, to deeply analyze the performance of the EE
technique and to highlight its peculiarity. Fig. 8 shows the confusion
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Table 4
Inference latency gain of the EE approach with respect to the baseline for maximum (𝑚𝑎𝑥) and optimal (𝑜𝑝𝑡) cross-entropy
threshold.
Dataset 1D_CNN 2D_CNN LSTM 1D_CNN_LSTM

max opt max opt max opt max opt

WISDM 2.297 5.983 0.982 1.984 3.058 7.047 2.900 9.650
REALWORLD16 3.019 9.300 1.816 5.408 4.503 10.757 4.467 16.196
UCI-HAR 7.118 26.420 2.421 7.035 4.580 6.427 12.088 35.338
OU-ISIR 3.180 8.238 3.884 10.882 6.865 12.179 6.300 23.474

Average 3.903 12.485 2.276 6.327 4.751 9.103 6.439 21.165
Fig. 8. The expected classification matrices obtained with four different values of the threshold 𝐵 for the LSTM network on the REALWORLD16 dataset.
matrices, calculated on top of the 𝐸𝐶(𝑥) results, obtained using four
different values of 𝐵 namely 0.45, 0.65, 0.85, and 1.0. The matrices
clearly show that some activities are well classified also with low values
of the threshold (𝐵 = 0.45) leading to a high probability of exit at early
stages, such as, for instance, ‘‘climbing up’’, ‘‘jumping’’, and ‘‘lying’’. On
the other hand, some other needs higher thresholds which involve the
furthest exit points. The ‘‘climbing down’’ activity, for instance, is well
classified using the maximum threshold value (𝐵 = 1.0) while in the
other cases, it is resolved as ‘‘sitting’’ with a non negligible frequency.

In order to further investigate the behavior of the system, we
focused on the value of 𝐵 = 0.85 and, for this, we counted the number
of times each activity determined the exit at a particular point. The
exit ratio of the activities are reported in Fig. 9. Interestingly, different
11
activities show strongly different behaviors: the easiest to classify are
discovered in the early stages while the hardest require the involvement
of the furthest exits. For instance, the ‘‘jumping’’ activity exits at about
98% at the first point while ‘‘sitting’’ and ‘‘standing’’ no more than
47% and they arrive to involve the backbone for more than 25% of
the evaluated samples. Another interesting finding is represented by the
fact that, for instance, despite an almost equal exit rate at the first stage
of activities ‘‘climbing down’’ and ‘‘lying’’, they involve the furthest exit
points in quite different ways. In fact, the former uses the backbone exit
more frequently while the latter is adequately classified already in the
second exit point reducing the use of the more complex classifier.

This in-depth analysis clearly highlights the fundamentals of the EE
technique which bases its advantage on the fact that some samples are
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Fig. 9. Exit ratio at each point for the activities in the REALWORLD16 dataset for the
1D_CNN network obtained with 𝐵 = 0.85.

easier to classify and therefore can leave the pipeline sooner, reducing
the use of more complex and expensive models.

6.3. Non-parametric significance test

To statistically assess whether the accuracies of the EE networks are
different from the corresponding backbone, a statistical McNemar test
with a confidence level of 95% has been performed (Fagerland et al.,
2013). In particular, we have tested the null hypothesis that the two
classifiers have equal accuracy for predicting the true classes.

Fig. 10 reports the p-value computed by the statistical test when
varying the threshold 𝐵 of the EE network for each dataset. Notice that,
for p-values greater than 0.05 the null hypothesis cannot be rejected
under a confidence level of 95%. As expected, for lower values of 𝐵
the EE networks cannot be considered equivalent with respect to the
corresponding backbone. Moreover, further increasing 𝐵 corresponds
to an increase in the p-value that, for 𝐵 around 0.5–0.7 (it depends on
the network), involves having to consider the two models as identical
from a statistical point of view (i.e. p-value ≥ 0.05). On the other hand,
it seems interesting that beyond a certain value of 𝐵 the p-value falls
again and, in almost all cases, in the last points of the graph the null
hypothesis must be rejected.

While the non-equivalence for very low values of 𝐵 is evident that
it is due to the reduced classification capacity of the EE network, the
rejection of the null hypothesis for high values, probably, must be due
to the fact that the EE network performs better than the backbone as
reported in previous results.

6.4. Adding the communication latency

The experiments presented in the previous section are based on the
assumption that the backbone network, with its exit points, is installed
in the memory of the same device and that each branch to an exit
point can be executed locally without introducing any latency due to
the data transfer. In a distributed environment, where, for instance,
each network branch is stored and executed in a different device, a
communication latency should be paid each time that the current exit
point does not satisfy the entropy threshold.

The magnitude of the communication latency may or may not make
the EE technique ineffective. To this purpose, we call breakpoint latency
the value of the communication latency to be paid at each exit point,
following the first, for which the 𝐸𝐼𝐿 of an EE network exceeds the
original average backbone latency (baseline) for any possible entropy
threshold. This means that, for a communication channel with a latency
equal to or greater than the breakpoint latency, there are no threshold
values that can make the EE strategy effective.
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Table 5
Case study parameters.

Transfer rate [Mbps] Latency [ms] Sending time [ms]

PAN (Bluetooth) 1 100 114.06
LAN (WiFi) 54 10 10.26
Internet (Mix) 20 20 20.70

Fig. 11 shows the estimated breakpoint latency for the proposed
models tested on the four datasets. Notice that, for sake of simplicity,
the latency was assumed to be the same in each communication channel
between the devices hosting the different exit points. The 1D_CNN and
the 1D_CNN_LSTM result in a significantly higher breakpoint latency
with respect to the LSTM and 2D_CNN networks. This implies that
the EE technique, applied to the first two networks, shows greater
robustness such as making it convenient to use even when the com-
munication should be a bottleneck. For instance, an EE 1D_CNN_LSTM
is still convenient for communication latency values that can reach up
to about 400 ms. On the other hand, a latency as low as 20 ms or 30 ms
can make it useless to apply EE in LSTM or 2D_CNN networks.

From these results, it is evident that a distributed EE technique
may not be convenient not only for those models that are already very
fast, in which the inference latency can be as equal as, or even lower
than, that of communication (LSTM), but also in those which although
showing long inference times (2D_CNN), are forced to make extensive
use of far exit points to satisfy the accuracy requirements.

In order to evaluate the suitability of the EE technique in more
realistic conditions, we simulate a case study proper to HAR applica-
tions by assuming a setup in which the deep model is spread through
four devices connected by means of different network technologies.
In particular, a wearable device, which acts as a sensor by collecting
accelerometer and gyroscope signals, holds the first exit point and
it is connected, through a Bluetooth-enabled PAN, to a gateway that
contains the second exit point. The gateway can easily be represented
by a smartphone connected to a WiFi LAN. In turn, in the LAN there
may be a router capable of hosting the third exit point and which can
reach the cloud, by means of the Internet network, where it can find
the backbone network (the last exit point).

Table 5 reports the typical transfer rate, latency, and the resulting
sending time of our case study obtained by analyzing the current
scientific literature (Baliga et al., 2011; Dusza et al., 2013). The sending
time has been calculated starting from the latency and transfer rate
assuming a payload composed of 6 signals sampled at 50 Hz with
16 bits for sample resulting in about 4.8 KB for a processing window
lasting one second.

To highlight the suitability of the application of the EE technique
in the proposed case study, we compared, in the Pareto loss Vs. ac-
curacy plan, the backbone network with the EE strategy (we took the
REALWORLD16 dataset as a case-study).

In particular, Fig. 12 shows the reciprocal positioning of the back-
bone networks (orange points) with respect to the EE curves obtained
for all possible values of 𝐵. Notice that, a curve positioned above the
backbone point identifies a deep model in which it is not advisable to
use the EE technique (2D_CNN and LSTM in the figure) while, in the
other cases (1D_CNN and 1D_CNN_LSTM), it still carries an advantage.

Considering the assumptions made, this case study shows that not
all deep networks can benefit from the EE technique in the HAR
application domain and that its suitability must be evaluated case by
case regarding the performance of the model and the characteristics of
the setup.

7. Conclusion

This paper proposes an empirical investigation of early exit deep
neural networks in human activity recognition tasks across four dif-
ferent neural networks. The extensive experiments conducted on four
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Fig. 10. p-value of the McNemar test when varying the entropy threshold 𝐵.
Fig. 11. Breakpoint communication latency.
publicly available datasets, confirm the high performance achieved
by the backbone networks in the classification tests and outline the
supremacy of 1D_CNN and 1D_CNN_LSTNM with respect to 2D_CNN
and LSTM networks.

Adding the EE strategy locally shows that there are no conditions
in which it is disadvantageous in terms of accuracy, except in the case
of the 2D CNN network, despite an increased efficiency up to 35×. On
the other hand, in a distributed environment, for instance where each
network branch is stored and executed in a different device, and where
a communication latency should be paid when you skip to the next exit
13
point, our results point out that applying the EE technique may not
always be convenient. In particular, for both the case of models that
are already very fast such as LSTM, and also for those that, although
showing long inference times (2D CNN), are forced to make extensive
use of far exit points to satisfy the accuracy requirements, the adoption
of EE can be disadvantageous.

In future steps, we plan to expand our analysis by considering
different performance metrics in addition to latency and accuracy such
as, for example, energy consumption. For this purpose, we plan to

employ resource-constrained devices, such as ESP32 MCU, representing
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Fig. 12. Pareto curve loss Vs. latency for the case study.
n edge device, and a Raspberry Pi, in the role of a gateway, to
n-depth characterize the EE suitability in a typical Internet of Things
AR application.
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