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Trust is an extremely helpful construct when reasoning under uncertainty. Thus, being able 
to logically formalize the concept in a suitable language is important. However, doing so is 
problematic for three reasons. First, in order to keep track of the contextual nature of trust, 
situation trackers are required inside the language. Second, in order to produce trust estimations, 
agents rely on evidence personally gathered or reported by other agents; this requires elements 
in the language that can track which agents are used as referrals and how much weight is placed 
on their opinions. Finally, trust is subjective in nature, thus, personal thresholds are needed to 
track the trust-propensity of different evaluators. In this paper we propose an interpretation 
of a probabilistic modal language à la Hennessy-Milner in order to capture a context-aware 
quantitative notion of trust based on evidence. We also provide an axiomatization for the language 
and prove soundness, completeness, and decidability results.

1. Introduction

In environments where information is scarce and where data might be inaccurate or biased, trust plays a crucial role. Whenever 
explicit and direct knowledge is not available and attaining precise data is difficult, trust helps agents to make decisions. Trust enables 
those decisions through a combination of (i) risk acceptance [32,40], (ii) personal experiences by the agent making the decision [22], 
and (iii) recommendations by other agents [49]. By trusting, agents accept that the experiences they personally had and the ones 
reported by other parties provide a good enough ground for their decision-making procedures, and allow them to embrace the risk 
of being wrong and, consequently, being disappointed.

The role that trust plays as a facilitator for decision-making under uncertainty should highlight the importance of studying this 
concept thoroughly. Disciplines as diverse as sociology [25], economy [12], political science [24], evolutionary biology [47], and 
computer science [38,43,4], all dedicated some of their attention to trust, obviously prioritizing their specific needs. Among those 
research endeavors, a prolific subject has been that of logical representations of trust [30,27,8,35,44,42]. By representing trust 
formally, not only it is possible to understand the concept better, but it also becomes easier to implement trust models in online 
environments, which are prime candidates of environments where clear and reliable information is hard to come by.1
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However, obtaining satisfactory logical models of trust is difficult, especially when elements (i)-(iii) (i.e., risk acceptance, personal 
experiences and recommendations) have to be modeled in order to obtain trust values to apply in decision making. The difficulties 
are produced by two important limitations: (a) logical languages often employ qualitative evaluations of the concept of trust rather 
than quantitative ones; (b) personal experiences and recommendations produce further elements of uncertainty that have to be dealt 
with [5].

Problem (a) is tied to the risk-acceptance component of trust. Different agents have different risk-propensities, which could further 
change in intensity depending on the context (in some contexts an agent might be risk averse, while in others s/he might be risk 
prone) or the information to be trusted (information that is extremely impactful in a situation might require stricter analysis and 
better safeguards, compared to information that is less important).

Problem (b) is tied to the personal experiences and recommendations components, the relevance of which depends on the relia-

bility of the source of the evidence (either direct or indirect), and the significance of such evidence to the specific decision context 
in which trust should be applied.

In order to provide a solution to those problems it is necessary to implement context-aware components and subjective expertise 
parameters to the logical languages that are built to model trust. The context-aware components (such as different trust thresholds 
that depend on the situation) should help in dealing with risk-acceptance, since specifying how difficult it is to trust in different 
circumstances can help to provide adequate estimations based on the situation. On the other hand, expertise parameters that can be 
set from a subjective standpoint can indicate which experts are consulted in order to gauge their opinions, and, moreover, how much 
weight those opinions have in the final considerations.

The aim of this paper is to show that those components can be implemented through the use of classical ingredients of probabilistic 
modal languages. In particular, we define a logical framework that can be used to analyze context-aware trust relations based on 
possessed and referred evidence. The resulting language, called Trust Evidence Logic (TEL), includes modalities, inspired by logics à 
la Hennessy-Milner [26], used to express estimations about trust towards logical formulas.

In order to achieve our goals, the paper is structured as follows. In Section 2, motives that inspired our approach are provided, 
hinting at alternative solutions and connections between them. In Section 3, the syntax and semantics of TEL are introduced and 
model theoretic results are given, by interpreting the theoretical machinery for the study of a context-aware computational notion 
of trust based on evidence. In Section 4, TEL is used to model and check a case study taken from the setting of mobile and sensor 
networks. In Section 5, soundness, completeness, and decidability results for TEL are proved, and in Section 6, conclusions and future 
works follow.

This paper expands previous work by the authors [3], both from a modeling and a technical perspective. On one hand, we detail 
the relation between the theory behind our language and the properties of the notions of trust we formalize (Sections 3 and 5), by 
illustrating the expressiveness of our framework in a real use case (Section 4). On the other hand, from a technical perspective, we 
expanded our completeness results and added decidability results (Section 5).

2. Modeling trust in modal logics

The formal modeling of trust received a lot of attention in the modal logics community in the last 20 years [14,37,39,1,36,2,

35,45,42,46]. Since there is no general agreement on a precise notion of trust, all these approaches emphasize different aspects 
and properties of such a highly subjective concept, without unifying in a unique framework all the characteristics emphasized in 
Section 1. As a starting point for our proposed approach, a prominent analysis of the concept of trust that we rely on is that of 
Gambetta [19]. According to his definition of trust, when Alice (the trustor) trusts Bob (the trustee), Alice subjectively attributes a 
sufficiently high probability to the possibility that Bob will act in a beneficial way towards her. In this sense, what seems relevant 
for the presence of trust is that Alice is able to have enough information to form a subjective evaluation on the probability that Bob 
will act in a certain way. Moreover, the kind of information that Alice is seeking is context-dependent and might change in different 
scenarios and/or time frames, i.e., when and in which circumstances Alice is evaluating Bob’s actions.

One of the main approaches to implement such form of trust in online environments is based on reputation models [31,30]. The 
advantage of these models is that they are well-structured to deal with indirect evidence of behavior and they provide a solid base 
for trust evaluations. In particular, agents provide their feedback after each interaction with a certain trustee on the basis of such 
a personal experience, and then, the reputation model estimates a unified value from the collection of such information; finally, 
the values are shared with all the agents, which use them when behaving as trustors to form their subjective evaluation about the 
trustee under consideration. Given that reputation models only need to manipulate data provided directly by agents, they are easy 
to implement in online environments and thus are widely employed as evidence-bases for trust evaluations.

Assuming a simple reputation model where agents can only provide Boolean evaluations for certain behaviors, e.g., the behavior 
is present or is absent, it would be easy to represent such a model through the use of graded modal logics (GML) [21,18,17]. In GML, 
the modal operator ◊𝑛𝜙 specifies that in strictly more than 𝑛 accessible states of the system 𝜙 holds. Hence, by interpreting states 
as agents and 𝜙 as the evaluated behavior, the modal operator can be adapted to decide whether a given number of evaluations 
are present and from there, provide an estimation of trust.2 Taking the intuition behind GML as a starting point, two important 

2 An alternative approach is to employ majority logics [41]. Such logics are well suited to deal with dynamic scenarios where the number of evaluations is not fixed. 
The advantage of employing majority logics instead of GML is given by the fact that majority logics only specify that the (strict) majority of evaluations must be 
2

positive, without specifying a given number of those. On the contrary, in GML, this number must always be specified.
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elements can be added in order to improve the expressiveness of the model. The first element is a parameter indicating the context 
of evaluation. Hence, an evaluation is not a general assessment, but strictly depends on a specific scenario that indicates in which 
circumstances the evaluation is made. The second element is a numeric parameter indicating the expertise of the evaluator, i.e., 
it establishes how much weight the trustor places on the evaluations of other agents. In this sense, not all evaluations are judged 
equally, but some will be more relevant than others. Those two additions produce a language (𝐓𝐄𝐋) that encompasses some features 
from both the probabilistic version of Hennessy-Milner logic (HML), see for instance [34], and the Probabilistic Computation Tree 
Logic (PCTL) [23]. In particular, 𝐓𝐄𝐋 introduces modal formulas that re-interpret the modality ⟨𝑎⟩⋈

𝑝
𝜙, in which 𝑎 represents the 

context of evaluation and 𝑝 denotes the evaluation threshold used to govern trust-based decisions.

Following both [34] and [23], the semantics of 𝐓𝐄𝐋 is defined on top of probabilistic labeled state-transition systems, which 
generalize Kripke semantics and allow for a straightforward logical characterization of bisimulation based equivalence. Moreover, 
we extend soundness, completeness, and decidability results of modal languages with graded modalities to our setting.

The upside of our approach is that, compared to the other modal logic formalizations of trust mentioned at the beginning of this 
section, we combine in a unique model all the aspects surveyed above that are useful to determine quantitatively trust evaluations. 
In particular, to the best of our knowledge, our formalization of trust for multi-agent systems represents the first effort of including 
in modal logics context sensitivity, agents’ trust propensities, and weighted evaluations of (personal and reported) experiences.

3. Syntax and semantics of 𝐓𝐄𝐋

We start by introducing the language of Trust Evidence Logic (𝐓𝐄𝐋). Formulas of 𝐓𝐄𝐋 handle numbers from a fixed set called 
base.

Definition 1 (Base). A recursively enumerable set {0, 1} ⊆ 𝔹 ⊆ [0, 1] is called a base if it satisfies the following closure conditions:

– Quasi-closure under addition:

∀𝑟, 𝑟′ ∈ 𝔹. (𝑟+ 𝑟′ ≤ 1 ⟹ 𝑟+ 𝑟′ ∈ 𝔹)

– Closure under complements:

∀𝑟 ∈ [0,1]. (𝑟 ∈ 𝔹 ⟹ 1 − 𝑟 ∈ 𝔹)

– Density: if 𝔹 is infinite then

∀𝑟, 𝑟′ ∈ 𝔹. (𝑟 < 𝑟′ ⟹ ∃𝑟∗ ∈ 𝔹. (𝑟 < 𝑟∗ ∧ 𝑟∗ < 𝑟′))

The above definition generalizes the notion of base introduced in [17], which is restricted to finite sets. Notice also that, in order 
to work with (semi)decidable logics, we require bases to be recursively enumerable. In what follows, we shall fix a base 𝔹 and keep 
it throughout this section. As an example, the set of rational numbers ℚ[0,1] could be a candidate base.

Definition 2 (Language of 𝐓𝐄𝐋). Let 𝐴𝑡 be a countable set of propositional atoms ranging over 𝛼, 𝛽, 𝛾, …, and let 𝐴 be a countable set 
of labels ranging over 𝑎, 𝑏, 𝑐, …. The language 𝐓𝐄𝐋 is generated by the following grammar:

𝜙 ∶∶= ⊤ | 𝛼 | ¬𝜙 | 𝜙 ∨ 𝜙 | 𝑤𝑇 𝑎
𝑝
(𝜙) (1)

where 𝛼 ∈𝐴𝑡, 𝑎 ∈𝐴, and 𝑝 ∈ 𝔹.

The elements of 𝐓𝐄𝐋 are called formulas, and range over 𝜙, 𝜓 . As usual, we define ⊥ ≜ ¬⊤, 𝜙 ∧ 𝜓 ≜ ¬(¬𝜙 ∨ ¬𝜓) and 𝜙 → 𝜓 ≜
¬𝜙 ∨𝜓 . The weak trust modality 𝑤𝑇 𝑎

𝑝
(𝜙) stands for “it is weakly trusted that 𝜙”. As we will see, in principle the semantics of 𝑤𝑇 𝑎

𝑝
(𝜙)

corresponds to that of the probabilistic diamond modality ⟨𝑎⟩≥
𝑝
𝜙 of [34] and resembles an analogous operator of PCTL [23]; however, 

it is based on a different interpretation of the parameters 𝑝 and 𝑎.
For the sake of brevity, we define the following derived modal operators for all 𝑎 ∈ 𝐴 and all 𝑝 ∈ 𝔹:

– trust 𝑇 𝑎
𝑝
(𝜙) to stand for ¬𝑤𝑇 𝑎1−𝑝(¬𝜙), thus corresponding to the probabilistic diamond modality ⟨𝑎⟩>

𝑝
𝜙;

– exact trust 𝑒𝑇 𝑎
𝑝
(𝜙) to stand for 𝑤𝑇 𝑎

𝑝
(𝜙) ∧ ¬𝑇 𝑎

𝑝
(𝜙), thus corresponding to the probabilistic diamond modality ⟨𝑎⟩=

𝑝
𝜙;

– weak distrust 𝑤𝐷𝑎
𝑝
(𝜙) to stand for 𝑤𝑇 𝑎

𝑝
(¬𝜙);

– distrust 𝐷𝑎
𝑝
(𝜙) to stand for 𝑇 𝑎

𝑝
(¬𝜙);

– exact distrust 𝑒𝐷𝑎
𝑝
(𝜙) to stand for 𝑤𝐷𝑎

𝑝
(𝜙) ∧ ¬𝐷𝑎

𝑝
(𝜙).

To define the semantics for 𝐓𝐄𝐋 we first introduce the underlying model, which follows the same lines of the semantic models 
of [34] and [23].

Definition 3 (PLSTS). A Probabilistic Labeled State-Transition System is a tuple 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣), where 𝑆 is a non-empty 
3

countable set of states, 𝐴𝑡 is a countable set of state labels, 𝐴 is a countable set of transition labels, 𝑣 is a valuation function
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𝑣 ∶ 𝑆 → ℘(𝐴𝑡), and {D𝑎}𝑎∈𝐴 is a family of probabilistic transition functions of the form D𝑎 ∶ 𝑆 × 𝑆 → 𝔹 satisfying the following 
condition:

∀𝑠 ∈ 𝑆 ∶
∑
𝑡∈𝑆

D𝑎(𝑠, 𝑡) = 1. (2)

If 𝑋 ⊆𝑆 , we let D𝑎(𝑠, 𝑋) denote 
∑
𝑡∈𝑋 D𝑎(𝑠, 𝑡).

PLSTS-like models defined in the setting of probabilistic HML and PCTL are typically employed to investigate the properties of 
probabilistic systems (see, e.g., [6,33]). In those cases, each state in 𝑆 represents a system configuration, characterized by a set 
of atomic predicates in 𝐴𝑡 expressing the statements that are true in the state. Then, each transition is enriched with a label in 𝐴
describing the action that is executed through the transition and with probabilistic information expressing quantitatively the behavior 
associated to the action.

In our setting, we provide an interpretation of PLSTSs for reasoning about context-aware evidence-based trust. In particular, 
such an interpretation is intended to formalize a notion of trust towards formulas, which derives from a combination of personal 
opinions and recommendations by third parties, analogously as done in classical reputation systems. To this aim, the states of a 
PLSTSs represent the agents of a (social) network. The set of atomic propositions 𝑣(𝑠) ⊆ 𝐴𝑡 labeling the state 𝑠 associated to an agent 
represents the agent’s opinions (beliefs), i.e., an agent is labeled with an atomic proposition if the agent believes that such proposition 
is true. Under this interpretation, notice that two distinct states might satisfy the same atomic propositions. Moreover, the transitions 
represent relations between agents that allow agents to exchange opinions concerning certain topics of interest. The probabilistic 
information associated to the transition represents the strength of the relation. More precisely, a transition connecting an agent 𝑠
to an agent 𝑠′ indicates that agent 𝑠 considers the opinions of agent 𝑠′ when evaluating her/his trust towards the formulas of the 
language. In particular:

– the label 𝑎 of the transition indicates the context under which the agent 𝑠 is considering the opinions of agent 𝑠′;
– the numerical value D𝑎(𝑠, 𝑠′) associated to the transition from agent 𝑠 to agent 𝑠′ indicates how much weight is placed on the 

opinion of 𝑠′ by 𝑠.

Therefore, the transition label 𝑎 ∈𝐴 represents the context in which trust is estimated, while D𝑎(𝑠, 𝑠′) represents the normalized level 
of expertise of agent 𝑠′ as perceived by agent 𝑠 with respect to the given context 𝑎.

Based on this interpretation, we can now give an intuitive explanation of the semantics of 𝐓𝐄𝐋. If we consider the non-modal 
fragment of our language, the truth of formulas in a state actually expresses the beliefs of the corresponding agent. Then, the 
weak trust formula 𝑤𝑇 𝑎

𝑝
(𝜙) estimated in a state 𝑠 establishes whether the corresponding agent weakly trusts 𝜙 with respect to the 

trustworthiness threshold 𝑝 and the context 𝑎. Such an estimation depends on the opinions of the agents to which 𝑠 is connected 
through 𝑎-labeled transitions and weighted by the values associated to such transitions. In particular, 𝑤𝑇 𝑎

𝑝
(𝜙) is true at a state 𝑠 if 

the sum of the values that the distribution D𝑎(𝑠, _) associates to the states in which 𝜙 is true is ≥ 𝑝.
Formally, the interpretation of 𝐓𝐄𝐋 formulas is given as follows.

Definition 4 (Truth). Let 𝜙 ∈𝐓𝐄𝐋 and 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣) be a PLSTS. We inductively define the notion of 𝜙 being satisfied

(or true) at state 𝑠 ∈ 𝑆 in 𝔐, written 𝑠 ⊨𝔐 𝜙, as follows:

(a) 𝑠 ⊨𝔐 ⊤ iff true;

(b) 𝑠 ⊨𝔐 𝛼 iff 𝛼 ∈ 𝑣(𝑠), where 𝛼 ∈𝐴𝑡;
(c) 𝑠 ⊨𝔐 ¬𝜙 iff 𝑠 ⊭𝔐 𝜙;

(d) 𝑠 ⊨𝔐 𝜙 ∨𝜓 iff 𝑠 ⊨𝔐 𝜙 or 𝑠 ⊨𝔐 𝜓 ;

(e) 𝑠 ⊨𝔐 𝑤𝑇 𝑎
𝑝
(𝜙) iff D𝑎(𝑠, 𝑆𝜙) ≥ 𝑝, where 𝑝 ∈ 𝔹 and:

𝑆𝜙 ≜ {𝑠′ ∈ 𝑆 | 𝑠′ ⊨𝔐 𝜙}. (3)

In this case, we also say that 𝜙 is satisfiable in 𝔐. We say that 𝜙 is true in 𝔐, written ⊨𝔐 𝜙, when 𝑠 ⊨𝔐 𝜙 holds for every 𝑠 ∈ 𝑆 ; 
we say that 𝜙 is true, written ⊨ 𝜙, when ⊨𝔐 𝜙 holds for every PLSTS 𝔐. A set of formulas Γ is satisfied (or true) at state 𝑠 ∈ 𝑆 in 𝔐, 
written 𝑠 ⊨𝔐 Γ, if 𝑠 ⊨𝔐 𝜙 for any 𝜙 ∈ Γ. In this case we also say that Γ is satisfiable in 𝔐. We say that Γ is true in 𝔐, written ⊨𝔐 Γ, 
when 𝑠 ⊨𝔐 Γ holds for any 𝜙 ∈ Γ and any 𝑠 ∈ 𝑆 .

Remark 1. Some considerations about the interpretation of 𝐓𝐄𝐋 formulas are in order. Firstly, since we are in a classical logical 
setting, we have that for any formula 𝜙, either 𝜙 holds in 𝑠, or ¬𝜙 holds in 𝑠. In other words, every agent 𝑠 states her/his beliefs 
and trust estimations.3 Taking a position is not a limitation for reputation models, where all involved agents express their beliefs 
and compute their trust estimations. Secondly, we recall that Equation (2) imposes that the sum of the evaluations for the expertise 

3 By virtue of Definition 4 it is easy to see that beliefs are classically constrained, e.g., if 𝑠 states that 𝜙 and also states that 𝜓 , s/he also states 𝜙 ∨𝜓 . We will show 
4

in the following that analogous consistency results hold also for trust, when discussing the axiomatization for our logic.
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of the different agents as perceived by any agent 𝑠 is equal to 1. This suggests that 𝑠 will always have a claque of agents that s/he 
evaluates as experts with respect to the given context 𝑎. However, the probabilistic transition function can be used to customize the 
composition of such a claque. For instance, agents’ beliefs can be ruled out by assigning weight 0 to them. In practice, D𝑎(𝑠, 𝑠′) = 0
expresses that agent 𝑠 does not consider agent 𝑠′ for trust estimations about 𝑎, for various possible reasons, e.g., 𝑠′ is not accessible to 
𝑠, or else 𝑠 is not interested in the beliefs of 𝑠′. Moreover, function D𝑎 could be reflexive, allowing an agent to take into consideration 
also her/his own expertise. In a limiting scenario there might be contexts in which the only relevant expertise is the one of the 
evaluating agent 𝑠, i.e., D𝑎(𝑠, 𝑠) = 1. This would mean, among other things, that the beliefs of agent 𝑠 in context 𝑎 wholly determine 
her/his trust.

The following are straightforward properties deriving from Definition 4.

Proposition 1. Let 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣) be a PLSTS. For every 𝑠 ∈ 𝑆 , 𝑎 ∈𝐴, and for every 𝜙, 𝜓 ∈𝐓𝐄𝐋:

1. D𝑎(𝑠, 𝑆¬𝜙) = 1 −D𝑎(𝑠, 𝑆𝜙);
2. D𝑎(𝑠, 𝑆𝜙∨𝜓 ) +D𝑎(𝑠, 𝑆𝜙∧𝜓 ) ≥ D𝑎(𝑠, 𝑆𝜙) +D𝑎(𝑠, 𝑆𝜓 ).

Proof. Concerning point 1, we have 𝑆¬𝜙 = 𝑆 ⧵𝑆𝜙. Then:

D𝑎(𝑠,𝑆¬𝜙) =
∑

𝑠′∈𝑆¬𝜙

D𝑎(𝑠, 𝑠′) =
∑

𝑠′∈𝑆⧵𝑆𝜙

D𝑎(𝑠, 𝑠′)

=
∑
𝑠′∈𝑆

D𝑎(𝑠, 𝑠′) −
∑
𝑠′∈𝑆𝜙

D𝑎(𝑠, 𝑠′) = 1 −D𝑎(𝑠,𝑆𝜙).

As for point 2, the following equation can be easily checked:∑
𝑠′∈𝑆

𝑠′⊨𝔐𝜙∨𝜓

D𝑎(𝑠, 𝑠′) +
∑
𝑠′∈𝑆

𝑠′⊨𝔐𝜙∧𝜓

D𝑎(𝑠, 𝑠′) ≥
∑
𝑠′∈𝑆
𝑠′⊨𝔐𝜙

D𝑎(𝑠, 𝑠′) +
∑
𝑠′∈𝑆
𝑠′⊨𝔐𝜓

D𝑎(𝑠, 𝑠′) □

Using Definition 4 and Proposition 1, we can assign truth-conditions to the alternative modalities of trust:

Proposition 2. Let 𝜙 ∈ 𝐓𝐄𝐋 and 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣) be a PLSTS. Then, for all 𝑠 ∈ 𝑆 :

– 𝑠 ⊨𝔐 𝑇 𝑎
𝑝
(𝜙) iff D𝑎(𝑠, 𝑆𝜙) > 𝑝, where 𝑝 ∈ 𝔹;

– 𝑠 ⊨𝔐 𝑒𝑇 𝑎
𝑝
(𝜙) iff D𝑎(𝑠, 𝑆𝜙) = 𝑝, where 𝑝 ∈𝔹;

where 𝑆𝜙 is as in Equation (3).

Remark 2. We recall that weak distrust 𝑤𝐷𝑎
𝑝
(𝜙) stands for 𝑤𝑇 𝑎

𝑝
(¬𝜙). This duality leads to the following contradiction: for every 

𝑝 ∈ 𝔹 with 𝑝 > 0.5, it holds that 𝑤𝑇 𝑎
𝑝
(𝜙) ∧𝑤𝐷𝑎

𝑝
(𝜙) is not satisfiable for any state of every PLSTS, i.e., a statement cannot be weakly 

trusted and weakly distrusted at the same time with respect to a given context and a threshold test expressing majority.4 However, 
uncertainty is admissible in the case of lower thresholds, which could make both trust and distrust satisfiable. In particular, notice 
that 𝑝 = 0.5 admits the satisfiability of 𝑤𝑇 𝑎

𝑝
(𝜙) ∧𝑤𝐷𝑎

𝑝
(𝜙).

The duality contradiction holds also for 𝑇 𝑎
𝑝
(𝜙) ∧𝐷𝑎

𝑝
(𝜙), provided that 𝑝 ≥ 0.5.

PLSTSs generalize Kripke models. It is then natural to look for a suitable notion of frame in the above extended setting. This will 
allow us to define classes of frames and to provide axiomatic characterizations for them, as in standard modal logic.

Definition 5 (Frame). Let 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣) be a PLSTS. The frame of 𝔐, written 𝔉𝔐, is a pair (𝑆, {𝑎}𝑎∈𝐴) where each 
𝑎 is called accessibility relation and is defined for any 𝑠, 𝑠′ ∈ 𝑆 as:

(𝑠, 𝑠′) ∈𝑎 iff D𝑎(𝑠, 𝑠′) > 0.

In this case we also say that 𝔐 is based on 𝔉𝔐. Frames range over 𝔉. A frame 𝔉𝔐 = (𝑆, {𝑎}𝑎∈𝐴) is reflexive (resp. symmetric, 
transitive) if, for any 𝑎 ∈𝐴, (𝑆, 𝑎) is reflexive (resp. symmetric, transitive). We define ,  ,  and 4 as, respectively, the class of 
all frames, the class of all reflexive frames, the class of all symmetric frames, and the class of all transitive frames. Moreover, 4 and 
5 denote the class of all frames whose relation is, respectively, a preorder and an equivalence.
5

4 By Definition 4, D𝑎(𝑠, 𝑆𝜙) +D𝑎(𝑠, 𝑆¬𝜙) = 1. Hence, the result follows immediately by virtue of the semantics of the modal operator.



International Journal of Approximate Reasoning 169 (2024) 109167A. Aldini, G. Curzi, P. Graziani et al.

Remark 3. Since, by Equation (2), the total mass of each distribution D𝑎(𝑠, _) is equal to 1, the accessibility relation 𝑎 is serial, 
i.e. ∀𝑠 ∈ 𝑆. ∃𝑠′ ∈ 𝑆. (𝑠, 𝑠′) ∈𝑎. This means that every frame is serial.

Definition 6 (Validity). Let 𝜙 ∈𝐓𝐄𝐋 and let 𝔉 be a frame. We say that 𝜙 is valid at a state 𝑠 ∈ 𝑆 in 𝔉, written 𝑠 ⊨𝔉 𝜙, if 𝑠 ⊨𝔐 𝜙 for 
every PLSTS 𝔐 based on 𝔉 (i.e. 𝔉𝔐 =𝔉). We say that 𝜙 is valid in 𝔉, written ⊨𝔉 𝜙, if 𝜙 is valid in 𝔉 at any state 𝑠 ∈ 𝑆 . Finally, we 
say that a formula 𝜙 is valid on a class of frames  if it is valid in every frame 𝔉 ∈  . The notion of validity can be easily extended 
to sets of formulas.

Remark 4. By applying an opposite argument to the dualities discussed in Remark 2, for every 𝑝 ∈ 𝔹 with 𝑝 ≤ 0.5, it holds that 
𝑤𝑇 𝑎

𝑝
(𝜙) ∨ 𝑤𝐷𝑎

𝑝
(𝜙) is valid. Analogously, 𝑇 𝑎

𝑝
(𝜙) ∨ 𝐷𝑎

𝑝
(𝜙) is valid as well, assuming 𝑝 < 0.5. The case 𝑝 = 0.5 is excluded by the 

following counterexample:

𝑠 𝑠′ 𝜙

𝑠′′ ¬𝜙

𝑎

0.5
𝑎

0.5

where 𝜙 holds in 𝑠′ but not in 𝑠′′. Then, neither 𝑠 ⊨ 𝑇 𝑎1
2

(𝜙) nor 𝑠 ⊨𝐷𝑎1
2

(𝜙) hold. Instead, both 𝑤𝑇 𝑎
𝑝
(𝜙) and 𝑤𝐷𝑎

𝑝
(𝜙) hold.

Finally, since 𝐓𝐄𝐋 shares features with both PCTL and probabilistic HML, it inherits some of their semantic properties. A remark-

able example is the logical characterization of bisimulation, whose standard definition is reported below.

Definition 7 (Bisimulation). Let 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣) be a PLSTS. An equivalence relation  over 𝑆 is a bisimulation if and only 
if whenever (𝑠, 𝑡) ∈ it holds that 𝑣(𝑠) = 𝑣(𝑡) and ∀𝑎 ∈𝐴, ∀𝐶 ∈ 𝑆∕, which is the partition induced by the equivalence relation B:∑

𝑠′∈𝐶
D𝑎(𝑠, 𝑠′) =

∑
𝑡′∈𝐶

D𝑎(𝑡, 𝑡′).

As usual, we say that two states 𝑠 and 𝑡 in 𝑆 are bisimilar, denoted 𝑠 ∼ 𝑡, if there exists a bisimulation  on 𝑆 such that 𝑠𝑡; two 
states 𝑠 and 𝑡 in 𝑆 are logically equivalent, denoted 𝑠 ≡ 𝑡, if and only if they satisfy exactly the same formulas of 𝐓𝐄𝐋 . Then, we have 
the following theorem5:

Theorem 3 (Logical characterization of bisimulation). For any PLSTS, ∼ coincides with ≡.

Proof. A straightforward adaptation to PLSTSs of the results in [7]. □

It is interesting to notice the trust-theoretical meaning of bisimulation, i.e., what does it imply for two agents to be bisimilar in 
the setting of trust? Thanks to Theorem 3, two bisimilar agents trust the same formulas. More in-depth, recalling the two conditions 
of Definition 7, two agents 𝑠 and 𝑡 belonging to the same class of equivalence share the same evidence (𝑣(𝑠) = 𝑣(𝑡)) and, for each 
context, express the same trustworthiness towards every class of agents induced by bisimulation. Reasoning at the level of classes 
implies two facts. First, 𝑠 and 𝑡 could even interact with different agents and be, anyway, bisimilar. Second, as bisimulation induces 
aggregation of equivalent states, every agent may treat each class of agents as a unique entity whose belief is evaluated to some 
degree.

4. A case study in 𝐓𝐄𝐋

Trust is a critical factor in distributed systems like, e.g., mobile ad-hoc networks and sensor networks. In these systems, mecha-

nisms for establishing trust are developed to support, e.g., the choice of the provider of a cloud service, or the choice of a neighbor 
for a forward service. For instance, the Reputation-based Framework for Sensor Networks [20] (RFSN) and the Robust Reputation 
System [11] (RRS) have been proposed for developing a web of trust based on the sharing of reputation information obtained by 
monitoring the cooperative and non-cooperative behaviors of the agents in the neighborhood. Then, both direct observations and 
second-hand recommendations represent parameters used to support trust based decision systems. These mechanisms can be used, 
e.g., within systems like the Dynamic Source Protocol [29], in which agents request message forwarding operations to trusted neigh-

bors. Analogous trust based mechanisms are used for cloud computing and the choice of the provider of cloud services, see, e.g., 
[28,50].

5 In [15] it is shown that disjunction can be discarded from the logic (and in [9] that, as an alternative to disjunction, conjunction can be discarded), without 
6

changing the logical characterization result.
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𝜙1 ,¬𝜙2

For2
𝜙2 ,¬𝜓

Ser
𝜓

Req1
𝜙1 ,¬𝜙2 ,¬𝜓

Req2
¬𝜙1 ,𝜙2

Req3
¬𝜙1 ,𝜙2 ,𝜓

c,1

f ,𝑝0

f,𝑝1

c,1−𝑝6

f,𝑝2

f,𝑝3

c,𝑝6

f ,1−𝑝4

f,𝑝4

f ,1−𝑝5

c,1−𝑝7

f,𝑝5
c,𝑝7

Fig. 1. PLSTS modeling a web of trust with two different contexts and six agents: a cloud service provider (Ser), two forwarding service nodes (Fori), and three 
requesting agents (Reqj).

We now show an example illustrating how our framework can model (and support the analysis of) the scenario of a distributed 
network, where the parameters expressing the strength of the connections between agents derive from by the trust mechanisms 
mentioned above.

In particular, we consider two different contexts, 𝑓 identifying forwarding operations and 𝑐 identifying cloud services. We have 
three agents that may request operations and services, two agents that can also provide the forward service, and a server delivering 
cloud services, as represented by the PLSTS in Fig. 1. The transitions express the web of opinion sharings that connect the various 
agents with each other. The formulas of interest express the reliability of each agent with respect to a given task. In particular, 𝜙𝑖
expresses the reliability of agent Fori as a forwarder, while 𝜓 expresses the reliability of the server Ser as a cloud service provider. 
Hence, a formula of the form 𝑤𝑇 𝑐

𝑞
(𝜓) is satisfied by an agent 𝑠 if the agent weakly trusts (with threshold 𝑞) the server as a reliable 

cloud service provider. For each state in Fig. 1, the related valuation reports only the formulas believed by the corresponding agent 
that are of interest for the following examples.

Concerning context 𝑓 , Fig. 1 captures a scenario in which agent Req1 has previous experience with agent For1, resulting in a 
relation (see the 𝑓 -labeled transitions with weights 𝑝0 and 𝑝1) enforced by the fact that Req1 believes 𝜙1. On the other hand, Req1
is also available to take into account the opinions of the neighborhood (see the 𝑓 -labeled transitions towards agents Req2 and Req3, 
with weights 𝑝2 and 𝑝3, respectively), which instead supports agent For2. Indeed, both agents Req2 and Req3 believe 𝜙2 ∧¬𝜙1. Notice 
also that, by Definition 4, it must be 

∑3
𝑖=0 𝑝𝑖 = 1. Then, if Req1 requires again a forwarding service, s/he might privilege agent For1

if the trust based choice is governed by the formula 𝑤𝑇𝑓𝑞 (𝜙1), with (𝑝0 + 𝑝1) ≥ 𝑞. Suppose that the delivery of such a service is not 
satisfactory because agent For1 is poorly connected with respect to the destination asked by Req1, and that the negative feedback 
causes an update of the probabilistic parameters,6 with 𝑝0 that is reduced in favor of 𝑝2 and 𝑝3. Then, for future requests, 𝑤𝑇𝑓𝑞 (𝜙1)
may be not satisfied anymore by agent Req1, while, instead, 𝑤𝑇𝑓𝑞 (𝜙2) could become true for Req1, in spite of the fact that Req1 does 
not believe 𝜙2. Afterwards, to keep track of the fact that agents For1 and For2 must be evaluated differently depending on the routing 
requirements of the service required by Req1, it may be useful to refine the context 𝑓 . This can be done by splitting it into, e.g., 
two different contexts, which would allow Req1 to distinguish the scenarios with respect to which the forwarding agents must be 
evaluated.

Let us consider a slightly different example concerning context 𝑐. Suppose that Req1 requires a cloud service, but s/he never 
interacted with the agent Ser providing such a service. Notice that what Req1 believes about 𝜓 in context 𝑐 is irrelevant, as Req1
does not consider herself an expert in context 𝑐. Hence, Req1 decides to collect information from the neighborhood to understand 
whether other agents trust agent Ser. Notice that such a neighborhood is represented by agents Req3 and For2, to which Req1 is 
connected through 𝑐-labeled transitions. Hence, by assuming a threshold 𝑞, the formula to check could be 𝑤𝑇 𝑐

𝑞
(𝑤𝑇 𝑐

𝑞
(𝜓)). Since agent 

Req3 satisfies 𝑤𝑇 𝑐
𝑞
(𝜓), while agent For2 satisfies 𝑤𝐷𝑐

𝑞
(𝜓), by virtue of Definition 4, Req1 satisfies 𝑤𝑇 𝑐

𝑞
(𝑤𝑇 𝑐

𝑞
(𝜓)) if and only if 𝑝6 ≥ 𝑞, 

where 𝑝6 is the weight associated to the 𝑐-labeled transition from Req1 to Req3.

In general, by feeding the model with normalized values deriving from the trust-based mechanisms under investigation, through 
our framework it is possible to formally model the network of interest and verify the properties related to trust-based decisions. 
Regarding the scalability issues in the verification process, it is worth investigating the decidability properties and the model checking 
algorithms for 𝐓𝐄𝐋. This is discussed in the following sections.

5. Normal modal logics for 𝐓𝐄𝐋

This section presents results about various trust evidence normal modal logics (TENML), the normal modal logics for 𝐓𝐄𝐋. In 
particular, we shall focus on the systems 𝖳𝖤𝖪, 𝖳𝖤𝖳, 𝖳𝖤𝖡, 𝖳𝖤𝖪4, 𝖳𝖤𝖲4 and 𝖳𝖤𝖲5, which can be seen as quantitative and serial

extensions of the standard modal logics 𝖪, 𝖳, 𝖡, 𝖪4, 𝖲4 and 𝖲5, respectively.

Each such TENML is proven to be sound with respect to all those PLSTSs that are based on a specific class of frames. Moreover, 
we emphasize how each TENML and the related frame imply certain assumptions about the properties of trust that derive in such a 
framework. Then, the completeness result requires to establish a version of the canonical model theorem for 𝐓𝐄𝐋 (Theorem 9), the 

6 The model proposed in this paper is purely static, and for this case study we are assuming that changes in the scenario imply the re-definition of the model, which 
7

can be obtained as a properly update of the current one. Making fully automated the dynamics of the model is left for future work.
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main result of this section. We also show a counterexample to compactness and we use it to infer the failure of strong completeness. 
The proof of the canonical model theorem follows the lines of [13], adapting the techniques to a quantitative setting, while the 
counterexample to compactness is taken from [48]. Finally, we show that both 𝖳𝖤𝖪 and 𝖳𝖤𝖳 are decidable without restrictions on 
the models.

All the proofs and the preparatory results are shown in the Appendix.

5.1. Trust evidence normal modal logics

We start by defining the notion of trust evidence normal modal logic.

Definition 8 (TENML). A trust evidence normal modal logic (TENML) is a set Λ ⊆𝐓𝐄𝐋 containing (i) all propositional tautologies, (ii) 
all the substitution instances of the following axiom schemata, for 𝜙, 𝜓 ∈𝐓𝐄𝐋, 𝑎 ∈𝐴 and 𝑝, 𝑞 ∈ 𝔹:

1. 𝑇 𝑎
𝑝
(𝜙) →𝑤𝑇 𝑎

𝑝
(𝜙);

2. 𝑤𝑇 𝑎
𝑝
(𝜙) → 𝑇 𝑎

𝑞
(𝜙) with 𝑞 < 𝑝;

3. 𝑤𝑇 𝑎0 (𝜙) always holds;

4. 𝑤𝑇 𝑎1 (𝜙 → 𝜓) → (𝑤𝑇 𝑎
𝑝
(𝜙) →𝑤𝑇 𝑎

𝑝
(𝜓));

5. 𝑤𝑇 𝑎1 (¬(𝜙 ∧𝜓)) → (𝑤𝑇 𝑎
𝑝
(𝜙) ∧𝑤𝑇 𝑎

𝑞
(𝜓)) →𝑤𝑇 𝑎

𝑝+𝑞(𝜙 ∨𝜓) with 𝑝 + 𝑞 ≤ 1;

and (iii) closed under modus ponens (MP) and necessitation (NEC𝑎 with 𝑎 ∈𝐴):

𝜙

𝑤𝑇 𝑎1 (𝜙)
NEC𝑎

The above axioms state fundamental properties about D𝑎(𝑠, 𝑆𝜙), see Equation (3). Axiom 1 and Axiom 2 formalize properties 
about inequalities. Axiom 3 and its dual formulation ¬𝑇 𝑎1 (¬𝜙) state that D𝑎(𝑠, 𝑆𝜙) is always a value in the base 𝔹. Axiom 4 allows 
modalities to distribute over implication, and it can be seen as a generalization of (𝐊), i.e. □(𝜙 → 𝜓) → (□𝜙 → □𝜓). Finally, 
Axiom 5 describes compositionality for ∨, which holds whenever both disjuncts are “incompatible”.

We shall write ⊢Λ 𝜙, or simply ⊢ 𝜙 (when no confusion arises), when 𝜙 ∈ Λ. If Γ is a set of formulas, we write Γ ⊢Λ 𝜙 if either 
⊢Λ 𝜙 or there are 𝜓1, … , 𝜓𝑛 ∈ Γ such that ⊢Λ (𝜓1 ∧… ∧𝜓𝑛) → 𝜙. Finally, we say that Γ is Λ-consistent, or simply consistent (when no 
confusion arises), when Γ ⊬Λ⟂. A set of formulas Γ is maximal Λ-consistent, or simply maximal consistent (when no confusion arises), 
if Γ is Λ-consistent and any Γ′ properly containing Γ is not Λ-consistent. We shall often refer to Γ as a mc-set, and the set of all 
mc-sets is MAX.

The following proposition states some basic properties about Λ.

Proposition 4. Let 𝜙, 𝜓 ∈𝐓𝐄𝐋 and 𝑝, 𝑞 ∈ 𝔹:

1. If ⊢ 𝜙 → 𝜓 then ⊢ O𝑎
𝑝
(𝜙) → O𝑎

𝑝
(𝜓), where O ∈ {𝑤𝑇 , 𝑇 , 𝑒𝑇 };

2. If ⊢ 𝜙 ↔ 𝜓 then ⊢ O𝑎
𝑝
(𝜙) ↔ O𝑎

𝑝
(𝜓), where O ∈ {𝑤𝑇 , 𝑇 , 𝑒𝑇 };

3. If 𝑞 < 𝑝 then ⊢𝑤𝑇 𝑎
𝑝
(𝜙) →𝑤𝑇 𝑎

𝑞
(𝜙);

4. ⊢ 𝑒𝑇 𝑎0 (𝜙 ∧𝜓)→ ((𝑒𝑇 𝑎
𝑝
(𝜙) ∧ 𝑒𝑇 𝑎

𝑞
(𝜓)) → 𝑒𝑇 𝑎

𝑝+𝑞(𝜙 ∨𝜓)).

As usual, there is a smallest TENML Λ containing a given set of formulas Γ, called the TENML axiomatized by Γ. When Γ = ∅, Λ
will be written 𝖳𝖤𝖪. In analogy with standard modal logic, we consider the following axioms:

(𝐓+) =𝑤𝑇 𝑎1 (𝜙)→ 𝜙

(𝐁+) = 𝜙→𝑤𝑇 𝑎1 (𝑇
𝑎
0 (𝜙))

(𝟒+) =𝑤𝑇 𝑎1 (𝜙)→𝑤𝑇 𝑎1 (𝑤𝑇
𝑎
1 (𝜙))

We shall work with extensions of 𝖳𝖤𝖪 that combine the above axioms. In particular, 𝖳𝖤𝖳, 𝖳𝖤𝖡, 𝖳𝖤𝖪4 are obtained by adding to 
𝖳𝖤𝖪, respectively, (𝐓+), (𝐁+), and (𝟒+). Moreover, 𝖳𝖤𝖲4 extends 𝖳𝖤𝖪 with both (𝐓+) and (𝟒+), and 𝖳𝖤𝖲5 extends 𝖳𝖤𝖲4 with (𝐁+).

5.2. Soundness

The following theorem shows a series of soundness results relating the above defined TENMLs and classes of frames. In particular, 
8

𝖳𝖤𝖪 turns out to be sound w.r.t. all PLSTSs.
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Theorem 5 (Soundness for various TENMLs). For any 𝜙 ∈𝐓𝐄𝐋:

⊢𝖳𝖤𝖪 𝜙 implies ⊨ 𝜙; ⊢𝖳𝖤𝖳 𝜙 implies ⊨ 𝜙;
⊢𝖳𝖤𝖡 𝜙 implies ⊨ 𝜙; ⊢𝖳𝖤𝖪4 𝜙 implies ⊨4 𝜙;
⊢𝖳𝖤𝖲4 𝜙 implies ⊨4 𝜙; ⊢𝖳𝖤𝖲5 𝜙 implies ⊨5 𝜙.

In Remark 3 we stressed that any frame is serial by construction. This condition is formalized by Axiom 2, which can be seen as a 
quantitative generalization of Axiom (𝐃), i.e. □𝜙 →◊𝜙. To see this, let us fix 𝐴 = {∗} in Equation (1). It is not difficult to see that, 
by setting □𝜙 ≜ 𝑤𝑇 ∗

1 𝜙, Axioms 1-5 define exactly the serial normal modal logic 𝖣. In particular, Axiom 2 collapses to (𝐃). More 
formally, we have:

Proposition 6. 𝖳𝖤𝖪 is a conservative extension of the normal modal logic 𝖣.

This observation can be also found in [17], where a variant of Axiom 2 is considered. Let us finally notice that we could avoid 
seriality by defining each D𝑎(𝑠, _) as a sub-distribution, i.e., a distribution whose mass can be smaller than 1. However, turning the 
equality in Equation (2) into an inequality would break the equation in Proposition 1.1 and, as a consequence, the logical dualities 
between trust and distrust.

5.3. Axioms, frames, and trust

We will now show how the validities defined above are interpreted in terms of properties of trust. Specifically, we will first discuss 
all the axiom schemata and rules of Definition 8. Then, we will comment on the axioms 𝐓+, 𝐁+, 𝟒+, and the related frames.

The only interesting rule trust-wise is necessitation,7 which states that all validities of the language must be weakly trusted in any 
context. Note that, according to our interpretation, a valid formula is a formula that is believed by all agents. Thus, if something is 
believed to be true by all agents, it is reasonable that each agent will also trust it, because there cannot be any instances of opposing 
evidence to the content of such formula, neither from personal experiences nor from reported cases.

As far as the five axiom schemata are concerned, statement 1 simply claims that if something is trusted, then it is also weakly 
trusted. Note that for something to be trusted, it must hold that the threshold for trust is completely passed, while weak trust 
only requires the threshold to be reached. Thus, independently from the notion of trust that is taken into consideration, whenever 
something is trusted, it will automatically be weakly trusted. Similar reasonings could be made for statements 2 and 3. In the former 
case, the left-hand side of the implication states that threshold 𝑝 for trust has, at least, been reached. This would automatically imply 
that for all lower thresholds, both trust and weak trust would hold, i.e., the consequent of the implication is true. In the latter case, 
we have that any formula is weakly trusted if no threshold is actually applied. Statement 4 is a conservative extension of the principle 
relating logical consequence and trust [35,46]. The quantitative elements establish that full trust towards 𝜙 →𝜓 (i.e., the formula is 
trusted even with respect to the maximum threshold) guarantees that if 𝜙 is weakly trusted with some threshold then 𝜓 is weakly 
trusted with the same threshold. Statement 5 can be recast as 𝑤𝐷𝑎1((𝜙 ∧𝜓)) → ((𝑤𝑇 𝑎

𝑝
(𝜙) ∧𝑤𝑇 𝑎

𝑞
(𝜓)) →𝑤𝑇 𝑎

𝑝+𝑞(𝜙 ∨𝜓)) with 𝑝 + 𝑞 ≤ 1. 
If 𝜙 ∧𝜓 is fully distrusted, then weak trust towards 𝜙 and 𝜓 separately implies weak trust towards their disjunction. Since it is fully 
trusted that 𝜙 and 𝜓 are mutually exclusive, the estimation of the trust towards their disjunction is simply given by the sum of the 
estimations of the trust towards the two disjuncts.

Let us now consider the various TENMLs and classes of frames (see, in particular, Theorem 5). In the setting of  , by the reflexivity 
property we have that every agent considers also her/his own belief on 𝜙 to estimate the trust towards 𝜙. Such a kind of relation is 
reasonable in settings in which no neophytes are present in the system and everybody give some consideration to their own opinion. 
Under such a hypothesis, axiom 𝐓+ states that full trust towards 𝜙 implies belief in 𝜙, as even the personal opinion contributes to 
the estimation of trust. In the setting of , by the symmetry property we have that relations between agents are mutual (if A takes 
into account B’s opinion, then also B takes into account A’s opinion, possibly with different weights). This could be a reasonable 
assumption in closed and relatively small communities (e.g., a club open only to members), where mutual knowledge is a rule of 
thumb and every known agent is considered to be, to some extent, an expert in the context under consideration. Under such a 
hypothesis, axiom 𝐁+ states that if 𝜙 is believed by an agent, then it is fully trusted by the agent that some non-zero trust can be 
put on 𝜙 by other agents. Indeed, reciprocity ensures that the opinion of the agent on 𝜙 will be taken into consideration by the 
neighborhood. In the setting of 4, by the transitivity property we have that relations among agents are transitive (if A takes into 
account B’s opinion and B takes into account C’s opinion, then A takes into account C’s opinion; however, the weights attributed 
to such opinions are not interlaced). This is a rather strong assumption, which could be reasonable only in small communities, as 
relations among agents may propagate rapidly to the whole system, thus making infeasible the proper estimation of a large number 
of opinions. In such a scenario, axiom 𝟒+ means that if 𝜙 is fully trusted, then it is fully trusted that 𝜙 is fully trusted, as trust 
reiterates by virtue of the transitivity relation. Propagation of trust is a debated principle that, in many real-world cases, is assumed 
to be intransitive [16]. Finally, the remaining frames 4 and 5 provide combinations of the properties discussed above and do not 
provide novel insights about the interpretation for trust.
9

7 Modus Ponens holds trivially, since it applies only to reasonings where trust plays no direct role.
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Summarizing, while 𝖳𝖤𝖪 and, to some extent, 𝖳𝖤𝖳 can be considered as reasonable frameworks for a general analysis of the con-

cept of trust, the remaining extended normal modal logics are adequate only in very specific scenarios relying on strong assumptions 
about the properties of trust.

5.4. Completeness

In this subsection, we present the canonical model theorem for 𝐓𝐄𝐋, from which we infer a series of completeness results for 
𝖳𝖤𝖪, 𝖳𝖤𝖳, 𝖳𝖤𝖡, 𝖳𝖤𝖪4, 𝖳𝖤𝖲4 and 𝖳𝖤𝖲5. The canonical model for 𝐓𝐄𝐋 can be obtained by adapting the one for graded modal logics 
(GML) [13] to a quantitative setting.

Definition 9 (Canonical model). Given any consistent TENML Λ, we define its canonical model 𝔐Λ = ⟨𝑆Λ, 𝐴𝑡Λ, 𝐴Λ, {DΛ
𝑎
}𝑎∈𝐴Λ , 𝑣Λ⟩

as follows:

– 𝑆Λ is the set MAX of all maximally consistent sets;

– 𝐴𝑡Λ, 𝐴Λ are the sets of state and transition labels of 𝐓𝐄𝐋;

– for any 𝑎 ∈𝐴Λ and for any Γ, Δ ∈ 𝑆Λ, we set:

DΛ
𝑎
(Γ,Δ) = min{𝑝 ∈ 𝔹 | 𝑒𝑇 𝑎

𝑝
𝜙 ∈ Γ, 𝜙 ∈Δ}; (4)

– for any Γ ∈ 𝑆Λ, 𝑣Λ(Γ) = {𝛼 ∈𝐴𝑡Λ | 𝛼 ∈ Γ}.

In [13], De Caro showed a key property relating the canonical model for GML to graded modalities ◊𝑛 (𝑛 ∈ ℕ): given a state of 
this model, i.e. a maximally consistent set Γ, ◊𝑛𝜙 ∈ Γ iff the number of mc-sets containing 𝜙 that are “accessible” from Γ is strictly 
greater than 𝑛. In a similar way, by essentially transplanting De Caro’s proof techniques into 𝐓𝐄𝐋, we obtain the following:

Lemma 7. Let Γ0 ∈ 𝑆Λ, 𝜙 ∈𝐓𝐄𝐋, 𝑎 ∈𝐴Λ, and let 𝑝 ∈ 𝔹. Then:

DΛ
𝑎
(Γ0,{Γ ∈ 𝑆Λ | 𝜙 ∈ Γ}) ≥ 𝑝⟺𝑤𝑇 𝑎

𝑝
(𝜙) ∈ Γ0

Before stating the Truth Lemma we show that the construction of 𝔐Λ yields a PLSTS. This fact follows by proving that the 
functions DΛ

𝑎
(Γ, _) are actually probabilistic distributions, and can be established by means of two fundamental properties of the 

maximally consistent sets:

1. For any Γ ∈ 𝑆Λ and 𝜙 ∈𝐓𝐄𝐋 there exists exactly one 𝑝 ∈ 𝔹 such that 𝑒𝑇 𝑎
𝑝
(𝜙) ∈ Γ;

2. Let Γ1, … , Γℎ ∈ 𝑆Λ (ℎ ≥ 2) be distinct mc-sets. Then there exist 𝜓1, … .𝜓ℎ ∈𝐓𝐄𝐋 such that 𝜓𝑖 ∈ Γ𝑗 iff 𝑖 = 𝑗 and ⊢
⋀

1≤𝑖,𝑗≤ℎ
s.t. 𝑖≠𝑗

¬(𝜓𝑖 ∧

𝜓𝑗 ).

Point 1 crucially relies on the quantitative features of PLSTSs, as it requires the density property of infinite bases 𝔹, while point 2

can be seen as a “separation result” for various modal logics (see [13]). In particular, if Γ0 ∈ 𝑆Λ and 𝜙 ∈ 𝐓𝐄𝐋, point 1 implies 
𝑤𝑇 𝑎

𝑝
(𝜙), 𝑤𝑇 𝑎1−𝑝(¬𝜙) ∈ Γ0, for some 𝑝 ∈ 𝔹. By applying Lemma 7, we can easily conclude that the mass of DΛ

𝑎
(Γ0, _) is greater than 

(or equal to) 1. Now, suppose towards contradiction that DΛ
𝑎
(Γ0, _) has mass > 1. W.l.o.g. DΛ

𝑎
(Γ0, _) can be taken with finite support 

{Γ1, … , Γℎ}, where ℎ ≥ 2 by Lemma 7, so that there exist 𝜓1, … , 𝜓ℎ as in point 2. By point 1 there exists 𝑝𝑖 such that 𝑒𝑇 𝑎
𝑝𝑖
(𝜓𝑖) ∈ Γ0

(1 ≤ 𝑖 ≤ ℎ), and by the fact that 𝜓1, … , 𝜓ℎ are mutually incompatible, using Proposition 4.4 we obtain 𝑒𝑇 𝑎
𝑝1+…+𝑝ℎ

(
⋁

1≤𝑖≤ℎ 𝜓𝑖) ∈ Γ0
with 𝑝1 +… + 𝑝ℎ ≤ 1. By definition we have DΛ

𝑎
(Γ0, Γ𝑖) ≤ 𝑝𝑖, which contradicts the assumptions.

Thanks to Lemma 7, we can easily establish the Truth Lemma by induction on formulas.

Lemma 8 (Truth Lemma). For any 𝜙 ∈𝐓𝐄𝐋 and Γ ∈ 𝑆Λ:

Γ ⊨𝔐Λ
𝜙 iff 𝜙 ∈ Γ

Given the Truth Lemma, the canonical model theorem follows using a standard argument.

Theorem 9 (Canonical model). Let Λ be a TENML. Then, for any 𝜙 ∈𝐓𝐄𝐋:

𝜙 ∈Λ iff 𝜙 is true in 𝔐Λ.

To show that a TENML Λ is complete with respect to a class of frames  it suffices to check that its canonical model 𝔐Λ is based 
10

on a frame in . This allows us to infer in a fairly simple way the following completeness results:
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Corollary 10 (Completeness for various TENMLs). For any 𝜙 ∈ 𝐓𝐄𝐋:

⊨ 𝜙 implies ⊢𝖳𝖤𝖪 𝜙; ⊨ 𝜙 implies ⊢𝖳𝖤𝖳 𝜙;
⊨ 𝜙 implies ⊢𝖳𝖤𝖡 𝜙; ⊨4 𝜙 implies ⊢𝖳𝖤𝖪4 𝜙;
⊨4 𝜙 implies ⊢𝖳𝖤𝖲4 𝜙; ⊨5 𝜙 implies ⊢𝖳𝖤𝖲5 𝜙.

Unfortunately, the compactness property does not hold for TENMLs over bases as given in Definition 1. To see this, let 𝛼 ∈ 𝐴𝑡
and consider the following infinite set of formulas:

Γ𝛼 = {¬(𝑒𝑇 𝑎
𝑝
(𝛼)) | 𝑝 ∈ 𝔹} (5)

Clearly, any set Γ𝑝 ≜ Γ𝛼 ⧵ {¬(𝑒𝑇 𝑎𝑝 (𝛼))} is satisfiable (and so any finite subset of Γ𝛼 is satisfiable) but Γ𝛼 is not. Now, by a standard 
argument, a TENML Λ is strongly complete with respect to a class of frames  iff any Λ-consistent set of formulas Δ is satisfiable on 
some 𝔉 ∈ . This means that the failure of strong completeness follows by showing that Γ𝛼 is Λ-consistent. Formally, we have the 
following proposition:

Proposition 11 (Failure of strong completeness). The following statements hold:

1. For any 𝑝 ∈ 𝔹, 𝑒𝑇 𝑎
𝑝
(𝛼) is 𝖳𝖤𝖪-consistent;

2. (1) implies that Γ𝛼 is 𝖳𝖤𝖪-consistent;

3. (2) implies that strong completeness fails for 𝖳𝖤𝖪.

We point out that when a finite base and only a general context is considered, 𝐓𝐄𝐋 can be reduced to the language proposed 
by Fattorosi-Barnaba and Amati in [17]. Hence, their compactness result would apply, mutando mutandis, to 𝐓𝐄𝐋. This allows us to 
recover strong completeness.

5.5. Finite model property and decidability

In this subsection, we adapt the so-called filtration technique (see, e.g., [10]) to prove the finite model property for 𝖳𝖤𝖪, i.e., 
taking a set of formulas Γ closed under subformulas, any formula 𝜙 ∈ Γ that is satisfiable in a PLSTS 𝔐 is also satisfiable in a finite

one 𝔐Γ derived from 𝔐. To apply the filtration technique, the model satisfying any 𝜙 ∈ Γ is turned into a finite model by defining 
an equivalence relation ∼Γ that identifies all those states that verify the same set of subformulas of 𝜙 ∈ Γ. However, such a technique 
cannot be directly applied to our quantitative setting, as two states 𝑠 and 𝑡 of 𝔐 can be associated with distinct distributions and yet 
satisfy 𝑠 ∼Γ 𝑡, so that there is no obvious way of defining distributions for 𝔐Γ .

A way of adapting filtration to our framework is suggested by [48], where 𝔐Γ is constructed by choosing a representative for 
each equivalence class, and by taking the corresponding distributions.

Definition 10. Let Γ be a set of formulas closed under subformulas, and let 𝔐 = (𝑆, 𝐴𝑡, 𝐴, {D𝑎}𝑎∈𝐴, 𝑣) be a PLSTS. We define ∼Γ as 
the following equivalence relation on 𝑆 :

𝑠 ∼Γ 𝑡 ∶= for all 𝜙 ∈ Γ 𝑠 ⊨𝔐 𝜙 if and only if 𝑡 ⊨𝔐 𝜙.

Then, we define the PLSTS 𝔐Γ = (𝑆∗, 𝐴𝑡, 𝐴, {D∗
𝑎
}𝑎∈𝐴, 𝑣∗), called filtration of 𝔐 through Γ, as follows:

– 𝑆∗ is a subset of 𝑆 such that 
⨄
𝑠∈𝑆∗{𝑡 ∈ 𝑆 | 𝑡 ∼Γ 𝑠} = 𝑆 . For any 𝑠 ∈ 𝑆 , with !𝑠 we denote the (unique) state of 𝑆∗ such that 

!𝑠 ∼Γ 𝑠.
– for all 𝑠, 𝑡 ∈ 𝑆∗ and 𝑎 ∈𝐴,

D∗
𝑎
(𝑠, 𝑡) ∶=

∑
𝑡′∈𝑆 s.t. !𝑡′=𝑡

D𝑎(𝑠, 𝑡′)

which satisfies 
∑
𝑡∈𝑆∗ D𝑎(𝑠, 𝑡) = 1.

– For any 𝑠 ∈ 𝑆∗, 𝑣∗(𝑠) = {𝛼 ∈𝐴𝑡 | 𝛼 ∈ 𝑣(𝑠) ∩ Γ}.

Lemma 12 (Filtration). Let 𝔐Γ be a filtration of 𝔐 through Γ, and let 𝑆 be the set of states of 𝔐. Then, for all 𝜙 ∈ Γ and for all 𝑠 ∈ 𝑆 :

𝑠 ⊨𝔐 𝜙 ⟺ !𝑠 ⊨𝔐Γ 𝜙.

It is straightforward to see that filtration preserves reflexivity. As a result, defining 𝔉𝔦𝔫 to be the class of frames with finite 
11

domain, we have.
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Theorem 13. 𝖳𝖤𝖪 and 𝖳𝖤𝖳 have the finite model property. In particular, for any 𝜙 ∈ 𝐓𝐄𝐋:

⊢𝖳𝖤𝖪 𝜙 ⟺ ⊨∩𝔉𝔦𝔫 𝜙

⊢𝖳𝖤𝖳 𝜙 ⟺ ⊨ ∩𝔉𝔦𝔫 𝜙

As a consequence, 𝖳𝖤𝖪 and 𝖳𝖤𝖳 are decidable.

Since filtration does not preserve symmetry and transitivity, the same technique cannot be used to prove the decidability of the 
remaining TENMLs, which still remains an open issue. Finally, on the verification side for the decidable problems, we recall that 
the model checking techniques of [6,33] can be applied for PLSTSs by analogy of the probabilistic diamond operator with our trust 
operator.

6. Conclusion and future works

In this paper, we presented a formal language that can be used to analyze and reason with context-aware trust relations based on 
possessed and referred evidence. The language relies on probabilistic modal logics, where the modalities are simply inherited from 
the probabilistic variants of HML and CTL; we have shown how the ingredients of those formal frameworks could be combined in 
order to create a language that is suitable to formalize trust in environments where information might be unreliable and coming 
from different sources. In particular, our interpretation of the underlying semantic model allowed us to model networks of agents, 
contexts of evaluation, beliefs of agents about the statements, and personal judgments about the expertise of agents. Subsequently, 
we proved various interesting properties of such language.

For future work, it is worth investigating properties of trust that emerged in alternative formal frameworks, such as [4,35,36]. 
An example is to relax the additivity constraint on D𝑎, moving to a sub-additive version, which would allow us to model scenarios 
in which higher-order uncertainty also plays a role.

As far as the theoretical foundations of 𝐓𝐄𝐋 are concerned, we have extended soundness and completeness results of graded 
modal logics to our setting. As a desirable extension, it might be interesting to add dynamic components to the language in order to 
allow agents to modify their evaluations about experts and to use their trust in propositions to act in specific ways. This would also 
allow us to keep track of how trust might influence the beliefs of an agent and how those beliefs would then influence the beliefs of 
others. Another expansion we could explore is the possibility of moving from a classical Boolean setting to a Many-Valued Logic, in 
order to explicitly model the uncertainty of an agent about the truth of a proposition.

Another prospective avenue for the future development of this work is to explore its proof theoretical features. For example, the 
strong completeness results presented in the paper rely on a reduction theorem from a more expressive language (for finite bases). 
A potential future direction involves obtaining strong completeness results that do not dependent on a reduction to other languages. 
Moreover, the TEL framework represents a range of trust relations, therefore a promising area for further study is the exploration of 
proof systems that are more efficient in verifying the correctness of formulas expressing such relations. Another interesting proof-

theoretical development of our language is to provide a sequent calculus for TEL in order to improve the applicability of the language 
in automated practical settings.

Finally, from a computational complexity perspective, the paper shows that the TEL language is decidable and that the model 
checking algorithms of [6,33] can be inherited as they are. The study of the decision problem for the classes of frames not considered 
in Theorem 13 represents one possible development in this regard. We also plan to study various model-theoretic properties - that 
can be derived from the bisimulation result provided - to understand whether different informational scenarios could be reduced to 
more simple cases (e.g., through filtration of models).
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Appendix A. Proofs of Section 5

A.1. Proofs of Subsection 5.2

Proof of Proposition 4. Point 1 follows essentially by necessitation and Axiom 4. Point 2 follows by point 1. Point 3 follows 
by Axiom 1 and Axiom 2. Concerning point 4, by point 1, Axiom 1 and Axiom 2 we have ⊢ 𝑇 𝑎

𝑝+𝑞(𝜙 ∨ 𝜓) → 𝑇 𝑎
𝑝
(𝜙). This implies 

⊢ 𝑇 𝑎
𝑝+𝑞(𝜙 ∨ 𝜓) → 𝑇 𝑎

𝑝
(𝜙) ∨ 𝑇 𝑎

𝑞
(𝜓), and hence ⊢ 𝑤𝑇 𝑎1−𝑝(¬𝜙) ∧ 𝑤𝑇

𝑎
1−𝑞(¬𝜓) → 𝑤𝑇 𝑎1−(𝑝+𝑞)(¬(𝜙 ∨ 𝜓)). Since ⊢ (𝜙1 ∧ 𝜙′

1) → ((𝜙2 ∧ 𝜙′
2) →

(𝜙3 ∧ 𝜙′
3)) holds whenever ⊢ 𝜙1 → (𝜙2 → 𝜙3) and ⊢ 𝜙′

1 → (𝜙′
2 → 𝜙′

3) do, and since 𝑒𝑇 𝑎
𝑟
(𝜃) ≜ 𝑤𝑇 𝑎

𝑟
(𝜃) ∧𝑤𝑇 𝑎1−𝑟(¬𝜃), we conclude by 

applying Axiom 3 and Axiom 5. □

Proof of Theorem 5. We only prove that ⊢𝖳𝖤𝖪 𝜙 implies ⊨ 𝜙, and we show that the statement holds for the axioms in Definition 8

and it is preserved by modus ponens and necessitation. We just consider the (less trivial) cases of Axiom 4 and Axiom 5. Concerning 
the former, suppose that ⊨𝔐 𝑤𝑇 𝑎1 (𝜙 → 𝜓) and ⊨𝔐 𝑤𝑇 𝑎

𝑝
(𝜙) hold for any PLSTS 𝔐. Then, for any 𝑠, 𝑠′ ∈ 𝑆 , if D𝑎(𝑠, 𝑠′) > 0 then 

𝑠′ ⊨𝔐 𝜙 → 𝜓 . For any 𝑠 ∈ 𝑆 we have:∑
𝑠′∈𝑆
𝑠′⊨𝔐𝜓

D𝑎(𝑠, 𝑠′) ≥
∑
𝑠′∈𝑆

𝑠′⊨𝔐𝜙, 𝑠′⊨𝔐𝜙→𝜓

D𝑎(𝑠, 𝑠′)

≥
∑
𝑠′∈𝑆

𝑠′⊨𝔐𝜙, D𝑎(𝑠,𝑠′)>0

D𝑎(𝑠, 𝑠′)

≥
∑
𝑠′∈𝑆
𝑠′⊨𝔐𝜙

D𝑎(𝑠, 𝑠′) ≥ 𝑝

Let us now show the case of Axiom 5. Suppose that ⊨𝔐 𝑤𝑇 𝑎1 (¬𝜙 ∨ ¬𝜓), ⊨𝔐 𝑤𝑇 𝑎
𝑝
(𝜙) and ⊨𝔐 𝑤𝑇 𝑎

𝑞
(𝜓) hold for any PLSTS 𝔐. By 

Axiom 3 we have ⊨𝔐 𝑒𝑇 𝑎0 (𝜙 ∧𝜓). By Proposition 1.2, for any 𝑠 ∈ 𝑆 we have:

D𝑎(𝑠,𝑆𝜙∨𝜓 ) +D𝑎(𝑠,𝑆𝜙∧𝜓 ) ≥ D𝑎(𝑠,𝑆𝜙) +D𝑎(𝑠,𝑆𝜓 )

Since D𝑎(𝑠, 𝑆𝜙∧𝜓 ) = 0, D𝑎(𝑠, 𝑆𝜙) ≥ 𝑝 and D𝑎(𝑠, 𝑆𝜙) ≥ 𝑞, we are done. □

Proof of Proposition 6. We fix 𝐴 ≜ {∗} and we set in 𝐓𝐄𝐋:

□𝜙 ≜ 𝑤𝑇 ∗
1 (𝜙)

◊𝜙 ≜ ¬□¬𝜙 = ¬𝑤𝑇 ∗
1 (¬𝜙) = 𝑇

∗
0 (𝜙)

To show that 𝖳𝖤𝖪 is a conservative extension of 𝖣 we have to prove that any theorem of 𝖣 is a theorem of 𝖳𝖤𝖪, and any theorem of 
𝖳𝖤𝖪 in the language of 𝖣 is a theorem of 𝖣. This can be easily inferred from the following observations:

– NEC∗ is exactly the usual necessitation rule in modal logic;

– the axioms (𝐊) (i.e. □(𝜙 → 𝜓) → (□𝜙 →□𝜓)) and (𝐃) (i.e. □𝜙 →◊𝜙) are instances of, respectively, Axiom 2 and Axiom 4;

– the only axioms of 𝖳𝖤𝖪 in the language of 𝖣 are Axiom 2 and Axiom 4. □

A.2. Proofs of Subsection 5.4

Let Λ be any TENML, that we keep fixed throughout this subsection. The following proposition allows us to generalize Proposi-

tion 4.4.

Proposition 14. Let 𝜙0, … , 𝜙𝑘 ∈𝐓𝐄𝐋 (𝑘 ≥ 1). If ⊢
⋀

0≤𝑖,𝑗≤𝑘
𝑖≠𝑗

¬(𝜙𝑖 ∧ 𝜙𝑗 ) then:

⊢
⋀

0≤𝑖≤𝑘
𝑒𝑇 𝑎
𝑝𝑖
(𝜙)→ 𝑒𝑇 𝑎

𝑝

( ⋁
0≤𝑖≤𝑘

𝜙𝑖
)

13

for every 𝑝0, … , 𝑝1 ∈ 𝔹, where 𝑝 = 𝑝0 +… + 𝑝𝑘 ≤ 1.
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Proof. The proof is by induction on 𝑘. If 𝑘 = 1 and ⊢ ¬(𝜙0 ∧ 𝜙1) then we have ⊢𝑤𝑇 𝑎1 (¬(𝜙0 ∧ 𝜙1)) by necessitation. By Axiom 3, 
⊢ 𝑤𝑇 𝑎0 (𝜙0 ∧ 𝜙1). By definition, ⊢ 𝑒𝑇 𝑎0 (𝜙0 ∧ 𝜙1). Let 𝑝0, 𝑝1 ∈ 𝔹. By Proposition 4.4 and modus ponens, ⊢ (𝑒𝑇 𝑎

𝑝0
(𝜙0) ∧ 𝑒𝑇 𝑎𝑝1 (𝜙1)) →

𝑒𝑇 𝑎
𝑝0+𝑝1

(𝜙0 ∨ 𝜙1). Let us now consider the case 𝑘 + 1, and assume ⊢
⋀

0≤𝑖,𝑗≤𝑘+1
𝑖≠𝑗

¬(𝜙𝑖 ∧ 𝜙𝑗 ). We have:

⊢
⋀

0≤𝑖,𝑗≤𝑘
𝑖≠𝑗

¬(𝜙𝑖 ∧ 𝜙𝑗 ) (6)

⊢
⋀

0≤𝑖≤𝑘
¬(𝜙𝑖 ∧ 𝜙𝑘+1) (7)

By induction hypothesis, Equation (6) implies

⊢
⋀

0≤𝑖≤𝑘+1
𝑒𝑇 𝑎
𝑝𝑖
(𝜙)→ 𝑒𝑇 𝑎

𝑝′
( ⋁
0≤𝑖≤𝑘

𝜙𝑖
)
∧ 𝑒𝑇 𝑎

𝑝𝑘+1
(𝜙𝑘+1) (8)

for every 𝑝0, … , 𝑝𝑘+1 ∈ 𝔹, where 𝑝′ = 𝑝0 +… + 𝑝𝑘. By using logical equivalences, Equation (7) implies:

⊢ ¬
⋁

0≤𝑖≤𝑘
(𝜙𝑖 ∧ 𝜙𝑘+1)

which, in turn, implies:

⊢ ¬((
⋁

0≤𝑖≤𝑘
𝜙𝑖) ∧ 𝜙𝑘+1)

By applying the induction hypothesis on the base case, we have:

⊢

(
𝑒𝑇 𝑎
𝑝′
( ⋁
0≤𝑖≤𝑘

𝜙𝑖
)
∧ 𝑒𝑇 𝑎

𝑝𝑘+1
𝜙𝑘+1

)
→ 𝑒𝑇 𝑎

𝑝

( ⋁
0≤𝑖≤𝑘+1

𝜙𝑖
)

where 𝑝 = 𝑝′ + 𝑝𝑘+1. Finally, by using Equation (8), we get the result. □

The next propositions and lemmas are about maximally consistent sets. To begin with, we recall some well-known basic properties 
that follow by maximality of mc-sets.

Proposition 15 (Properties of mc-sets [10]). If Λ is a TENML, Γ is a mc-set and 𝜙, 𝜓 ∈ 𝐓𝐄𝐋 then:

– if 𝜙, 𝜙 → 𝜓 ∈ Γ then 𝜓 ∈ Γ;

– Λ ⊆ Γ;

– either 𝜙 ∈ Γ or ¬𝜙 ∈ Γ;

– 𝜙 ∨𝜓 ∈ Γ iff 𝜙 ∈ Γ or 𝜓 ∈ Γ.

The following result holds in any logic extending the classical propositional calculus.

Lemma 16 ([13]). Let Γ1, … , Γℎ (ℎ ≥ 2) be distinct mc-sets. Then there exist 𝜓1, … .𝜓ℎ ∈𝐓𝐄𝐋 such that:

– 𝜓𝑖 ∈ Γ𝑗 iff 𝑖 = 𝑗, and

– ⊢
⋀

1≤𝑖,𝑗≤ℎ
s.t. 𝑖≠𝑗

¬(𝜓𝑖 ∧𝜓𝑗 ).

The following is a remarkable property of finite bases.

Lemma 17 (Peremptory lemma [48]). If 𝔹 = {𝑝0, … , 𝑝𝑛} then, for all 𝜙 ∈ 𝐓𝐄𝐋, ⊢𝖳𝖤𝖪 𝑒𝑇
𝑎
𝑝0
(𝜙)∇ … ∇𝑒𝑇 𝑎

𝑝𝑛
(𝜙), where 𝜙∇𝜓 ∶= (𝜙 ∨ 𝜓) ∧

¬(𝜙 ∧𝜓).

We are now able to state and prove Lemma 18 and Lemma 19, which introduce some key properties about mc-sets we are 
interested in. In particular, point 4 of the following lemma makes crucial use of the density property of infinite bases 𝔹: this is 
exactly where the quantitative features of the semantics of PLSTSs are exploited for the canonical model construction.

Lemma 18. Let Γ ∈ MAX, 𝜙, 𝜓, 𝜙1, … , 𝜙𝑘 ∈ 𝐓𝐄𝐋, and 𝑝, 𝑞, 𝑝0, … , 𝑝𝑘 ∈ 𝔹:
14

1. if 𝑝 ≥ 𝑞 and 𝑤𝑇 𝑎
𝑝
(𝜙) ∈ Γ then 𝑤𝑇 𝑎

𝑞
(𝜙) ∈ Γ;
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2. if ⊢
⋀

0≤𝑖,𝑗≤𝑘
𝑖≠𝑗

¬(𝜙𝑖 ∧ 𝜙𝑗 ) and 𝑒𝑇 𝑎
𝑝𝑖
(𝜙𝑖) ∈ Γ (𝑖 ≤ 𝑘) then 𝑒𝑇 𝑎

𝑝
(
⋁

0≤𝑖≤𝑘
𝜙𝑖) ∈ Γ, where 𝑝 = 𝑝0 +… + 𝑝𝑘 ≤ 1;

3. if 𝑒𝑇 𝑎
𝑝
(𝜙), 𝑒𝑇 𝑎

𝑞
(𝜙) ∈ Γ then 𝑝 = 𝑞;

4. for every 𝜙 there exists 𝑝 ∈ 𝔹 such that 𝑒𝑇 𝑎
𝑝
(𝜙) ∈ Γ;

5. if ⊢ 𝜙 → 𝜓 and 𝑒𝑇 𝑎
𝑝
(𝜓) ∈ Γ, then there exists exactly one 𝑞 such that 𝑒𝑇 𝑎

𝑞
(𝜙) ∈ Γ and moreover 𝑞 ≤ 𝑝.

Proof. Point 1 follows by maximality of Γ and Proposition 4.3. Point 2 follows by maximality of Γ and Proposition 14. To show 
point 3, assume 𝑝 > 𝑞. Since 𝑒𝑇 𝑎

𝑝
(𝜙), 𝑒𝑇 𝑎

𝑞
(𝜙) ∈ Γ, by definition and by maximality of Γ we have 𝑤𝑇 𝑎

𝑝
(𝜙), ¬𝑇 𝑎

𝑞
(𝜙) ∈ Γ. By Axiom 2

and maximality of Γ, we have 𝑇 𝑎
𝑞
(𝜙) ∈ Γ, which contradicts consistency of Γ. Let us now show point 4. If the basis 𝔹 is finite we 

simply apply Lemma 17 and maximality of Γ. Otherwise, 𝔹 is infinite, and hence dense. By Axiom 3 and maximality of Γ we have 
𝑤𝑇 𝑎0 (𝜙), ¬𝑇

𝑎
1 (𝜙) ∈ Γ. This means that the following sets are nonempty:

𝐴 ≜ {𝑝 ∈ 𝔹 | 𝑤𝑇 𝑎
𝑝
(𝜙) ∈ Γ}

𝐵 ≜ {𝑞 ∈ 𝔹 |¬𝑇 𝑎
𝑞
(𝜙) ∈ Γ}

and we set 𝑝∗ ≜max𝐴 and 𝑞∗ ≜min𝐵. Suppose now that 𝑞∗ > 𝑝∗. This means that there exists 𝑞∗ > 𝑟 > 𝑝∗ such that ¬𝑇 𝑎
𝑟
(𝜙) ∉ Γ. By 

maximality of Γ, we have 𝑇 𝑎
𝑟
(𝜙) ∈ Γ. By Axiom 1, 𝑤𝑇 𝑎

𝑟
(𝜙) ∈ Γ, which contradicts maximality of 𝑝∗. Hence, it must be that 𝑝∗ ≥ 𝑞∗. 

By definition, we have 𝑤𝑇 𝑎
𝑝∗ (𝜙), ¬𝑇

𝑎
𝑞∗ (𝜙) ∈ Γ. If it were the case that 𝑝∗ > 𝑞∗ then, by Axiom 2 and by maximality of Γ, we would 

have 𝑤𝑇 𝑎
𝑝∗ (𝜙) → 𝑇 𝑎

𝑞∗ (𝜙) ∈ Γ, and hence ¬𝑤𝑇 𝑎
𝑝∗ (𝜙) ∈ Γ, contradicting consistency of Γ. Therefore, 𝑝∗ = 𝑞∗. Let us finally prove point 5. 

By point 4, there exists 𝑞 ∈ 𝔹 such that 𝑒𝑇 𝑎
𝑞
(𝜙) ∈ Γ. Suppose towards contradiction that 𝑞 > 𝑝. By definition, we have 𝑤𝑇 𝑎

𝑞
(𝜙) ∈ Γ. By 

Proposition 4.1 we have 𝑤𝑇 𝑎
𝑞
(𝜓) ∈ Γ. Since by definition ¬𝑇 𝑎

𝑝
(𝜓) ∈ Γ and 𝑞 > 𝑝, by Axiom 2 we have ¬𝑤𝑇 𝑎

𝑞
(𝜓) ∈ Γ. This contradicts 

consistency of Γ. □

Lemma 19. Let 𝑝 ∈ 𝔹, Γ ∈ MAX, and let 𝜙 ∈𝐓𝐄𝐋. If 𝑒𝑇 𝑎
𝑝
(𝜓) ∈ Γ then there exist 𝑝0, 𝑝1 ∈ 𝔹 such that 𝑝 = 𝑝0+𝑝1 ≤ 1 and both 𝑒𝑇 𝑎

𝑝0
(𝜓 ∧𝜙)

and 𝑒𝑇 𝑎
𝑝1
(𝜓 ∧ ¬𝜙) are in Γ.

Proof. Since we have both ⊢ 𝜓 ∧ 𝜙→ 𝜓 with 𝜙 ∈ {𝜙, ¬𝜙} and 𝑒𝑇 𝑎
𝑝
(𝜓) ∈ Γ, by Lemma 18.5 there exist unique 𝑝0, 𝑝1 ≤ 𝑝 such 

that 𝑒𝑇 𝑎
𝑝0
(𝜓 ∧ 𝜙), 𝑒𝑇 𝑎

𝑝1
(𝜓 ∧ ¬𝜙) ∈ Γ. Moreover, since ⊢ ¬((𝜓 ∧ 𝜙) ∧ (𝜓 ∧ ¬𝜙)), by Lemma 18.2 we have 𝑒𝑇 𝑎

𝑝0+𝑝1
(𝜉) ∈ Γ, where 𝜉 ≜

(𝜓 ∧ 𝜙) ∨ (𝜓 ∧ ¬𝜙). Clearly, ⊢ 𝜉↔ 𝜓 , so that by Lemma 4.2, ⊢ 𝑒𝑇 𝑎
𝑝
(𝜉) ↔ 𝑒𝑇 𝑎

𝑝
(𝜓). This means that 𝑒𝑇 𝑎

𝑝
(𝜉) ∈ Γ, and hence 𝑝 = 𝑝0 + 𝑝1

by Lemma 18.3. □

We now need three lemmas in order to prove the Truth Lemma (Lemma 8), the crucial step for proving completeness.

Lemma 20. Let Λ be a TENML, and let Γ, Δ ∈ 𝑆Λ. Then, the following are equivalent:

1. DΛ
𝑎
(Γ, Δ) > 0,

2. for any 𝜙 ∈𝐓𝐄𝐋, 𝜙 ∈Δ implies 𝑇 𝑎0 (𝜙) ∈ Γ,

3. for any 𝜙 ∈𝐓𝐄𝐋, 𝑤𝑇 𝑎1 (𝜙) ∈ Γ implies 𝜙 ∈Δ.

Proof. Let us prove that point 1 implies point 2. Suppose DΛ
𝑎
(Γ, Δ) > 0 and 𝜙 ∈Δ. By Lemma 18.3-4 there exists a unique 𝑝 ∈ 𝔹 such 

that 𝑒𝑇 𝑎
𝑝
(𝜙) ∈ Γ. Since DΛ

𝑎
(Γ, Δ) > 0 we have 𝑝 > 0, and so 𝑇 𝑎0 (𝜙) ∈ Γ. Let us now show that point 2 implies point 3. Suppose 𝜙 ∉Δ. 

By maximality of Δ we have ¬𝜙 ∈ Δ. By point 2 we have 𝑇 𝑎0 (¬𝜙) ∈ Γ. Since ¬𝑤𝑇 𝑎1 (𝜙) ↔ 𝑇 𝑎0 (¬𝜙) then ¬𝑤𝑇 𝑎1 (𝜙) ∈ Γ. By maximality 
of Γ we have 𝑤𝑇 𝑎1 (𝜙) ∉ Γ. Let us finally show that point 3 implies point 1. If 𝜙 ∈ Δ then ¬𝜙 ∉ Δ, so that 𝑤𝑇 𝑎1 (¬𝜙) ∉ Γ. This mean 
that ¬𝑤𝑇 𝑎1 (¬𝜙) ∈ Γ, and so 𝑇 𝑎0 (𝜙) ∈ Γ. By the latter and Lemma 18.3-4 there exists a unique 𝑝 > 0 such that 𝑒𝑇 𝑎

𝑝
(𝜙) ∈ Γ. By definition 

this implies DΛ
𝑎
(Γ, Δ) > 0. □

Lemma 21. Let Γ ∈ 𝑆Λ and 𝜙 ∈ 𝐓𝐄𝐋. If 𝑇 𝑎0 (𝜙) ∈ Γ then there exists Γ∗ ∈ 𝑆Λ such that 𝜙 ∈ Γ∗ and DΛ
𝑎
(Γ, Γ∗) ≠ 0.

Proof. Let 𝜙1, … , 𝜙𝑛, … be an enumeration of 𝐓𝐄𝐋 such that 𝜙1 ≜ 𝜙. We define a chain of finite sets of formulas Ψ1 ⊆… ⊆Ψ𝑛 ⊆…
such that, if 𝜓𝑛 =

⋀
{𝜃 | 𝜃 ∈ Ψ𝑛}, then 𝑇 𝑎0 (𝜓𝑛) ∈ Γ. We proceed by induction. Concerning the base case, we set Ψ1 = {𝜙1}, and 

𝑇 𝑎0 (𝜓0) ∈ Γ holds by hypothesis. Suppose now that Ψ𝑛 is such that 𝑇 𝑎0 (𝜓𝑛) ∈ Γ. By Lemma 18.3 there exists 𝑝 ∈ 𝔹 such that 𝑒𝑇 𝑎
𝑝
(𝜓𝑛) ∈

Γ. Moreover, 𝑇 𝑎0 (𝜓𝑛) ∈ Γ implies 𝑝 > 0. By Lemma 19 there exist 𝑝0, 𝑝1 ∈ 𝔹 such that 𝑝 = 𝑝0 + 𝑝1 ≤ 1 and 𝑒𝑇 𝑎
𝑝0
(𝜓𝑛 ∧ 𝜙𝑛+1), 𝑒𝑇 𝑎𝑝1 (𝜓𝑛 ∧

¬𝜙𝑛+1) ∈ Γ. Since 𝑝 > 0, it must be that either 𝑝0 > 0 or 𝑝1 > 0. In the former case, we would have 𝑤𝑇 𝑎
𝑝0
(𝜓𝑛 ∧ 𝜙𝑛+1) ∈ Γ and hence, 

by Axiom 2, 𝑇 𝑎0 (𝜓𝑛 ∧ 𝜙𝑛+1) ∈ Γ. So, we set Ψ𝑛+1 ≜Ψ𝑛 ∪ {𝜙𝑛+1}. In the latter case, we set Ψ𝑛+1 ≜Ψ𝑛 ∪ {¬𝜙𝑛+1}.

Let us now show that, for any 𝑛 ≥ 1, Ψ𝑛 is consistent. If it weren’t the case, then ⊢ ¬𝜓𝑛, so that ⊢ 𝑤𝑇 𝑎1 (¬𝜓𝑛) by necessitation, 
and ⊢ ¬𝑇 𝑎0 (𝜓𝑛) by definition. Since 𝑇 𝑎0 (𝜓𝑛) ∈ Γ, we would contradict consistency of Γ. Let us now set Γ∗ ≜

⋃
𝑛≥0 Ψ𝑛. Clearly, Γ∗ is a 

mc-set and 𝜙 ∈ Γ∗. Let 𝜒 ∈ Γ∗. By definition, there exists 𝑛 ∈ ℕ such that 𝜒 ∈Ψ𝑛. Since 𝑇 𝑎0 (𝜓𝑛) ∈ Γ and ⊢ 𝑇 𝑎
𝑞
(𝜃1 ∧ 𝜃2) → 𝑇 𝑎

𝑞
(𝜃𝑖) holds 
15

by Proposition 4.1, 𝑇 𝑎0 (𝜒) ∈ Γ. By Lemma 20, we have DΛ
𝑎
(Γ, Γ∗) ≠ 0. □
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Proof of Lemma 7. Suppose firstly that DΛ
𝑎
(Γ0, {Γ ∈ 𝑆Λ | 𝜙 ∈ Γ}) ≥ 𝑝. We have two cases:

1. there exists Γ ∈ 𝑆Λ such that 𝜙 ∈ Γ and DΛ
𝑎
(Γ0, Γ) ≥ 𝑝;

2. for every Γ ∈ 𝑆Λ, if 𝜙 ∈ Γ then DΛ
𝑎
(Γ0, Γ) < 𝑝.

In the first case, by definition we have 𝑤𝑇 𝑎
𝑝′
(𝜙) ∈ Γ0, for some 𝑝′ ≥ 𝑝. By Lemma 18.1 we have 𝑤𝑇 𝑎

𝑝
(𝜙) ∈ Γ0. Let us now consider the 

second case. Clearly, there exist ℎ ≥ 2 distinct Γ1, … , Γℎ ∈ 𝑆Λ such that, for each 1 ≤ 𝑗 ≤ ℎ:

– 𝜙 ∈ Γ𝑗 ;
– 0 <DΛ

𝑎
(Γ0, Γ𝑗 ) < 𝑝;

–
∑ℎ

𝑗=1 𝑝𝑗 ≥ 𝑝, where 𝑝𝑗 ≜ DΛ
𝑎
(Γ0, Γ𝑗 ).

By Lemma 16, there exist 𝜓1, … .𝜓ℎ formulas such that 𝜓𝑗 ∈ Γ𝑗 (1 ≤ 𝑗 ≤ ℎ) and ⊢
⋀

1≤𝑖,𝑗≤ℎ, 𝑖≠𝑗 ¬(𝜓𝑖 ∧ 𝜓𝑗 ). By definition, there exist 
𝜃1, … , 𝜃ℎ such that 𝜃𝑗 ∈ Γ𝑗 and 𝑒𝑇 𝑎

𝑝𝑗
(𝜃𝑗 ) ∈ Γ0 (1 ≤ 𝑗 ≤ ℎ). We set 𝜉𝑗 ≜ 𝜃𝑗 ∧𝜓𝑗 ∧ 𝜙. We want to show the following properties:

(i) 𝜉𝑗 ∈ Γ𝑗 (1 ≤ 𝑗 ≤ ℎ);

(ii) ⊢
⋀

1≤𝑖,𝑗≤ℎ
s.t. 𝑖≠𝑗

¬(𝜉𝑖 ∧ 𝜉𝑗 );

(iii) 𝑒𝑇 𝑎
𝑝𝑗
(𝜉𝑗 ) ∈ Γ0 (1 ≤ 𝑗 ≤ ℎ).

Property (i) holds because 𝜃𝑗 , 𝜓𝑗, 𝜙 ∈ Γ𝑗 and because of maximality of Γ𝑗 . Property (ii) holds because ⊢ (𝜉𝑖 ∧ 𝜉𝑗 ) → (𝜓𝑖 ∧ 𝜓𝑗 ) for all 
1 ≤ 𝑖, 𝑗 ≤ ℎ such that 𝑖 ≠ 𝑗, and ⊢

⋀
1≤𝑖,𝑗≤ℎ, 𝑖≠𝑗 ¬(𝜓𝑖 ∧𝜓𝑗 ). Concerning property (iii), since ⊢ 𝜉𝑗 → 𝜃𝑗 and 𝑒𝑇 𝑎

𝑝𝑗
(𝜃𝑗 ) ∈ Γ0, by Lemma 18.5

there exists 𝑟𝑗 ≤ 𝑝𝑗 such that 𝑒𝑇 𝑎
𝑟𝑗
(𝜉𝑗 ) ∈ Γ0 for all 1 ≤ 𝑗 ≤ ℎ. Since 𝜉𝑗 ∈ Γ𝑗 by point (i), then 𝑝𝑗 = DΛ

𝑎
(Γ0, Γ𝑗 ) ≤ 𝑟𝑗 by definition of DΛ

𝑎
.

Let us now define 𝜒 ≜
⋁

1≤𝑗≤ℎ 𝜉𝑗 . From point (ii)-(iii) above and Lemma 18.2, we have 𝑒𝑇 𝑎
𝑞
(𝜒) ∈ Γ0, where 𝑞 ≜

∑ℎ

𝑗=1 𝑝𝑗 , and hence 
𝑤𝑇 𝑎

𝑞
(𝜒) ∈ Γ0. Since ⊢ 𝜉𝑗 → 𝜙, we also have ⊢ 𝜒 → 𝜙 and ⊢𝑤𝑇 𝑎1 (𝜒 → 𝜙) by necessitation. Then, by Axiom 4, we have 𝑤𝑇 𝑎

𝑞
(𝜙) ∈ Γ0. 

Finally, since 𝑞 ≥ 𝑝, Lemma 18.1 implies 𝑤𝑇 𝑎
𝑝
(𝜙) ∈ Γ0.

Concerning the other direction, suppose that 𝑤𝑇 𝑎
𝑝
(𝜙) ∈ Γ0. If 𝑝 = 0 then we are done. Suppose 𝑝 > 0. By Lemma 21 there exists 

at least one Γ ∈ 𝑆Λ such that 𝜙 ∈ Γ and DΛ
𝑎
(Γ0, Γ) ≠ 0. We can assume the family of these Γ to be finite. Let Γ1, … , Γℎ be these sets. 

We have to show that 𝑞 ≜
∑

1≤𝑗≤ℎ 𝑝𝑗 ≥ 𝑝, where 𝑝𝑗 ≜ DΛ
𝑎
(Γ0, Γ𝑗 ) (1 ≤ 𝑗 ≤ ℎ). Suppose first that ℎ ≥ 2. Consider as above the formulas 

𝜉𝑗 ≜ 𝜃𝑗 ∧𝜓𝑗 ∧ 𝜙 (1 ≤ 𝑗 ≤ ℎ), and recall the properties (i)-(iii) above. Furthermore, if 𝜈 = ¬ 
⋁

1≤𝑗≤ℎ(𝜃𝑗 ∧𝜓𝑗 ) we have:

(a) ⊢ (
⋁

1≤𝑗≤ℎ 𝜉𝑗 ∨ (𝜈 ∧ 𝜙)) ↔ 𝜙;

(b) ⊢ ¬(𝜉𝑗 ∧ (𝜈 ∧ 𝜙)) (1 ≤ 𝑗 ≤ ℎ);

(c) 𝑒𝑇 𝑎0 (𝜈 ∧ 𝜙) ∈ Γ0.

Properties (a) and (b) hold by propositional calculus. We prove the property (c). Suppose 𝑤𝑇 𝑎
𝑟
(𝜈 ∧ 𝜙) ∈ Γ0 for 𝑟 > 0. By Lemma 21

there exists Γ′ ∈ 𝑆Λ such that 𝜈 ∧ 𝜙 ∈ Γ′ and DΛ
𝑎
(Γ0, Γ′) ≠ 0. So, Γ′ is one of Γ1, … , Γℎ above. This fact, together with (i) and (b)

contradicts the consistency of Γ′.
Now, let 𝜒 ≜

⋁
1≤𝑗≤ℎ 𝜉𝑗 ∨ (𝜈 ∧𝜙). By Lemma 18.2, the properties (ii) and (iii) imply 𝑒𝑇 𝑎

𝑞
(
⋁

1≤𝑗≤ℎ 𝜉𝑗 ) ∈ Γ0. By applying once more 
Lemma 18.2, the properties (b) and (c) imply 𝑒𝑇 𝑎

𝑞
(𝜒) ∈ Γ0. By Lemma 4.2, from the property (a) we have 𝑒𝑇 𝑎

𝑞
(𝜙) ∈ Γ0. This implies 

𝑞 ≥ 𝑝.
Let us finally discuss the case ℎ = 1. The preceding argument still holds: being there no Γ1, … , Γℎ to be considered, we have 

𝜉𝑗 = 𝜃𝑗 ∧𝜙 (𝑗 = ℎ = 1) and 𝜈 = ¬𝜃1. The clause (ii) can obviously be skipped and, in the property (a), one has the formula (𝜉1 ∨ (¬𝜃 ∧
𝜙)) ↔ 𝜙. □

Before stating the Truth Lemma we have to show that the construction of 𝔐Λ (see Definition 9) yields a PLSTS. This fact follows 
by proving that the functions DΛ

𝑎
(Γ, _) are actually probabilistic distributions. To do this we shall exploit the “separation property” 

introduced in Lemma 16.

Lemma 22. 𝔐Λ = ⟨𝑆Λ, 𝐴𝑡Λ, 𝐴Λ, {DΛ
𝑎
}𝑎∈𝐴Λ , 𝑣Λ⟩ is a PLSTS.

Proof. It suffices to show that, for all 𝑎 ∈𝐴Λ and for all Γ ∈ 𝑆Λ:

∑
Δ∈𝑆Λ

DΛ
𝑎
(Γ,Δ) = 1.
16

Let 𝜙 ∈𝐓𝐄𝐋. By Lemma 18.3-4 there exists a unique 𝑝 ∈ 𝔹 such that 𝑒𝑇 𝑎
𝑝
(𝜙) ∈ Γ. Using Lemma 7 we have:
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𝑒𝑇 𝑎
𝑝
(𝜙) ∈ Γ↔𝑤𝑇 𝑎

𝑝
(𝜙) ∧𝑤𝑇 𝑎1−𝑝(¬𝜙) ∈ Γ

↔𝑤𝑇 𝑎
𝑝
(𝜙) ∈ Γ and 𝑤𝑇 𝑎1−𝑝(¬𝜙) ∈ Γ

↔ DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∈Δ}) ≥ 𝑝, and

DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | ¬𝜙 ∈Δ}) ≥ 1 − 𝑝

↔ DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∈Δ}) ≥ 𝑝, and

DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∉Δ}) ≥ 1 − 𝑝

↔ DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∈Δ}) ≥ 𝑝, and

DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∉Δ}) + 𝑝 ≥ 1

This means that:

1 ≤ 𝑝+DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∉Δ})

≤ DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∈Δ}) +DΛ

𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜙 ∉Δ})

≤
∑

Δ∈𝑆Λ
DΛ
𝑎
(Γ,Δ).

Now, suppose toward contradiction that 1 <
∑

Δ∈𝑆Λ DΛ
𝑎
(Γ, Δ). Then, there must be a finite subset 𝑋 of 𝑆Λ such that 1 <∑

Δ∈𝑋 DΛ
𝑎
(Γ, Δ). Let 𝑋 = {Δ1, … , Δ𝑛}, where 𝑛 ≥ 2 by Lemma 7. By Lemma 16, there exist 𝜓1, … , 𝜓𝑛 ∈𝐓𝐄𝐋 such that:

– 𝜓𝑖 ∈Δ𝑗 iff 𝑖 = 𝑗, and

– ⊢
⋀

1≤𝑖,𝑗≤𝑛
s.t. 𝑖≠𝑗

¬(𝜓𝑖 ∧𝜓𝑗 ).

By Lemma 18.3-4, for any 𝑖 ≤ 𝑛 there exists a unique 𝑝𝑖 ∈ 𝔹 such that 𝑒𝑇 𝑎
𝑝𝑖
(𝜓𝑖) ∈ Γ. By Lemma 18.2 we have 𝑒𝑇 𝑎

𝑝1+…+𝑝𝑛
(
⋁

1≤𝑖≤𝑛 𝜓𝑖) ∈ Γ, 
so that 𝑝1 +… + 𝑝𝑛 ≤ 1. By definition, for any 𝑖 ≤ 𝑛 we have:

DΛ
𝑎
(Γ,Δ𝑖) = min{𝑞 ∈ 𝔹 | 𝑒𝑇 𝑎

𝑞
(𝜙) ∈ Γ, 𝜙 ∈Δ𝑖} ≤ 𝑝𝑖

so that 
∑

1≤𝑖≤𝑛DΛ
𝑎
(Γ, Δ𝑖) ≤

∑𝑛

𝑖=1 𝑝𝑖 ≤ 1, which contradicts our assumptions. □

Proof of Lemma 8. By induction on 𝜙. If 𝜙 is an atomic proposition 𝛼 then Γ ⊨𝔐Λ
𝛼 iff 𝛼 ∈ 𝑣Λ(Γ) iff 𝛼 ∈ Γ. If 𝜙 = ¬𝜓 then, using the 

induction hypothesis and maximality of Γ, Γ ⊨𝔐Λ
¬𝜓 iff Γ ⊭𝔐Λ

𝜓 iff 𝜓 ∉ Γ iff ¬𝜓 ∈ Γ. If 𝜙 = 𝜓1 ∨ 𝜓2 then, by using the induction 
hypothesis and maximality of Γ, Γ ⊨𝔐Λ

𝜓1 ∨𝜓2 iff Γ ⊨𝔐Λ
𝜓1 or Γ ⊨𝔐Λ

𝜓2 iff 𝜓1 ∈ Γ or 𝜓2 ∈ Γ iff 𝜓1 ∨𝜓2 ∈ Γ. Finally, if 𝜙 =𝑤𝑇 𝑎
𝑝
(𝜓)

then:

Γ ⊨𝔐Λ
𝑤𝑇 𝑎

𝑝
(𝜓)⇔ DΛ

𝑎
(Γ,{Δ ∈ 𝑆Λ | Δ ⊨𝔐Λ

𝜓}) ≥ 𝑝 by definition

⇔ DΛ
𝑎
(Γ,{Δ ∈ 𝑆Λ | 𝜓 ∈Δ}) ≥ 𝑝 by induction hypothesis

⇔𝑤𝑇 𝑎
𝑝
(𝜓) ∈ Γ Lemma 7. □

Given the Truth Lemma, the canonical model theorem follows using a standard argument.

Proof of Theorem 9. We have the following equivalences:

𝜙 ∈Λ iff ∀Γ ∈ 𝑆Λ. 𝜙 ∈ Γ Proposition 15

iff ∀Γ ∈ 𝑆Λ. Γ ⊨𝔐Λ
𝜙 Lemma 8

iff 𝜙 is true in 𝔐Λ □

Proof of Corollary 10. Let Λ be a TENML, and let  be a class of frames. If we show that 𝔉𝔐Λ
∈  then, for any 𝜙 ∈ 𝐓𝐄𝐋, ⊨ 𝜙

would imply ⊨𝔐Λ
𝜙, so that ⊢Λ 𝜙 by Theorem 9. Now, ⊨ 𝜙 implies ⊢𝖳𝖤𝖪 𝜙 is straightforward because  is the class of all frames. 

As for the remaining statements, it suffices to show the following properties:

1. 𝔉𝔐𝖳𝖤𝖳
∈  ,

2. 𝔉𝔐𝖳𝖤𝖡
∈,
17

3. 𝔉𝔐𝖳𝖤𝖪4
∈4.
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Concerning point 1, let Γ ∈ 𝑆𝖳𝖤𝖳 and 𝜙 ∈ Γ. Since (𝐓+) ∈ 𝖳𝖤𝖳, by maximality of Γ we have 𝜙 → 𝑇 𝑎0 (𝜙) ∈ Γ and so 𝑇 𝑎0 (𝜙) ∈ Γ. Since 
𝜙 ∈ Γ implies 𝑇 𝑎0 (𝜙) ∈ Γ, by Lemma 20 we have D𝖳𝖤𝖳

𝑎
(Γ, Γ) > 0. Therefore, 𝔉𝔐𝖳𝖤𝖳

∈  . Let us now prove point 2. Let Γ, Δ ∈ 𝑆𝖳𝖤𝖡 be 
such that D𝖳𝖤𝖡

𝑎
(Γ, Δ) > 0 and 𝜙 ∈ Γ. Since (𝐁+) ∈ 𝖳𝖤𝖡, by maximality of Γ we have 𝜙 →𝑤𝑇 𝑎1 (𝑤𝑇

𝑎
0 (𝜙)) ∈ Γ and so 𝑤𝑇 𝑎1 (𝑤𝑇

𝑎
0 (𝜙)) ∈ Γ. 

Since D𝖳𝖤𝖡
𝑎

(Γ, Δ) > 0, by Lemma 20 we have 𝑇 𝑎0 (𝜙) ∈ Δ. Since 𝜙 ∈ Γ implies 𝑇 𝑎0 (𝜙) ∈ Δ, by applying once again Lemma 20 we 
have D𝖳𝖤𝖡

𝑎
(Δ, Γ) > 0. Therefore, 𝔉𝔐𝖳𝖤𝖡

∈. Let us finally prove point 3. Suppose D𝖳𝖤𝖪4
𝑎

(Γ, Δ) > 0, D𝖳𝖤𝖪4
𝑎

(Δ, Σ) > 0 and 𝜙 ∈ Σ. Since 
D𝖳𝖤𝖪4
𝑎

(Δ, Σ) > 0, by Lemma 20 we have 𝑇 𝑎0 (𝜙) ∈Δ. Since D𝖳𝖤𝖪4
𝑎

(Γ, Δ) > 0, the same lemma implies 𝑇 𝑎0 (𝑇
𝑎
0 (𝜙)) ∈ Γ. Since (𝟒+) ∈ 𝖳𝖤𝖪4

by maximality of Γ, we have 𝑇 𝑎0 (𝑇
𝑎
0 (𝜙)) → 𝑇 𝑎0 (𝜙) ∈ Γ. By modus ponens and maximality of Γ, we have 𝑇 𝑎0 (𝜙) ∈ Γ. Since 𝜙 ∈ Σ implies 

𝑇 𝑎0 (𝜙) ∈ Γ, by Lemma 20 we have D𝖳𝖤𝖪4
𝑎

(Γ, Σ) > 0. □

Proof of Proposition 11. Concerning point 1, suppose towards contradiction that this is not the case. By definition, ⊢𝖳𝖤𝖪 𝑒𝑇
𝑎
𝑝
(𝛼) →

⊥, that is ⊢𝖳𝖤𝖪 ¬𝑤𝑇 𝑎
𝑝
(𝛼) ∨𝑇 𝑎

𝑝
(𝛼). We prove that both ¬𝑤𝑇 𝑎

𝑝
(𝛼) ⊢𝖳𝖤𝖪 ⊥ and 𝑇 𝑎

𝑝
(𝛼) ⊢𝖳𝖤𝖪 ⊥, so that we can conclude ⊢𝖳𝖤𝖪 ⊥. So assume 

¬𝑤𝑇 𝑎
𝑝
(𝛼). By Proposition 4.3, we have ¬𝑤𝑇 𝑎1 (𝛼) and, since TENMLs are closed under substitutions, ¬𝑤𝑇 𝑎1 (⊤). We derive the absurdity 

by applying the necessitation rule to ⊤. Now, assume 𝑇 𝑎
𝑝
(𝛼). By applying Axiom 2 and Axiom 1, we have 𝑇 𝑎0 (𝛼) and, since TENMLs 

are closed under substitutions, 𝑇 𝑎0 (⊥), that is ¬𝑤𝑇 𝑎1 (⊤). We derive the absurdity by applying the necessitation rule to ⊤.

Let us now show point 2. Suppose towards contradiction that Γ𝛼 ⊢𝖳𝖤𝖪 ⊥. By definition, there exist 𝜓1, … , 𝜓𝑛 ∈ Γ𝛼 such that 
⊢𝖳𝖤𝖪 (𝜓1 ∧ … ∧ 𝜓𝑛) → ⊥. Now, let 𝑝 ∈ 𝔹 be such that ¬𝑒𝑇 𝑎

𝑝
(𝛼) ∉ {𝜓1, … , 𝜓𝑛}. By the Lindenbaun Lemma (see [10]), any 𝖳𝖤𝖪-

consistent set of formulas can be extended to a mc-set. Since by point 1 {𝑒𝑇 𝑎
𝑝
(𝛼)} is 𝖳𝖤𝖪-consistent, a mc-set Γ∗ containing 𝑒𝑇 𝑎

𝑝
(𝜙)

exists. By Lemma 18.3 and maximality, {𝜓1, … , 𝜓𝑛} ⊆ Γ∗. But then Γ∗ ⊢𝖳𝖤𝖪 ⊥, contradicting 𝖳𝖤𝖪-consistency of Γ∗.

Concerning point 3, any set Γ𝑝 ≜ Γ𝛼 ⧵ {¬𝑒𝑇 𝑎𝑝 (𝛼)} is satisfiable (and so any finite subset of Γ𝛼 is satisfiable) but Γ𝛼 is not. Now, by 
a standard argument, a TENML Λ is strongly complete with respect to a class of frames  iff any Λ-consistent set of formulas Δ is 
satisfiable on some 𝔉 ∈ . This means that the failure of strong completeness follows by point 2. □

A.3. Proofs of Subsection 5.5

Proof of Lemma 12. The proof is by induction on 𝜙. If 𝜙 = 𝛼 then by definition 𝑠 ⊨𝔐 𝛼⟺ 𝛼 ∈ 𝑣(𝑠) ⟺ 𝛼 ∈ 𝑣∗(𝑠) ⟺ !𝑠 ⊨𝔐Γ 𝛼. 
The cases 𝜙 = ¬𝜓 , 𝜙 = 𝜓1 ∨𝜓2 are obtained by applying the induction hypothesis. Last, if 𝜙 =𝑤𝑇 𝑎

𝑝
(𝜓) then, we first notice that:

D𝑎(!𝑠,{𝑡 ∈ 𝑆 | 𝑡 ⊨𝔐 𝜓}) = D∗
𝑎
(!𝑠,{𝑡 ∈ 𝑆∗ | 𝑡 ⊨𝔐Γ 𝜓}) (9)

Indeed, we have:

D𝑎(!𝑠,{𝑡 ∈ 𝑆 | 𝑡 ⊨𝔐 𝜓}) =
∑

𝑡∈𝑆 s.t. 𝑡⊨𝔐𝜓

D𝑎(!𝑠, 𝑡)

=
∑

𝑡∈𝑆 s.t. !𝑡⊨𝔐Γ𝜓

D𝑎(!𝑠, 𝑡) ind. hyp.

=
∑

𝑢∈𝑆∗ s.t. 𝑢⊨𝔐Γ𝜓

∑
𝑡∈𝑆 s.t. !𝑡=𝑢

D𝑎(!𝑠, 𝑡)

=
∑

𝑢∈𝑆∗ s.t. 𝑢⊨𝔐Γ𝜓

D∗
𝑎
(!𝑠, 𝑢)

= D∗
𝑎
(!𝑠,{𝑡 ∈ 𝑆∗ | 𝑡 ⊨𝔐Γ 𝜓})

Now, for any 𝑠 ∈ 𝑆 :

𝑠 ⊨𝔐 𝑤𝑇 𝑎
𝑝
(𝜓) ⟺ !𝑠 ⊨𝔐 𝑤𝑇 𝑎

𝑝
(𝜓) by definition

⟺
∑

𝑡∈𝑆 s.t. 𝑡⊨𝔐𝜓

D𝑎(!𝑠, 𝑡) ≥ 𝑝

⟺
∑

𝑢∈𝑆∗ s.t. 𝑢⊨𝔐Γ𝜓

D∗
𝑎
(!𝑠, 𝑢) ≥ 𝑝 by (9)

⟺ !𝑠 ⊨𝔐Γ 𝑤𝑇 𝑎𝑝 (𝜓) □

Proof of Theorem 13. The left-right direction follows from Theorem 5. Concerning the right-left direction, by Corollary 10 ⊬𝖳𝖤𝖪 𝜙

implies 𝑠 ⊭𝔐 𝜙 such that, if ⊬𝖳𝖤𝖪 𝜙 then 𝔉𝔐 ∈  . Let Γ𝜙 be the set of all subformulas of 𝜙, and let 𝔐Γ𝜙 be any filtration of 𝔐
through Γ𝜙. By Lemma 12 !𝑠 ⊭𝔐Γ𝜙 𝜙, and since Γ𝜙 is finite 𝔐Γ𝜙 has finite domain. In particular, if Γ𝜙 has 𝑛 elements, then 𝔐Γ𝜙

has at most 2𝑛 states. If, moreover 𝔉𝔐 ∈  , then 𝔉𝔐Γ𝜙 ∈  . □
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