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Abstract

We consider the dynamics of asset prices and wealth for an exchange economy
with long-lived assets where agents adopt different portfolio strategies: one agent
allocates wealth according to the Constant Weight Strategy while the other follows
a Portfolio Insurance Strategy. In a Lucas tree setting, assuming a binomial model
for the endowment process, we provide conditions for survival and (relative) dom-
inance of agents and discuss them in terms of the expected log-return of the risky
asset. Both strategies survive for low expected log-returns, while both strategies
dominate, but on different paths, for high expected log-returns. We show that the
portfolio insurance strategy plays a stabilizing effect on the market volatility.
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1. Introduction

In this paper, we investigate the long run evolution of a financial mar-
ket populated by two classes of agents: agents allocating wealth according
to a Constant Weight Strategy (CWS) and agents adopting a POrtfolio In-
surance Strategy (POIS). CWS and POIS represent the two most popular
trading strategies in financial markets, the goal is to discern the emergence of
homogeneous/heterogenous behaviors in the long run when prices are endoge-
nously determined in equilibrium. We show that the final outcome depends
on the asset fundamentals, the market can be populated by only one of the
two classes of agents, and in some cases whether POIS or CWS dominate
depends on the path of realized states of the world, or both strategies can
survive.

The paper deals with heterogeneity of agents in financial markets. Up to
now, the debate on the effects of heterogeneity on financial markets is not
fully settled.

The 2007-2008 financial crisis showed that the financial network was too
complex and that intermediaries were exposed to similar risks. [21, 20] pro-
vide evidence that the stock market performances of financial intermediaries
(investment banks, commercial banks, insurers, hedge funds) were quite sim-
ilar in the new millennium. Homogeneous market behavior may enhance
financial instability. This claim has been confirmed theoretically in some
papers. [27] shows that market volatility is not at the highest level when
the economy is more heterogeneous but when the less risk averse agent owns
a large quota of the wealth and therefore there is less risk sharing in the
market. [11] show that the unconditional volatility of market return in the
homogeneous model is higher than in a model with heterogenous agents (with
respect to their coefficients of relative risk aversion), see also [4].

The effect of heterogeneity is more complex in case agents differ in beliefs.
In this context, agents also trade when there is no risk to share. Considering
the long run evolution of a market populated by agents with different beliefs,
there are results showing that in case of persistent heterogeneity the disper-
sion of asset evaluations increases, and therefore, market volatility goes up,
but on the other hand the unconditional evaluations of agents get closer to
the one implied by fundamentals than the one of each individual investor in
an homogeneous economy, see [8] for a temporary equilibrium model and [12]
for a general equilibrium model.

The paper contributes to two strands of literature.
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First of all we contribute to the literature on markets populated by traders
employing a POIS, see [17, 10, 2, 3]. This literature has shown that the mar-
ket volatility and risk premium are decreased by the presence of portfolio
insurance. As far as we know, there is no equilibrium analysis on the evolu-
tion of the market populated by this type of traders. We address this topic
investigating whether agents employing a POIS can persist and affect prices
in a market populated also by other agents (those adopting the CWS). [25]
show that a CWS dominates a POIS in case of erratic behavior of the asset
price without a strong trend, the reverse is observed in case the evolution
of the asset price is characterized by a trend. Their analysis considers an
exogenous asset price and therefore is partial. In our analysis, we address
the topic considering an endogenous price as the result of the equilibrium in
the market populated by the two classes of agents.

We also contribute to the analysis of financial markets populated by het-
erogeneous traders. The reference is provided by the Friedman’s conjecture
(or Market Selection Hypothesis) according to which rational agents having
more sophisticated information perform better than less informed or irra-
tional agents, see [16]. A formal proof of the Friedman’s conjecture has been
obtained only recently in a general equilibrium setting showing that in the
long run, among subjective expected utility agents, agents with rational ex-
pectations dominate the market notwithstanding their risk preferences, see
[6, 26]. When trading strategies are not derived from expected utility max-
imization, results are not clear-cut. In this context dominance by one class
of agents (homogeneity) is only one of the possible outcomes. Analyzing fi-
nancial markets for long-lived assets in a temporary equilibrium setting, [14]
show that the CWS investing proportionality to assets’ expected relative divi-
dends, the so-called Generalized Kelly Startegy (GKS), is going to dominate
the market in the long run when the market is populated by other CWS.
When such a strategy is not traded, long run market outcomes have only
being investigated when all investors employ a CWS. [9] show that adopting
a CWS close to the GKS guarantees survivorship but not dominance, and
that when the CWSs are heterogenous enough, e.g., they differ from the GKS
on different assets, then all investors survive and heterogeneity persists.

Differently from the existing literature on heterogeneity and financial evo-
lution, we may have three different scenarios (almost surely) in the long run:
dominance of one class of agents, coexistence of heterogenous traders on
almost all path, dominance of one of the two classes of agents on different
paths. This third outcome highlighting path dependency in the long run evo-
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lution is a novelty in the evolutionary finance literature and it depends on
the switching mode of the POIS (constant fraction of wealth invested in the
risky asset conditional on the wealth being above the floor, zero investment
otherwise). To illustrate this scenario we concentrate on the most interesting
case in which the POIS invests a fraction of wealth (when it is above the
floor) higher than the fraction of the CWS. Consider an economy with good
fundamentals (high expected returns of the risky asset). The POIS, condi-
tional on being above the floor, is exposed to the risky asset, its dominance
in the long run relies on the risky asset having good initial dividend realiza-
tions (good luck) so that the wealth of POIS agents remains above the floor.
Otherwise, under adverse initial realizations (bad luck), the wealth of POIS
agents touches the floor and, by exiting from the investment in the risky asset
with good fundamentals, is driven out of the market by the CWS. Given the
same fundamentals, these paths lead to a different dominant strategy in the
long run. Instead, survival of both CWS and POIS agents is the long run
outcome when the risky asset has weak fundamentals. In this case, the POIS
reverting to a floor has a chance to survive instead of vanishing.

As far as the nexus between volatility and market heterogeneity is con-
cerned, we show that there is no clear ranking, it depends on the type of
strategy that dominates in the long run. A homogenous market with traders
adopting a CWS is more volatile than a markets with heterogeneous traders
investing through a CWS and a POIS. Instead, a homogenous market with
traders adopting a POIS is less volatile than a markets with heterogeneous
traders investing through a CWS and a POIS. This result confirms that POIS
plays a stabilizing effect on the market.

The paper is organized as follows. In Section 2 we present the model.
In Section 3 we introduce the two strategies. In Section 4 we analyze the
evolution of the market and the dominance/survivorship if the two classes
of agents. In Section 5 we provide a discussion and numerical simulations of
the model. In Appendix Appendix A we provide the proof of our resutls.

2. The model

To model the financial economy we follow [9], both in terms of notation
and characteristics of the asset market.

Time is discrete and indexed by t ∈ N0 = N∪{0}. At each time t ∈ N one
of the possible S states of the world occurs. Given the set of all the possible
sequences of states of the world Σ, a generic sequence in Σ is denoted by
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σ. The partial history of states, up to date t included, is given by σt =
(s1, s2, . . . , st) ∈ St, where st ∈ S is the state of the world realized at date t.
The natural filtration is {=t}, = is the σ-algebra generated by {=t} while P
is the probability measure on (Σ,=). Dividends, asset prices and wealth are
adapted to {=t}.

We consider an exchange economy populated by two agents trading two
long-lived assets or Lucas’ trees in a competitive market. Both assets pay as
dividend units of the consumption good (apples, the numéraire of the econ-
omy). By assumption, the dividend of asset 1 is risk-free, as for a perpetual
bond, while the dividend of asset 2 is risky, as for equity shares. The divi-
dend payed by asset k ∈ K = {1, 2} in t ∈ N0, possibly depending on the
realization of σt, is denoted as Dk,t(σt).

Let Pt = (P1,t, P2,t) the vector of asset equilibrium prices at time t and

h
(i)
t =

(
h
(i)
1,t, h

(i)
2,t

)
the asset holding of agent i from time t to time t+ 1. Then

the budget constraint of agent i at time t ≥ 1 satisfies the following equation:

C
(i)
t +P1,th

(i)
1,t+P2,th

(i)
2,t = (D1,t(σt) + P1,t)h

(i)
1,t−1 +(D2,t (σt) + P2,t)h

(i)
2,t−1 (1)

where C
(i)
t is her consumption in t. Notice that, in t = 0, the right-hand side

of (1) is the value of agent i’s initial endowment, the agent-specific initial
holding of asset shares and consumption good.

Assuming a unitary aggregate initial holding of both assets, the market
clearing condition reads

2∑
i=1

h
(i)
k,t = 1 ∀k ∈ K, t ∈ N0. (2)

The vector of agents’ wealths in t ≥ 1 is Wt =
(
W

(1)
t ,W

(2)
t

)
, where

W
(i)
t = (D1,t(σt) + P1,t)h

(i)
1,t−1 + (D2,t (σt) + P2,t)h

(i)
2,t−1, ∀i ∈ K (3)

is the pre-consumption net wealth of agent i at time t.
We denote with δ ∈ (0, 1) the fraction of wealth invested by each agent,

implicitly assuming that they invest the same fraction, and therefore the
consumption process is

C
(i)
t = (1− δ)W (i)

t .
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The assumption of a homogeneous δ is made to focus the analysis on the
effect of different investment strategies on price/market evolution, see [6] for
the discussion of different consumption fractions and the long run outcome.

We define the vector of investment fractions (over wealth) of agent i as

α
(i)
t =

(
α
(i)
1,t, α

(i)
2,t

)
, so that

α
(i)
k,tW

(i)
t = h

(i)
k,tPk,t, ∀k ∈ K. (4)

Note that
∑2

k=1 α
(i)
k,t = δ.

The wealth of the two agents and the prices of the two assets can be
written as

W
(i)
t = (D1,t(σt) + P1,t)

α
(i)
1,t−1W

(i)
t−1

P1,t−1
+ (D2,t (σt) + P2,t)

α
(i)
2,t−1W

(i)
t−1

P2,t−1
∀i ∈ K,

(5)

Pk,t =
2∑
i=1

α
(i)
k,tW

(i)
t ∀k ∈ K. (6)

To conclude the description of the financial economy, we specify the
stochastic process for the two asset dividends. We denote by Yt the aggregate
endowment:

Yt(σt) =
2∑

k=1

Dk,t(σt).

We shall assume Yt(σt) to depend on partial histories but relative dividend
(dividend over endowment) to have the same distribution in all periods.
In particular, given the probability measure P and two random variables
(d1, d2) = d on (S, 2s), there exists a probability measure π > 0 on (S, 2s)
such that

A1 Dk,t (σt) = dk(st)Yt(σt), ∀k ∈ K, ∀t ∈ N and ∀σt ∈ St,

A2 st ∈ S are i.i.d with P(st = s) = π(s) > 0 ∀t ∈ N, ∀σt ∈ Σ and ∀s ∈ S.

In the following, distributions π on (S, 2s) are identified through vectors
π ∈ ∆S by setting π(s) = πs, ∀s ∈ S.

Thanks to these assumptions it follows that

EP [Dk,t|=t−1] = Eπ[dk]EP [Yt|=t−1], ∀k ∈ K, ∀t ∈ N.
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Using the matrix D with elements dk,s = dk(s) ∀k ∈ K and ∀s ∈ S, we also
assume that dividends are non-negative, assets are non-redundant and each
asset pays a positive dividend in at least one state, that is, respectively,

dk(s) ≥ 0, ∀s ∈ S, ∀k ∈ K,

Rank(D) = K ≤ S

and
Eπ[dk] > 0, ∀k ∈ K.

We assume S = 2 and therefore the aggregate endowment is a generic
(geometric) random walk with the following evolution

Yt =

{
guYt−1 if st = 1

gdYt−1 if st = 2
(7)

with gd < gu.
Asset 1 is a perpetual bond with a time-varying coupon, at each time t its
dividend is given by

D1,t = gdYt−1.

Asset 2 pays a risky dividend

D2,t =

{
(gu − gd)Yt−1 if st = 1

0 if st = 2
.

The dividend matrix D can thus be written as

D =

[ gd
gu

1
gu−gd
gu

0

]
.

3. Trading Strategies

A CWS is such that the trader at any time splits her wealth in the assets
(risky and risk free) according to time and wealth invariant weights. This
strategy shows very nice properties. First of all it is the solution of the
intertemporal optimal investment/consumption problem assuming a power
utility function and that the assets evolve according to geometric Brownian
motions in continuous time (Merton problem), see [23, 24]. The strategy
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provides a motivation for employing a benchmark in the asset management
of long-only mutual funds. Considering an exogenous asset price dynamics
(e.g., Black&Scholes or binomial model), this trading strategy turns out to
be contrarian: the trader should sell the risky asset as the price goes up and
should buy it as the risk asset price declines. Moreover, when the investment
fractions are provided by the expected dividends/coupons of the assets, such
a strategy coincides with the GKS, see [15] for a survey on the properties of
this rule.

We specify the POIS as a Constant Proportion Portfolio Insurance (CPPI)
strategy, see [18, 19] for alternative formulations replicating put options
strategies and controlling the drawdown from the high water market. Ac-
cording to this strategy a floor (time varying threshold) is identified, if the
wealth touches the threshold from above then the investment in the risky
asset is set to zero, otherwise it is provided by a constant proportion of the
cushion (difference between the wealth and the floor). Notice that this strat-
egy can be rationalized assuming that the agent solves the classical Merton
problem with a lower bound on consumption, see [5, 13]. A CPPI turned out
to be difficult to be analyzed in our setting, therefore we consider a simplified
version according to which a constant fraction of the wealth (and not of the
cushion) is invested in the risky asset provided that the wealth is above a time
varying threshold; otherwise the investment in the risky asset is set to zero.
Notice that, assuming an exogenous asset price dynamics, a CPPI strategy
is a momentum or trend follower strategy (buy when the asset increases and
sell when the asset price decreases).

We assume that Agent 1 employs a CWS, her fraction of wealth invested
in the risky asset is constant and time invariant:

αCWS
1,t = (1− x)δ, αCWS

2,t = xδ, x ∈ (0, 1) (8)

where x is the investment rate for the risky asset. Notice that the CWS
investing proportionally to expected dividends

xGKS = π

(
1− gd

gu

)
∈ (0, 1) (9)

is the so-called GKS of [14].
Agent 2 uses the CPPI strategy. The investment strategy is built man-

aging two accounts: a safe account protects from the downside of the risk
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exposure while the risky account is used to get an extra return. The asset
allocation is performed rebalancing dynamically the funds between the two
accounts.

More in detail, we define the floor

Ft = λδW
(2)
0 P1,t, λ ∈ (0, 1),

as the value below which the net asset value of Agent 2 should not fall and
the cushion CHt = max[δW

(2)
t −Ft, 0] as the positive difference between the

net asset value at time t and the floor.
According to the CPPI strategy, the exposure Et, i.e., the amount in-

vested in the risky asset at time t, is equal to a multiple of CHt: Et = mCHt,
m > 1. Therefore, the fraction of wealth invested in the risky asset at time
t would be

αPOIS2,t =
Et

W
(2)
t

.

However, the analysis considering a CPPI is difficult because the wealth
invested in the risky asset at time t would depend on prices at time t that
in turn depend on wealth at time t, making an explicit solution, suitable for
performing an analysis of the market dynamics, not feasible.

In what follows, we consider a simplified version such that the fraction
of wealth invested in the risky asset is a constant weight m ∈ (0, 1) of the
wealth if it is above a threshold (one period before) and is set to zero in case
it is below the threshold.

Finally, for both strategies we assume that no short-selling is allowed (x
and m are greater than 0 and lower than 1). This assumption is standard in
the finance evolutionary literature as it significantly simplifies the analysis,
see [1] for a recent paper that studies the impact of short selling on the
survivorship of agents.

Summarizing, the fraction of wealth invested in the risky asset at time t
by Agent 2 is

αPOIS2,t =

{
mδ W

(2)
t > Ft−1/δ

0 W
(2)
t ≤ Ft−1/δ

(10)

and consequently we have

αPOIS1,t =

{
(1−m)δ W

(2)
t > Ft−1/δ

δ W
(2)
t ≤ Ft−1/δ

. (11)
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4. Wealth dynamics and market selection

We analyze how the wealth of the two agents evolves depending on their
investment rules. First, we normalize wealth and prices with respect to the
aggregate endowment as follows

w
(i)
t =

1− δ
Yt

W
(i)
t , pk,t =

1− δ
δYt

Pk,t, i, k ∈ K, (12)

so that
2∑
i=1

w
(i)
t =

2∑
k=1

pk,t = 1.

In order to study the relative wealth dynamics of the two agents, we denote
wt = wCWS

t = w1
t , w

POIS
t = 1− wt = w2

t , and compute

p1,t =

{
1− xwt wt ≥ ft

1−m− (x−m)wt wt < ft
, (13)

p2,t =

{
xwt wt ≥ ft

(x−m)wt +m wt < ft
, (14)

wt =
2∑

k=1

[(1− δ)dk,t + δpk,t]α
CWS
k,t−1

δpk,t−1
wt−1, (15)

where ft = 1− λWPOIS
0 δYt−1

Yt
p1,t−1.

Substituting equation (13)-(14) into (15), the dynamics of the relative
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wealth of the agent adopting the CWS can be written as

wt =



{(1−δ)[(1−x)d1,t−xd2,t]+(1−x)δ}wt−1+(1−δ)d2,t
1−δx+(δ−1)xwt−1

if
wt ≥ ft

wt−1 ≥ ft−1

(x−m){(1−x)[(1−δ)d1,t+δ]−(1−δ)xd2,t}wt−1+m(1−x)[(1−δ)d1,t+δ]+(1−m)(1−δ)xd2,t
(x−m){[(1−δ)x+m]wt−1+1−δx−2m}wt−1+m(1−m)

wt−1 if
wt ≥ ft

wt−1 < ft−1

{(1−δ)[(1−x)d1,t−xd2,t]+δ(1−x−m)}wt−1+(1−δ)d2,t+δm
1−δ(x−m)+[δ(x−m)−x]wt−1

if
wt < ft

wt−1 ≥ ft−1

{(1−δ)[(1−x)d1,t−xd2,t]+δ(1−m−x)}[m+(x−m)wt−1]+[(1−δ)d2,t+δm]x

(1−m)m+{1−2m−(x−m)[δ+(1−δ)wt−1](x−m)wt−1} wt−1 if
wt < ft

wt−1 < ft−1

.

(16)
We analyze the evolution of the relative wealth as in (16) to study the survival
or dominance of the two classes of agents. Following the literature, see e.g. [9],
we say that agent i dominates on a sequence σ if

lim
t→∞

w
(i)
t (σ) = 1 .

She survives on σ if
lim sup
t→∞

w
(i)
t (σ) > 0 ,

and vanishes otherwise.
Survival and dominance determine the evolution of the economy: if an agent
dominates, then the economy becomes homogeneous in the long run; if both
agents survive, the economy exhibits long run heterogeneity and prices keep
be determined by both agents. If an agent vanishes then, in relative terms,
she disappears and does not have an impact on asset prices in the long run.

We characterize survivorship-dominance of the two classes of agents an-
alyzing the difference between the conditional expected log wealth growth
rate of the two agents. Given the assumptions on dividends and agents’ be-
haviour, the expected growth rate at time t depends on the relative wealth
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distribution

EP
[

log
wCWS

t

wCWS
t−1
− log

1−wCWS
t

1−wCWS
t−1

∣∣∣=t−1] = Eπ
[
log

∑2
k=1[(1−δ)dk,t+δpk,t]p

−1
k,t−1α

CWS
k,t−1∑2

k=1[(1−δ)dk,t+δpk,t]p
−1
k,t−1α

POIS
k,t−1

]
= µ(wt−1).

(17)
where π is the probability of st = 1, i.e., D2,t = (gu − gd)Yt−1.

As discussed in [9], sufficient conditions for the survival and dominance
of one of the two classes of agents may be derived by studying the sign of µ
for high an low levels of the relative wealth w:

• if µ(0) > 0 and µ(1) < 0, then almost surely CWS and POIS agents
survive;

• if µ(0) > 0 and µ(1) > 0, then almost surely CWS agents dominate
and POIS agents vanish;

• if µ(0) < 0 and µ(1) < 0, then almost surely POIS agents dominate
and CWS agents vanish;

• if µ(0) < 0 and µ(1) > 0, then almost surely either CWS or POIS
agents dominate (path-dependency).

Note that in our economy, the sign of µ depends on the relative wealth for
two reasons. First, as it is typical with long-lived assets, relative portfolio
returns depend on price levels. Second, a specific feature of our model, the
POIS is endogenous (time/state varying).

Notice that arbitrage opportunities may occur because asset holdings are
defined according to a fixed rule and not from the maximization of expected
utility. In this framework, [9] prove that no arbitrage condition is granted if
the vector of portfolio weights belong to the interior cone generated by the
two columns of the dividend matrix, in our case if:

gd
gu

< 1−max[x,m].

The following result can be proved.

Proposition 1. Assume the no arbitrage condition gd
gu
< 1−max[x,m] holds

true. Then:

• If x < m:
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– for π low, both agents survive;

– for π intermediate, CWS agent dominates;

– for π high, there is path dependency.

• If x > m:

– for π low POIS agent dominates;

– for π intermediate, if δ is low and gd
gu

is low then there is path
dependency, otherwise both agents survive;

– for π high, CWS agent dominates.

The exact thresholds are defined in the Proof, see Appendix Appendix A.

5. Discussion of the results

The long run survival/dominance of the two classes of agents can be
summarized as in Figure 1. On the left hand side, the fraction of wealth
invested on the risky asset by the POIS is smaller than the fraction invested
on the risky asset by the CWS (x > m). On the right hand side we consider
the case where the fraction invested by the POIS is higher than the one
invested by the CWS (m > x).

Results can be interpreted referring to the expected log-return of the
risky asset which, conditional on P2,t, is increasing in π, due to an increase
in the expected dividend yield (π is the probability of a high dividend). The
higher is π, the higher the expected log-return of the risky asset, the larger
the benefit of investing in it, the higher the (geometric) return of the agent
who is the most exposed in the risky asset, the more likely that the agent
dominates.

When the CWS is more aggressive than the POIS (x > m > 0), then
the CWS dominates for high expected returns of the risky asset (high π).
The POIS dominates for low expected returns (low π). Either survival of
both types of strategies or path dependency occurs for intermediate levels
of expected return (intermediate π). The rationale of these results is that
in the first case (π high) the CWS, being always more aggressive than the
POIS on the risky assets, whose expected log-return increasing in π, is more
likely to have a relatively larger portofolio return and thus dominates in the
long run. In the latter case (π low), the CWS is too much exposed to the
risky asset but its return are not so favorable and therefore its performance
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Figure 1: Survival and dominance of the two classes of agents as a function of π.

in the log-run is dominated by the POIS. Note that the result can be only
partially understood in terms in distance to the xGKS in (9), which is also
increasing in π, because being close to the GKS is sufficient for survival but
not for dominance, as shown in [9].

When the POIS, conditional on being above the floor, is more aggressive
than the CWS (m > x > 0), the long run outcomes are not the reversal of
those obtained for x > m. The reason is that POIS is either more aggressive
(when it is above the floor) or less aggressive (when it is below the floor)
than the CWS. We concentrate on this case which is the more relevant from
a practical point of view, in fact in the financial practice m is often well above
1.

A high risky asset expected return (obtained for a high π) is associated to
path dependence: either dominance of POIS or CWS. In agreement with the
dictate of the GKS, dominance of the POIS is obtained only on those paths
such that the initial realizations keep her wealth above the floor. Otherwise,
if the paths lead the wealth below the threshold, the POIS switches to a zero
weight and becomes less aggressive than the CWS which dominates in the
long run. Given that both types of path occur with positive probability, the
outcome is path dependent. In particular, the realizations at the beginning
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of the path discriminate between the dominance of the two classes of agents.
As π and the expected return decrease, the POIS becomes less successful

and the CWS dominates (intermediate case). As π is further decreased (low
π), both CWS and POIS survive because there is no dominant strategy.
Notice the difference with respect to the case x > m, in that case the most
aggressive strategy (CWS) is outperformed by the POIS which is less exposed
to the risky asset and is always bounded from below by the floor. Instead, if
m > x, both strategies turn out to be too aggressive after they have gained
substantial wealth. When the wealth of the CWS is large (in relative terms),
the POIS is below the floor and thus the fraction invested in the risky asset
is null and the CWS turns out to be more aggressive. This feature allows the
POIS to revert to higher wealth levels as time goes because the probability
of a high return is low and the CWS is likely to underperform with respect
to the POIS. When the wealth of the POIS is large (in relative terms), it is
above the floor and more aggressive than the CWS (m > x). This feature
allows the CWS to revert to higher wealth levels as time goes because the
probability of a high return is low and the POIS is likely to underperform
with respect to the CWS. In the long run neither strategy dominates, both
survive and heterogeneity is persistent.

In Figure 2, we keep studying the case m > x showing the long run
outcomes (left panel) and the expected log-return of the risky asset (right
panel) as a function of the high growth-rate probability (π) and of the low-
growth rate gd. The expected log-return of the risky asset is computed for
the economy with a representative agent adopting an intermediate CWS, i.e.,
a risky-asset fraction y ∈ (x,m).

The long run outcome confirms what is depicted in Figure 1. High ex-
pected returns (the right angle at the top left) are associated to path de-
pendency, low expected returns (the right angle at the bottom right ) are
associated to the survivorship of both classes of agents, middle expected
returns are associated to dominance of the CWS.

The expected log-return positively depends on the expected return (drift)
and negatively on its variance. Actually in case of a lognormal random
variable the expected log-return is the logarithm of the expected return minus
half its variance. This observation allows to read the results in terms of drift
and volatility. High drift/low volatility is in favor to the POIS only on
a subset of realizations (with positive measure). Low drift/high volatility
leads to survival of both strategies. In the intermediate case, we observe the
dominance of the CWS. This result sheds new light on those obtained by
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Figure 2: Parameter values: gu = 1.2, δ = 0.8. Left panel: long run outcomes for m = 0.1,
x = 0.0667. Path dependency (blue), CWS dominates (white), survivorship of CWS and
POIS (pink). Right panel: expected log-return of the risky asset when the representative
agent uses y = 0.09 ∈ (x,m)

[25]. According to their partial analysis (asset price is exogenous), a CWS
dominates a CPPI strategy in case of erratic behavior of the asset price
without a strong trend, the reverse is observed in case the evolution of the
asset prices is characterized by a trend. Their claim is partially confirmed in
an equilibrium analysis context: in case of a strong trend, path dependency
emerges with dominance either of the CWS or of the POIS and predominance
of a CWS is obtained in case of an intermediate drift/volatility.

Figure 3 clarifies the difference between a POIS and a CWS providing
further insights on Figure 2. We analyze the long run evolution of two
economies: an economy populated by a CWS investing a fraction x = 0.0667
and a CWS investing a fraction m = 0.1 (left panel); an economy populated
by a CWS investing a fraction x = 0.0667 and a CWS investing a fraction
m = 0.001 (right panel). We denote the two trading strategies by CWS(x)
and CWS(m). Notice that CWS(m) takes the two investing fractions of the
POIS in Figure 2. The goal is to analyze what happens when the POIS
doesn’t switch but sticks to 0 (in our setting approximated by m = 0.001)
or m = 0.1 with m > x. Notice that for a high expected return, on the left
panel, it is CWS(m) that outperforms CWS(x) dominating in the long run.
On the right panel it is CWS(x) that outperforms CWS(m) dominating in
the long run. This outcome is also in agreement with [14] on the dominance
of xGKS. The different behavior for the two fractions of the POIS explains
the path dependent result observed in Figure 2.
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For a low expected return either CWS(x) dominates or both agents sur-
vive yielding the survival of both agents in Figure 2. Also in the intermediate
region either CWS(x) dominates or both agents survive but in this case the
CWS dominates. For high expected returns, either CWS(m) or CWS(x)
dominates depending on the value of m, this leads to the path dependent
result observed in Figure 2.

The POIS, by being aggressive when relatively wealthy and not aggres-
sive when relatively not wealthy, differs from an aggressive strategy by sur-
viving almost surely sure with low expected returns, instead of vanishing,
but dominating only on a subset of path with high expected returns, instead
of dominating almost surely. At the same time, the POIS differs from a
strategy than invests very little in the risky asset by vanishing almost surely
with intermediate expected returns, instead of surviving, and dominating
on a subset of path with high expected returns, instead of vanishing almost
surely.

Figure 3: Left panel: long run outcomes for two CWS with m = 0.1 and x = 0.0667,
respectively. Right panel: long run outcomes for to CWS with m = 0.001 and x = 0.0667.
CWS(x) dominates (white), CWS(m) dominates (purple), survivorship of CWS and POIS
(pink). Parameter values: gu = 1.2, δ = 0.8.

To conclude our investigation we provide some simulations reporting the
relative wealth dynamics of a CWS and of a POIS. In the simulation we also
report a measure of variability of the asset return over the entire simulation:

σ =

√∑T
t=1

1
T

log2
(
P2,t+D2,t

P2,t−1

)
. We perform simulations using MATLAB©

and the process of dividends is generated using the tool binornd that gener-
ates random numbers from the binomial distribution specified by the number
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Parameter/Condition Value Parameter/Condition Value
δ 0.8 gd 1.05
λ 1 gu 1.2

W
(1)
0 1 W

(2)
0 1

Table 1: Baseline parameter values for simulations

of trials n and the probability of success for each trial π. Unless differently
specified, baseline parameter values for simulations are summarized in Table
1.

The numerical simulations confirm the theoretical results established above
and showed in Figure 1 providing some interesting insights on the nexus
volatility-heterogeneity and on the effects of portfolio insurers in the market.

In Figure 4 we consider the case where CWS invests a fraction of wealth
in the risky asset higher than POIS (x > m), varying the probability of an
upside move. Confirming what is observed in Figure 1, we have that CWS
dominates in case of a high probability of an up move. As the probability
decreases, we observe survivorship of both types of agents and in the end
dominance by POIS.

In Figure 5 we consider the case where the fraction invested in the risky
asset by POIS is higher than CWS (m > x), varying the probability of an
upside move. In case of high probability of an up move path dependency
emerges (for the chosen realization of dividends, the POIS dominates in the
long run, see also Figure 7). As the probability decreases, CWS dominates.
As the probability decreases further, we observe suvivorship of both types.

Notice that the Panel (a), (b), (c) of Figure 4 and 5 are characterized
by the same probability of upside move (π) and therefore they are charac-
terized by the same intrinsic volatility. Comparing the same panels in the
two Figures we may evaluate the effect of a different investing weight for
the two strategies and of the long run composition of the market on the
volatility. Panel (c) in the two Figures show a similar volatility, in this case
being the dominant agent large the POIS and the CWS coincide. In Panel
(a) of Figure 4 we have dominance of the POIS versus survivorship of both
classes of agents in Figure 5, volatility is smaller in the first Figure. In Panel
(b) we have survivorship of both classes of agents versus dominance of the
CWS. Despite the persistence of heterogeneity, volatility is smaller in the
first Figure. This type of results is robust and is confirmed considering dif-
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ferent set of parameters (fraction of wealth invested in the risky asset and
coefficients of the binomial model). We can deduce that there is no clear cut
result on volatility and homogeneity/heterogeneity, it depends on the type of
strategy that dominates in the long run. A homogenous market with traders
adopting a POIS is less volatile than a market populated by traders adopting
a POIS and a CWS. A homogenous market with traders adopts a CWS is
more volatile than a market populated by traders adopting a POIS and a
CWS. As suggested by [2], the presence of POIS traders in the market plays
a stabilizing effect.

In Figure 6, we consider three simulations characterized by survivorship
of both classes of agents. Notice that in agreement with Figure 1 survivorship
of both types of agents may occur in case x > m and also in case m > x.

In Figure 7, we consider the case m > x and provide two simulations
in the region characterized by path dependency, changing the sequence of
states of the world. The probability that the risk asset pays pay a positive
dividend (instead of zero) remains the same but realized sequence of dividend
payments changes in the two simulations. In both cases we have dominance
of one of the two classes of traders but it is enough to change the sequences of
the states to observe a different outcome. Confirming the above observation
on the stabilizing effect of the POIS, in case of dominance of POIS the
volatility is lower than in case of dominance of CWS.

Finally, in Figure 8, we increase the fraction that each strategy invests in
the risky asset, for both x > m and m > x. The volatility is decreasing in
the fractions invested in the risky asset. The observation suggests that the
stabilizing role of the POIS could also be related to being, when above the
floor, an aggressive strategy.

6. Conclusions

In recent years many institutional investors started to adopt portfolio
insurance strategies. The rationale goes to the features of financial products
managed for customers, i.e., with profit/traditional insurance policies, or
to the need of introducing protection on asset under management with a
stop loss approach. The effects of these strategies on the markets have been
investigated but no result exists on their capability to outperform traditional
constant weight strategies and therefore to populate the market in the long
run.
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Figure 4: Varying π. Relative wealth w(i) for CWS (red line) and POIS (blue line) varying
π. Panel (a): π = 0.1, σ̄ = 0.0734; Panel (b): π = 0.5, σ̄ = 0.3354; Panel (c): π = 0.9,
σ̄ = 0.5419. Common parameter values: x = 0.1, m = 0.0667.

Figure 5: Relative wealth w(i) for CWS (red line) and POIS (blue line) varying π. Panel
(a): π = 0.1, σ̄ = 0.2123; Panel (b): π = 0.5, σ̄ = 0.4030; Panel (c): π = 0.9, σ̄ = 0.5391.
Common parameter values: x = 0.0667, m = 0.1.

In this paper, we have shown that it is rather complex to investigate the
evolution of a financial market populated by traders adopting a Constant
Weight Strategy and those adopting a Portfolio Insurance Strategy. In the
most plausible case (the portfolio insurer is more aggressive than the trader
adopting a constant weight strategy when she is above the floor), we have
shown that if the expected return of the asset is high enough then both classes
of traders may dominate and the final outcome is largely indeterminate/path
dependent. This outcome is due to the fact that the portfolio insurer invests
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Figure 6: Relative wealth w(i) for CWS (red line) and POIS (blue line) varying m. Panel
(a): m = 0.03, σ̄ = 0.3213; Panel (b): m = 0.1167, σ̄ = 0.3222. Common parameter
values: x = 0.0833, π = 0.45.

Figure 7: Relative wealth w(i) for CWS (red line) and POIS (blue line) in case of path
dependence changing the sequence of states of the world. Panel (a): σ̄ = 0.5753; Panel
(b): σ̄ = 0.4752. Parameter values: m = 0.0725, x = 0.0687, π = 0.9.

Figure 8: Relative wealth w(i) for CWS (red line) and POIS (blue line). Panel (a):
m = 0.04, x = 0.03, σ̄ = 0.4985; Panel (b): m = 0.05, x = 0.06, σ̄ = 0.4209; Panel (c):
m = 0.12, x = 0.11, σ̄ = 0.3572; Panel (c): m = 0.13, x = 0.14, σ̄ = 0.2539. Parameter
value: π = 0.5.

or not in the risky asset depending on her wealth. For other set of parameters,
the two trading strategies may persist in the market or traders adopting the
Constant Weight Strategy dominate.
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We have also shown that the relationship between market homogene-
ity/heterogeneity and volatility depends on the type of homogeneous agent
dominating the market. If the agent adopts a Constant Weight Strategy then
the market volatility is higher than in case of a market with heterogeneous
traders. If the agent adopts a Portfolio Insurance Strategy then the market
volatility is lower than in case of a market with heterogeneous traders. This
result confirms that portfolio insurers play a stabilizing role in the market.
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Appendix A. Proof of the Proposition 1

Computing the value of µ(w) for w → 0 and w → 1, we obtain

µ(0) = log

(
{(1− δ)(m− x) gd

gu
+ (1−m)[x+ δ(m− x)]}π

mπ(1−m)[(1− δ)(1− x) + (1−m)δ]π−1

)
(A.1)

and

µ(1) = log

(
(1− x)(1− δx)π−1

[(1− δ) gd
gu

+ δ(1− x)]π

)
. (A.2)

We can consider µ(0) and µ(1) as function of π.
We first discuss the case x > m.
We can prove that

• limπ→0 µ(0) < 0, ∂µ(0)
∂π

> 0, limπ→1 µ(0) > 0 iff m < 1− gd
gu

;

• limπ→0 µ(1) < 0, ∂µ(1)
∂π

> 0, limπ→1 µ(1) > 0 iff x < 1− gd
gu

.

Therefore, if the no arbitrage condition applies, then µ(0) and µ(1) are neg-
ative for π → 0, are increasing in π and they assume positive values for a
sufficiently high π.

We can conclude that for a low π the POIS dominates (both functions are
negative) and for a high π the CWS dominates (both functions are positive).
It remains to discuss the case of intermediate π: if µ(0) crosses 0 before µ(1)
then there is survivorship of both classes of agents because for π intermediate
µ(0) is positive and µ(1) is negative; if µ(1) crosses 0 before µ(0), then there
is path dependency because for π intermediate µ(0) is negative and µ(1) is
positive.

We obtain µ(0) = 0 for

π = π0 =
log
(

1−m
(1−δ)(1−x)+δ(1−m)

)
log

(
(1−δ)(m−x) gd

gu
+(1−m)[x+δ(m−x)]

m[(1−δ)(1−x)+δ(1−m)]

) (A.3)

and µ(1) = 0 for

π = π1 =
log
(
1−δx
1−x

)
log

(
1−δx

(1−δ) gd
gu

+δ(1−x)

) . (A.4)
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We now consider π0 and π1 as functions of gd
gu

.

For gd
gu

= 0 we have π1(0) ∈ (0, x) and π0(0) ∈
(
m,

log( 1−m
1−x )

log( (1−m)x
(1−x)m)

)
. Nothing

can be said a priori on the inequality π0(0) > π1(0) therefore we study π0(0)
and π1(0) as functions of δ.

It can be shown that ∂π0(0)
∂δ

< 0, limδ→0 π0(0) =
log( 1−m

1−x )
log( (1−m)x

(1−x)m)
and limδ→1 π0(0) =

m. As far as π1(0) is concerned, we have ∂π1(0)
∂δ

> 0, limδ→0 π1(0) = 0 and
limδ→1 π1(0) = x. From these results we can deduce that for low values of δ,
π0(0) > π1(0) and for high values of δ, π0(0) < π1(0).

π0 and π1 are increasing in gd
gu

. When the no arbitrage condition applies, gd
gu

may assume 1−x as maximum value. It is easy to show that π0(1−x) < 1 and
π1(1−x) = 1. Therefore, for a sufficiently high gd

gu
we have π0 < π1. Nothing

can be said for lower values because π0 and π1, being concave functions,
might intersect each other as gd

gu
goes up. In order to study the number of

intersections, we introduce the auxiliary functions

L1

(
gd
gu

)
= − loga

(
(1− δ) gd

gu
+ δ(1− x)

1− δx

)

and

L0

(
gd
gu

)
= logb

(
(1− δ)(m− x) gd

gu
+ (1−m)[x+ δ(m− x)]

m[(1− δ)(1− x) + δ(1−m)]

)
.

where a = 1−δx
1−x and b = 1−m

(1−δ)(1−x)+δ(1−m)
. Notice that we have π0 = π1 iff

L0 = L1.

L1

(
gd
gu

)
is strictly decreasing and convex while L0

(
gd
gu

)
is strictly de-

creasing and concave therefore they might intersect each other at most twice.
Being L1(1) = L0(1) = 0, at most one intersection may exist for gd

gu
< 1.

Recall that for gd
gu

= 1 − x, we have π0 (1− x) < π1 (1− x) and both
functions are increasing in gd

gu
. Consider now the case gd

gu
= 0. For a low δ we

have π0 (0) > π1 (0) and knowing that the two functions can intersect at most
once we can conclude that in case of a low δ, for a low gd

gu
we have π0 > π1

while for a high gd
gu

we have π0 < π1. For a high δ we have π0 (0) < π1 (0) and
knowing that the two functions can intersect at most once we can conclude
that π0 > π1 for any feasible value of gd

gu
.
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We have shown that for x > m we have π1 < π0 for a low δ and a low
gd
gu

otherwise we have π1 > π0. In the first case µ(0) < 0 and µ(1) > 0 and
consequently there is indeterminacy, in the second case we have survivorship
of both classes of agents.

The following result can be established when the no arbitrage condition
applies for x > m:

• for π low POIS dominates;

• for π intermediate, if δ and gd
gu

are both low then there is path depen-
dency, in all the other cases both agents survive;

• for π high, CWS dominates.

We now consider the case x < m. The following result can be established:

• limπ→0 µ(0) > 0, ∂µ(0)
∂π

< 0, limπ→1 µ(0) < 0 iff m < 1− gd
gu

;

• limπ→0 µ(1) < 0, ∂µ(1)
∂π

> 0, limπ→1 µ(1) > 0 iff x < 1− gd
gu

.

Therefore, when the no arbitrage condition applies, µ(1) is negative for
π → 0, is increasing in π and it assumes positive values for sufficiently high
π. Conversely µ(0) is positive for π → 0, is decreasing in π and it assumes
positive values for sufficiently high π.

We can already conclude that for a low π there is path dependency be-
cause µ(0) is positive and µ(1) is negative. For a high π there is path depen-
dency because µ(0) is negative and µ(1) is positive. It remains to discuss the
case of an intermediate π: if µ(0) crosses 0 before µ(1) then POIS dominates
because for π intermediate both the function are negative, otherwise POIS
dominates because for an intermediate π both functions are positive.

We now consider the values for which the functions are equal to 0 (π0 and
π1) as functions of gd

gu
.

For gd
gu

= 0 we have π1 ∈ (0, x) and π0 ∈
(

log( 1−m
1−x )

log( (1−m)x
(1−x)m)

,m

)
. Being

log( 1−m
1−x )

log( (1−m)x
(1−x)m)

> x we can conclude π1(0) > π0(0). Both the functions are

concave and in increasing in gd
gu

, they might intersect each other. Recall that
π0 = π1 for L0 = L1.

Assuming x < m, we have that L0

(
gd
gu

)
and L1

(
gd
gu

)
are strictly decreas-

ing and convex with L0(1) = L1(1) = 0. Moreover L1

(
gd
gu

)
tends to +∞ for
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gd
gu
→ − δ(1−x)

1−δ = g1 while L0

(
gd
gu

)
tends to +∞ for gd

gu
→ − (1−m)[x+δ(m−x)]

(1−δ)(m−x) <

g1 and lim gd
gu
→1− L0

(
gd
gu

)
< lim gd

gu
→1− L1

(
gd
gu

)
.

It follows that for x < m, π0 6= π1 ∀ gdgu ∈ (0, 1). Consequently π1 < π0 for

all parameter values and - being µ(0) > 0 and µ(1) > 0 - CWS dominates.
The following results can be established for x < m, when the no arbitrage

condition applies:

• for π low, both agents survive;

• for π intermediate, CWS dominates;

• for π high, there is path dependency.
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