

EGU23-2043, updated on 03 Mar 2023 https://doi.org/10.5194/egusphere-egu23-2043 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Hydrogeochemical characterization of the waters circulating in the seismically active area of the Pesaro-Urbino province (northern Marche, central Italy)

Lorenzo Chemeri^{1,2}, Marco Taussi¹, Jacopo Cabassi³, Francesco Capecchiacci^{2,3}, Franco Tassi^{2,3}, Alberto Renzulli¹, and Orlando Vaselli^{2,3}

¹University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Urbino, Italy

²University of Florence, Department of Earth Sciences, Florence, Italy

³CNR-IGG Istituto di Geoscienze e Georisorse, Florence, Italy

The Province of Pesaro-Urbino (northern Marche, central Italy) represents one of most seismically active areas in Italy, since it is interested by the presence of two major composite seismogenic sources: i) the first one is located in the Umbria-Marche Apennines; ii) the second one is along the Adriatic coast from Cattolica to Ancona cities. This area has recently experienced an intense seismic activity, e.g., the 1781 "Cagli Earthquake" with a magnitude of 6.4 M_w, and the 1930 "Senigallia Earthquake" of 5.8 M_w. The last earthquake (5.5 M_w) occurred on November 9, 2022, with its epicenter located in the Adriatic Sea, 35 km away from the city of Pesaro. Since the geochemical knowledge of this area is limited, a large-scale sampling survey was carried out during spring and autumn 2022. A total of 87 samples were collected from different types of emergencies (i.e., cold springs, wells, mineral springs, sulfur springs and ditches) and various geological and tectonic-structural contexts. The study area is dominated by a complex sedimentary structure (e.g., limestones, clays and alluvial deposits) and by climatic and topographic conditions that may influence the chemical and isotopic composition of the investigated fluids. A detailed geochemical characterization is thus of paramount importance in order to define a geochemical background. The aim of this study was to (1) understand the possible interaction of deep-originated fluids and shallow aquifers and (2) evaluate the use of selected geochemical parameters as possible seismic tracers. The results showed the presence of five different geochemical facies: (i) calcium-bicarbonate waters with low TDS (<500 mg/L); (ii) calcium-bicarbonate waters with a strong enrichment in sulfate (up to 200 mg/L); (iii) waters with extreme sodium-carbonate composition and an alkaline pH (>8.8); (iv) calcium-sulfate waters; and (v) sodium-chloride waters. The water isotopic composition showed a clear meteoric origin for all the investigated samples. The composition of major dissolved gases showed two different compositional clusters: (a) N_2 -dominated gases with N_2 /Ar ratios similar to those of air and ASW (Air Saturated Water); (b) CO_2 - and CH_4 -rich gases pertaining to mineral and sulfur springs. The origin of Ca-HCO₃ waters is almost exclusively related to the dissolution of carbonate minerals. On the contrary, Ca-HCO₃(SO₄) waters are probably originated by deep circulation pathways and interactions with the Upper Triassic Burano Formation, composed by anhydrite layers. The

Ca-SO₄ waters should be considered as the product of ongoing flows within Miocene gypsum formations, whilst Na-HCO₃ waters as the consequence of long-lasting interactions between meteoric waters and silicate rocks (containing albite) in saturation/oversaturation conditions for carbonate-bearing minerals. Finally, the Na-Cl waters probably derive from mixing processes between meteoric and highly saline connate waters trapped into the foredeep clayey deposits. Therefore, the Ca-HCO₃(SO₄) and Ca-SO₄ waters can be regarded as the most interesting fluids to be monitored for a geochemical network aimed at recognizing chemical and isotopic variations related to seismic activity. They are indeed showing a deeper hydrogeological pathway and appear to be less influenced by surface processes.