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ABSTRACT In the human activity recognition (HAR) application domain, the use of deep learning (DL)
algorithms for feature extractions and training purposes delivers significant performance improvements with
respect to the use of traditional machine learning (ML) algorithms. However, this comes at the expense of
more complex and demanding models, making harder their deployment on constrained devices traditionally
involved in the HAR process. The efficiency of DL deployment is thus yet to be explored. We thoroughly
investigated the application of TensorFlow Lite simple conversion, dynamic, and full integer quantization
compression techniques. We applied those techniques not only to convolutional neural networks (CNNs),
but also to long short-term memory (LSTM) networks, and a combined version of CNN and LSTM. We
also considered two use case scenarios, namely cascading compression and stand-alone compression mode.
This paper reports the feasibility of deploying deep networks onto an ESP32 device, and how TensorFlow
compression techniques impact classification accuracy, energy consumption, and inference latency. Results
show that in the cascading case, it is not possible to carry out the performance characterization. Whereas in
the stand-alone case, dynamic quantization is recommended because yields a negligible loss of accuracy. In
terms of power efficiency, both dynamic and full integer quantization provide high energy saving with
respect to the uncompressed models: between 31% and 37% for CNN networks, and up to 45% for
LSTM networks. In terms of inference latency, dynamic and full integer quantization provide comparable
performance.

INDEX TERMS Compression techniques, Deep learning, Dynamic quantization, ESP32, Full integer
quantization, Human Activity Recognition, Microcontrollers, Pruning

I. INTRODUCTION

IN the last years, the Internet of Things (IoT) paradigm
has been widely adopted to develop wearable IoT systems

thanks to the ever-increasing interest in many fields of ap-
plications, such as health care monitoring, fitness tracking,
gaming, and virtual and augmented reality, to name a few.
According to Grand View Research [1], smart wearable
technology is driving industry growth, with a global wearable
technology market valued at USD 61.30 billion in 2022 and
is expected to expand at a compound annual growth rate of
14.6% from 2023 to 2030.

Human activity recognition (HAR) is a hot research topic
since the beginning of the 2000s when first works on the
detection of posture and motion via accelerometry were

published [2]. Indeed, the ability to acquire and identify a
wide range of activities allows for an increase in people’s life
quality depending on the application area. Human activities
are typically distinguished into three categories according to
the most recent literature by Arshad et al. [3]: daily living,
real-time and user activities. Daily living activities (e.g.,
eating, brushing teeth, sleeping) are further distinguished into
static (e.g, sitting) and dynamic (e.g., running). Real-time
are defined by Arshad et al. as those related to healthcare
and surveillance, whereas user activities as those related to
individual or group activities. Regardless of the category,
HAR has always been considered a classification problem.

The success gained by machine learning (ML) for classi-
fication problems such as, for example, speech recognition
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and face detection [4, 5] encouraged the research commu-
nity to adopt this approach also to the HAR use case with
successful results in terms of recognition accuracy [6]. The
subsequent adoption of deep learning (DL) further increased
performance and brought the benefit of automatic features
extraction, a key stage of HAR because of the correlation
between activity recognition performances and the extrac-
tion of relevant features. However, increased performances
are paid in terms of more complex deep models which
demand higher computational requirements and increased
memory, thus making the deployment of such deep models
on embedded-constrained devices harder. This is because
embedded devices are typically characterized by very hard
constraints in terms of memory, computation, and energy.

The deployment of deep models on embedded devices
is challenging. A recent attempt to achieve this goal is to
leverage tiny machine learning (TML), an approach tailored
to design and develop tiny ML and DL models on resource-
constrained devices. Two strategies carried out to implement
TML are hardware acceleration and approximation tech-
niques. Previous work in the area of hardware acceleration
leveraged central processing unit (CPU), graphic processing
unit (GPU), application-specific integrated circuit (ASIC),
and field programmable array (FPGA) to design and imple-
ment embedded ML. In [7], low-power, ultra low-power, and
powerful embedded devices for ML at the edge are listed
and grouped by their GPU, CPU, acceleration capacity, ML
usage, and application examples. A comprehensive review
of the state-of-the-art tools and techniques for efficient edge
inference is provided by Shuvo et al. in[8]. In their paper, the
authors highlight mainly four research directions for efficient
DL inference on edge devices: i) novel DL architecture and
algorithm design; ii) optimization of existing DL methods;
iii) development of algorithms hardware codesign; and iv)
efficient accelerator design for DL deployment.

The alternative strategy, approximation techniques, lever-
ages techniques that have been well investigated in the lit-
erature, and consist of applying so-called compression tech-
niques such as pruning and quantization to reduce network
complexity. To target a microcontroller (MCU) environment,
Federov et al. combine neural architecture search with prun-
ing to automatically design convolutional neural networks
(CNNs) that meet MCU constraints [9]. Authors in [10]
make use of the TensorFlow Lite (TFL) converter to deploy
CNNs on an Arduino Nano 33 BLE. A combined adoption
of the two strategies is also used: in [11], authors propose a
hardware-software framework to accelerate ML inference on
edge devices using a modified TFL for Microcontroller mod-
els running on an MCU and a dedicated Neural Processing
Unit (NPU) custom hardware accelerator. It exploits pruning
to reduce computational complexity. It is worth mentioning
that most of the literature explores the approximation of CNN
only.

Despite the blooming research activity around DL deploy-
ment on MCU, the investigation of HAR on low-power MCU
is yet to be explored. In this paper, we use TensforFlow

compression techniques to investigate the efficiency of deep
learning networks on a very resource-constrained wearable
device in the context of human activity recognition. We
consider not only the CNN network but also the long short-
term memory (LSTM) network and a combined version of
the CNN with the LSTM. The goal is to characterize the net-
works in terms of classification accuracy, inference latency,
and energy consumption.

To provide a thorough investigation, we consider the sim-
ple lite conversion, pruning, dynamic quantization, and full
integer quantization as TensorFlow compression strategies,
which we apply in two different use case-scenario: i) cascad-
ing compression, ii) stand-alone compression. The goal of
this work is twofold: on the one hand, we want to perform an
in-depth analysis that compares the deployment of relevant
DNNs on a target MCU; on the other one, we want to
provide insights on: i) the feasibility of the deployment of
those networks on the target MCU; ii) a comparison in terms
of classification performance, inference time, and power-
efficiency; iii) our experience in the adoption of Keras and
TensorFlow in the design and deployment process of deep
learning networks for HAR on MCU.

We test our approach on a real low-constrained device,
the ESP32, on top of which we developed a sensor-based
HAR application leveraging Espressif ESP32-wroom-32 De-
vKit [12]. Our results show that the cascading compression
scenario is not feasible because of errors either at design
time or at execution time on the ESP32, thus preventing
carrying out the performance investigation. Instead, in the
stand-alone scenario, the dynamic quantization proves to be
the best solution because of the negligible loss of accuracy,
with respect to other techniques. In terms of power efficiency,
both dynamic and full integer quantization provide a higher
energy saving with respect to the simple lite conversion:
between 31% and 37% for CNN networks, and up to 45% for
LSTM networks. In terms of inference latency, dynamic and
full integer quantization provide comparable performance.
Our work shows that multiple network types can be deployed
onto an ESP32 device, each showing interesting performance
parameters.

In the rest of the paper, we first provide some background
about deep learning for HAR, compression techniques, and
Keras and TensorFlow, and review the literature about the
state-of-the-art of HAR on MCU in Section II. Section III
details the design of our presented methodology and all
considered network types. Later, in Section IV we describe
the experimental setup. We then detail experimental results
and provide a complete discussion in Section V and VI,
respectively. Finally, we conclude the paper in Section VII
with some final considerations.

II. BACKGROUND AND RELATED WORK
HAR gained a lot of attention in recent years because of
the broad range of real-world applications. Early diagnosis,
rehabilitation, and patient assistance can be provided in med-
ical decision processes for healthcare monitoring purposes;
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industrial applications, gaming, and sport/fitness tracking are
of great interest as well. Two main approaches are lever-
aged for HAR: camera-based and sensor-based recognition.
Camera and inertial sensors allow to detect a set of daily
human activities via computer vision techniques and accel-
eration/location sensors, respectively.

A. DEEP LEARNING FOR HUMAN ACTIVITY
RECOGNITION
HAR consists of identifying several types of physical move-
ments carried out daily, such as fitness activities (running,
jogging, walking), or behavioral activities (eating, brushing
teeth) to cite a few. Two main approaches are leveraged
for HAR: camera-based and sensor-based recognition. Cam-
era and inertial sensors allow to detect a set of daily hu-
man activities via computer vision techniques and acceler-
ation/location sensors, respectively.

The very first approach to HAR comes from the learning
theory, which leverages classification algorithms (such as
support vector machines) to identify patterns. Since HAR
is considered a multi-class classification problem, such an
approach showed promising results. However, a limitation
of this type of method is that the phase of feature selection,
which is carried out prior to the classification algorithm
employment, must be performed manually, typically by a
domain expert.

Machine learning algorithms have been adopted for a
long time to handle HAR problems; however, despite the
successful results obtained with the application of machine
learning [13], given the complexity of the HAR task, the re-
search community shifted from a shallow learning approach
to a deep learning approach. Deep learning allows automatic
features selection and offers higher performances. Given that
sensor-based HAR is employed in the majority of the studies,
recent literature is rich in work proving the superiority of
the combined adoption of convolutional neural networks
(CNNs) with long short-term memory (LSTM) networks
[14, 15, 16, 17], compared to their stand-alone adoption.

The convolutional neural network was born as a deep
network specialized for image recognition[18]. The typical
architecture envisages one or more convolutional layers fol-
lowed by one or more pooling layers. Convolutional and
pooling layers are responsible for the automatic features
extraction during the training process. Convolutional layers
contain kernels and filters; the former is responsible for
the input conversion in the convolution operation, whereas
the latter is responsible for setting the number of output
filters during the convolution. The classification network is
typically composed of one or more fully connected layer (that
follows the pooling one) that produces the output.

The long short-term memory network (LSTM) is a type of
recurrent neural applied in several application domains such
as time series prediction, natural language processing, text
recognition, and computer vision, to cite a few[19]. Despite
several versions of LSTM architectures exist, the so-called
vanilla LSTM turns out to be the most popular one. In such

an architecture, a LSTM unit consists of a cell in charge of
keeping values over time, and of three gates. The input, the
forget, and the output gate are in charge of adding, removing,
and using as output the information in the cell state.

A combined adoption of CNN and LSTM allows for
capturing spatial and temporal features, respectively, thus
providing higher accuracy. Most of these works are tai-
lored to propose new deep neural network models with the
aim of boosting performances, typically increasing accuracy
and reducing inference latency, memory footprint, and en-
ergy/resource consumption. Also, in the majority of these
studies those models are assumed to run either at the edge
of the network, such as mobile phones or gateways [20], or
on power-full servers possibly in cloud [21].

Deep networks deployment in wearable resource-
constrained devices is hard because of the models’ com-
plexity and incurs higher memory occupation and execution
time. As well surveyed in [22], there are mainly three
approaches that allow bringing deep learning (DL) models
to mobile devices, also known as optimization methods: i)
model compression techniques, ii) software acceleration, and
iii) hardware acceleration. As mentioned in the survey, DL
in (human) activity recognition has been carried out and
well-investigated on smartphones, and partially on embedded
devices such as Raspberry Pi. However, the adoption of
model compression techniques on more resource-constrained
devices, such as microcontrollers, is still poorly investigated.

B. COMPRESSION TECHNIQUES
Two well-known compression techniques are pruning a quan-
tization, which Liang et al. recently surveyed in terms of
methods of compression and mathematical formulation [23].
Pruning consists of removing unnecessary parameters or
neurons, and connections because do not provide a significant
contribution to resulting accuracy. As of today, pruning can
be distinguished depending on various aspects that are con-
sidered during the operation. In particular, three categories
exist: i) whether the pruned network is symmetric or not, it
is classified as structured or unstructured pruning; ii) based
on the pruned element type, it is classified as neurons or
connections pruning; iii) based on when pruning steps are
carried out, i.e., after training but before inference, or during
the inference process, it is classified as static pruning or
dynamic pruning, respectively. In this work, we consider the
static pruning technique only.

Quantization consists of reducing weight representation
by reducing bit width numbers, typically from floating point
values to integer values. The most widely used quantization
techniques are: i) post-training quantization, which envisages
the model training followed by weight quantization, and as a
last step a model (re)optimization to generate the quantized
model; ii) quantization-aware training, which envisages the
weight quantization during training, and then the network
is re-trained to fine-tune the model precision to compensate
the accuracy degradation occurred during the quantization
process.
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A further classification of quantization techniques can be
done by identifying where quantization takes place, i.e.,
layer-wise or channel-wise. In this work, we consider post-
training quantization techniques such as dynamic quantiza-
tion and full integer 8-bit quantization.

C. TENSORFLOW AND KERAS
TensorFlow (TF) is an end-to-end machine learning platform
powered by Google [24]. TF provides tools and libraries
to process and load data, build custom models or leverage
existing ones, and run and deploy models on several environ-
ments, including production systems. A detailed description
of TF’s core components and design decision is provided by
Bo et al. in [25]; basically, a TF program consists of two
main parts: the construction part, which allows building the
machine (or deep) learning network model, and the execution
part, which allows to train and evaluate the network model.
To achieve both parts TF provides an Application Program-
ming Interface (API); the most widely used API (because
of its completeness and stability) is provided in the Python
language. However, other supported languages are Java, C++,
Go, and Swift.

TF provides also TensorFlow Lite (TFL)[26] a library for
network models deployment on mobile devices, microcon-
trollers, and edge devices. In particular, TFL allows con-
verting a base TF model into a compressed version via the
so-called TFLite converter. Keras [27] is a deep learning
framework, built on top of TF version 2, which provides a
Python API to allow developers to simplify network model
creation and experimentation. In this work, we used Keras,
TF, and TFL to carry out our investigation.

D. HAR ON MICROCONTROLLERS
The investigation of HAR on low-power microcontroller
units (MCUs) blossomed in the last few years: back in 2020,
Novac et al. evaluated the implementation of multi-layer
perceptrons and convolutional neural networks for HAR on
an ARM-Cortex-M4F-based MCU [28]. In particular, they
compared the supervised learning methods to the unsuper-
vised and online learning ones, by proving the higher benefits
of the latter. Authors refer to online learning as the ability of
a neural network to adapt itself to a new set of data, even
though the initial learning phase is over. The ultimate goal
was to study the trade-off between classification performance
and embedded implementation constraints while taking ad-
vantage of unsupervised and online learning. Compared to
this work, we both used TensorFlow Lite for microcontrollers
and the UCI-HAR dataset for validation purposes. However,
they did not use any optimization techniques, i.e., they did
not explore the adoption of any compression techniques but
the simple lite conversion. They explored the deployment on
a SparkFunEdge board, whereas we explored the deployment
on another target MCU.

Subsequently, Novac et al. further explored the deploy-
ment of HAR on MCU by proposing a new quantization
method, together with a new framework that allows training,

quantizing, and deploying deep neural networks [29]. Their
MicroAI framework provides neural network training based
on Keras or PyTorch, and a conversion tool that produces
a portable C code starting from a trained model. They
only consider convolutional neural networks (specifically, the
ResNetv1 model architecture); int8 quantization-aware train-
ing, int16 post-training quantization, and float32 were con-
sidered as quantization techniques, and SparkFun Edge and
Nucleo-L452RE-P were considered as MCU platforms (both
belonging to the Cortex-M4F core family). The ultimate goal
was to provide an alternative to existing frameworks, such
as the open-source TensorFlow Lite for microcontrollers and
the proprietary STM32Cube, and to provide an improvement
to existing optimization techniques. Compared to this work,
we adopted other compression techniques compared to their
one, and we investigated multiple types of deep neural net-
works compared to them, which only evaluated the ResNet
architecture.

Daghero et al. applied Binary Neural Networks (BNNs) to
HAR to decrease network complexity via an extreme form
of quantization [30]; indeed, by using BNNs the precision of
data format, both weights and layers input/output, is reduced
to 1-bit precision. Specifically, the authors propose a BNN
inference library that targets RISC-V processors; such an ap-
proach allows to target of very compact networks in terms of
channels, i.e., future maps, in each layer of the network. Sub-
sequently, authors extended their work[31, 32] by propos-
ing a set of efficient one-dimensional convolutional neural
networks (1D CNNs) and testing optimization techniques
such as sub-type and mixed-precision quantization. The aim
was to find a good trade-off between accuracy and memory
occupation. As a target platform, they leveraged again the
RISC-V MCU. Compared to these works, we leveraged other
compression techniques and tested deployment on a different
target MCU.

Similarly, Ghibellini et al. proposed a CNN model for
falling and running detection within an industrial environ-
ment for safety purposes. This work shows very preliminary
results in terms of accuracy and model size. dynamic range
quantization was applied to reduce the size of the model
which is then deployed on the firmware of an Arduino BLE
33 Sense [33].

To sum up the comparison with the existing literature,
besides the one-dimensional convolutional neural network,
which is the only one considered in all the others’ work,
we explore also the deployment, on a target MCU, of other
deep neural networks (DNNs) relevant to the context of
HAR. Indeed, we consider the vanilla long short-term mem-
ory (LSTM) network and its combination with the one-
dimensional convolutional neural network (1D CNN). In
terms of findings with respect to these works, our work con-
firms that the deployment of a deep network on a target MCU,
and related performance, are tightly coupled with the soft-
ware framework that provides the compression techniques,
the target hardware, the compression techniques itself, and
of course the network complexity.
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The goal of this work is twofold: on the one hand, we
want to perform an in-depth analysis that compares the
deployment of relevant DNNs on a target MCU; on the other
one, we want to provide insights on: i) the feasibility of
the deployment of those networks on the target MCU; ii) a
comparison in terms of classification performance, inference
time, and power-efficiency; iii) our experience in the adop-
tion of Keras and TensorFlow in the design and deployment
process of deep learning networks for HAR on MCU.

III. METHODOLOGY
Here we describe the methodology we proposed to inves-
tigate the efficiency of deep neural networks by applying
compression techniques, and characterizing the network in
terms of classification accuracy, inference latency, and energy
consumption on a very resource-constrained wearable device
while maintaining an appreciable level of accuracy. As refer-
enced in section II, CNN and LSTM networks show the best
results in terms of accuracy for activity recognition; there-
fore, we chose these networks and focused on tuning those
parameters that impact the complexity, and the effectiveness
of the network.

Examples of such parameters are the number of layers,
the number of neurons per layer, and the connectivity among
layers. By properly dimensioning these parameters, and sub-
sequently applying compression techniques, we investigate
if we are able to run deep networks on very resource-
constrained devices, and how parameters impact network
performances. To reach our goal, we used the Espressif
ESP32-wroom-32 DevKit, on top of which we moved and
tested several network complexities. Table 1 lists the network
types and the network structures adopted in our investigation.
The network ID is used as a shortcut to refer to the network
type and its relative structure.

A. PROPOSED NETWORKS
In this work, we used two layers of a one-dimensional
convolutional neural network and one layer of a one-
dimensional convolutional neural network (2L_1D_CNN and
1L_1D_CNN, respectively). 1D refers to the signal dimen-
sion being processed by the input layer, compared to 2D
signal processing such as images. The two layers scenario
envisages two convolutional 1D layers, followed by a pooling
layer and two fully connected dense layers, in which the last
one provides the output. The one-layer scenario is structured
in the same way, except for the fact that there is only one
convolutional 1D layer. It is worth mentioning that, for both
network types: i) a dropout layer is placed after the 1D
convolutional layer, and a flatten layer is placed after the
pooling layer; ii) the softmax function is used in the last layer
to infer the activity label.

We used vanilla LSTM both in a stand-alone fashion
and combined with the one-layer 1D CNN network. The
stand-alone version scenario envisages one LSTM layer,
followed by a dropout layer and two fully connected dense
layers, in which the last one provides the output. In such

a scenario the network terminates with the computation of
the softmax function, as well. In the combined adoption
with 1L_1D_CNN network, the structure is as follows: one
convolutional 1D layer followed by a batch normalization
and by a ReLU layer, which is then followed by the vanilla
LSTM network.

B. PROPOSED NETWORK DIMENSIONING
The first step of our study consists of network dimension
planning; the size of each network must be chosen carefully
because otherwise, the network model would not fit inside
the ESP32 device memory. After a brief manual tuning of
the structure parameters, we end up in the network structures
listed in Table 1. For each network type, we decide to start
from what we expect to be the biggest size capable of fitting
inside the device, and from that size, we then decrease one,
or two, parameters in order to lower the network complexity.

For the two layers one-dimensional convolutional neural
network (2L_1D_CNN), the biggest network size we chose
is 64 filters per layer (64F) and 3 kernels (3K). The choice of
3 kernels is because we have seen it is a value typically used
in literature; instead, the choice of the filter value is related
to the fine-tuning phase: for values higher than 64, even
by applying whatever compression technique, the resulting
network model is not able to fit inside the memory of the
ESP32. To gradually decrease the network complexity we
decide to reduce the number of filters in both two layers
while keeping the same number of kernels, planning a total
of 9 network models. As network ID we chose the acronym
C2L_n (which stands for complexity 2 layer and where n
represents a sequential number).

For the one-layer one-dimensional convolutional neu-
ral network (1L_1D_CNN) we made the same reasoning
about network structure parameters and network ID as per
2L_1D_CNN, and we choose the same values both for filters
and kernels. The same applies to the vanilla long short-
term memory network (Vanilla LSTM), this time choosing
as the biggest size 256 hidden neurons (256H) and 256
dense neurons (256D). In such a scenario, we decide to
gradually reduce the number of hidden neurons while leaving
unchanged the number of hidden dense neurons.

For the combination of the one-layer one-dimensional
convolutional neural network and the vanilla long short-term
memory (1L_1D_CNN Vanilla) we planned only 4 network
models in order to limit the combination of parameters that
can be changed. Indeed, we decided to keep unchanged the
configuration of the vanilla LSTM structure while reducing
the number of filters in the 1L_1D_CNN.

C. PROPOSED WORKFLOW
Our proposed workflow consists of three phases that are
represented in Figure 1. In the first phase, the raw data are
extracted from a dataset and are fed into the base network
model to perform train and subsequent evaluation. The 3-
axial accelerometer and gyroscope data are extracted in the
form of six signals from the dataset and have been divided
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TABLE 1. Network types and structure.

Net Type Net ID Net Structure Net Type Net ID Net Structure

2L_1D_CNN

C2L_9 64F 64F 3K 100D

1L_1D_CNN

C1L_9 64F 3K 100D
C2L_8 32F 32F 3K 100D C1L_8 32F 3K 100D
C2L_7 20F 20F 3K 100D C1L_7 20F 3K 100D
C2L_6 16F 16F 3K 100D C1L_6 16F 3K 100D
C2L_5 10F 10F 3K 100D C1L_5 10F 3K 100D
C2L_4 8F 8F 3K 100D C1L_4 8F 3K 100D
C2L_3 4F 4F 3K 100D C1L_3 4F 3K 100D
C2L_2 2F 2F 3K 100D C1L_2 2F 3K 100D
C2L_1 1F 1F 3K 100D C1L_1 1F 3K 100D

Vanilla

CV_11 256H 256D

1L_1D_CNN Vanilla

– –
CV_10 200H 256D – –

CV_9 164H 256D – –
CV_8 148H 256D – –
CV_7 128H 256D – –
CV_6 64H 256D – –
CV_5 32H 256D – –
CV_4 16H 256D C1LV_4 16F 3K 256H 256D
CV_3 8H 256D C1LV_3 8F 3K 256H 256D
CV_2 4H 256D C1LV_2 4F 3K 256H 256D
CV_1 2H 256D C1LV_1 2F 3K 256H 256D

FIGURE 1. General workflow.

into time windows to generate samples for training and test-
ing purposes. In the second phase, the base network model is
subject to the compression process. We planned two different
compression processes:

1) cascading compression process;
2) stand-alone compression process.

Cascading compression process consists of applying differ-
ent compression techniques combined together, one after the
other. In this scenario, we envisage three combinations that
start from the base model:

• we apply the pruning technique and subsequently the
conversion with TensorFlow Lite;

• we apply the pruning technique combined with the post-
training full integer quantization;

• we apply the pruning technique combined with the post-
training dynamic quantization.

Note that the pruning procedure is carried out by varying the
model sparsity as shown in Figure 2(a).

Stand-alone compression process consists instead of ap-
plying each compression technique only to the base network
model, thus avoiding any kind of combination. Indeed, in
this scenario, we first apply directly to the base network the

lite conversion, the post-training dynamic quantization, and
the full integer quantization. This workflow is graphically
represented in Figure 2(b).

The application of each compression technique via the
TensorFlow lite converter allows to subsequently generate
a C source file containing the char array version of the lite
network model. To generate such a file, which allows running
the model on a microcontroller, it is necessary to use the
Unix command xxd1. In the third phase, each C source file
is moved onto the ESP32 to test if the model fit on the
platform and, in case it does, to test its performance in term
of inference latency. It is worth mentioning that the proposed
workflow has been applied to each network listed in Table1.

IV. EXPERIMENTAL SETUP
We developed a Keras-TensorFlow application in a Google
Colab environment. We used TensorFlow nightly developer
version 2.10 to build, train and evaluate network models.
To apply compression techniques we used TensorFlowLite
which allows performing several compression techniques, in-
cluding those we choose for our investigation, i.e.: conversion
to lite model, post-training dynamic quantization, and full
integer 8-bit quantization.

A. HAR DATASET
To carry our investigation out, in this work we leveraged the
UCI-HAR dataset [34]. Here, information is collected via
a smartphone, where accelerometer and gyroscope signals
are sampled at 50 Hz. The monitored activities are: walking,
walking upstairs, walking downstairs, sitting, standing, and
lying down. All the activities are gathered from 30 subjects
aged between 18 and 48 years, and of varying races, heights,
and weights.

1http://www.tensorflow.org/lite/microcontrollers/build_convert?hl=en
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(a) Cascading compression process (b) Stand-alone compression process

FIGURE 2. Compression techniques processes

The raw dataset is split into 75% for training and 25% for
testing. The training set has been used to train each network
model listed in Table 1. Then, the testing set has been used to
assess the performance of each network model.

B. REAL APPLICATION SCENARIO
We developed a sensor-based HAR application on top of
an Espressif ESP32-wroom-32 DevKit connected to an
MPU6050 integrated 6-axis motion tracking device that com-
bines a 3-axis gyroscope, and 3-axis accelerometer [35]. The
application was entirely developed in C++ using the ESP-
IDF platform (Espressif IoT Development Framework) with
the TensorFlow Lite Micro libraries installed.

The ESP32 has two CPU cores that can be individually
controlled running at a clock frequency adjustable from 80
MHz to 240 MHz. The chip also has a low-power mode that
can be used to save power while performing peripheral I/O
tasks that do not require much computing effort. Our version
of the ESP32 has 4 MB of flash memory for saving the
firmware and 400 KB of RAM memory.

Because a TensorFlow model is represented through a
static set of weights and instructions, it can be stored directly
inside the flash memory together with the firmware compo-
nents so that the maximum size of the installable model is
slightly less than the 4 MB.

The HAR application designed for this work consists
of two tasks that respectively perform the data collection
from the motion tracking device (MPU6050) and the ML
inference. The two tasks behave according to the producer-
consumer paradigm and are executed independently on one
of the two available cores.

C. MEASUREMENT SETUP
To estimate the energy consumption of the ESP32 device,
we measured the voltage drop across a sensing resistor
(9.8Ω) placed in series with the device’s power supply. The
device was powered at 3.3V through an NGMO2 Rohde &
Schwarz dual-channel power supply [36], and we sampled
the signals to be monitored during the experiments by means

of a National Instruments NI-DAQmx PCI-6251 16-channel
data acquisition board connected to a BNC-2120 shielded
connector block [37, 38].

V. EXPERIMENTAL RESULTS
In this section, we report the results obtained by apply-
ing compression techniques in cascading and in stand-alone
modes. We first investigated the cascading mode by follow-
ing the workflow previously described and shown in Figure
2(a), and then we investigated the stand-alone mode shown
in Figure 2(b).

A. CASCADING COMPRESSION TECHNIQUES CASE
Despite in principle compression techniques might be com-
bined together to enhance performance, we experienced is-
sues both at design and execution time. Note that, when
we talk about design time we mean “when writing and
running the Keras-TensorFlow application on the Colab en-
vironment”; whereas when we talk about execution time, we
mean “when deploying the trained network model on the
ESP32 device”.

At design time, when combining pruning with all the other
quantization techniques, we experienced errors raised by the
TensorFlow Lite interpreter runtime environment. We were
able to solve those errors by enabling specific TensorFlow
Lite and TensorFlow operators (OPS). This step is necessary
because the built-in operators supported by the TensorFlow
Lite library are limited to a subset of numbers of the Ten-
sorFlow operators. Therefore, the conversion is successful
only if TensorFlow OPS are enabled in the TensorFlow Lite
model.

However, the C source file obtained after the conversion
raised an error when the network model is deployed on the
ESP32 device. For this reason, we were not able to perform
phase 3, i.e., the inference characterization on the ESP32.
At the time of such experimentation, we also engaged the
TensorFlow Lite developers community to solve this issue,
but without finding a proper solution. We speculate that the
issue might be caused by several sources, among which: i)
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the adoption of the pruning technique: we experienced that,
by avoiding the pruning procedure in the process, and by
avoiding enabling TensorFlow OPS, this acts as a sort of
“workaround” to make the compression process successful
both at design and execution time; ii) either at TensorFlow
Lite side or at ESP-IDF platform side, there is something
which is still unsupported, thus leading to the impossibility
of testing the combined adoption of compression techniques.

Results obtained for such a scenario contributed to mo-
tivating us to investigate the stand-alone scenario, whose
results are discussed in the next sections.

B. STAND-ALONE COMPRESSION TECHNIQUES CASE
In such a scenario, we were able to carry out a thorough
characterization by providing a comparison in terms of clas-
sification performance, power efficiency, and inference time.
The ESP32 is able to work in two different modes: power
management enabled (PME), i.e., the CPU is able to go down
to save power, and power management disabled (PMD). We
performed our analysis leveraging both modes to evaluate
the power efficiency and the inference time of the HAR
application on the ESP32.

Figures shown in the next sections not only consider each
network type but also each compression technique, as well.
Compression techniques are represented by colors: green for
Lite conversion, cyan for Dynamic quantization, and red for
Full integer quantization.

1) Accuracy
The base network model (i.e., a network model not subject to
any compression technique) achieves a maximum accuracy
of around:

• 89% for the 2L_1D_CNN network;
• 88% for the 1L_1D_CNN network;
• 92% for the vanilla LSTM network;
• 92% for the combined adoption of 1L_1D_CNN and

vanilla LSTM network.
Figure 3 shows the highest classification accuracy of each
network type, calculated over the UCI-HAR dataset, con-
sidering the application of each compression technique, be-
sides the maximum accuracy reached by the corresponding
base network model. It is interesting to note that by simply
lite converting the 1L_1D_CNN+Vanilla we never obtain a
fitting network model. It is also worth mentioning that, to
evaluate the maximum accuracy, we did not consider the
accuracy reached by the networks that, even compressed,
are not able to fit inside the ESP32 device because of their
memory occupation size. Table 2 reports with an 7all the
network models (with respect to the compression technique:
L-Lite, D-Dynamic, F-Full integer) not fitting inside the
ESP32.

Results in Figure 3 show that by applying the lite conver-
sion the accuracy drop is: 2% for the 2L_1D_CNN network,
1% for the 1L_1D_CNN network, and 4% for the vanilla
LSTM network. By applying dynamic quantization there is

no accuracy drop, whereas by applying full integer quantiza-
tion there is always an accuracy drop of 2%.
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FIGURE 3. Network classification accuracy.

TABLE 2. Network models fitting on the ESP32.

Net Type Net ID L D F Net Type Net ID L D F

2L_1D_CNN

C2L_9 7 7 7

1L_1D_CNN

C1L_9 7 7 7
C2L_8 7 3 3 C1L_8 7 3 3
C2L_7 7 3 3 C1L_7 7 3 3
C2L_6 7 3 3 C1L_6 7 3 3
C2L_5 3 3 3 C1L_5 3 3 3
C2L_4 3 3 3 C1L_4 3 3 3
C2L_3 3 3 3 C1L_3 3 3 3
C2L_2 3 3 3 C1L_2 3 3 3
C2L_1 3 3 3 C1L_1 3 3 3

Vanilla

CV_11 7 7 7

1L_1D_CNN Vanilla

– – – –
CV_10 7 3 3 – – – –
CV_9 7 3 3 – – – –
CV_8 7 3 3 – – – –
CV_7 7 3 3 – – – –
CV_6 3 3 3 – – – –
CV_5 3 3 3 – – – –
CV_4 3 3 3 C1LV_4 7 3 3
CV_3 3 3 3 C1LV_3 7 3 3
CV_2 3 3 3 C1LV_2 7 3 3
CV_1 3 3 3 C1LV_1 7 3 3

Figure 4 shows the accuracy provided by each com-
pression technique applied to each network type when the
network complexity is increased. Each dashed colored line
represents the accuracy reached by those network models
that are not able to fit inside the ESP32. For the sake of
readability, the Figure does not show the curve related to
the accuracy of the base network model, i.e., the model
not subject to any of the three compression techniques. The
accuracy of the base network model of each network type
ranges between:

• 77% and 89% for the 2L_1D_CNN network;
• 73% and 88% for the 1L_1D_CNN network;
• 67% and 92% for the vanilla LSTM network;
• 87% and 92% for the combined adoption of

1L_1D_CNN and vanilla LSTM network.
The minimum accuracy reached by the base network model
is the one provided by the less complex network model of
each network type.

Very simple base networks can indeed provide a low level
of accuracy (e.g., 67% for the most simple vanilla LSTM
base network, CV_1). Therefore, the application of compres-
sion techniques may result in a higher loss of accuracy in less
complex networks compared to more complex ones. This is
for example the case of CV_1 vanilla LSTM network when
subject to the full integer quantization, which reaches a level
of accuracy of around 37% as shown in Figure 4(c). For
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FIGURE 4. Classification accuracy of each network type per increasing network complexity, obtained by applying lite conversion, dynamic quantization, and full
integer quantization.

vanilla LSTM networks, whose network complexity is higher
(or equal) to CV_4, the three techniques provide comparable
performance. For all the other network types, the full integer
quantization incurs in a higher loss of accuracy compared
to other compression techniques. However, this is a known
effect since the full integer quantization converts the math
model weights and input from a float format into an int
format.

2) Power-efficiency
The procedure carried out to evaluate the power efficiency,
described in the following, was evaluated both for the PMD
and the PME case.

The sampling and the inference power were measured
during the execution of the HAR application on the ESP32,
and the generated waveform is depicted in Figure 5. The plot
reported on the top shows the power consumption of the HAR
application in the PMD case. The power peaks corresponding
to the single readings of the sensors, carried out by the core
#0 of the CPU, and the large increase in power corresponding
to the inference phase, are clearly recognizable. The plot on
the bottom, on the other hand, reports the power consumption
in the PME case. It is worth noting the energy saving during
the sampling period in this case due to core #0 shutting down
between receiving two consecutive samples. Starting from
this characterization, we are therefore able to evaluate the

total energy consumed by each network compressed model
considering the whole cycle, i.e., the energy spent during
the sampling phase summed to the energy spent during the
inference phase.
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FIGURE 5. Power consumption waveforms collected during the execution of
the HAR application on the ESP32 device (top) and on the ESP32 with power
management enabled (bottom).

For each network type, all the respective fitting network
models reported in Table 2 were deployed one by one on
the ESP32 device. Given a fitting network model, the HAR
application was run to sample real-time data directly from
the gyroscope and the accelerometer and to perform real-
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time inference measurements. We collected 10 inference
measurements for each network compressed model in order
to get an average of the inference time. Table 3 reports the
power consumption measured during sampling and inference
phases in PMD and PME cases respectively. A window size
of 2 seconds is a reasonable choice given the characteristics
of the UCI-HAR dataset in terms of activities to be classified
and sampling ratio.

TABLE 3. Characterization of the power consumption of the device with
power management disabled (PMD) and power management enabled (PME)
during sampling and inference phases.

PMD PME

Sampling Power [Watt] 0,1267 0,1055
Inference Power [Watt] 0,1581 0,1582

Figure 6 shows the results in terms of energy consumption
of each network type in the PMD. In particular, the figures
show the Pareto curves of the accuracy loss plotted versus
the energy consumption, where points represent the Pareto
optimal network type architectures. It is worth mentioning
that similar considerations can be done for the PME case.

Considering the 2L_1D_CNN network in Figure 6(a), the
best trade-off is provided by the C2L_2 network configura-
tion: applying one of the three compression techniques yields
an energy consumption of around 253.6mJ, with an accuracy
of 86%. However, the real distinction is the inference time,
which can be decreased to a minimum of around 5ms for
the C2L_2 network, compared to the maximum of around
61ms for the C2L_7 network. In such a scenario is therefore
advantageous the adoption of a low complex 2L_1D_CNN
network, i.e., the C2L_2 network configuration.

In the 1L_1D_CNN network case in Figure 6(b), the
application of the three compression techniques to two of
the lowest complex 1L_1D_CNN network (i.e., C1_L3 and
C1_L2) provides almost the same high level of accuracy,
around 86-88%, and the same energy consumption, around
253mJ. In terms of inference time, the range goes from a
maximum of around 12ms given by the lite conversion of
the C1_L3 network, to a minimum of around 5ms given by
the full integer compression of the C1_L2 network. In such
a scenario is therefore advantageous the adoption of a low
complex 1L_1D_CNN network, i.e., the C1_L2 network.

In the vanilla LSTM network case, Figure 6(c), the appli-
cation of either dynamic quantization or lite conversion to the
CV_4 network provides the same accuracy, around 88%, and
the same energy consumption, around 255mJ. In this case,
it is advantageous the adoption of the dynamic conversion
because results in a lower inference time, around 60ms
compared to around 72ms provided by the lite conversion.
It is worth noting that, to reach an accuracy of around 91%, it
is necessary to pick a more complex vanilla LSTM network
(i.e., CV_8), resulting however in a high energy consump-
tion, around 324mJ, and a very high inference latency, over
2s, which might be unacceptable in certain applications.

In the combined adoption of 1L_1D_CNN and vanilla
LSTM network case, Figure 6(d), as mentioned in the pre-
vious section, the application of the lite conversion does not
produce any fitting model suitable for the ESP32 capacity.
The application of quantization to C1LV_1, C1LV_2 and
C2LV_3 networks provides the same energy consumption,
around 255mJ, and an accuracy ranging from an 88% of the
C1LV_1 network to a 92% of the C1LV_3 network. In this
case, in terms of inference latency, the difference ranges from
around 56ms of the C1LV_1 network to around 66ms of the
C1LV_3 network. In this case, it is advantageous the adoption
of dynamic quantization applied to C1LV_1 network.

VI. DISCUSSION
The results described in the previous section allow us to pro-
vide insights into our experience with the Keras-TensorFlow
framework and the deployment onto ESP32. Here the dis-
cussion is limited to the stand-alone compression techniques
scenario because we were able to perform a complete char-
acterization.

We further analyzed the power efficiency of dynamic and
full integer quantization by estimating their energy saving
with respect to the lite conversion. Here, we only consider
the inference energy saving because the sampling energy
is independent of the network model. Figure 7 shows the
inference energy saving, in the PMD case, induced by the
two quantization techniques with respect to the base value
of the lite model. Notice that, in the case of the CNN and
LSTM combined network no configuration of lite models
was able to run on the ESP32 device; therefore, we were
not able to estimate the energy saving in such a case. For
each network type, the estimation was evaluated for all the
network configurations for which we successfully obtained
three executable models.

In the case of models 2L_1D_CNN and 1L_1D_CNN,
Figure 7(a) and (b), respectively, it is interesting to note that:
for the simplest model (C2L_1 and C1L_1) both techniques
do not affect the energy consumption which is always very
low. Starting from C2L_2 to C2L_5, and from C1L_2 to
C1L_5 configurations, the energy saved by the full integer
quantization always overcomes that obtained with the dy-
namic technique. However, it seems that as the complexity
of the models increases, the differences between the two
techniques decrease, both reaching around an energy-saving
close to 40% and 30%, respectively.

In the case of vanilla models, Figure 7(c), the trend is sim-
ilar to the other two network types, except for the CV_6 con-
figuration, which shows a significantly much higher saving,
compared to the lower network complexity configurations.
This is due to the high difference in the inference energy
consumption between CV_6 and CV_5.

Table 4 shows the total energy consumption, in both PMD
and PME cases, which account for sampling energy and
inference energy. It is worth noting that, in the PME case,
given the same network type and network configurations,
the total energy consumed is way lower compared to the
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FIGURE 6. Pareto curve reporting the accuracy loss Vs the expected energy consumption in case power management is disabled (PMD).

PMD case. This is because, in the PME case, during the
sampling phase the ESP32 shuts core #0 of the CPU down,
thus allowing a higher energy saving, compared to the PMD
case.

Considering that, from the classification accuracy point of
view, the dynamic quantization technique does not involve
a priceable loss, we would like to advise in any case the
use of this technique even if the energy savings produced
by the full integer quantization could be slightly greater.
Furthermore, we remind you that the application of one of the
two quantization techniques is even indispensable for models
of considerable size which otherwise would not execute on
some extremely low-power platforms such as the ESP32.

The four network types adopted in our investigation show
interesting performance either in terms of accuracy, power
efficiency, and inference time. Therefore, by properly dimen-
sioning the base network model type, each network type can
become a good candidate to be deployed on the ESP32. As
far as the combined 1D_1L_CNN+vanilla is concerned, by
deciding to keep the number of hidden and dense neurons
unchanged, we only got 4 base networks, compared to the
other 9/11 base models. Despite not being reported in Table
1, for the 1D_1L_CNN+vanilla network we tried also to
explore the case of decreasing hidden neurons while leaving
unchanged the number of filters, kernels, and (high) dense
neurons. In particular, we considered two additional networks

with the following network structure: 16F 3K 8H 256D,
let’s name it C1LV_E3, and 16F 3K 4H 256D, let’s name
it C1LV_E2.

Considering the PMD case, the outcome was the follow-
ing: in terms of the accuracy of the base models, we got
the same range highlighted in section V-B2; in terms of
power efficiency, we observed a slight reduction of the energy
consumption, compared to the other 4 networks formerly
investigated. However, we observed a significant inference
time reduction compared to C1LV_3 and C1LV_2, which we
consider “comparable networks”. In particular, considering
the dynamic quantization technique, between C1LV_3 and
C1LV_E3 we observed an inference time reduction of a
34%; whereas between C1LV_2 and C1LV_E2 we observed
a reduction of around 49%. Similar values of inference time
reduction were observed for the full integer quantization
technique, as well. Analog consideration can be done for the
PME case. We speculate that, by decreasing also the number
of dense layers, there would be an additional gain in terms of
inference latency.

VII. CONCLUSION AND FUTURE WORK
This paper investigates the feasibility, and the impact, of
deep learning model deployment on a low-power ESP32
device, applied to a HAR case study. We considered four
network types, namely, a two layers convolutional neural
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TABLE 4. Total energy consumption for fitting network models on the ESP32.

Energy[mJ]
PMD PME

Net Type Net ID L D F L D F

2L_1D_CNN

C2L_5 254.785 254.307 254.274 213.321 212.521 212.469
C2L_4 254.465 254.121 254.088 212.783 212.213 212.167
C2L_3 253.906 253.779 253.738 211.842 211.641 211.582
C2L_2 253.666 253.617 253.585 211.455 211.374 211.320
C2L_1 253.551 253.553 253.542 211.255 211.265 211.236

1L_1D_CNN

C1L_5 254.300 254.082 254.048 212.518 212.145 212.098
C1L_4 254.139 253.967 253.933 212.242 211.948 211.890
C1L_3 253.802 253.712 253.680 211.680 211.524 211.469
C1L_2 253.631 253.595 253.559 211.393 211.328 211.273
C1L_1 253.541 243.545 243.542 211.237 211.248 211.236

Vanilla

CV_6 278.398 267.018 267.042 253.025 233.724 233.623
CV_5 258.816 258.017 257.982 220.119 218.738 218.698
CV_4 255.676 255.290 255.254 214.825 214.158 214.101
CV_3 254.503 254.313 254.280 212.859 212.534 212.481
CV_2 254.010 253.932 253.899 212.020 211.890 211.839
CV_1 253.751 253.763 253.731 211.604 211.617 211.561

network, a one layer convolution neural network, a vanilla
long short-term memory network, and a combination of those
two latter. Those networks were fine-tuned to find potential
fitting models. We carried out a thorough analysis of the
feasibility, and the impact, of the application of the most
well-known TensorFlow compression techniques, i.e., prun-
ing, lite conversion, dynamic quantization, and full integer
quantization. Specifically, we considered the application of
those techniques in a cascading mode and in a stand-alone
mode. The impact was evaluated in terms of accuracy and en-
ergy consumption, with consequences also on the inference
latency. Two working modes were employed for the ESP32:
power management disabled (PMD), and power management
enabled (PME).

In the cascading case it is not possible to carry out the
performance characterization because of experienced issues
both at design and at execution time. We, therefore, recom-
mend avoiding concatenating the pruning technique with the
other ones. In the stand-alone case, dynamic quantization is
recommended because yields a negligible loss of accuracy.
In terms of power efficiency, both dynamic and full integer
quantization provide high energy saving with respect to the
uncompressed models: between 31% and 37% for CNN
networks, and up to 45% for LSTM networks. In terms of
inference latency, dynamic and full integer quantization pro-
vide comparable performance. As a final remark, we would
like to recommend the adoption of dynamic quantization
because of its negligible accuracy drop and its comparable
performance with the full integer technique in terms of power
efficiency and inference latency.

Our work shows that multiple network types can be
deployed onto an ESP32 device, each showing interesting
performance parameters. We hope that our experience with
Keras/TensorFlow on the ESP32 will motivate the reader to
further explore such a broad landscape in the design and

deployment process of deep learning networks on MCU for
HAR. In future work, we would like to solve the issue we
faced with the pruning technique to be able to complete our
investigation. We would also like to carry out such a thorough
investigation on other target hardware embedded platforms
to evaluate and compare different outcomes in terms of
inference latency and power efficiency. Another research
opportunity could be to explore other model compression
techniques, such as for example knowledge distillation.
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