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Abstract: A large number of synthetic cannabinoids are included in new psychoactive substances
(NPS) and constitute an open research area in analytical pharmaceutical and toxicology when methods
are needed to unambiguously identify these substances and their metabolites in biological fluids. A
full molecular characterization of five synthetic molecules of the URB series that is able to interact
with the endocannabinoid system was achieved with a high-resolution mass spectrometry (HRMS)
in positive ion electrospray ionization and collisional experiments on the protonated parent ions,
obtaining characteristic fragmentation patterns. Ultra-high-performance liquid chromatography
coupled with a triple quadrupole (UHPLC-MS/MS) has also been used, which can help develop
methods for screening and confirming synthetic cannabinoids in biological fluids.
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1. Introduction

Cannabis contains more than 500 compounds, of which at least 100 have pharmaco-
logical properties [1] and are therefore classified as phytocannabinoids [2,3]. It is currently
the most widely used illicit drug in Europe, with around 22.2 million European adults
reporting its use in 2021 [4]. In recent decades, studies on the endocannabinoid system
(ECS) have commanded great interest, above all due to the implications deriving from
cannabinoid (CB) receptors, which were discovered in the 1990s and are involved in many
physiological and pharmacological events [5–10]. CB1 receptors are mainly present in
some parts of the central nervous system (CNS), (predominantly the cerebellum, basal
ganglia, hippocampus, and cerebral cortex), while CB2 are mainly found in the immune
system (primarily B cells and natural killers). Despite this, the CB1s are present, albeit
scarcely, in districts other than the CNS [8] and the CB2s centrally [11], respectively. For
more detail on the CB1 and CB2 receptors, see [9,12]. When CB receptors are activated,
there is a decrease in the concentrations of cyclic adenosine monophosphate (cAMP), a
messenger that is essential for regulating many cellular functions. In fact, following the
binding with suitable ligands, they determine an agonist or antagonist activity, depending
on whether they are stimulated or blocked. On the other hand, they can also determine
a modulating action through the inhibition of the enzymatic proteins responsible for the
metabolism of the endogenous molecules that physiologically bind to them [10]. Indeed,
the latter, among which the most studied are N-arachidonoylethanolamine (anandamide,
AEA) [13] and 2-arachidonoyl-sn-glycerol (2-AG) [14,15], plays a very important role in
the regulation of many physiological processes after being released on demand from phos-
pholipid membranes [16,17]. The basic concept is that endocannabinoids are produced
(and consequently act) when and where it is needed. On the contrary, the administration of
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non-endogenous molecules that bind to the CB receptors [18,19], in particular when the
action is aimed at the CNS, can cause effects of various kinds, such as those exerted by
the main psychoactive drug of the cannabis, that is ∆9–tetrahydrocannabinol (THC) [20],
or those carried out by non-psychotropic cannabidiol (CBD) [21], which have antipodal
pharmacological effects despite their similar structural characteristics. ECS is therefore to
be considered as a reference system for the discovery of new drugs.

Evidence of the importance of substances capable of interfering with CB receptors is
represented by the presence on the market of medicines containing active pharmaceutical
ingredients that are able to bind to CB receptors, such as Cesamet® (nabilone), prescribed for
the improvement of chemotherapy-induced nausea and vomiting (CINV) states in patients
who are not responding to conventional antiemetic therapies. Marinol® (dronabinol),
administered for CINV and appetite stimulation in patients with AIDS (acquired immune
deficiency syndrome), and Sativex® (THC and cannabidiol), used for the symptomatic relief
of the pain and/or the management of the neuropathic pain and spasticity in adults with
multiple sclerosis and not responsive to other antispasticity therapies or other marketed
drugs. More recently, a new drug containing cannabidiol (Epidiolex®) has been approved
by the Food and Drug Administration for the treatment of seizures associated with two
rare and severe forms of epilepsy, that is, Lennox–Gastaut syndrome and Dravet syndrome,
in patients who are two years of age and older [2,21–23].

On the other hand, direct and indiscriminate activation of the ECs receptors, par-
ticularly of the central CB1, can cause several side effects, such as dry mouth, muscle
weakness, myalgia, palpitations, blurred vision, memory impairment, disorientation, hal-
lucinations, and paranoia [24–27]. This problem is accentuated in all situations in which
there is an uncontrolled intake that leads to abuse and involves substances of both natural
and synthetic origin.

In 2008, a synthetic cannabinoid, namely JWH-018 [28], was first identified in Europe
as a constituent of the herbal products available on the web, and was advertised as incense,
air fragrances, and herbal blends not intended for human consumption [29]. These products
were sold under fanciful trade names (Spice, K2), and quickly spread to several countries
as they could be consumed alternatively to cannabis because they were not detectable by
the classic drug tests in urine. This situation has allowed the marketing of products able to
induce similar or more powerful effects than cannabis without incurring penalties because
they are not known and are not listed among the prohibited substances [30]. Since then,
the number of “spice” products and new synthetic cannabinoids has steadily increased,
so much so that, very recently, 280 individual synthetic cannabinoid receptor agonists
(SCRAs) have been reported to the United Nations Office on Drugs and Crime (UNODC)
Early Warnings Advisory from 90 different countries up to 2019 [31], and others have
been identified in recent years. SCRAs are part of the large family of the so-called new
psychoactive substances (NPS), to which, according to UNODC, all substances of abuse
belong, either in a pure form or as a preparation, which are not controlled by the 1961
Single Convention on Narcotic Drugs or the 1971 Convention on Psychotropic Substances,
but which may pose a public health threat [32]. Among the main classes of NPS, we can
include, in addition to SCRAs, synthetic opioids, stimulants, psychedelics, hallucinogens,
and so on [33]. Moreover, NPS from 133 countries and territories have been reported [34].
Consequently, the increase in NPS [33–36] and smart drugs has led to restrictive and
monitoring actions by the institutions involved. The continuous emergence of NPS on
the market, however, makes legislative restrictions inadequate and the monitoring task of
prevention agencies more difficult.

The recent appearance and widespread diffusion of legal hemp-based products (resin,
leaves, and inflorescences) with a low THC content but adulterated with highly active
synthetic cannabinoids has made the scenario even more complex. In fact, industrial hemp
with a low THC concentration is cheaper and the addition of a small amounts of synthetic
cannabinoids is enough to mimic the indiscriminate activity aimed at CB targets. This
dangerous way of spreading synthetic cannabinoids puts people’s health at risk, not only
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of those who knowingly buy the drug but also of those who are convinced that they are
buying a harmless natural product [4].

At present, most of the cannabimimetic substances identified in seizures of illegal ma-
terials in Europe and in other countries derive from commercial products already known,
with various abbreviations (e.g., AM, AB, CP, JWH, HU, RCS, UR, URB, and WIN), and
belonging to different chemical classes (e.g., adamantoylindoles, aminoalkylindoles, ben-
zoylindoles, cyclohexylphenols, dibenzopyrans, naphthoylindoles, naphthylmethylindoles,
naphthylmethylindenes, phenylacylindoles, tetramethylcyclopropylketoindoles, indazole
carboxamides, and naphthoylpyrroles) [37]. Recently, an interesting study aiming to ex-
plore the steric requirements at CB1 and CB2 receptors and the role of the related amino
acid side chain has been developed that uses some SCRAs [38].

The continuous introduction of new analogues of existing CB drugs is certainly a legal
problem, but it is also a major cause of analytical and toxicological uncertainty [39]. In
fact, the lack of certified reference standards and the inadequacy of knowledge relating
to biological activity and metabolism make it difficult to determine and evaluate new
compounds, especially biological matrices. Therefore, the increase in knowledge and the
characterization of new CB compounds would be important for their identification.

In this work, a full molecular characterization by high-resolution mass spectrometry
(HRMS) and ultra-high-performance liquid chromatography (UHPLC)–MS/MS of five
synthetic molecules of the URB series designed to interact indirectly or directly with ECS
(Figure 1) is presented for the first time.
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Figure 1. Chemical structures of URB compounds.

The molecules presented in Figure 1 are defined as synthetic cannabinoids under
the broader definition of molecules interfering with the endocannabinoid system without
exerting a direct action on the CB receptors (a more classical definition). On the other hand,
the EMCDDA (European Monitoring Center for Drugs and Drug Addiction) also includes
synthetic cannabinoids molecules that do not bind the receptor.

The compounds of the URB series studied here are representative of molecules able to
interfere indirectly (enzyme inhibitors) or directly (ligands) with the biological targets of
the endocannabinoid system. These include the following molecules: (A) Two carbamates
that inhibit fatty acid amide hydrolase (FAAH), which catalyze the intracellular hydrolysis
of the endocannabinoid AEA, and are able to exert anxiolytic and analgesic properties
(cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester, URB597) [40] or restricted pe-
ripheral analgesic effects (cyclohexylcarbamic acid 3′-carbamoyl-6-hydroxybiphenyl-3-yl
ester, URB937) [41]. They play a very important role in the panorama of FAAH inhibitors
because they were the first ever with a good overall profile. Still today, they constitute
reference molecules in the specific research oriented toward the study of molecules that are
able to interfere with the endocannabinoid system. So much of this is true that URB597 is
the most widely used pharmacological tool in the field, the use of which serves to further
understand pharmacological applications. Both are covalent and irreversible inhibitors. (B)
A reverse carbamic analogue of FAAH inhibitors that inactivates the enzyme degrading
2-AG, which is a monoglyceride lipase (MGL), and is able to relieve the stress-induced pain
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and induce neuroprotection (biphenyl-3-yl carbamic acid cyclohexyl ester, URB602 [42]). It
is a covalent and partially reversible inhibitor. (C) A benzoxazinone derivative initially stud-
ied as an MGL inhibitor (6-methyl-2-p-tolylaminobenzo[d]oxazin-4-one, URB754) [43,44].
(D) Finally, a peripherally restricted mixed CB1 antagonist/CB2 agonist pyrrolic drug
endowed with anti-obesity, neuroprotective, and antitumor properties [45,46], and an
interesting anti-inflammatory profile (data not available) {[4-amino-1-(4-chlorobenzyl)-2-
methyl-5-phenyl-1H-pyrrol-3-yl] (phenyl)methanone, URB447. These compounds were
included among the monitored commercial substances. Notably, URB597 was found in
herbal products in both Japan [47] and the United States of America [48], which was noti-
fied by the European Union Early Warning System in 2013 (found in Poland) [49], while
URB754 has been reported in the literature as a new designer drug [50].

Although, at the moment, the phenomena of abuse and fatality have not been cor-
related with the considered drugs, the molecular characterization and MS fragmentation
behavior of the protonated molecules reported here are important for the unambiguous
identification of the substances. They also play a key role in the future development
of LC–MS/MS or LC–HRMS screening methods that are useful for their research on
seized samples.

In fact, the substances studied in this work are potentially dangerous because they are
active at very low concentrations (lower than most direct cannabinoids). Furthermore, they
are emerging drugs and sufficient epidemiological data to describe their consumption have
not yet been acquired (on the other hand, if no one includes them in the screening of real
intoxication cases, no one can estimate their prevalence).

2. Results and Discussion

The tuning parameters optimized in UHPLC-MS/MS to obtain fragment ions of high
abundance for use in the multiple reaction monitoring (MRM) method are reported in
Table 1 and Figure 2.

Table 1. Compound-dependent parameters for optimal monitoring of multiple reactions.

Compound
(Elementary Formula) RT [M + H]+

(m/z)
Product

Ions (m/z)
QTT/QLT

Ion Ratio (%) DP (V) EP (V) CE (V) CXP (V)

JWH-018
(C24H23NO)

(internal standard)

5.22 342 155 QTT 110 10 35 11
127 60 110 10 70 6
145 33 110 10 59 11

URB597
(C20H22N2O3)

3.16 339 214 QTT 78 10 18 11
197 62 78 10 31 17
171 30 78 10 39 12

URB937
(C20H22N2O4)

2.62 355 338 6 80 10 16 8
230 QTT 80 10 22 5
213 90 80 10 32 11

URB602
(C19H21NO2)

4.84 296 214 QTT 45 10 14 10
196 50 45 10 29 15
170 67 45 10 28 15

URB754
(C16H14N2O2)

2.36 267 249 63 70 10 34 18
160 QTT 70 10 32 11
106 6 70 10 40 7

URB447
(C25H21ClN2O) 3.43 401 296 45 90 10 34 7

276 25 90 10 31 6
105 QTT 90 10 38 5

403 298 14 90 10 32 7

RT: Retention time, QTT: Quantifying Transition, QLT: Qualifying Transition, DP: Declustering Potential,
EP: Entrance Potential, CE: Collision Energy, and CXP: Collision Cell Exit Potential.



Pharmaceuticals 2023, 16, 201 5 of 15

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 4 of 16 
 

 

which serves to further understand pharmacological applications. Both are covalent and 
irreversible inhibitors. (B) A reverse carbamic analogue of FAAH inhibitors that inacti-
vates the enzyme degrading 2-AG, which is a monoglyceride lipase (MGL), and is able to 
relieve the stress-induced pain and induce neuroprotection (biphenyl-3-yl carbamic acid 
cyclohexyl ester, URB602 [42]). It is a covalent and partially reversible inhibitor. (C) A 
benzoxazinone derivative initially studied as an MGL inhibitor (6-methyl-2-p-tolylamino-
benzo[d]oxazin-4-one, URB754) [43,44]. (D) Finally, a peripherally restricted mixed CB1 
antagonist/CB2 agonist pyrrolic drug endowed with anti-obesity, neuroprotective, and an-
titumor properties [45,46], and an interesting anti-inflammatory profile (data not availa-
ble) {[4-amino-1-(4-chlorobenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl] (phenyl)meth-
anone, URB447. These compounds were included among the monitored commercial sub-
stances. Notably, URB597 was found in herbal products in both Japan [47] and the United 
States of America [48], which was notified by the European Union Early Warning System 
in 2013 (found in Poland) [49], while URB754 has been reported in the literature as a new 
designer drug [50].  

Although, at the moment, the phenomena of abuse and fatality have not been corre-
lated with the considered drugs, the molecular characterization and MS fragmentation 
behavior of the protonated molecules reported here are important for the unambiguous 
identification of the substances. They also play a key role in the future development of 
LC–MS/MS or LC–HRMS screening methods that are useful for their research on seized 
samples. 

In fact, the substances studied in this work are potentially dangerous because they 
are active at very low concentrations (lower than most direct cannabinoids). Furthermore, 
they are emerging drugs and sufficient epidemiological data to describe their consump-
tion have not yet been acquired (on the other hand, if no one includes them in the screen-
ing of real intoxication cases, no one can estimate their prevalence). 

2. Results and Discussion 
The tuning parameters optimized in UHPLC-MS/MS to obtain fragment ions of high 

abundance for use in the multiple reaction monitoring (MRM) method are reported in 
Table 1 and Figure 2. 

 
Figure 2. MRM extracted ion chromatogram of methanol standard solution. 
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The identity of the observed fragment ions was confirmed by HRMS and collision-
induced dissociation (CID) measurements in an Orbitrap comparing the theoretical to
the experimental accurate masses, as reported in Table 2 (fragments of data are partially
shown). The characteristic fragmentation patterns of URB compounds were subsequently
interpreted as follows.

Table 2. HRMS of protonated molecules and CID-induced fragment ions.

Compound Elementary
Formula (MH+) Observed m/z Theoretical m/z ∆ppm

URB597 C20H23N2O3
+ 339.1703 339.1703 –

C13H12NO2
+ 214.0861 214.0862 −0.5

C13H9O2
+ 197.0596 197.0597 −0.5

C12H11O+ 171.0801 171.0804 −1.7

URB937 C20H20NO4Na+ 377.1474 377.1471 0.8
C20H20NO4

+ 338.1384 338.1387 −0.9
C13H12NO3

+ 230.0809 230.0812 −1.3
C13H9O3

+ 213.0544 213.0546 −0.9

URB602 C19H22NO2
+ 296.1646 296.1650 −1.3

URB754 C16H15N2O2
+ 267.1128 267.1128 –

C16H13N2O+ 249.1023 249.1022 0.4
C9H6NO2

+ 160.0391 160.0393 −1.2
C7H8N+ 106.0648 106.0651 −2.8

URB447 C25H22ClN2O+ 401.1413 401.1415 −0.5
C18H17N2Cl+ 296.1073 296.1074 0.3
C18H16N2O+ 276.1256 276.1257 −0.4

2.1. URB597

URB597 ([M + H]+ at m/z 339) shows a high affinity for the alkali metal with a high
abundance of the sodium adduct [M + Na]+ at m/z 361, while a small amount of potassium
adducts [M + K]+ at m/z 377 was detected (Figure 3).
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Figure 3. Representation of alkali metal peaks of URB597 compound. Exponential scale to base 10.

The fragment ion at m/z 214 is due to the loss of cyclohexyl isocyanate and that at
m/z 197 is due to the loss of cyclohexyl isocyanate and ammonia (Figures 4 and 5, CE
20 V). Other fragment ions are those at m/z 322 due to the loss of ammonia from 339 and
at m/z 171, which differs from the fragment at m/z 214 due to the loss of the carbamoyl
group (Figures 4 and 5).
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2.2. URB937

URB937 differs from URB597 by the presence of a 6–hydroxy group on the proximal
phenyl ring. URB937 ([M + H]+ m/z 355) shows the same fragmentation pattern as URB597,
displaying fragment ions at m/z 377 [M + Na]+ and m/z 393 [M + K]+ but more affinity
with alkali metal (Figure 7).
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The most abundant ion at m/z 230 results from the loss of cyclohexyl isocyanate
(Figure 8, CE 20 V).
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Other main characteristic fragments are observed at m/z 213 due to the loss of cyclohexyl
isocyanate and ammonia, and m/z 338 due to the loss of ammonia only (Figures 8 and 9).
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The ion at m/z 187, due to the loss of the carbamoyl group, is observed only at higher
collision energies (figure not shown). In the case of URB937, the presence of [M2 + Na]
and [M3 + Na] at m/z 731.3057 and 1085.4636, respectively, was observed by accurate mass
(Figure 10).
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2.3. URB602

The main fragment ions of URB602 ([M + H]+ m/z 296) are those at m/z 214, due to
the loss of cyclohexyl, at m/z 196 and m/z 170, depending on the losses of water and carbon
anhydride, respectively (Figures 11 and 12, CE 20 V).
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For URB602, a significant in-source fragmentation occurred after the direct injection
of the URB602 solution (1 ppm). In fact, only a small amount of this protonated ion was
observed in the scan mode in both QqQ and in HRMS (Figure 13). The poor ionization
and different collisional conditions in the linear trap of Orbitrap did not permit an HRMS
fragment ions characterization.
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2.4. URB754

Characteristic MS/MS fragmentation patterns are shown in Figures 14 and 15 (CE 40 V).
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The main fragment ions of URB754 ([M + H]+ at m/z 267) are 6-methyl-4-oxo-4H-3,1-
benzoxazin-2-ylium at m/z 160, due to the loss of 4-methylaniline, and the ion at m/z 249,
due to the loss of water caused by the opening of the 1,3-oxazin-6-one ring. A fragment ion
at m/z 106 was also observed, caused by the formation of the toluidine derivative ion. The
description of the accurate mass is shown in Figure 16.
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2.5. URB447

URB447 shows a quasi-molecular ion [M + H]+ at m/z 401 and 403, due to the presence
of the characteristic isotopic pattern of chlorine 35Cl and 37Cl (Figure 17).
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The fragment ions observed for URB447 are due to the cleavages of the carbon–carbon
bond between the carbonyl and 3-pyrrolyl groups resulting in a benzoyl ion at m/z 105 or a
4-amino-1-[(4-chlorophenyl)methyl]-2-methyl-5-phenyl-1H-pyrrol-3-ylium ion at m/z 296
(Figures 18 and 19, CE 35 V).
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A direct cleavage of the C–N bond between the 4-chlorobenzyl group and the N-
pyrrolyl group results in a 4-chlorobenzylium ion at m/z 125 or 4-amino-3-benzoyl-2-methyl-
5-phenyl-1H-pyrrol-1-ylium ion at m/z 276 (C18H16N2O) (Figures 18 and 19). Analogue



Pharmaceuticals 2023, 16, 201 12 of 15

fragment ions at m/z 127 and at m/z 298 were observed starting from a similar precursor
ion at m/z 403 (figure not shown). The description of the accurate mass is shown in Figure 20.
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3. Materials and Methods
3.1. Standard and Solvents

JWH–018 (Internal Standard, IS) was supplied by Lipomed AG (Arlesheim, CH).
Water, acetonitrile, isopropyl alcohol, and methanol LC-MS grade were furnished from
PanReac AppliChem (Nova Chimica; Cinisello Balsamo, Italy). Formic acid LC-MS grade
was provided by Sigma-Aldrich (Milan, Italy).

3.2. Chemicals

URB compounds were synthesized in the laboratories of the Department of Biomolec-
ular Sciences of the University of Urbino Carlo Bo as described [41–45]. Information about
the core assays is reported in [40,41,43,45,50]. Data regarding mp, NMR, and IR are present
in [41,44,45,51,52]. Results on pharmacological tests are published in [40–43,45].

3.3. UHPLC-MS/MS

The characterization of compounds by UHPLC-MS/MS was carried out with a UH-
PLC system (Nexera X2, Shimazdu, Kyoto, Japan) coupled with a triple quadrupole mass
spectrometer (Hybrid System 4000 Qtrap, AB Sciex, Framingham, MA, USA). Chromato-
graphic separation was performed on a 50 × 2.1 mm KINETEX EVO 1.9 µm C18 column
(Phenomenex, Bologna, Italy). The mobile phase was composed of solvent “A” (0.1% formic
acid) and “B” (0.1% formic acid in acetonitrile with 5% water). The initial chromatographic
conditions were 20% “B”, and the gradient was programmed as follows: 0–0.1 min hold
20% “B”, 0.1–6.0 min to 80% “B”, and 6.0–6.1 min to 100% “B”, and it was kept for 3 min.
Finally, the initial condition was restored and kept for 2 min to equilibrate the system. Total
run time was 11 min at the constant flow rate (0.5 mL/min); the column temperature was
set at 40 ◦C; the autosampler was maintained at 10 ◦C. The mass spectrometer operated
in positive ion mode using ESI TurboIonSpray® under the following conditions: curtain
gas (CUR) 30.0 psi, ion spray voltage (IS) 4000 V, temperature (TEM) 500 ◦C, ion source
gas 1 (GS1) 40.0 psi, and ion GS2 55.0 psi. Identification was performed using MRM mode.
MRM transitions were experimentally established. At least three MRM transitions were
monitored for each compound. A total of 19 transition were monitored with an MRM pause
time of 5 ms and a dwell time of 20 ms for each transition; the total scan time was 0.47 s.
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3.4. HRMS Compound Characterization

The methanolic solutions of the individual standards (URB597, URB937, URB602,
URB754, and URB447) were prepared separately in 10 mL volumetric flasks at an approxi-
mate concentration of 100 or 1000 µg/mL. Each drug was diluted to a concentration from
0.1 to 1 ppm in methanol. The determination of the exact mass of ionic species in the
URB compounds was performed on HRMS experiments using a Linear Trap Quadrupole
(LTQ) Orbitrap XL hybrid mass spectrometry (Thermo ScientificTM, ThermoFisher Scien-
tific, Waltham, MA, USA) equipped with an electrospray ion source operated in positive
ion mode. Direct infusion of compounds into the MS ion source was performed using a
syringe pump at a flow rate of 10 µL/min. The protonated molecules of each compound
were isolated in the linear ion trap and fragmented at varying collision energies in order to
identify the most abundant and characteristic product ions.

4. Conclusions

The present study integrates and extends the mass spectrometry characterization of
synthetic drugs that are able to interact with the cannabinoid system. It provides the first
description of URB937, URB602, URB754, and URB447 compounds by CID in tandem
with the quadrupole mass spectrometry and hybrid ion trap-orbitrap mass spectrometry.
It should also be considered that, so far, the analyses and characterizations have been
carried out in MS (EI) [44,45,51,52] or MS (ESI) [41] only. The methods used here have
made it possible to unequivocally characterize the molecules under examination with the
aim to determine the operating conditions for their accurate identification and, therefore,
laying the foundations for the future development of analytical methods aimed at the early
screening of NPS in seizures or biological samples. However, these substances have long
been monitored as potential alerts [48,53]. In this respect, studies on the metabolism of the
URB compounds are necessary, and the work is in progress.
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