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Abstract
The estimate of the total electron yield is fundamental for our understanding of
the test-mass charging associated with cosmic rays in the Laser Interferometer
Space Antenna (LISA) Pathfinder mission and in the forthcoming gravitational
wave observatory LISA. To unveil the role of low energy electrons in this
process owing to galactic and solar energetic particle events, in this work we
study the interaction of keV and sub-keV electrons with a gold slab using a
mixed Monte Carlo (MC) and ab-initio framework. We determine the energy
spectrum of the electrons emerging from such a gold slab hit by a primary
electron beam by considering the relevant energy loss mechanisms as well as
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the elastic scattering events. We also show that our results are consistent with
experimental data and MC simulations carried out with the GEANT4-DNA
toolkit.

Keywords: Monte Carlo, ELF, gold, LISA, low-energy electrons

(Some figures may appear in colour only in the online journal)

1. Background and motivations

The realization of drag-free spacecraft has opened new frontiers to space exploration as well
as to missions aiming at testing the laws of fundamental physics [1–6]. A drag-free spacecraft
hosts a proof-mass in free fall shielded from external forces, such as drag and solar pressure, as
a geodesic reference system for its trajectory. The spacecraft that follows its free falling proof-
mass traces an orbit which contains valuable information of the local gravitational field useful
for geodesic applications. On the other hand, the drag-free satellite proof-mass is a practical
realization of a local inertial reference frame, and thus can be used as a test body to explore
the fundamental laws of physics. Proof-masses are used in the LISA mission as both free-
falling references of geodesic motion and end-mirrors for an interferometric measurement
of the gravitational wave strain. It is worthwhile to point out that the proof-masses are in
pseudo free fall because of the influence of the local thermal, gravitational and electromagnetic
environment determined by their own satellite. To limit these disturbing forces they need to be
electrically neutral with respect to their housing. Somemissions ground the proof-masses using
a thin gold wire, at the cost of additional force noise (damping≈f−1/2) that limits the free fall
performance at the lowest frequencies [3, 6], andwill not be compatible with LISA observatory
performance goal. GP-B was the first to use UV light and the photoelectric effect to control
the charge on its gyroscopes avoiding any mechanical contact [4]. Other missions afterwards,
used or planned to use photoelectric devices for the proof-mass charge management [5, 7–11].
The performance of these systems relies on the accurate knowledge of the space environment
and its interaction with the spacecraft. In the space environment, highly energetic particles of
galactic and solar origin easily penetrate the light structures of the spacecraft leading to the
charging of the proof-mass. The energy spectra of primary and secondary particles reaching
the proof-masses span over several orders of magnitude. Thus, in this work we focus on the
role played by keV and sub-keV electrons in the charging process of the LISA proof-masses.

2. Introduction

The Laser Interferometer Space Antenna (LISA) [8, 12] will be the first gravitational wave
detector in space to unveil the secrets of themHz gravitational Universe. Themission, designed
and led by ESAwith NASA participation, is in its phase B1 and it is scheduled for launching in
2034. LISA will consist of three spacecraft orbiting the Sun in a triangular constellation. Each
spacecraft hosts a pair of free falling proof-masses (TMs) following geodesic motion to reveal
the tidal acceleration of gravitational waves passing through the satellite constellation. The
ESA LISA Pathfinder (LPF) [5] mission tested most of the technology necessary for LISA,
in particular that it is possible to place a TM in geodesic motion in space with the required
sub-femto-g residual acceleration noise in the frequency band 0.1− 40mHz [13, 14].

The TMs are 2 kg Au/Pt cubes surrounded by an electrode housing (EH) separated by a
vacuum gap ranging from 2.9 to 4 mm [15, 16]. The EH provides the conducting shield from
external electromagnetic disturbances, the TM sensing and actuation, and also the local ground

2



Class. Quantum Grav. 40 (2023) 075001 S Taioli et al

potential reference for the TMs. In science operations, voltages of the order of 1 V are applied
to the electrodes. TMs as EHs are gold-coated with no mechanical or electrical contact to the
spacecraft, and as a consequence they accumulate charge [17] due to the cosmic rays of galactic
[18] and solar [19] origin interacting within the spacecraft. Any stray electrostatic field, origin-
ated from patch effects [20, 21] or from applied actuation voltages, couples to the TM charge
and produces forces and force gradients [22]. Moreover, cosmic-ray charging fluctuates7 as
do stray electrostatic fields. Noise in both TM charging and fields leads to important contribu-
tions to the TM force noise measured in LPF, which is relevant for the LISA acceleration noise
budget [23–26]. Additionally, galactic cosmic-ray short-term variations can be responsible for
coherent charge-induced forces that can be confused with transient gravitational wave signals
in the LISA science data. Even in the absence of stray electrostatic potentials, the TM charge
creates a force gradient, depending quadratically on the amount of deposited charge, which
couples the TMs to the noisy spacecraft motion. This creates additional force noise and affects
the TM control. As a result, TM charging must be limited for LISA. The TM discharging sys-
tem will consist of Ultra-Violet (UV) illumination to generate photo-electron currents from
the TM and the EH surfaces that allows to bring the TM to the desired potential level. This
technology was inherited from GP-B mission [4, 27] and tested successfully in LPF [28]. In
LPF, the TMs were discharged with UV Hg lamps, while in LISA a UV light emitting diode
based system is devised [29].

The discharging process was carried out either periodically, with the interruption of science
operations, or continuously. The latter approach induced a small but continuous noise to the
TM motion.

It is of primary importance to study the TM charging process before the mission launch in
order to design the charge control system and to consolidate the budget of the charge-induced
force noise for LISA. The LISA TM charging is associated with energetic particles able to
penetrate about 16g cm−2 of shielding material surrounding the TMs8. This sets a minimum
energy threshold of 100MeV to the energy of hadrons of galactic and solar origin penetrating or
interacting in the spacecraft. This limit decreases to 20MeV for electrons and positrons. Monte
Carlo (MC) simulations of the LPF TM charging carried out with FLUKA [31] and GEANT4
[32] before the mission was launched at the end of 2015 returned very similar results for TM
charging rate and noise at solar minimum conditions [17, 18, 33], despite different nominal
energy limits for electron propagation in GEANT4 (250eV) and FLUKA (1keV). This can be
explained in terms of the average ionization potential in gold that sets the actual limit of hadron
ionization to 790 eV in GEANT4 [17]. The input cosmic ray fluxes for the FLUKA simula-
tions carried out just before the mission launch [18] were predicted on the basis of the solar
modulation expected for the first part of the LPF mission operations. The comparison of these
last simulation outcomes with the LPF measurements, dated April 2016 [23], showed that the
net charging was roughly +25es−1, in the middle of the range predicted before flight, while
the observed charge noise was 3–4 times larger than the estimates. In addition, we observed
that the charging rates were within the expected range but measurably different on the two
TMs9. The difference in the charge rates may have originated from the different volt-scale AC

7 given the Poissonian nature of the charging process and possible additional low-frequency noise due to the modu-
lations of the interplanetary galactic cosmic-ray (GCR) flux.
8 We considered about 20% of additional material grammage with respect to LPF on the basis of the current inform-
ation of the LISA spacecraft design [30] .
9 LISA Pathfinder hosted a couple of TMs and EHs for differential acceleration measurements: one TM was used as
geodesic reference for the satellite, the other one as reference inertial body to measure the local forces of deviation
from the pure free-fall motion.
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electrostatic fields used for force actuation [23]. The possible causes of these observations—
namely an increase in charge fluctuations without any significant effect on the net charging,
and a dependence on rather small electrostatic potentials—were carefully evaluated. On one
hand, a certain fraction of electrons emitted by the surfaces turns out having a velocity parallel
to the electric field small enough to be sensible to the potential barrier between the TM and
the EH surfaces. On the other hand, in particular, the observations were suggesting that a large
amount of charges of the same sign were both entering and escaping the TMs. This scenario
is consistent with low-energy electrons (LEE) emitted roughly uniformly by the outer layers
of the TM and EH Au surfaces traversed by high-energy particles [17]. It is worthwhile to
recall that keV electron propagation in materials such as gold is of order of microns, setting
this limit to the layer of gold relevant to electron emission that can influence TM charging.
Moreover, LEE are mostly free to propagate in the gap between the TM and the EH where
potentials of the order of 1V are found. The discrepancy between the predictions of MC sim-
ulations and experimentally observed LPF TM charging noise measurements recorded during
the mission operations in April 2016 have been recently bridged by using a dedicated pro-
gram including low-energy electromagnetic processes (10–1000 eV), called LEI, in addition
to FLUKA [30, 34, 35].

These findings motivated us to explore low-energy physics electromagnetic processes by
using a more comprehensive approach to the electron transport in gold via a tailored transport
MC method and code (SEED, secondary electron energy distribution) [36–45].

The present work is also motivated to extend to GEANT4 a simulation work for LISA
and, in general, for applications of LISA gravitational reference sensor hardware to geodesy
missions [46, 47] or for other proposed gravitational wave observatories [9–11]. We note that
this topic has been considered of great relevance for space mission design by ESA and is the
object of a current agency-funded study [48].

SEED is a stochastic method that can be used to model the motion of electrons of several
hundreds eV energies impinging at a given angle on a target surface and traveling thereafter
inside the specimen. In a typical experimental set-up the emitted primary and secondary elec-
trons (even though this distinction is somehow forced, the electrons being indistinguishable
particles) are collected and counted by a spectrometer covering a large or the entire solid angle.
Within the SEED framework, the classical trajectory of each electron of the primary beam can
be tracked, from the entrance into the target to the escape out of the solid (or its capture if
the charge succeeds to completely deposits its energy), provided its motion satisfies given
energy and angular conditions. In this respect, SEED relies on the accurate determination of
the elastic and inelastic scattering cross sections. The electrons traveling within the material
make stochastic hops according to the probability distribution provided by such interactions.

Elastic scattering events occur typically when the electrons interact with the constituent
atomic nuclei of the sample emerging at some deflection angle with unvaried kinetic energy
owing to their mass difference. Inelastic scattering events instead are mainly due to electron-
electron interaction with an electron energy loss implied. In this regard, several energy-loss
mechanisms may occur, such as the excitation and the ionization of the target atoms, which
lead to generating secondary electrons (including the Auger electrons). The information on
how electrons lose energy during their motion within the solid target is embedded in the so-
called energy loss function (ELF). This function, which can be derived from experimental
measurements of electron energy loss spectra (EELS) [49] in transmission or reflection geo-
metry, is a unique fingerprint of the material and, properly weighted and integrated, gives
access to the inelastic mean free path (IMFP) [36–38, 40–44, 50]. To obtain a complete and
accurate description of the charge transport within a solid target, so as to assess the electron
energy spectra and the total yield (TEY), defined as the ratio between the reflected and the
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incident particles on target, the contribution of both primary and secondary electrons must be
included in the simulation [45].

The manuscript is organized as follows: in section 3 we present the calculation of the elec-
tron scattering cross sections for gold, the material used to coat the TMs and their EHs. We
finally provide a detailed numerical estimate of the LEE emitted from the gold surfaces by
using the SEED approach. In section 4 we first show the consistency between the electron
transport estimated in section 3 with dedicated MC simulations performed by GEANT4-DNA
(ver 11.0). Finally, we discuss the impact of the LEE onto the LISA TM charging.

3. The SEED algorithm

In our MC algorithm implemented in the in-house software SEED, the occurrence of either
elastic or inelastic scattering is evaluated by comparing random numbers with the relevant
probability distributions. These probability distributions are obtained from the knowledge of
the elastic and inelastic scattering cross sections, computed via the Mott theory [51] and the
Ritchie dielectric theory [50], respectively. In the next sections we will review thoroughly the
theoretical and computational concepts of our MC framework.

3.1. Kinetic energy distribution of the primary beam

The initial kinetic energy of the monoenergetic electron beams impinging on the solid tar-
get can be determined by analysing the experimental elastic peak, which collects the back-
scattered electrons that underwent zero-loss or quasi-elastic (phonon emission and absorption)
scattering. In particular, the elastic peak shows an energy distribution around the maximum at
E0, owing to the finite resolution of the spectrometer and the energy width of the initial beam
characterised by a full width∆E, which can be modelled by a Gaussian or a Lorentzian func-
tion. The area below the elastic peak, by which we typically rescale the spectral lineshape, can
be used to normalize the cumulative distribution probability

P(E ′) =
1

Area

E ′ˆ

E−

f(E)d(E), (1)

where f (E) is the (Gaussian, Lorentzian) function that describes the elastic peak distribution
and

Area=

E+ˆ

E−

f(E)d(E). (2)

with E± = E0 ±∆E. For each injected electron of the beam, the value of the initial kinetic
energy is determined by generating a uniformly distributed random number µ1 in the range
[0,1] that equates to the cumulative probability of equation (1). The electron kinetic energy is
increased by the material work function (Φ) after penetrating the surface.

3.2. Elastic scattering

The elastic scattering between electrons and the atomic nuclei of the solid target can be
described by either solving the Dirac equation in a central field using some approximation to
treat the exchange-correlation interaction, such as in the Dirac-Hartree–Fock (DHF) approach
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[42, 44, 52], or the Mott theory [51], by which the differential elastic scattering cross section
(DESCS) can be obtained as:

dσel

dΩ
= | f |2 + |g|2, (3)

where f and g are the direct and spin-flip scattering amplitudes, respectively [45, 53]. In the
latter formulation, which treats the constituents atoms essentially as independent scattering
centers (at least concerning the scattering potential), the DHF screening interaction can be
modelled by a linear combination of Yukawa potentials and adds multiple scattering effects
by introducing a phase factor proportional to the interatomic bond equilibrium distances [42,
44]. The Yukawa potential parameters for Au are taken from [54].

Finally, the total elastic scattering cross section (ESCS) σel(E) can be obtained by integrat-
ing equation (3) in the solid angle at each kinetic energy E. We show the results (red lines) in
the top (DESCS) and bottom (ESCS) panels of figure 1 in comparison to the calculations by
Riley et al [55] (blue full squares) and Mayol and Salvat [56] (blue line), respectively.

The elastic scattering mean free path is thereafter calculated, at a given kinetic energy, as:

λel(E) =
1

Nσel(E)
, (4)

where N is the atomic density of the target material.
In SEED simulations, the elastic scattering events lead only to a change in the direction of

the electron path. Our MC algorithm proceeds thus to evaluate the angular deflection of the
electron trajectory with respect to the incident direction. The scattering angle, in particular, is
obtained by assessing the cumulative elastic scattering probabilities for several different values
of the electron kinetic energy E:

Pel(θ,E) =
2π

σel(E)

θˆ

0

dσel(E)
dΩ

sinθdθ, (5)

and by equating the integral in (5) to a random number µ2 uniformly distributed in [0,1].

3.3. Inelastic scattering

During their path within the solid, electrons can transfer all or a fraction of their energy and
momentum to the atomic constituents of the sample, which may result in (resonant) excitation
or ionization processes. These mechanisms can be dealt with by using two different strategies
[45]: on the one hand, the continuous slowing-down approximation, where the charge loses its
kinetic energy continuously over its path; on the other hand, the energy straggling approach,
which takes properly into account the energy loss mechanisms, including the possibility that
the electronsmay lose the whole of their energy in only one inelastic collision. Since our goal is
to accurately assess the energy loss spectrum and the TEY, we will use the latter approach that
is able to describe the statistical fluctuations of the different energy loss mechanisms, such as
the secondary cascade. We notice that integrated quantities, such as the TEY, are less affected
by the choice of the algorithm for treating the energy loss. In this respect, a key quantity
to account for the energy losses suffered by the electrons travelling within the solid is the
dielectric function.
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Figure 1. Top: differential elastic scattering cross section of Au at beam kinetic energy
of 1000 eV calculated using equation (3) (red line) in comparison to calculations by
Riley et al [55] (blue full squares). Bottom: total elastic scattering cross section of Au
as a function of the electron kinetic energy obtained by integrating equation (3) in the
solid angle (red line) in comparison to Mayol-Salvat calculations (blue line) [56].

3.3.1. Dielectric and ELFs. The energy loss mechanisms due to the electron-electron interac-
tion (other possible energy losses being due to the electron-phonon and, for insulating materi-
als, to polaronic effects) can be modelled via the dielectric formalism [57], which relies on the
energy- and momentum- dependent macroscopic dielectric function ϵ̄(q,W) [50]. The latter
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quantity encodes the necessary information on both the single-particle and collective (plas-
mon) excitations specific of the material. A detailed explanation on how to obtain ϵ̄(q,W)
from first principles calculations is reported in the appendix. Within this framework, one
relies on the ELF of the material, which is related to the macroscopic dielectric function as
follows:

ELF= Im

[
−1

ϵ̄(q,W)

]
. (6)

The ELF is a unique characteristic of the material and, in particular, does not depend on
the beam features. It can be obtained by following two routes: one can rely on a fit of the
experimental data, typically restricted to the optical regime (long wavelength limit, q→ 0),
or one can reckon it from first-principles simulations. We stress that the experimental ELF is
usually obtained from measured EELS by background subtraction [49], a procedure that is not
free from uncertainty [36–38] and mostly limited to zero momentum transfer.

By using first-principles simulations one can determine the ELF of any material without
relying on experimental data, also with the inclusion of the momentum transfer dispersion (at
the same computational cost of the zero-momentum transfer), which is crucial to determine
accurately the IMFP. It was also shown that the ab initio calculation of the ELF delivers bet-
ter agreement with experimental measurements of derived quantities, such as the energy loss
spectral lineshape as well as the TEY and the dose absorbed by materials [42–44, 58]. Thus,
we decided to pursue this latter approach.

In particular, we carried out the ab initio calculation of the dielectric linear response
function in and out the optical limit (q→ 0) using time-dependent density functional theory
(TDDFT) implemented in the ELK suite [59]. ELK implements an all-electron Full-Potential
Linearized Augmented-Plane-Wave approach that is thus not affected by any pseudopoten-
tial approximation to describe the ion-electron Coulomb interaction. The local spin-density
approximation (LSDA) exchange-correlation functional [60] has been used for including the
spin-orbit coupling in the spin-polarized calculation of the ground state.

Gold has a face-centred cubic structure belonging to the space group symmetry Fm− 3m
with a lattice parameter of 4.078 Å [61]. A 32 × 32 × 32 Monkhorst-Pack k-point grid for
sampling the Au first Brillouin zone (1BZ) zone and 50 empty bands in order to obtain con-
verged results up to≃ 70 eV were employed. The ELF were averaged over the three compon-
ents of the polarization vector of the external electromagnetic field.

Our ab-initio results (red line) were compared with the available experimental optical data
[62, 63] (black line) in figure 2, finding an excellent agreement. We notice that the small dis-
crepancies between calculations and experimental measurements of the ELF [62, 63] in the low
energy regime can be rationalized by knowing that the latter are obtained from experimental
EELS that include both bulk and surface plasmon excitations. In all our simulations we neglect
such surface effects, which can affect the spectral distribution of the emitted electrons, particu-
larly at low energy of the primary beam. Comparable results have been obtained in [64], where
the ELF of Au was obtained by using a different approach based on Liouville-Lanczos method
adopting scalar relativistic ultra-soft pseudopotentials to model the ion-valence electron inter-
action and the Lanczos recursion method that avoids computationally-expensive summation
over empty bands [65, 66]. In table 1 we report the peak energy positions together with their
theoretical interpretation in comparison to the analysis reported in [64, 67]. While our findings
substantially agree with those in [64], we are tempted to assign the peaks at 23.74 and 31.35 eV
(peak 3,4 in figure 2) to mixed collective excitations, owing to an almost zero real part of the
dielectric function along with a small while not negligible imaginary part accounting for their
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Figure 2. Long wavelength limit (q→ 0) of the ab-initio ELF of Au (red curve) in
comparison to experimental optical data from [62] (black curve). The LSDA to the
exchange-correlation functional has been used to include SO coupling alongside the
ALDA approximation to the time-dependent exchange-correlation kernel.

Table 1. Optical ELF (q→ 0) of bulk Au. First column: peak labels according to
figure 2. The second (ωa) and third (ωb) columns report the peak energy position in
the ELF as by [64] and [67], respectively. In the fourth column we report the values
obtained in this work with the number of digits representative of the numerical accur-
acy, while in the fifth column (Exp.) the EELS experimental data from [62]. In the last
column (Origin) the theoretical interpretation of each energy loss peak is outlined. IT
stands for interband transition, while ME means mixed excitation.

peak label ωa (eV) ωb (eV) This work Exp. Origin

1’ 2.2 2.66 2.5 ME
1 5.1 5.5 5.94 5.9 5d plasmon
2’ 10.2 11.5 11.49 11.9 Mainly-6s plasmon
2 15.5 18 15.67 15.8 IT
3 23.8 25 23.74 23.6 ME
4 30.8 35 31.35 31.5 ME
5 36.9 40.5 37.5 39.5 IT
6 43.5. 43.5 44 44 IT
7 59.2 IT
8 65.62 IT
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widths (as found in [67, 68], where a plot of Re(ϵ) and Im(ϵ) is reported). We remind that the
ELF in equation (6) can be rewritten as

ELF=−Im(ϵ̄ −1) =
Im(ϵ̄)

Re(ϵ̄)2 + Im(ϵ̄)2
(7)

which implies that at this frequency the plasmon resonance (determined by the fulfilment of
the condition Re(ϵ̄)≃ 0) is influenced by the interband transitions therein (Im(ϵ̄) ̸= 0).

We stress that the well-resolved double-peak shape of the ELF is due to the presence of
localized d−bands, which are typical of other transition metals. The use of the local dens-
ity approximation (LDA) approximation to describe the d−bands of Au may lead to 0.5 eV
redshift of the interband transitions in this energy region (see e.g. [68]), an effect that can be
partially cured by introducing many-body effects via ab initiomany-body perturbation theory,
whereby a ≃ 0.4 to ≃0.8 eV opening of the 5d− 6sp interband gap may reduce the discrep-
ancy with the experiments [69]. We also notice in figure 3 that the double-peak shows little
dispersion and lower intensity at finite momentum transfers along the two different symmetry
directions (1,1,1) (top panel of figure 3) and (1,1,0) (bottom panel of figure 3). This almost
dispersionless characteristic suggests that their nature resembles interband electronic trans-
itions rather than collective excitations. This seems also the case of the shoulder at 2.66 eV
(1’ in figure 2) and at 15.67 eV (peak 2 in figure 2), which show a very weak dispersion
with increasing momentum transfer. We stress that in EELS experimental data the low-energy
shoulder overlaps with the surface plasmon contribution [70]. The peaks at 5.94 and 11.49 eV
(peaks 1 and 2’ in figure 2), which have been identified as 5d and 6s plasmons, display a
sizeable momentum dispersion (more evident in the bottom panel of figure 3), which rein-
forces their interpretation as collective charge excitations. In fact, besides the double-peak
structure, the localized d−bands play another important role in the dielectric response func-
tion of Au for damping the 5 d plasmon energy from that expected by the free-electron plasma
frequency model (≃9 eV) to 5.94 eV (peak 1 in figure 2). These two well-resolved plasmon
peaks show that 5 d and 6 s valence electrons in Au behave as separate electron gases. In gen-
eral, at very high momentum transfers (see orange and purple lines in the top and bottom
panels of figure 3) the spectral lineshape is characterised by a flat behaviour; in this regime the
transitions are single-particle in nature and dominated by the kinetic energy. Peaks at higher
energies (5,6,7, and 8 in figure 2) are also weakly dispersing, which indicates their nature of
interband transitions.

3.3.2. Fit of the ELF by classical Drude oscillators. To run our transport MC scheme for
modelling the energy loss and secondary emission spectra of Au, we need to determine also
the inelastic scattering cross section. The latter can be obtained by knowing the dependence of
the ELF—the so-called Bethe surface—over the entire spectrum of excitation energiesW and
momentum transfers q [40, 42, 71]. The first-principles calculations of the ELF over a large
range of energies is prohibitive due to the enormous number of electronic transitions to the
excited states that must be included in the model. Moreover, the richest structure can be found
in the low-lying part of the excited spectrum, in an energy range of 80 eV from the Fermi level,
the high energy region being characterised typically by a few core level vertical transitions and
a pre-continuum broad lineshape. Thus, the extension of the ELF along the excitation energy
axis has been carried out by matching the ab-initio results with the experimental NIST x-ray
atomic data set up to 30 keV [72] using E5p1/2 = 74.2 eV [73] as threshold energy of the
semi-core transitions for Au.
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Figure 3. Top panel: ELF of Au at finite momentum transfers along the (1,1,1) dir-
ection. The calculated q-vectors are reported in lattice coordinates in the legend (e.g.
0.0625 means the q-vector (0.0625, 0.0625, 0.0625)). Bottom panel: ELF of Au at finite
momentum transfers along the (1,1,0) direction. The calculated q-vectors are reported
in lattice coordinates in the legend (e.g. 0.0625 means the q-vector (0.0625, 0.0625, 0)).
The LSDA to the exchange-correlation functional has been used to include SO coupling
alongside the ALDA approximation to the time-dependent exchange-correlation kernel.
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Table 2. D–L parameters of the optical ELF (q→ 0).

i Ai (eV2) γi (eV) W i (eV)

1 1.969 3.463 5.382
2 17.508 6.121 11.644
3 26.815 4.948 15.909
4 106.586 5.784 24.449
5 43.843 3.086 30.993
6 98.402 5.881 33.355
7 90.344 5.670 37.938
8 177.047 7.852 44.489
9 551.321 18.326 59.799
10 29.773 3.667 68.164
11 128.517 7.449 74.020
12 65.4861 6.292 87.151
13 46.896 7.192 95.522
14 2500.0 350.0 330.0
15 2000.0 2000.0 2500.0
16 200.0 5000.0 14000.0

Finally, the total ELF in the optical limit was fitted by using generalized classical Drude–
Lorentz (D–L) oscillators as follows:

Im

[
−1

ϵ̄(q= 0),W)

]
=
∑
i

AiγiW

(W2
i −W2)2 +(γiW)2

(8)

where Ai,W i, and γi are fitting parameters, which physically represent the strength, energy and
linewidth of the electronic transitions, respectively. In table 2 the optimal fitting parameters
of the D–L functions used to fit the optical ELF (zero momentum transfer) are reported. In
the fitting procedure we checked that the f -sum rule is satisfied. In figure 4 we show the fit
(green line) of the ab-initio ELF extended up to 10 keV with the NIST data [72]. We notice
(see figure 2) that the TDDFT ELF data have a significantly higher resolution than the optical
data, as detailed optical measurements in this regime can be difficult. This results in the need
of including several Drude oscillators to reproduce the ab-initio data.

Finally, to model the extension of the ELF to finite momentum transfers (q ̸= 0) along
the entire energy axis, we found that the momentum dispersion of the electronic excitations
obtained from ab-initio calculations can be accounted for by introducing a dispersion law to
the characteristic energies of the oscillators Wi(q) as follows [74]:

Wi(q) =
√
Wi

2 +(12/5) ·Ef · q2/2+ q4/4 (9)

where Ef is the Fermi energy.

3.3.3. The IMFP of electrons in Au. The knowledge of the ELF as a function of both trans-
ferred momentum and energy allows one to calculate the differential inverse IMFP, using the
following relation:

dλ−1
inel

dW
=

1
πa0E

ˆ q+

q−

dq
q
[1+ fexc(q)]Im

[
− 1
ϵ̄(q,W)

]
(10)
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Figure 4. Ab-initio ELF (green line) extended to high excitation energies [72] alongside
the D-L fit (purple line). The fit parameters are reported in table 2.

where a0 is the Bohr radius,m is the electronmass, and the integration limits are q± =
√
2mE±√

2m(E−W). In equation (10) we introduce the exchange interaction between the impinging
and target electrons according to Born-Ochkur [75], which reads:

fexc(q) =

(
ℏq
mv

4
)
−

(
ℏq
mv

2
)

(11)

where v=
√
2E/m is the electron velocity. The IMFP can be obtained by integrating the

equation (10) in the interval of energy losses (0, E/2) (assuming that the secondary electrons
are those emerging with lower kinetic energy). Our results are shown in figure 5 (red line)
and compared with calculations presented by Tanuma et al (green line) [76] and Ashley et al
(blue line) [77].

As a result of inelastic scattering, electrons lose a fraction W of their kinetic energy. In
the SEED statistical model, such energy loss is determined by equating a random number µ3

uniformly distributed in the interval [0,1] with the relevant inelastic cumulative probability:

Pinel(E,W) = λinel(E)
ˆ W

0

dλ−1
inel(E,W)

dW
dW. (12)

The value of W for which Pinel = µ3 is regarded as the energy loss due to a single inelastic
interaction. The electron kinetic energy is then decreased by this value. However, if the energy
loss is larger than the first ionization energy B, an ionization occurs: a secondary electron will
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Figure 5. Inelastic mean free path (red line) of Au as a function of the primary beam
kinetic energy, in comparison to Tanuma et al (green curve) [76] and Ashley et al (blue
curve) [77].

be generated which starts traveling within the solid target with kinetic energy E=W−B and
may undergo, in turn, elastic and inelastic scattering processes. Here we assume that in gold,
work function and ionization energy B are the same (4.7 eV). Having access to the elastic
and inelastic scattering cross sections, our SEED algorithm works as follows: we extract a
random number µ uniformly distributed in the interval [0,1], and we use such random number
to determine the step length that each electron travels within the solid target ∆s=−λ ln(µ),
where λ is total mean free path. λ includes all the scattering processes and can be assessed
from λ−1 = λ−1

el +λ−1
inel, where λ

−1
el and λ−1

inel are the inverse elastic and IMFPs, respectively.
Finally, the SEED method proceeds by selecting either an elastic or inelastic scattering event
by comparing a random number µ4, uniformly distributed in the range [0,1], with the relevant
scattering probability. In particular, if µ4 < pel = λ−1

el /λ
−1 the scattering is elastic; otherwise

the electron faces an inelastic event.

3.4. Energy loss spectrum and secondary electron TEY of Au

The elastic and inelastic cross sections of Au allow SEED to simulate a simple backscattering
experiment of an electron beam on a thick gold target, and to calculate the energy spectrum
of the emerging electrons shown in figure 6. In our SEED simulations we include the most
important mechanisms of energy-loss, such as the single-electron excitation from valence to
conduction bands, plasmon generation, and the elastic scattering with the ions of Au. These
energy loss mechanisms are reproduced as several well-resolved peaks in the experimental
energy loss spectrum, which collects the electrons emerging at a certain angle from the Au
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Figure 6. Monte Carlo simulation of the energy-loss spectrum of electrons emerging
from the Au sample for different primary electron beam kinetic energies: black line
(1000 eV), red line (2000 eV), blue line (3000 eV). Left and right insets report the
secondary electron distribution (for all primary beam kinetic energies) and the plasmon
peaks (for 1000 eV only), respectively.

specimen as a function of their kinetic energies. A fraction of the electrons of the primary
beam can be backscattered with the same energy as the primary beam. These electrons form
the so-called elastic—or zero-loss—peak.

In figure 6 the elastic peak can be found at the extreme right of the relevant spectrum as a
narrow peak centred at the kinetic energy of the primary beam (1000 (black line), 2000 (red
line), and 3000 (blue line) eV, respectively). The half width at half maximum is set to 0.4 eV
to account for the typical finite resolution of an electron spectrometer and the beam’s intrinsic
width.

We now discuss the spectral lineshape of figure 6: we use the energy loss as a descriptor
because of its invariant value with respect to the primary beam kinetic energy. The shoulder at
≃ 2.3 eV below the elastic peak (mixed excitation), which cannot be attributed to surface plas-
mon losses not included in our calculation, are not clearly resolved, owing to the peak broad-
ening. Also the very low energy loss due to the electron-phonon scattering (fraction of eV)
are hidden behind the elastic peak. Moving towards larger energy loss, the spectrum presents
the plasmon peak (see the inset at the right in figure 6), which is due to the electrons that have
suffered a single inelastic scattering within the medium and were able to excite a plasmon. The
bulk plasmon peaks of Au can be found at ≈5.77 and 11.6 eV on the left of the elastic peak,
slightly shifted with the respect to the maxima of the ELF (5.94 and 11.49 eV, respectively,
see also table 1). Of course, multiple electron-plasmon scattering and excitation may occur;
however, they have very low probability and, thus, intensity (they are scarcely visible in the
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spectra of figure 6). Finally, the origin of the series of clearly resolved spectral features (see
the inset at the right in figure 6) found in the region 15–65 eV from the elastic peak at ≈15.7,
24.7, 31.7, and 44 eV can be attributed to 5d,4f → 6s interband electronic transitions, with
the exception of the intermediate peaks at 24.7 and 31.7 eV, which show also plasmon-like
characteristics (Re(ϵ)≃ 0) affected by the concurrent contribution of interband and intraband
transitions occurring around the same energy (Im(ϵ) small but ̸= 0).

The region of the spectrum characterised by a pronounced broad peak below 50 eV (see the
inset on the left side of figure 6 zooming this part of the energy loss spectrum), which is called
the secondary electron peak, collects those electrons that have been extracted by electron-
electron collisions and emerge from the target surface after having lost most of their energy
via several inelastic scattering events. Owing to the number of well-resolved peaks in the ELF,
it is not surprising that our MC simulations of the secondary electron peak (see the left inset
of figure 6) find a wiggling rather than a smooth behaviour in that energy region. Secondary
electrons are generated upon inelastic scattering events when the primary beam electrons lose
a kinetic energy corresponding to the ELF peaks. Furthermore, secondary electrons can lose in
turn their kinetic energy before leaving the surface of the sample according to the ELF. These
wiggling features are also present when we use a very high number of trajectories (in excess
of 109), and thus cannot be attributed to statistical noise.

Using the energy-straggling strategy implemented in our MC code [45], we focused also
on the quantitative modelling of the secondary electron emission yield from Au. In particular,
we reproduce by SEED the TEY, as the sum of both backscattered and secondary electrons
for primary beam kinetic energies in the range 0–10 000 eV, that is the integral of each of the
energy loss spectra at each primary kinetic energies.

If the impinging particles have a kinetic energy above the ionization threshold of the atomic
constituents, secondary electrons can be ejected upon inelastic scattering events and, after
suffering in turn a number of elastic and inelastic interactions, may eventually escape from
the target surface, provided that the electron overcome the energy barrier at the solid-vacuum
interface (work function). The angular emission of the secondary electrons is reckoned by
adopting the classical binary collision model [44], taking into account momentum and energy
conservation.

The emission condition at the solid-vacuum interface reads:

Ecos2 θ ⩾ Φ, (13)

where θ describes the angle formed by the normal to the sample surface and the electron
trajectory intercept, and E is the residual electron kinetic energy. The transmission coefficient
T can be obtained by modelling the electron emission as a problem of a particle scattered by
a step potential barrier [45]:

T=
4
√
1−Φ/(Ecos2 θ)[

1+
√

1−Φ/(Ecos2 θ)
]2 . (14)

The electron emission from the target surface occurs, according to our statistical scheme,
by comparing T with a random number µ5 uniformly distributed in the interval [0,1]: if µ5 < T
the electron emerges from the surface and its energy is decreased by an amount equal to the
work function Φ of the material (4.7 eV for Au), otherwise it is scattered back to continue its
path within the solid target.

We notice that the value of Φ has a paramount importance in determining the TEY and in
describing the electron emission process: in particular, the higher is the work function (the
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Figure 7. Cosine angular distributionG(θ) of SE escaping from the Au surface for 1 keV
primary electron beam.

barrier to overcome) the smaller is the electron yield. In figure 7 we show the angular distri-
bution pattern of the secondary and backscattered electrons emitted from the Au surface upon
1 keV electron beam impinging on the sample. In particular, the angular distribution follows
closely a cosine function with a maximum ≈45◦ and is almost inversion symmetric around
that value. Notice that such distribution is produced by normalizing to the value of the yield
(1.5) we have obtained by using SEED at 1 keV.

In figure 8 we report the TEY as a function of the initial kinetic energy of the primary beam
in comparison to experimental data (magenta line) for Ar+ sputter cleaned Au in situ [78].
In particular, the black line shows the yield for normal incidence of the primary beam with
respect to the target surface, while the red, green, and blue lines report the yield for incident
angles of 20◦, 40◦, and 60◦ with respect to the target surface normal, respectively. We notice
that the agreement between the black curve and the experimental results, recorded at the same
geometry, is remarkable (see the inset of figure 8 in which we zoom around the energy region
of the available experimental data).

Furthermore, we notice that the yields at all incident angles display an increasing behaviour
for increasing primary beam kinetic energy until a maximum is reached. At very high energy
(>30 keV, not reported in figure 8) the yield reaches an asymptotic value of≈0.5, which is the
known value of the backscattering coefficient of Au. This behaviour can be easily rationalized
by assuming that both the number and the average depth at which the secondary electrons
are produced increases with the primary beam kinetic energy. Thus, at low primary energy a
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Figure 8. Comparison between our SEED calculations of TEY from an Au sample as a
function of the primary beam initial kinetic energy and the experimental data (magenta
line) [78] for Ar+ sputter cleaned Au in situ. Calculations were carried out for different
incident angles of the electron beam; black curve: normal incidence; red, green, and
blue lines report the TEY for incident angles of 20◦, 40◦, and 60◦ with respect to the
surface target normal, respectively. In the inset we zoom around the energy region where
experimental data are available.

relatively small number of secondary electron is produced close to the surface. At increasing
primary energy, the average depth of secondary emission increases (as so does the number of
secondary electrons generated, owing to the higher primary kinetic energy) to the point that it
becomes so deep that only a small number of secondary electrons is eventually able to escape
from the target. Our SEED approach is able to reproduce this behaviour, with the maximum
monotonically blueshifting and becoming more intense with increasing incident angles with
respect to the surface normal. Indeed, for grazing incident angles of the incoming electron
beam, the number of escaping secondary electrons increases.

In the end, we note that surface contamination of the gold sample due to air exposure prior
to the flights can have a dramatic impact on its properties, in particular on the work function Φ
[28, 79–81]. In this respect, surface treatments, bake out cycles, and the local pressure envir-
onment can have an important and not easily predicted influence on the actual value of the
work function. The most frequent contaminants on gold samples exposed to air are carbon
and oxygen (see [79, 80]). According to Turetta et al their presence leads to a fluctuation of
Φ in air from a value of 5.25 eV for clean Au(111) to 4.75 eV as a result of the exposure to
laboratory environment for a short time (few minutes), and back to 5.25 eV after a relatively
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long period (few months) (see figures 1(a) and (b) of [79]). Perhaps the most relevant case
for LISA hardware is the in-flight experience from LPF, where photoelectric currents were
measured under UV illumination—at 254 nm, 4.88 eV—by the charge management system
[28]. The effective data for photoelectric yield as a function of TM potential were compatible
with work functions from the TM and EH gold coatings in the range of 3.9–4.5 eV. These
surfaces had, after exposure to air during assembly, been baked to 115◦C in vacuum before
final sealing and storage on ground for roughly 1 year before launch, followed by venting to
deep space in orbit. Work functions in the same range were observed by Wass et al for gold
samples under vacuum condition after limited air exposure [81], although one sample, out of
five examined, exhibited a higher (>4.89 eV) value after more than 2 years in an uncontrolled
vacuum environment.

The TEY calculations were carried out for a value of Φ equal to 4.75 eV, achieved within
the first 60 minutes of air exposure according to Turetta’s observations, which represents an
average value between the clean Au(111) and the LISA expectations [81]. We note that the
work function is an input parameter of our simulation; by repeating the simulations for Φ=
5.25 eV, we found a decrease of ≈10% of the TEY in the spectrum of primary beam kinetic
energies investigated in this work. Decreasing the work function would indeed result in an
increment of the TEY.

The SEED code uses a CPU time that is almost proportional to both the number of traject-
ories included in the simulation and to the primary beam kinetic energy, and is also dependent
on the work function, whose value affects the number of emitted secondary electrons. Typical
CPU times for generating the electron spectrum using 107 trajectories, with a work function
equal to 5.25 eV, for a primary beam kinetic energy of 1 keV, are ≈2000 sec for a modern
CPU equipped with 10 cores. We note that this time performance exceeds by far the GEANT4
one.

4. Perspectives for the study of the LISA TM charging

The results of the SEED simulation reported in section 3 contain new relevant information
about the charging process of the LISA TMs. The spectra in figure 6 indicate that energy of
the backscattered electrons has an important component below 50 eV due to the secondary
electrons: for 1 keV beam, ≈25% of the emerging electrons are in the 0–10 eV energy range,
only 3% belong to the elastic peak, and the remaining part is approximately uniformly distrib-
uted over the rest of the energy spectrum. This is the confirmation of the scenario proposed
in [17] of LEE presence in the gap between TM and EH. Moreover, being the TEY> 1 in the
energy interval 0.2–5 keV (or more for higher incidence angles), figure 8 suggests that LEE
would increase in number within the gap due to repeated electron emission occurring upon
backscattering events at the interface of the TM and EH.

For studying quantitatively the impact of these electrons in the charging process of the LISA
TM we must now turn to tests with a representative geometry of the TM and EH geometry
considering the fluxes of primary particles characteristic of the space environment. In this
work we approach this study by using MC simulations based on GEANT4 toolkit [17]. The
GEANT4 framework is a standard and widely used tool in particle physics that allows one
to simulate particle propagation in matter. In particular, it is able to deal with the transport
of elementary particles in complex geometries, including those of the LISA satellites, over a
wide range of energies characterizing the galactic cosmic rays and high-energy solar particles.
Therefore, this toolkit is fundamental for calculating the TM charging rate and charge noise on
LISA TMs for a variety of environmental conditions in space, including both stationary and
non-stationary particle fluxes.
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In the remaining part of the paper we first compare the LEE production in a GEANT4-based
simulation with the results presented in section 3. This comparison represents an independent
test of our ab initio calculations and sets the basis for the development of an end-to-end tool to
simulate the TM charging effects on the LISA mission. The toolkit development is beyond the
scope of the present work and will be discussed in a future paper. Finally, we provide a first
quantitative analysis of the impact that the transport of LEE has in the TM charging simulation.

4.1. GEANT4 MC

The GEANT4 engine allows for a modular management of the physical processes that can
be added to the simulation in order to make it more precise at a cost of a higher CPU time.
Such processes can be added in a so-called ‘modular physics list’. Each process is implemen-
ted in terms of energy and material dependent cross sections which are modelled by different
theoretical approaches that can be selected by the user. This list is called ‘modular’ as the soft-
ware describing the physical processes of the same type (electromagnetic, hadronic, decay. . .)
is collected in libraries that can be linked independently for proper simulations of different
particles, energy ranges, and materials.

Particularly important in our case is the electromagnetic library. A module within the lib-
rary, initially developed for studying radiobiology and DNA damage by ionizing charged
particles, is called GEANT4-DNA [82]. In its latest version, the module (formerly available
only for water target to mimic human tissue) also includes the cross sections for solid gold.
Having been designed to simulate the propagation of extremely low-energy electrons gener-
ated by ionizing radiation in biological materials and gold nano-particles, it provides reliable
results down to electron energies of the order of 10 eV. In general, a GEANT4 simulation
allows for the propagation of each particle in discrete steps whose length is calculated from
the highest cross section of the processes active in the region of the simulation geometry. To
each of these steps, a continuous energy loss, proportional to the length of the step, is assigned
depending on the material of the volume being crossed. This way of managing the ionization
energy loss is very efficient in terms of computation time and is particularly reliable at high
energies, when the step-lengths are relatively long. Conversely, this approach is not precise
enough to describe accurately the energy spectrum of the simulated particles at extremely low
energies, when the discrete nature of the energy loss process becomes important. Nevertheless,
the number of secondaries produced and the deflections of the particle trajectories depend only
on whether or not any inelastic interaction takes place and thus the GEANT4 simulation can
be considered reliable in this respect. This motivates the choice of TEY as the observable for
comparing GEANT4 calculations with the SEED results described in section 3.

4.2. Experiments and results

An electron backscattering experiment was simulated by using the GEANT4 framework with
a simplified experimental geometry consisting of a crystalline, thick gold target and a mono-
energetic electron beam of various energies ranging from 0.1 to 50 keV. The simulation
includes a virtual detector counting every electron backscattered from the target, not dis-
tinguishing the primary electrons from secondary electrons produced near the target surface
escaping the material. This experiment is the exact reproduction of the one run with SEED in
section 3.

In figure 9 the results of the simulated TEY as a function of the energy of the primary beam
are presented. GEANT4-DNA manages the generation of low-energy electrons down to 10

20



Class. Quantum Grav. 40 (2023) 075001 S Taioli et al

Figure 9. Total electron yields obtained by the GEANT4 simulation as a function of
electron beam energy in comparison to experimental data (magenta line) [78] and SEED
calculations (red line). The different curves show the results obtained by changing the
minimum energy threshold for the secondary electron propagation, in particular: 5 eV
(blue line), 7 eV (green line), and 10 eV (black line).

eV, but allows for the propagation of particles in the geometry at lower energies. The curves
in figure 9 represent the yields obtained with different minimum propagation energies.

All the curves converge to a value of≈0.5 above approximately 10 keV, in accordance with
the expected backscattering probability of an energetic electron on a gold target. Below 10 keV
energies, the contribution of secondary electrons escaping the target becomes important, and
the TEY increases even above 1, but only if the minimum propagation energy allows electrons
to be propagated backward to the virtual detector. The value of the minimum energy threshold
that gives a result compatible with SEED calculation and experimental results is ≃ 5 eV [78]
(see figure 9). This result follows from the fact that 5 eV is compatible with the gold electron
work function used in section 3.

In order to highlight the importance of considering LEE in the simulation of the LISA
TM charging, it is useful to provide a quantitative estimate. To this purpose we simulated a
proton beam of 1 GeV energy, representing the median energy of the galactic spectrum at 1
AU, traversing 16gcm−2 of material [83]. The geometry consists of four aluminum spherical
shells enclosing a cubical box, 150 nm thick and 5.2 cmwide, representing the inner part of the
EH, and the LISA cubic TM separated by a 3 mm vacuum gap. This arrangement, sketched in
figure 10, is roughly representative of the material traversed by particles incident on the LISA
spacecraft. The adoption of a simplified geometry is a common practice in the design process
of space missions to carry out a first guess of the effects of the space environment on sensitive
parts of the satellite [84]. In the MC simulation, we selectively activate the LEE transport only
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Figure 10. Simplified geometry of the LISA TM system.

on a gold 150 nm thick layer on the TM and EH surfaces. This approach, described in [30]
allows us to save computation time without losing the significance of the simulation as the free
mean path of 100 eV electrons is of the order of 1 nm in gold. Exactly the same experiment was
simulated using the standard electromagnetic physics advised as default in GEANT4, available
in different options. The option 4 (OPT4) of this set-up is able to model the electromagnetic
processes for electrons down to 100 eV [85]. Figure 11 shows the energy spectrum of the
electrons intercepted by a virtual detector in the gap between the TM and the EH with LEE
transport in comparison with OPT4.

The simulation with the LEE transport activated (black line in figure 11) produces with
respect to the OPT4 one (green line in figure 11) an excess of electrons at the lowest (below
10eV) and the highest energies (close to 1MeV) and a reduction in the intermediate interval.
This appears as a sort of redistribution of the electrons in the energy bins. However, by integrat-
ing the spectra, one would observe that the total number of the electrons produced with LEE is
bigger by about 20%–30%. Considering just the fraction up to 20 eV, with LEEwe count about
one third of the total electrons and the increment is almost one order of magnitude. We stress
that early MC simulations based on GEANT4 [17, 18, 33] systematically underestimated the
TM charge noise in LPF because they were unable to account for these additional electrons.
We thus conclude that to properly estimate the TM charging during the LISA space mission
is mandatory to use LEE in future MC simulations. Moreover, we recall that local electric
voltages of the order of 1 V are applied by the sensing and actuation circuitry to control the
TM motion in LISA as were in LPF. The resulting electric fields are big enough to influence
the motion of the low-energy (≈10 eV) electrons10 biasing the charging of the TM. This bias
contribution can be estimated by using FEM-based software able to calculate the local electric
fields in the gap between TM and EH from the timelines of the electrode commands and to
trace the electrons paths.

10 and also of all those electrons with small enough velocity parallel to the field.
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Figure 11. Energy distribution of the electrons in the TMgap produced by a proton beam
using LEE transport (GEANT4-DNA, black line) or adopting option 4 for the standard
electromagnetic libraries (OPT4, green line).

5. Conclusions

In this work we shed light on the mechanisms that underlie the charging of the TMs hosted
in drag-free spacecraft with particular reference to the LISA mission and its Pathfinder. We
mainly focus on the role of the keV and sub-keV electrons aiming to accurately include their
motion in the numerical modelling of the charge transport within the device at the interface
between the TM and the EH.

We studied the electron transport within the gold TM by the in-house MC tool SEED to
investigate in particular the low-energy regime. SEED uses as input the elastic and inelastic
cross sections of Au. The required IMFP was calculated numerically using the dielectric
approach, which is based on the ELF. The ELF of Au was assessed from first principles cal-
culations up to 70 eV and extended to include higher single-particle excitation energies by
matching the ab-initio results with the experimental NIST x-ray atomic data. The elastic mean
free path to model the trajectory deviation of the electrons scattered out by the atomic nuclei
of the target was calculated via the Mott theory.

Using our MC approach, we were able to follow the trajectories, also in their way out of
the solid, of the backscattered primary beam as well as of the secondary electrons emerging
from the surface at very low energy. This information has been used to calculate (a) the energy
spectrum of the electrons down to very low energy and (b) the TEY in the 0–10 000 eV energy
range for different angles of incidence.
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The spectral lineshape reveals a crucial role in the TM charging of the electrons below 50
eV, that was discussed, but not included in previous MC simulations concerning the LISA
satellite. Moreover, we used these results to customize a framework based on the GEANT4
11.0 toolkit in which simulations can include the contribution of electrons down to 5 eV. In this
set up, we were able to reproduce the TEY calculated using SEED and to give a first estimate
of the contribution of the low-energy electrons in a relevant test-case for the LISA TMs. To this
purpose, we considered a 1 GeV proton flux, representing the average energy of the galactic
cosmic ray spectrum at 1 AU at the solar minimum and a simplified LISA spacecraft geometry.
We have found that the low-energy electron transport raises by 20%–30% the total number of
electrons (secondary and backscattered) contributing to the TM charging. A consistent fraction
(one third) of the total number of electrons is below 20 eV and would be able to bias the TM
charging under the influence of the low voltages applied to the sensing and actuation electrodes
in the LISA science operations.
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Appendix. Calculation of the macroscopic dielectric function

To calculate the macroscopic dielectric function, we start from the polarization (or density-
density response) function χ(r,r ′,W)

ρind(r,W) =

ˆ
dr ′χ(r,r ′,W)Vext(r ′,W) , (15)

where ρind(r,W) is the electron density induced by the external Coulomb potential Vext, andW
is the electron excitation energy (or the electron energy loss). χ(r,r ′,W) can be directly related
to the electronic band structure of the material. For periodic solids, one can use one-electron
Bloch states expanded in terms of plane-waves as follows:

ϕq,n(r) =
1√
V

∑
G

uq,n(G)expi(q+G)·r, (16)

where V is the volume of the simulation cell, q is the electron momentum (or momentum
transfer) within the 1BZ, G is a reciprocal lattice vector, n identifies the band, and uq,n are
functions with the same periodicity as the crystal lattice. For periodic crystals, like bulk Au, the
polarizability χ(r,r ′,W) can be conveniently expressed by Fourier transform to the reciprocal
space as a matrix χG,G ′(q,W), and obtained by solving the following Dyson equation [86, 87]:
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χG,G ′(q,W) = χ0
G,G ′(q,W)+

∑
G ′ ′,G ′ ′ ′

χ0
G,G ′ ′(q,W)

×
[
vG ′ ′(q)δG ′ ′,G ′ ′ ′ +KxcG ′ ′,G ′ ′ ′(q,W)

]
χG ′ ′ ′,G ′(q,W), (17)

where G ′,G ′ ′,G ′ ′ ′ are reciprocal lattice vectors, vG ′(q) = 4π/|q+G ′|2 is the Fourier-
transformed bare Coulomb potential, and χ0

G,G ′(q,W) is the non-interacting polarization func-
tion that is reckoned by knowing the Kohn–Sham eigensolutions; finally, KxcG ′ ′,G ′ ′ ′(q,W) ={

d
dρvxc[ρ]

}
ρ=ρ(r,t)

is the TDDFT energy- and momentum-dependent kernel, which accounts

for the exchange-correlation interaction and has been modelled via the adiabatic local density
approximation, where ρ is the DFT ground state density local in both time and space, and vxc[ρ]
is the LDA to the (generally unknown) exchange-correlation functional. From the knowledge
of χG,G ′(q,W) the microscopic dielectric function reads:

ϵG,G ′(q,W) = 1+ vG ′(q)χG,G ′(q,W) , (18)

where 1= δG,G ′ is the identity operator. In SEED q represents the transferred momentum
vector within the 1BZ.

Finally, the macroscopic ϵ̄(q,W) and microscopic ϵG,G ′(q,W) dielectric functions are
related by [88]:

ϵ̄(q,W) =
[
ϵ−1
G=0,G ′=0(q,W)

]−1
. (19)

The inversion of the full dielectric matrix before taking the head element of the matrix allows
one to include the crystalline local field effects [89], which account for the local anisotropy
of the material. These effects are deemed to be important for Au, particularly above 35 eV
[67, 68].
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