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ABSTRACT: Multitarget-directed ligands (MTDLs) are com-
pounds rationally designed to affect multiple targets, aiming for a
better therapeutic profile. For over 20 years, MTDLs have
garnered increasing attention, the idea being that their full
potential would have been achieved, thanks to unprecedented
target combinations and advanced medicinal chemistry strategies.
This study presents a literature mining effort resulting in a data set
of dual-target-directed ligands (DTDLs), the fundamental example
of MTDLs. We used this data set to evaluate the rationale behind
target selection and the chemical novelty of DTDLs targeting
specific protein combinations. Our analysis focused on DTDL
targets in terms of biological function, disease association,
structure, and chemogenomic traits. We also compared DTDLs
with single-target compounds. We found that well-known target pathology associations often guide DTDL design, leveraging existing
chemical scaffolds and binding pocket similarities. These findings highlight the current state of the field and suggest substantial
untapped potential for rational polypharmacology.

■ INTRODUCTION
Simultaneously modulating multiple targets has shown promise
in enhancing the effectiveness of drugs and overcoming
resistance, especially in the framework of multifactorial
diseases.1 Multitarget-directed ligands are molecules rationally
designed to exert activity on multiple targets and have emerged
as a well-established strategy in drug design. Developing
MTDLs entails two key steps: (i) identifying a group of targets
that, modulated together, offer improved therapeutic outcomes
compared to single target therapies, and (ii) designing a single
chemical structure capable of interacting with all selected
targets. A singular molecular entity offers, in fact, several
advantages with respect to drug cocktails.2 Several strategies
for the identification of optimal target combinations have been
proposed. The most intuitive and early adopted approach relies
on developing molecules with multiple activities at targets that
have been previously and independently validated for the same
pathology.3 Ideally, this target combination has already been
addressed by a drug cocktail. For example, several MDTLs
developed for the treatment of complex conditions of the
central nervous system, such as Alzheimer’s disease (AD),
Parkinson’s disease, schizophrenia, and mood disorders,
addressed a set of targets previously engaged by combination
therapy.4−6 Strategies that rely on computational techniques
for the identification of target combinations have also been
reported.7 These approaches propose utilizing machine
learning to comprehensively analyze omics data and pro-
spectively identify combinations of targets. This is what has

been described as “increasing the opportunity space for
druggable targets”.8

In terms of actual chemical design, two different strategies
can be conceived: (i) starting from a molecule active at one of
the targets of interest and engineering other activities into it, or
(ii) searching for entirely new scaffolds capable of binding all
sought targets.9 In the first approach, the degree of overlap that
is obtained can vary and MTDLs are often classified
accordingly.1 Here, a key challenge is to balance the gain of
new activities by introducing novel features on a given scaffold
with preserving as much as possible the starting pharmaco-
phore, thus retaining activity at the original target. Intuitively, it
is more straightforward to design MTDLs acting at structurally
similar targets (e.g., belonging to the same protein family) or
that share similar or identical substrates (e.g., targeting
enzymes that belong to the same metabolic pathway).10,11

Overall, while effective, this strategy could potentially yield
molecules of limited chemical novelty. With novelty in mind,
one can turn to a screening approach, sequentially testing a
library of compounds at multiple targets. However, this
approach combines a resource-intensive nature with an overall
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limited chance of identifying compounds with the desired array
of activities.12

In this study, we decided to systematically investigate these
critical points: (i) what is the rationale more often adopted in
selecting target combinations? (ii) what is the degree of
chemical novelty that can be found in MTDLs with respect to
single target compounds already reported for the MTDL
targets? We compiled a list of compounds that are multitarget
by design, thus excluding molecules whose polypharmaco-
logical profile was only serendipitously discovered. Further-
more, to collect and analyze data as homogeneous as possible,
we only focused on the most basic form of MTDLs: molecules
with activity at only two targets (DTDLs).

■ RESULTS AND DISCUSSION
Our literature search returned 941 articles. We retained 158
articles focused on rationally conceived DTDLs, while 783
articles were excluded (see Experimental Section). A summary
of the literature search is included as a spreadsheet in the
Supporting Information. A representative DTDL from each
study was included in the data set described here (see Table
S1), which eventually encompassed 158 entries. Each molecule
was annotated in terms of molecular ChEMBL ID and
ChEMBL ID of each target from the target pair on which the
molecule is active (henceforth simply referred to as the target
pair). The complete data set, including canonical SMILES
notation and UniProt ID of each target, is available as a
spreadsheet in the Supporting Information.

We systematically analyzed the target pairs in the set. The
total number of targets was 126. Targets were grouped
according to their biological function (Figure 1). Kinases were
reported as a separate group, considering the large number of
DTDLs active in this protein family.

The most populated groups were enzymes (42.8%) and
kinases (31.9%). GPCRs accounted for 13%, nuclear receptors
for 3.6%, ligand-gated ion channels for 1.4%, epigenetic
regulators for 2.9%, and transporters for 1.4%. The NOD-
like receptor 3 (NLRP3), a component of the inflammasome,
the induced myeloid leukemia cell differentiation protein Mcl-
1 (MCL-1), a protein involved in apoptosis, the advanced
glycosylation end product-specific receptor (RAGE), and the
heat shock protein HSP 90-alpha (HSP90) were not assigned
to any specific group (“Other” in Figure 1). The more
frequently recurring targets were acetylcholinesterase (AChE)
(15), epidermal growth factor receptor (EGFR) (14),

monoamine oxidase B (MAO-B), and ALK tyrosine kinase
receptor (ALK) (12 each). In terms of targets, the collected
DTDLs covered a diverse set representing therapeutically
relevant protein families. We also analyzed the distribution of
target pairs (see Table S2). The most populated groups were
enzyme−enzyme (34%) and kinase−kinase (32.1%). We could
also find examples of enzymes paired with kinases, GPCRs, and
nuclear receptors. There are also examples of GPCR�GPCR
target pairs (3.7%). All other combinations were either
populated by three examples or less or not represented. The
most frequently recurring target pair was AChE�MAO-B (7
times).

We also annotated individual targets in terms of how they
are associated with diseases and characterized each target pair
accordingly. To this aim, we used the Open Targets Platform, a
web-based open-source platform that, integrating multiple data
sources, returns an estimate, called the Overall Association
Score (OAS, ranging from 0 to 1), of the association of a
protein with a disease.24 The analysis was performed on 155 of
the 158 target pairs since we only considered targets with
available data in the Open Targets Platform. Comparing the
OAS to all listed diseases of each target pair from the set, we
observed that all pairs (100%) shared an association with at
least one common disease. In 152 of 155 pairs (98.1%), both
targets had an association with the disease reported as the
focus of the synthetic campaign. In the remaining 3 pairs, only
one target presented some level of association with the
investigated disease. Furthermore, out of 310 targets, 196
(63.2%) were ranked in the 95th OAS percentile or above
among the targets associated with the investigated disease. In
70 instances, both targets of the DTDL were ranked in the
95th OAS percentile or above for the investigated disease.
Network biology proposes that targets instrumental to a sought
therapeutic effect can be identified, thanks to the application of
network theory to omics data. In particular, since the
concurrent targeting of multiple nodes is considered
fundamental to overcoming the redundancy that is typically
associated with biological networks, pioneering work in the
field put forward the idea that a strong interplay would have
existed between the rational design of MTDLs and
identification of unprecedented target combinations, thanks
to network biology.8,13 However, even when considering the
relatively simple case of DTDLs, data on the collected
combinations pointed toward previous and independent
validation within a certain pathology as one of the key drivers

Figure 1. Distribution of individual target classes in the DTDL data set.
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for target selection. In only three of the selected protein
combinations, an association with the investigated disease was
entirely missing for at least one of the targets. In this regard, it
should also be pointed out that OAS is largely affected by the
availability of data.14 A target selection largely driven by pre-
existing knowledge of target-disease association was also
confirmed by how DTDLs aimed at Alzheimer’s disease (21;
13.3%) and cancer (86; 54.4%) were largely represented in the
data set. Both these conditions are multifactorial in nature with
several independently validated targets already reported, and
they have been the focus of MTDL discovery campaigns since
the early days of the discipline.4,15

We then moved toward a chemogenomic approach,
collecting single target compounds with reported activity at
each member of the target pair and investigating the existence
of an overlap in chemical space between the two sets. To avoid
biasing our analysis, all rationally designed MTDLs with
activity at the target pair (e.g., compounds that belong to the
same series as the selected representative) and ligands
published after the selected DTDL were removed from each
set. For each target pair, a dissimilarity matrix was generated
assessing Tanimoto distance (TD) between the fingerprint of
each molecule in one set with respect to the corresponding
representation of all molecules from the other one. In this way,
we were able to determine the minimum TD between any two
molecules individually active at each target in the pair and
annotate each compound accordingly. The existence of at least
one pair of molecules from the respective sets exhibiting a TD
between 0 and 0.1 was considered indicative of an overlap. In
Figure 2, the distribution of this minimum TD is reported.

Most target pairs (102 out of 158; 64.6%) presented a pre-
existing overlap in chemical space with at least one identical or
almost identical molecule in the set (TD between 0 and 0.1).
In 92 out of 158 cases (58.2%), the two sets had at least one
molecule in common (TD equal 0), that, while likely not
rationally developed as a DTDL (see Experimental Section),
was annotated for activity on both targets. In only 13 cases, the
minimum distance was over 0.5. TD, and, in the entire set, it
never exceeded 0.71. We then investigated each target pair
aiming at discriminating cases in which the common space
between the targets was extended from cases where only one
or a few molecules accounted for the low TD minimum value.

The TD distributions of two target pairs, namely, EGFR and
receptor tyrosine-protein kinase erbB-2 (HER2) (blue in
Figure 3) and butyrylcholinesterase (BuChE) and cannabinoid

receptor 2 (CB2R) (red in Figure 3) will be compared to
illustrate this point. Both pairs return a minimum TD between
single target compounds equal to 0. Overall, both distributions
look similar, with the EGFR-HER2 distribution marginally
shifted toward the left. However, when focusing on the
leftmost part of the plot (TD ranging from 0 to 0.5), the
overlap in chemical space between EGFR and HER2 appears
widespread, while the overlap between BuChE and CB2R is
only due to a few individual compounds.

In the data set, 53 target pairs (33.5%) shared over 100
molecules with a minimum TD lower than 0.1. Sixteen target
pairs (10.1%) shared over 1000. Out of these 53 target pairs:
34 consisted of two kinases, 2 of Class A GPCRs, 8 pairs were
proteins belonging to the same biosynthetic pathway, and in 7
cases the two targets shared similar endogenous ligands. Only
2 target pairs encompassed unrelated proteins: Polo-like kinase
1 (PLK-1)�bromodomain-containing protein 4 (BRD4) (165
ligand pairs) and BRD4�transcription initiation factor TFIID
subunit 1 (TAF1) (119 ligand pairs). Structurally or
functionally related proteins are often modulated by chemically
similar ligands enhancing the possibility to rationally design
compounds with activities at the pair building upon this
overlap.10 Furthermore, 73 pairs (46.2%) only shared less than
10 molecules showing TDs between 0 and 0.1. We also
investigated overlap in chemical space by employing a
clustering approach. For each target pair, both single target
sets were merged and partitioned by means of a modified
nearest neighbor algorithm (see Experimental Section).
Clustering enabled us to confirm the presence of overlap in
chemical space between single target sets of molecules,
excluding potential noise generated by one or a few
overrepresented scaffolds. In particular, we were interested in
assessing the existence of hybrid clusters, namely, clusters
containing at least one molecule from each single target set.
For 111 target pairs (70.3%), we observed the presence of one

Figure 2. Distribution of the minimum TD values from the DTDL
data set.

Figure 3. Comparison of TD distribution between the ligands of two
target pairs. EGFR-HER2 in blue and BuChE-CB2R in red. The chart
was generated by normalizing the distributions so that the total area
under each histogram is equal to 1. The height of each bin represents
the probability density in that data interval.
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or more hybrid clusters. Moreover, 68 cases (43%) presented
different areas of overlap, as indicated by the identification of
10 hybrid clusters or more. In eight target pairs [serotonin
transporter (SERT)�norepinephrine transporter (NET),
phosphatidylinositol-4,5-bisphosphate 3-kinase α (PI3K-α)�
mammalian target of rapamycin (mTOR), and stem cell
growth factor receptor (c-KIT)�platelet-derived growth
factor receptor α (PDGFR-α)], over 20% of all clusters were
hybrid ones, highlighting an overlap that extended beyond a
few specific molecules. A spreadsheet that summarizes the
results of the clustering exercise is available in the Supporting
Information. To summarize, access to an already mapped
overlap in chemical space, even if limited to a small number of
compounds, was confirmed as another possible driver for
identifying target combinations for DTDLs. A limitation of this
chemogenomic approach was that the TD was not adjusted for
either activity16 or promiscuity, the latter referring to the total
number of targets a molecule is active at. Even if we considered
only relatively potent molecules with a pChEMBL value of 5 or
greater, the affinities for each target varied widely, spanning
between 4 and 6 orders of magnitude. If we consider affinity as
a measure of a molecule’s relevance in defining the chemical
space of a target, it could be theoretically possible to assign
different weights to the same TD value based on the affinity of
each compared molecule for that target. Similarly, a compound
acting on a few specific targets might contribute differently to
defining a shared chemical space compared to one that binds
aspecifically. We intend to delve deeper into these concepts in
future research.

We also compared the binding pockets of each target pair.
We employed DeeplyTough, an algorithm based on a
convolutional neural network that expresses the dissimilarity
between pockets as a non-normalized Euclidean distance. The
analysis was performed on 121 of the 158 target pairs since we
only considered targets with available crystal structures. Based
on the results obtained from DeeplyTough, we generated the
distribution reported in Figure 4.

The leftmost peak (Figure 4) accounts for 47 protein pairs
whose pockets were separated by distances between 0 and 0.2.
It highlights the presence of several DTDLs targeting
conserved pockets, namely, pairs of pockets that the algorithm
is trained to consider a match. Out of these 47 target pairs, 37

consisted of two kinases, thus enzymes with highly conserved
binding sites. Two pairs were formed by proteins from the
same metabolic pathway: phospholipase A2 (PLA2) and
leukotriene-A4-hydrolase (LTA4H)17 and microsomal prosta-
glandin E synthase-1 (mPGES-1) and 5-lipoxygenase activating
protein (FLAP),18 respectively. Four pocket pairs were formed
by indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1) and
tryptophan 2,3-dioxygenase (TDO), two enzymes both
involved in tryptophan metabolism.19,20 Two pairs were
formed by two epigenetic regulators [Bromodomain and
PHD finger-containing protein 1 (BRPF1) and transcription
intermediary factor 1-alpha (TRIM24)]21 and two class A
aminergic GPCR [dopamine D2 receptor (D2) and serotonin
2a receptor (5-HT2a)].22 Last, two pairs were formed by
unrelated proteins: ALK�HSP9023 and EGFR�carbonic
anhydrase IX (CA-IX).24 Only a few cases of structurally
unrelated proteins (e.g., rAChE�N-methyl-D-aspartate recep-
tor (NMDAR);25 BuChE�CB2R;26 estrogen receptor α (ER-
α)�Histone deacetylase 6 (HDAC6);27 HDAC6�Apoptosis
regulator Bcl-2 (BCL-2)),28 consistently mapped apart in
pocket space, could be identified. Binding site similarity could
thus be described as another driver that strongly influenced the
identification of target combinations. Indeed, several authors
have suggested how targeting proteins that share very similar
binding pockets improves the feasibility of designing
polypharmacological drugs.11 Overlap in single target chemical
space and pocket similarity are, of course, correlated (Figure
5). For target pairs with similar binding sites, there frequently

were one or more pre-existing molecules able to modulate
activity at both proteins. Conversely, as the distance between
pockets increased, there was an increase in minimum TD
between single target compounds.

There are examples departing from this general trend to be
discussed in detail. The PLA2/LTA4H target pair (labeled A
in Figure 5) displayed a pocket distance of 0.12, hinting at a
conserved binding site, while the most similar single target
molecules exhibit a TD value of 0.48.17 However, single target
compounds ChEMBL1644549 (1, active at PLA2) and
ChEMBL71853 (2, active at LTA4H) shared the same (2S)-
4-methyl-2-(2-oxoacetamido)pentanoic acid group (Figure 6).
TD expresses a score generated by the entire fingerprints and

Figure 4. Distribution of pocket distances calculated using Deep-
lyTough.

Figure 5. Pocket distance and minimum TD values of the most
similar ligand pair for the target combinations. Discussed examples are
labeled explicitly.

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.4c00838
J. Med. Chem. 2024, 67, 10374−10385

10377

https://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.4c00838/suppl_file/jm4c00838_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.4c00838/suppl_file/jm4c00838_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00838?fig=fig5&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.4c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


this value could fail at highlighting the presence of a common
core. Thus, we also compared DTDLs and the single target
compounds active at the involved targets in terms of common
substructures (see below).

In the second case (B in Figure 5), the rAChE/NMDAR
target pair displayed a pocket distance of 1.01 with the most
similar single target molecules for this pair, exhibiting TD
equal to 0.4. Linked DTDLs are a straightforward way to
overcome the absence of pocket similarity in DTDL design. In
this specific case, Simoni and colleagues successfully designed
memagal (ChEMBL2178784, 3, Figure 7), a dual rAChE/

NMDAR inhibitor conceived for the treatment of AD,
consisting of the combination of galantamine (AChE
inhibitor) and memantine (NMDAR antagonist) via a six-
methylene unit spacer.25

In the third example (C in Figure 5), the BuChE/CB2R
target pair was associated with the remarkable pocket distance
(1.12), but the most similar ligands (ChEMBL1095500, 4,
active at AChE and ChEMBL73572, 5, active at CB2R; Figure
8) returned a minimum TD value equal to 0.03.26 Having

observed how some members of an indole-bearing series
displayed activity at AChE, Gonzaĺez-Naranjo and co-workers
were able to devise a clever ly merged DTDL,
ChEMBL3116280 (6, Figure 8). This highlights how, in
specific cases, it is possible to design a fused or merged DTDL

exploiting an overlap in chemical space to overcome or, at
least, to compensate, for limited pocket similarity.

Shifting our perspective from targets to the actual DTDLs,
we were able to group the compounds in our data set
according to the framework originally proposed by Morphy
and Rankovic.1 Based on the level of overlap between
pharmacophoric elements associated with activity at one or
both targets, compounds were labeled as merged, fused, and
linked DTDLs. A linked MTDL consists of distinct molecules,
known to interact at different targets, connected by a linker.
This strategy offers a way to combine two chemical entities
that modulate different targets, without the need for massive
structural optimization. MTDLs obtained exploiting partially
overlapping pharmacophores are classified as fused MTDLs. In
this approach, the pharmacophores of the starting molecules
lack largely overlapping areas. However, it is still possible to act
on the structure of a starting compound by introducing a local
modification that, while subtle, can endow the molecule with
activity at another target (while retaining activity at the original
one). Last, pharmacophoric features can be seamlessly
combined into a unified framework. When this is possible,
the obtained structures are usually simpler and with lower
molecular weight as compared to linked or fused multitarget
compounds. In principle, the physicochemical profile of a
merged DTDL should not significantly differ from that of a
single target compound. Despite containing an element of
arbitrariness, due to cases exhibiting intermediate character-
istics that cannot be univocally assigned to a specific group,
this classification is widely adopted in MTDL literature and
was thus adopted here for consistency. The largest group in the
data set was that of molecules classified as merged (91 out of
158; 57.6%). The second most populated group was the one of
fused DTDLs (56 out of 158; 35.4%). Only 11 compounds
(out of 158; 7%) were classified as linked DTDLs. Then, we
analyzed the physicochemical profile of the collected
molecules. We calculated MW, LogP, and topological polar
surface area (TPSA) for each DTDL and compared these
values with those extracted from corresponding single target
ligand sets. Eighty-seven DTDLs (55.1%) presented a MW
value above the average MW of both sets of single target
ligands. Eighty-six DTDLs (54.4%) presented a LogP value
above the average and 81 DTDLs (51.3%) presented a TPSA
value below the average of both sets. Conversely, 34 DTDLs
(21.5%) presented a MW value below the average of both sets
of single target ligands, 46 (29.1%) a LogP value below and 51
(32.3%) a TPSA value above the average of both sets,
respectively. Despite the prevalence of merged compounds,
DTDLs exhibited consistently higher MW and lipophilicity
with respect to single target analogs. While the restricted size
of this data set poses a challenge in extrapolating broadly
applicable trends, data gathered here confirm the intuitions
originally proposed by several authors, and later episodically
reported also by others, on how MTDLs tend to grow heavier
and more lipophilic with respect to single target com-
pounds.29,30

We also assessed the structural difference between each
DTDL and single target compounds active at the target pair in
terms of TD.

Let us assume that each DTDL is active at two targets, target
A and target B. We retrieved from ChEMBL molecules with
high affinity at target A (set A) and target B (set B) according
to the procedure reported in the Experimental Section. We
measured the TD of the DTDL from all molecules from set A

Figure 6. Structures of DTDL compounds 1 and 2 sharing a common
substructure.

Figure 7. Chemical structure of 3.

Figure 8. Relevant compounds in the development of BuChE-CB2R
DTDLs.
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and all molecules from set B. In the scatter plot in Figure 9,
each DTDL (blue dot) is assigned coordinates based on the

minimum TD calculated from all molecules in set A
(horizontal axis) or from those in set B (vertical axis). The
generated plot can be divided into 4 quadrants (labeled I, II,
III, and IV in Figure 9). Quadrant I is populated by 12 (7.6%)
DTDLs with clear similarity (minimum TD < 0.3) to at least
one molecule from set A and one from set B. Quadrants II and
IV are populated by 48 DTDLs (30.4%) that closely resembled
at least one compound from one of the sets (quadrant II, set A,
and quadrant IV, set B, respectively) while displaying low or no
similarity toward molecules active at the other set. Last, 99
DTDLs (62.7%) are found in quadrant III, which encompasses
DTDLs that, in terms of TD, were different from molecules
from both sets. DTDLs distribution is thus strongly
asymmetric. ChEMBL4212186 (7, A in Figure 9) is a merged
HDAC6�phosphodiesterase 5A (PDE5A) inhibitor for the
potential treatment of AD.31 Despite a pocket distance of 0.89
and the absence of obvious overlapping areas in the single
target chemical space, Rabal et al. were able to design 7 by
inserting a Zn2+ chelating group, which introduced activity at
HDAC6, into the 5-(2-ethoxyphenyl)-1-methyl-3-propyl-1,6-
dihydro-7Hpyrazolo[4,3-d]pyrimidin-7-one scaffold of sildena-
fil (a PDE5 inhibitor) via a thiophene ring linker (Figure 10).

ChEMBL4645973 (8, B in Figure 9) is an IDO-1�TDO
dual inhibitor developed by Li and co-workers for the
treatment of cancer.20 This molecule closely resembles
tryptanthrin (9), a natural product known for its activity
against both IDO-1 and TDO (Figure 11). This molecule can

thus be considered an example of optimization from a
common precursor that already possesses dual activity. In
these cases, a key hurdle to overcome in designing D/MTDLs
is limiting the activity to only selected members of a protein
superfamily or of a metabolic pathway, while retaining
selectivity toward other closely related proteins.

Molecules populating quadrant III (Figure 9) were usually
obtained either (i) by a pharmacophore merging strategy with
equivalent contributions from both targets or (ii) by
optimization of a common core associated with activity at
both proteins. The latter strategy can be exemplified by
farnesoid X receptor (FXR) modulator�soluble epoxide
hydrolase (sEH) inhibitor ChEMBL4066332 (10, C in Figure
9), developed by Schmidt et al.,32 for the treatment of
nonalcoholic fatty liver disease. As reported in Figure 12, the
most similar single target compounds from each target of the
activity pair were the sEH inhibitor ChEMBL3763549 (11)
(TD 0.55) and the FXR modulator ChEMBL3613439 (12)
(TD 0.64). Despite TD values for both targets, these
compounds both bore an aryl amide group. Once again, the
design of compound 10 was inspired by the structure of
previously reported ligands that individually showed activity on
the sought targets. In fact, the identification of a shared
framework among the chemical structures of known ligands
facilitated the development of a merged-type DTDL despite
the pocket distance (0.64).

The dual fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL) inhibitor ChEMBL2376224
(13, D in Figure 9), reported by Holtfrerich and co-workers,33

presented another interesting case, which highlighted the limits
of an analysis solely based on TD. Compound 13 exhibits a
chemical structure with nontrivial overlap with known single
target compounds. In TD space (Figure 13), the closest
molecules to compound 13 are the FAAH inhibitor
ChEMBL521038 (14) (TD 0.69) and the MAGL inhibitor
ChEMBL2159777 (15) (TD 0.82). The similarity with single
target compounds clearly emerges only when a three-
dimensional pharmacophore match is considered.

In addition, it is worth noting how the physicochemical
profile of 13 with lower MW and LogP values and a TPSA is
slightly above the average values displayed by single target
compounds active at FAAH and MAGL. Despite the similarity
of the target pair pockets (rFAAH/MAGL pocket distance is
equal to 0.32) and more than 100 molecule pairs from single
target sets presenting a TD below 0.1, 13 introduces an
element of novelty with respect to already reported single
target ligands. The trends extrapolated from the distribution
reported in Figure 9 were also confirmed by cluster analysis
when a library of compounds encompassing the DTDL and the
single target ligands from the target pair were processed using
the same nearest neighbor clustering procedure previously
described. In 135 instances (85.4%), DTDLs clustered as
singletons. Three DTDLs (active as inhibitors of PI3K-α/
mTOR, EGFR/HER2, and IDO-1/TDO target pairs) were
clustered with compounds active at both targets. Finally, 20

Figure 9. Minimum TDs of each DTDL from compounds with
reported activity at each member of the target pair. Discussed
examples are labeled explicitly.

Figure 10. Structure of 7.

Figure 11. Structures of 8 and 9.
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DTDLs were clustered with compounds active at only one of
the targets involved. In general, the structure of DTDLs
appeared largely based on the structure of single target
compounds. This connection is straightforward, and somewhat
expected, for molecules active at closely related targets or for
molecules whose dual activity profile is generated by the
introduction of a local functional group on a pre-existing single
target compound. This relationship is often less intuitive for
molecules populating quadrant III (Figure 9), and it might
escape an analysis solely based on TD. For example, TD likely
fails at capturing how part of a linked DTDL is, by design,
identical to a single target molecule. To overcome this
limitation, we also compared molecules in terms of maximum
common substructure, calculating an MCES (Maximum
Common Edge Substructure) relative score with the Rascal
MCES algorithm. This approach was useful for identifying
DTDLs that were globally different according to TD value,
often clustered as singletons but locally shared a common
motif with a single target compound. MCES between each
DTDL and the molecules active on the targets from the
activity pair was identified and both Johnson similarity and
MCES relative score were calculated (see Experimental
Section). The analysis was conducted considering a Johnson-
predicted similarity threshold equal to 0.7 to avoid isolating
small and not particularly informative fragments. Due to this
threshold, an MCES was investigated for only 135 out of 158
DTDLs.

Most DTDLs populated the upper-right corner of the four-
quadrant plot reported in Figure 14. Indeed, 114 DTDLs
(84.4%) presented an MCES relative score of 70% or above for
at least one molecule present in each set of single target
ligands. The dual AChE inhibitor/cannabinoid receptor 1
(CBR1) antagonist ChEMBL570159 (16, A in Figure 14)34

presents an MCES relative score of 83.3% to ChEMBL478666
(17) (AChE inhibitor) and of 86.5% to ChEMBL175291 (18)
(CBR1 antagonist). As reported in Figure 15, the tacrine motif
of 17�responsible for AChE inhibition�and the almost
entire structure of 18 are substructures of compound 16.

Moreover, considering how the introduction of novel ring
systems is regarded as an indicator of chemical novelty,35 we
compared rings and fused ring systems from each DTDL with
those extracted from single target compounds active at the
relevant target pair. Our analysis revealed that in 137 out of
158 cases (86.7%), each DTDL ring was represented among
the rings extracted from the single target sets. It is worth

noticing that this analysis is particularly influenced by the size
of single target ligand sets. Of the 21 cases where a new ring or
ring system was found, 4 of them [xanthine dehydrogenase
(XOD)�NLRP3 target pair, DNA gyrase subunit A from
Escherichia coli (eGYRA)�topoisomerase IV subunit A from
Escherichia coli (eTOPO4), DNA gyrase subunit B from
Staphylococcus aureus (GYRB) - DNA topoisomerase 4 subunit
B from Staphylococcus aureus (sTOPO4), and BCL-2−MCL-1
target pair] were extracted from DTDLs targeting proteins
associated with a limited number of single target ligands. The
DTDL rings and ring systems are reported in Figure S1. MCES
and ring analysis confirmed what the systematic comparison of
TD from single target compounds and cluster analysis already
suggested: a polypharmacological profile is obtained by either
introducing conservative modifications on pre-existing struc-
tures or rearranging privileged fragments.

■ CONCLUSIONS
This study describes a systematic analysis of DTDLs, the
fundamental MTDL form. A set of 158 rationally conceived
DTDLs reported in the literature was extracted from
comprehensive and curated public data available through
ChEMBL. Several parameters were adopted to ensure the right
balance between data set cleanliness and inclusiveness. Indeed,
we only considered molecules reported in medicinal chemistry
journals regularly monitored by the curators of ChEMBL. We
focused on DTDLs with a pChEMBL value equal to or greater
than 5 (corresponding to a broadly defined activity of at least
10 μM), associated with the interaction with specific targets,
thus excluding generic or phenotypic effects. Moreover, we
only considered data associated with an assay confidence score
equal to or greater than 8. This data set played a crucial role in
investigating two main aspects: understanding target combi-

Figure 12. Relevant compounds in the development of sEH-FXR DTDL.

Figure 13. Relevant compounds in the development of FAAH-MAGL
DTDL.

Figure 14. Highest MCES relative scores between the compounds
active at target A (horizontal axis) and at target B (vertical axis) to
each DTDL. The discussed example is labeled explicitly.
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nations and assessing the chemical strategies used in designing
DTDLs. Concerning target combinations, despite the ever-
increasing wealth of available data from electronic clinical
records, large-scale genomic sequencing, proteomics, and high-
throughput screening, a strong pre-existing association
between investigated targets and the targeted pathology was
what mainly influenced the selection process. The analysis also
revealed the importance of binding pocket similarity and the
existence of a common chemical space between single target
ligands. Regarding the design of DTDLs, almost all examples
found were based, to some extent, on preexisting structures. If
the targets shared highly similar binding pockets or exhibited
significant overlap in chemical space, the resulting DTDLs
usually resembled ligands already active on both targets. When
designing DTDLs to interact with targets lacking pocket
similarity or overlapping chemical space, identifying a tolerant
region in a known single target compound played a key role in
introducing activity at the second target. In cases where no
tolerant region could be identified, designing linked DTDLs,
with an increase in LogP and molecular weight, was often the
adopted strategy. While relying on an established target-disease
association or on the existing understanding of the structure−
activity relationship for a scaffold are sound strategies for drug
discovery campaigns, this investigation revealed that a
considerable portion of DTDL therapeutic potential remains
untapped. This potential lies in (i) expanding the array of
proteins investigated in campaigns for the development of
DTDLs, (ii) unprecedented target combinations, and (iii)
innovative structures specifically designed for rational poly-
pharmacology. The application of machine learning in the
rational design of multitarget drugs and the exploitation of
ultralarge compound libraries show promise and may lead to
breakthroughs in the field.36−38

■ EXPERIMENTAL SECTION
Data Set Compilation. We retrieved from PubMed articles

describing rationally designed dual-activity compounds. The following
keywords were used: multitarget, MTDL, polypharmacology, and dual
inhibitor. For each PubMed query, the overall number of retrieved
articles, the number of retained articles, and the number of excluded
articles were retained. Discarded articles were categorized as (i) not
actually about small molecules (e.g., the DTDL is a peptide); (ii) not
active at specific targets, article in which the pharmacological activity
of the DTDL was not associated with a specific protein; (iii) reported
compounds are active at more than two targets (MTDLs); (iv)
actually about single target compounds, no DTDL reported; (v)
multitarget concept, article that discussed or mentioned polypharma-
cology without reporting new molecules; (vi) active at two or more
members of the same family, the reported DTDL was generically
active at two or more members of the same protein family (e.g.,
aspecific MAO inhibitor); (vii) no activity data on ChEMBL;39 (viii)
pChEMBL value less than 5, articles in which no DTDL presented a
pChEMBL value equal to or greater than 5; (ix) no corresponding
molecule found in ChEMBL; (x) correction to previous articles; (xi)

editorial; (xii) viewpoint article; (xiii) perspective; and (xiv) retracted
article, based on the reasons for their exclusion. Since our planned
analysis relied on molecules recorded in the ChEMBL database, we
exclusively considered articles from the six core medicinal chemistry
journals that contribute data to ChEMBL: Journal of Medicinal
Chemistry (ACS), ACS Medicinal Chemistry Letters (ACS),
European Journal of Medicinal Chemistry (Elsevier), Bioorganic
and Medicinal Chemistry (Elsevier), Bioorganic and Medicinal
Chemistry Letters (Elsevier), and MedChemComm (RSC). Articles
describing molecules active at more than two targets were discarded,
including cases in which one of the two targets is defined as
encompassing multiple isoforms or members of the same family, e.g.,
histone deacetylase (HDAC) or cholinesterase (ChE) families. For
instance, several articles describing a compound or a series of
compounds generically annotated as monoamine oxidase (MAO)
and/or ChE inhibitors were discarded. Furthermore, we only selected
molecules whose mechanism of action was related to a specific protein
target rather than to a more generic effect (e.g., antioxidant). Only the
molecule the authors identified as the lead (frontrunner) for each
compound series was retained. When a single molecule could not be
unequivocally identified, we selected the one with the lowest
molecular weight. We only retained molecules consistently displaying
at both targets: a pChEMBL activity value equal to or greater than 5
and an assay confidence score equal to or greater than 8. Each
molecule was annotated according to canonical SMILES notation,40,41

univocal ID assigned in the ChEMBL database, year of publication,
UniProt name, and ChEMBL target ID of each target.42

Single Target Compound Data Sets. Ligands from ChEMBL
annotated for activity at each of the targets in the pair (pChEMBL
value equal to or greater than 5 and assay confidence score equal to or
greater than 8) were retrieved using Python scripts purposely written
to interact with the database’s API. Canonical SMILES notation for
each compound was generated using the ligand-associated molfile
reported in ChEMBL, employing the MolFromMolBlock function
from the Chem module of RDKit43 (version 2023-09-05).
Subsequently, nonunivocal SMILES were removed from the set. To
ensure that each set represented a snapshot of the molecules active on
those targets before the publication of the investigated DTDL, we
removed all molecules published after the reference DTDL. The year
of publication for each DTDL retrieved from ChEMBL was collected
and used as a filter to remove ligands within each associated single
target data set that was published later. We also removed from each
set other rationally conceived multitarget compounds with activity at
the same targets, including molecules from the same series of the
analyzed DTDL. We identified compounds with activity at both
proteins and retrieved all original publications discussing these dual-
activity molecules. Each molecule from these articles was manually
investigated: (i) rationally devised DTDLs were removed; (ii)
compounds that were engineered to have a multitarget profile but,
for any reason, did not display activity at one or more of the
investigated targets (failed DTDLs) were removed; (iii) single target
molecules simply used as standard or as a starting point in the
development of DTDLs (i.e., when a known single target compound
is tested on the second target to confirm that there is no pre-existing
cross activity and the reported multitarget profile is obtained through
rational design)44 were retained.
Similarity Assessment. The similarity between chemical

structures was expressed in terms of Tanimoto Distance (TD),

Figure 15. MCES (red) between 16 and 17 (on the left), and between 16 and 18 (on the right).
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which ranges from 0, when two molecules are encoded by two
identical fingerprints, to 1, when the fingerprints do not have any bit
in common. Fingerprints employed in this work were generated by
the RDKFingerprint function as implemented in the Chem module of
RDKit (v. 2023-09-05). This fingerprint format, also known as
RDKit-specific fingerprint,45 can be considered a variant of the
standard Daylight fingerprint. The fingerprint size was 4096 bits.
Similarity between Single Target Data Sets. TD was used to

assess the presence of overlapping areas in the chemical space
explored by single target compounds with reported activity at the
DTDL targets. TD was computed between the fingerprint of every
ligand active at one target against those of each ligand active at the
other protein. In this way, we were able to identify compounds
returning the minimum TD for each target pair. Furthermore, to
reduce the effect of noise introduced by redundancy, cluster analysis
was performed. Ligands from individual target sets were merged in a
combined set while retaining the original target association. Then,
ligands were clustered using Butina’s algorithm46 (as implemented in
RDKit v. 2023-09-05), adopting a threshold of 0.2 TD.
Similarity between DTDLs and Single Target Compounds.

TD between fingerprints was also used to express the similarity
between each DTDL and single target compounds annotated for
activity at the target pair. In this case, all single target compounds with
molecular weight (MW) lower than 198 or greater than 800 Da were
excluded from single target sets. MW upper and lower bounds were
chosen based on MW of tacrine (MW = 198.27) and
ChEMBL370181 (MW = 793.79). In addition to TD, the Rascal
MCES (Maximum Common Edge Substructure) score, which was
calculated according to the procedure implemented in RDKit (v.
2023-09-05), was also employed. This metric determines the
maximum common substructure based on bonds (edges). The
resulting maximum common substructure from Rascal MCES may be
represented by disconnected fragments. The procedure that computes
the Rascal MCES also returns the Johnson similarity between the
investigated molecules, which is calculated as the squared sum of the
number of atoms and bonds in the MCES divided by the product of
the sums of the numbers of atoms and bonds in the input molecules.
This value ranges between 0 and 1, indicating the extent of the
MCES. Rascal MCES analysis was performed as a multistep process.
First, the maximum value for the Johnson similarity between all
investigated compound pairs was predicted. Subsequently, the actual
MCES analysis was only performed between molecule pairs with a
predicted Johnson similarity equal to or greater than 0.7. The MCES
relative score was computed for each DTDL�single target ligand
pair. This score, defined as the ratio of the size of the MCES to the
total number of bonds in the single target ligand, ranges between 0
and 1.
Ring Annotation. Ring systems were extracted from each

molecule by means of a purposely written Python script. Rings
were collected after fragmenting each molecule on single, nonring
bonds. In this way, the procedure could correctly distinguish between
rings such as benzodiazepine and benzodiazepinone that only differ
because of the presence of a carbonyl group. Stereoisomers were
considered as distinct entries.
Pocket Similarity. When available, we retrieved the crystallo-

graphic structure of each target from RCSB PDB.47 We only
considered holo-structures in complex with ligands with activity at
that target as reported in ChEMBL. For acetylcholinesterase from
Mus musculus (mAChE), acetylcholinesterase from Rattus norvegicus
(rAChE), 5-lipoxygenase from Rattus norvegicus (r5-LOX), cyclo-
oxygenase-2 from Rattus norvegicus (rCOX-2), angiotensin-converting
enzyme from Rattus norvegicus (rACE), and phosphatidylinositol-4,5-
bisphosphate 3-kinase α from Mus musculus (mPI3K-α) human
orthologs were considered. When multiple structures were available,
the one cocrystallized with the ligand displaying the lowest TD from
the DTDL was considered. For each crystal structure, additional
chains that do not describe the binding site, additional ligands,
solvents (including water), and ions were removed. The actual pocket
was defined considering all protein residues with at least one non-
hydrogen atom within 5 Å from the cocrystallized ligand. Distances

between pockets were calculated using DeeplyTough. This software is
based on a convolutional neural network and compares, in an
alignment-free fashion, feature vectors encoding the three-dimen-
sional coordinates of pocket residues.48 DeeplyTough was trained on
the Vertex data set, which encompasses 6029 protein structures.49

Software. All purposely developed scripts were written in
Python3.8, using RDKit (v. 2023-09-05) and ChEMBL API.39

DeeplyThough was employed for the pocket similarity analysis. All
scripts are available from the authors upon request and will soon be
made available in a public repository.
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BCL-2 apoptosis regulator Bcl-2
BRD4 bromodomain-containing protein 4
BRPF1 bromodomain and PHD finger-containing protein

1
BuChE butyrylcholinesterase
CA-IX carbonic anhydrase IX
CBR1 cannabinoid receptor 1
CBR2 cannabinoid receptor 2
ChE cholinesterase
c-KIT stem cell growth factor receptor
D2 dopamine D2 receptor
DTDLs dual-target-directed Ligands
EGFR epidermal growth factor receptor
eGYRA DNA gyrase subunit A from Escherichia coli
ER-α estrogen receptor α
eTOPO4 topoisomerase IV subunit A from Escherichia coli
FAAH fatty acid amide hydrolase
FLAP 5-lipoxygenase activating protein
FXR farnesoid X receptor
GYRB DNA gyrase subunit B from Staphylococcus aureus
HDAC histone deacetylase
HDAC6 histone deacetylase 6
HER2 receptor tyrosine-protein kinase erbB-2
HSP90 heat shock protein HSP 90-α
IDO-1 indoleamine-pyrrole 2,3-dioxygenase-1
LTA4H leukotriene-A4-hydrolase
mAChE acetylcholinesterase from Mus musculus
MAGL monoacylglycerol lipase
MAO monoamine oxidase
MAO-B monoamine oxidase B
MCES maximum common edge substructure
MCL-1 induced myeloid leukemia cell differentiation

protein Mcl-1
mPGES-1 microsomal prostaglandin E synthase-1
mPI3K-α phosphatidylinositol-4,5-bisphosphate 3-kinase α

from Mus musculus
MTDLs multitarget-directed ligands
mTOR mammalian target of rapamycin
MW molecular weight
NET norepinephrine transporter
NLRP3 NOD-like receptor 3
NMDAR N-methyl-D-aspartate receptor
OAS overall association score
PDE5A phosphodiesterase 5A
PDGFR- α platelet-derived growth factor receptor α
PI3K-α phosphatidylinositol-4,5-bisphosphate 3-kinase α
PLA2 phospholipase A2
PLK-1 polo-like kinase 1
r5-LOX 5-lipoxygenase from Rattus norvegicus
rACE angiotensin-converting enzyme from Rattus norve-

gicus
rAChE acetylcholinesterase from Rattus norvegicus
RAGE advanced glycosylation end product-specific re-

ceptor
rCOX-2 cyclooxygenase-2 from Rattus norvegicus
sEH soluble epoxide hydrolase
SERT serotonin transporter
sTOPO4 DNA topoisomerase 4 subunit B from Staph-

ylococcus aureus
TAF1 transcription initiation factor TFIID subunit 1
TD tanimoto distance
TDO tryptophan 2,3-dioxygenase
TPSA topological polar surface area

TRIM24 transcription intermediary factor 1-alpha
XOD xanthine dehydrogenase
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