- 1 Published in final edited form as:
- 2 Food Control (110), April 2020, doi:10.1016/j.foodcont.2019.107001
- 3

4	Assessment of radioactivity in commercially available honey in Italy
5	
6	Maria Assunta Meli*, Donatella Desideri ^{*§} , Paolo Battisti°, Isabella Giardina°, Daniela
7	Gorietti°, Carla Roselli*
8	*Department of Biomolecular Sciences, Urbino University "Carlo Bo", P.zza Rinascimento 6,
9	61029 Urbino, Italy
10	°Integrated Laboratory of Radioactivity Measurement and Monitoring, Radiation Protection
11	Institute, ENEA-CR, Casaccia, Via Anguillarese 301, 00123 Rome, Italy
12	[§] Corresponding author: Donatella Desideri, Biomolecular Sciences Department, University of
13	Urbino Carlo Bo, P.zza Rinascimento 6, 61029 Urbino, Italy, Tel: ++39 0722 303308
14	E-mail address: donatella.desideri@uniurb.it
15	

17 Abstract

Activity concentration of natural radionuclides and ¹³⁷Cs were estimated in 28 honeys 18 19 purchased from large supermarket chains in Italy. Uranium, polonium and thorium were measured by alpha spectrometry, ⁴⁰K and ¹³⁷Cs by gamma spectrometry and ²²⁶Ra by liquid 20 21 scintillation. The concentrations were 50.6±46.3, 0.023±0.010, 0.019±0.017, 0.27±0.40 Bqkg⁻¹ for ⁴⁰K, ²³⁸U, ²³⁴U and ²¹⁰Po respectively. ²³⁵U, ²²⁸Th, ²³²Th were consistently <0.007 Bqkg⁻¹ and 22 ²²⁶Ra <0.200 Bqkg⁻¹. ¹³⁷Cs was <2.1 Bqkg⁻¹ in 93% of the samples. The activity of radiocesium 23 24 was found to be above the minimum detectable level in only two samples and did not exceed the 25 highest permitted level for food contributing to the overall radioactivity only slightly. The effective doses attributable to ²¹⁰Po accounts for 0.0026-5.31% of global human exposure to 26 natural radiation. The honeys that were tested were found to be of good quality with regard to the 27 28 parameters under study, confirming the general image of honey as a genuine healthy product.

29

30

31 Keywords: honeys; natural and artificial radionuclides; ingestion dose

- 33 1.Introduction
- 34

For the general population ingestion of food or beverage is the main path in which radionuclides may be incorporated into the body, and thus the main source of internal dose. Any radioactivity present in the air, or more importantly in the ground and soil, can be transferred to the crops that are grown in that soil. Indeed, some naturally occurring radioactive elements find their way into our bodies. The most important radionuclides, accounting for the highest percentage of the radiation dose present in the body due to food intake, are the primordial radionuclides ⁴⁰K, thorium and uranium (Meli et al., 2016).

²³²Th and ²²⁸Th are present in the Earth's crust. They enter the human body through the
food chain and inhalation of the suspended dust in the air accumulating in the lungs, liver and
skeletal tissues and causing radiation damage as well as biochemical and morphological changes.

A high percentage of the internal radiation dose is attributable to ²¹⁰Po, a naturally 45 46 occurring radionuclide of the ²³⁸U series with a half-life of 138.4 days. According to the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), ²¹⁰Po is 47 48 estimated to contribute about 8% of the effective dose equivalent to humans due to natural radioactivity (UNSCEAR, 2000). ²¹⁰Po distribution in the environment depends to a large extent 49 on the other radionuclides in the decay series, namely ²²⁶Ra and ²¹⁰Pb. Part of ²¹⁰Po is deposited 50 on plants via the ²²²Rn-daughters, mainly ²¹⁰Pb, through precipitation, caused by the outgassing 51 of 222 Rn from soils (= unsupported 210 Po). The second source of 210 Po is the decay of 226 Ra in the 52 53 soil. Its presence in all terrestrial foodstuffs is, therefore, unavoidable (Brown et al., 2011, Persson et Holm, 2011). Other anthropogenic activities that increase the levels of ²¹⁰Pb and ²¹⁰Po 54 in plants include atmospheric deposition from industrial emissions, waste disposal, phosphate ore 55 56 processing, coal-fired power plants, coal mining, metal smelting, etc.

57

Potassium, on the other hand, plays a key role in regulating many bodily functions such

as digestion and heart rate as well as the water content of cells. Potassium content in the body is 58 59 therefore held constant by metabolic processes (homeostatic control), although gender and age 60 related variations have been observed. Its distribution within the body is more or less uniform. 40 K is a single occurring natural radionuclide which has a very long half-life of 1.251×10^9 years. 61 62 It makes up 0.012% of the total amount of potassium found in nature (Sugiyama et al., 2009) and 63 its level in the body, like that of stable potassium is constant. In an average 70 kg human potassium content is 0.1-0.3% with a corresponding total activity ranging from 22 to 76 kBq of 64 ⁴⁰K (Altekin et al., 2015). 65

Atmospheric nuclear weapon tests (1945-1963) and a series of nuclear accidents have 66 contaminated the environment with artificial and biologically significant radionuclides such 67 as¹³¹I, ¹³⁴Cs, ¹³⁷Cs and ⁹⁰Sr. ¹³⁷Cs (characterized by a half life of 30.17 years) is among the most 68 69 problematic of the short-to-medium-lifetime fission products because it spreads readily through 70 the environment thanks to the high water solubility of Cs salts. It mainly contaminates leaves and 71 flowers directly from the atmosphere but also through uptake from the soil. Organisms process caesium in a very similar way to potassium (Altekin et al., 2015). ⁹⁰Sr is even more problematic 72 than ¹³⁷Cs, but, due to the complexity of the methods requested for its analysis, much more 73 analyses have been performed on 137 Cs. 74

75 Honey, a nutritious product of global economic importance, is a naturally sweet substance 76 produced by honeybees from the nectar of blossoms or from honeydew. The nectar or deposits 77 are then modified and stored in honeycombs. Honeybees (Apis mellifera L.) are the main 78 pollinating insects for numerous plants and fruit trees. Honey is one of the most complex food 79 products, and its composition varies according to many factors including the botanical/floral 80 origins of the plants from which the nectar is collected and the species of the bees. Honey can be considered a supersaturated solution composed of four main sugar (75-80%), fructose, glucose, 81 82 maltose and sucrose (Poschl et al., 2011). It has a water content of less than 20% and contains minerals and organic substances, including amino acids, enzymes, proteins, vitamins, organic
acids, pigments and phenolics, (1%–2%) (Buldini et al., 2001).

Honey is a popular natural product, not only for its taste and nutritional value, but also for its health benefits. Its high contents of glucose and fructose make honey one of the most digestible foods (Belitz et al., 2004) and it is commonly used as an ingredient in foodstuffs because of its sweetness, color, flavor, caramelization, and viscosity. Honey also has preservation properties due to its sugar-content.

90 The European population is the world's largest consumer of honey (Vanhanen, 2011), 91 and in light of the growing consumption of this natural food, it is of paramount importance to 92 ensure its safety. Honey, in fact, can be contaminated by several toxic compounds, including 93 radionuclides. Contamination can occur as a result of beekeeping practices or environmental 94 factors (Bogdanov, 2006). Regarding environmental contamination, during their foraging flights, 95 when honeybees collect nectar, pollen, plant resins, and water, they inadvertently come into 96 contact with a wide array of inorganic and organic pollutants (heavy metals, radionuclides, 97 pesticides etc.), which are often taken back to the colony. Hence, contaminants migrate through 98 the chain air-water soil-plants-bees chain into honey and change its composition and quality. Of 99 these contaminants, radionuclides are of particular interest because of their impact on the quality 100 of honey as well as their potential adverse effects on human health. Hence, ensuring low 101 concentrations of radionuclides in honey is imperative (Borawska et al., 2013), and 102 commercially available honey must therefore be monitored closely to guarantee its quality, 103 provenance and safety.

Hence, the aim of this study was to perform a radiological characterization of a range of commercially available honeys, purchased from major Italian supermarket chains in order to evaluate the risk posed by natural and artificial radioactivity present in these products. For this

107	purpose, gamma and alpha spectrometry and liquid scintillation counting were used to determine
108	the concentrations of ¹³⁷ Cs and the natural radionuclides, ⁴⁰ K, ²³⁸ U and ²³² Th and their progeny.
109	
110	2. Experimental setup
111	2.1. Samples
112	The honeys used in the present study were purchased from major Italian supermarket
113	chains. Twenty-eight samples were analyzed. These samples were classified into six groups
114	according to their botanic origin: 9 wildflower, 6 acacia, 3 eucalyptus, 3 chesnut, 5 citrus, 1
115	linden and 1 forest.
116	Twenty-six of the tested honeys were produced in various European countries (Italy, Hungary,
117	Serbia, Ukraine) and two respectively in Argentina and Uruguay.
118	Table 1 shows the sampling area, botanical origin and chemical composition of the
119	honeys namely their sugar contents, degree of humidity, pH and free acidity, combined and total
120	acidity. These findings were obtained from a previous investigation (Meli et al., 2018) and are
121	consistent with those reported by the Council Directive 2001/110/EC relating to honey (EC,
122	2001).

Sample Botanical origin Sampl code, N		Sampling area	Humidity (%)	Sugar (Brix)	рН	Free Acidity (meq/kg)	Combined acidity (meq/kg)	Total acidity (meq/kg)
1	wildflower	Hungary, Ukraine	17.7	80.2	3.9	23.6	3.3	26.8
2	wildflower	Hungary, Italy	18.2	79.8	4.0	27.4	1.7	29.1
3	wildflower	Italy	16.2	81.6	4.6	60.9	3.0	63.9
4	wildflower	Italy	19.0	79.0	4.1	33.4	4.0	39.5
5	wildflower	Hungary, Italy	18.2	79.5	4.1	28.4	1.6	29.9
6	wildflower	Italy	17.4	80.2	4.4	19.8	3.7	23.5
7	wildflower	Italy	18.6	79.1	5.1	17.2	1.7	18.8
8	wildflower	Argentina	18.7	79.0	4.2	32.9	2.2	35.0
9	wildflower	Italy	17.5	80.1	4.3	31.9	1.5	33.6
10	acacia	Hungary	18.0	80.0	4.2	10.6	2.1	12.7
11	acacia	Hungary	18.3	79.8	4.1	12.0	1.7	13.7
12	acacia	Italy	17.6	80.4	4.1	15.5	1.7	17.1
13	acacia	Hungary	17.9	79.8	4.2	13.0	1.2	14.2
14	acacia	Italy-Lunigiana	17.5	80.3	4.4	10.0	1.0	11.0
15	acacia	Serbia	17.2	80.5	4.5	9.6	1.0	10.6
16	eucalyptus	Uruguay	20.7	77.1	4.3	35.5	3.7	39.3
17	eucalyptus	Italy	17.7	80.3	4.3	27.3	2.9	30.2
18	eucalyptus	Italy	18.6	79.0	4.3	20.5	3.2	23.7
19	chesnut	Italy -Calabria	17.2	80.6	4.8	32.7	5.1	37.8
20	chesnut	Italy	17.5	80.3	5.5	14.5	2.7	17.2
21	chesnut	Italy	17.0	81.0	4.5	45.7	3.4	49.1
22	citrus	Italy	18.6	79.4	4.1	14.3	1.5	15.8
23	citrus	Italy	17.9	80.1	3.9	31.1	2.5	33.6
24	citrus	Italy	19.9	77.9	3.9	29.3	1.3	30.6
25	citrus	Italy	18.1	79.6	4.2	19.2	2.1	21.3
26	citrus	Italy	19.2	78.8	3.9	22.8	1.3	24.1
27	linden	Italy	17.9	80.0	4.9	17.3	4.0	21.3
28	forest honey	Italy	17.3	80.3	5.0	27.1	2.2	29.2
Minimum			16.2	77.1	3.9	9.6	1.0	10.6
maximum			20.7	81.6	5.5	60.9	5.1	63.9
Mean			18.1	79.8	4.3	24.4	2.4	26.9
SD			0.91	0.91	0.40	11.6	1.1	12.2
126								

Table 1 List of honey samples, sampling area, botanical origin and chemical composition (Meli
 et al., 2018)

127 2.2. Analytical methods

128 Three different methods were used to measure the radioactive content of the honey 129 samples: gamma spectrometry, alpha spectrometry and liquid scintillation.

Gamma spectrometry. This technique is able to determine many different radionuclides directly and simultaneously without any specific pre-treatment of the sample. However, some of radionuclides of interest in the present study, namely ²¹⁰Po, ²³⁴U, ²³⁰Th or ²³²Th, are not gamma emitters or only poor ones and therefore it is difficult to measure them using gamma spectrometry.

⁴⁰K and ¹³⁷Cs were assessed in honey by measuring all samples with a p-type coaxial 135 HPGe detector by Ortec®, Model GEM-C5060P4 Profile C; it is characterized by an energy 136 range of 3 - 3000 keV, a relative efficiency of 20% at 1.33 MeV and an energy resolution 137 138 (FWHM) of 1.8 keV at 1.33 MeV, 850 eV at 122 keV and 725 eV at 5.9 keV. The detector was 139 cooled to near liquid nitrogen temperature and it was placed in a shielded house built from low-140 background, 10 cm thick lead, lined with a sheet of copper (1.5 mm thick). The samples were 141 counted for 150,000 s. Gamma spectra were analysed by Canberra®) Genie-2000 software. To determine the activity concentration of ⁴⁰K and ¹³⁷Cs the gamma-ray energies of 1460.75 and 142 143 661.62 keV were considered respectively. For full quantitative analysis, the system was 144 calibrated in efficiency and energy using multiradionuclides aqueous standard solution certified 145 by the Italian National Institute of Ionizing Radiations Metrology (ENEA INMRI). The 146 performances of the measuring system are periodically checked through the participation to 147 international intercomparison exercices (Procorad and IAEA-Almera). 100 g of each honey 148 sample were dissolved in bidistilled water with the aid of slight heating and the solution was then 149 placed into a 180 ml Marinelli beaker. Taking into account that the density of the analysed 150 matrices after dilution was around 1 (similar to the calibration solution), no correction for self-151 absorption was applied. The background spectra were counted under the same conditions using a

152 container with bidistilled water.

153 Alpha spectrometry. This radiometric technique is applied to pure alpha emitting 154 radionuclides and involves a complex and time consuming pre-treatment of the sample to make 155 measurement of the investigated radionuclide possible. The method includes a complete 156 dissolution of the sample with nitric acid followed by a separation of the radionuclide by 157 extraction chromatography or precipitation, and an electrodeposition to prepare the source for the 158 measurement, etc. This technique requires very long preparation and source counting, however, 159 it makes possible to perform a specific determination of activity concentration with extremely low detection limits providing complete information on concentration and isotopic ratios of ²³⁸U, 160 ²³⁵U, ²³⁴U, ²³²Th, ²³⁰Th and ²²⁸Th (Desideri et al., 2006). 161

162 Taking these considerations into account, the following radiochemical method was 163 employed for uranium and thorium measurement: 10 g of honey, after the addition of a known activity of ²³⁶U and ²²⁹Th as the yield internal standards, was dissolved in 70 ml of 5M HNO₃, 25 164 165 ml of 1M Al(NO₃)₃ in 5 M HNO₃; the solution was stirred (30') and after 12 hours it was filtered. The solution was then passed through a chromatographic column (UTEVA Resin, 166 167 Eichrom Technologies) constituted by dipentyl,pentylphosphonate (or diamyl, 168 amylphosphonate), DAAP, supported on an inert polymer (acrylic ester) and conditioned with 169 5M HNO₃; DAAP is a selective extractant in nitric medium for tetravalent and hexavalent 170 actinides (Th, U, Pu, Np) (Thakkar, 2000). Thorium was eluted by 5M HCl and then uranium 171 was eluted by 0.02 M HCl. The two elution solutions were evaporated, dried and mineralised. 172 Finally, the residues were dissolved in conc. H₂SO₄ and transferred into an electrolytic cell. 173 Uranium and thorium were electroplated from ammonium sulphate solution at pH 4.

For the determination of ²¹⁰Po, no preliminary chemical separation was required. The polonium source was, in fact, prepared by the spontaneous deposition of the element on silver plate after complete dissolution of the sample. The following radiochemical method was

177 employed for polonium determination: 10 g of each sample was spiked with a known activity of ²⁰⁹Po as an internal standard yield and then treated several times with concentrated nitric acid 178 179 and hydrogen peroxide to aid the oxidization of the organic compounds. When the solution was 180 clear, the liquid was evaporated to dryness and the residue was dissolved in 80 ml of 1M hydrochloric acid. After the addition of 100 mg of ascorbic acid to eliminate the ferric ion 181 interference and 10 ml of 25% sodium citrate, both ²¹⁰Po and ²⁰⁹Po were plated at 85-90°C and 182 183 pH 1.5-2.0 continuously for 4 h onto a silver disk, placed in a syringe and immersed in the 184 solution (Meli et al., 2014).

185 For quality control, these analytical methods were tested using standard reference186 materials. .

The measurements of the isotopes alpha emitters of polonium, uranium and thorium were carried out using an α -spectrometer equipped with a semiconductor silicon detector of surface barrier type (300 mm² active surface, resolution 20 keV, 31.7±3.1% of counting efficiency, and 2 x 10⁻⁶ s⁻¹ of the background in the region of interest (ROI)) (Canberra Industries, Inc., 800 Research Parkway, Meriden, CT 06450) and connected to a computerized multichannel analyzer. Counting times ranged from 1000 to 3000 min to achieve good counting statistics.

For uranium, thorium and polonium percentage chemical recoveries resulted respectively 194 $67.9\pm18.4, 77.8\pm16.4$ and 88.1 ± 9.2 % respectively, and the minimum detectable activity 195 concentration (MDA) for a 20 g sample was consistently around 7 mBqkg⁻¹. A blank sample was 196 prepared because reagents, containers and equipment could release impurities that could lead to 197 miscalculation

198

193

Liquid Scintillation (LSC). This method was employed for the measurement of ²²⁶Ra. It makes use of the volatility of ²²²Rn and the secular equilibrium between ²²⁶Ra and ²²²Rn. In fact; this radionuclide transfers completely and selectively from the aqueous solution containing ²²⁶Ra to an overlying immiscible organic phase containing the scintillation cocktail. 25 g of each honey

202 sample was dissolved in water and evaporated at 200°C until a final volume of 10 ml was 203 reached. This solution was then placed in a PTFE vial, and 10 ml of the scintillation cocktail 204 Ultima Gold F was added. The closed vial was kept in dark for four weeks to achieve secular 205 equilibrium between ²²⁶Ra and its daughter ²²²Rn. For each ²²⁶Ra decay, three alpha decays (of 206 ²²²Rn, ²¹⁸Po and ²¹⁴Po) and two beta decays (of ²¹⁴Pb and ²¹⁴Bi) were considered. The samples 207 were counted in the ultra low-level scintillation counter Quantulus 1220 from Perkin Elmer 208 applying a special alpha/beta discrimination tool. By discrimination of the β -decays, the alpha 209 decays of ²²²Rn, ²¹⁸Po and ²¹⁴Po were countable with an efficiency of around 240% and a low 210 background could be achieved. In our measurements, a minimum detectable concentration of 211 around 0.2 Bq/kg (not so good) was achieved due to the small sample amount (25g). Longer 212 counting times (1000 minutes) and a low a-background could not overcome this limitation. In 213 addition, for liquid scintillation as well as for alpha spectrometry, a blank sample was prepared 214 because reagents, containers and equipment could release impurities that could lead to 215 miscalculation (Desideri et al, 2019).

216

217 2.3. Activity concentrations and MDA calculation

The activity concentration (Bqkg⁻¹) of each radionuclide present in the sample was calculated from the formulas reported by IAEA (IAEA, 1989) and ISO (ISO 2018a; ISO 2018b). The total uncertainty of each measurement was calculated taking into account all the major sources of variability, particularly statistical fluctuations of counting both of the sample and of the blank (including background) and those associated to efficiency calibration and sample weighting. The minimum detectable activity (MDA) of the measurements system was done following the procedure shown in ISO 11929.

225

2.4. Statistical analyses

228	For each group of samples, the arithmetical mean with its standard deviation (SD) was
229	reported. The median, the minimum and maximum values are also reported. Statistical analyses
230	(Student's <i>t</i> -test) were carried out following the logarithmic transformation of the individual data
231	in order to evaluate the presence of significant difference in term of radioactivity content
232	between honeys of different botanical origin (wildflower, acacia, eucalyptus, chesnut, citrus,
233	linden, forest honey); significance was accepted at $P < 0.05$.

- 234
- 235

236 2.4. Radionuclide annual intake and committed effective dose calculation

The annual intake of radionuclides was calculated as the product of the radionuclide activity concentration and the annual consumption rate. The following dose calculations were based on two different daily consumption rates: 5g (a teaspoon) and 25 g of honey. The annual committed effective dose was calculated for each radionuclide using the following formula:

- 241 242
- $D=Q \quad x \quad C \quad x \quad I$

where D is the annual committed effective dose for every radionuclide taken into account (μ Sv y⁻¹), C is the radionuclide concentration (Bq kg⁻¹), I is the annual consumption rate (kg y⁻¹), and Q is the conversion factor for ingestion (μ Sv Bq⁻¹) recommended by ICRP (2012) for infants (1-2 year), children (7-10 years) and adults (>17).

- 247
- 248
- 249
- 250
- 251

252 **3. Results**

253 3.1. Radionuclids concentrations

Table 2 shows the measurement of alpha and gamma emitters for each sample. Each activity concentration value was affected by uncertainties of 10%, 15%, 25% and 25% for ⁴⁰K ²¹⁰Po, ²³⁸U and ²³⁴U respectively.

For the ²³⁸U series, ²¹⁰Po ²³⁸U and ²³⁴U were detectable in the all the samples; ²¹⁰Po ranges from 0.03 to 1.62 Bqkg⁻¹ (mean value 0.27 ± 0.40 Bqkg⁻¹); the mean activity concentration was 0.023 ± 0.010 Bqkg⁻¹ and 0.019 ± 0.017 Bqkg⁻¹ for ²³⁸U and ²³⁴U respectively.²³⁵U, ²³²Th and ²²⁸Th activity concentrations were consistently below MDA (0.007 Bqkg⁻¹) such as ²²⁶Ra (0.200 Bqkg⁻¹).

Table 2 also shows the ⁴⁰K activity concentration. ⁴⁰K was detectable (above MDA) in the 55% of the samples and this radionuclide was responsible for most of the activity in the honeys honey. This is due to the fact that potassium, an essential element for humans and widely distributed in the environment (Uwatse et al., 2015), can be easily transferred through the food chain. The ⁴⁰K activity concentration ranged from <22 to 180 Bqkg⁻¹ (mean value 50.6 \pm 46.3 Bqkg⁻¹). For the mean calculation, when activity concentration was below the MDA, the MDA was considered.

269 Concentration differences between samples collected from honeys with different 270 botanical origins were calculated and the results were showed in table 3.

271 Regarding the ²¹⁰Po, a significant difference (P < 0.05) was found between the activity 272 concentration of this radionuclide in forest honey and its concentration in all the different kinds 273 of tested honey, excluding chesnut. No significant difference (P > 0.05) was found between ²¹⁰Po 274 concentration in wildflower honey and that in all the different kinds of honey excluding forest 275 honey.

Table 2

Activity concentration (Bqkg⁻¹) of ²³⁸U, ²³⁴U, ²¹⁰Po, and ⁴⁰K in honey samples, minimum,
maximum value, median, mean and relative standard deviation (SD)

202	Code, N	Group	²³⁸ U	²³⁴ U	²¹⁰ Po	⁴⁰ K
282	1	wildflower	0.042	0.031	0.07	180
202	2	wildflower	0.049	0.089	0.11	<22.0
283	3	wildflower	0.017	0.013	0.26	105
	4	wildflower	0.020	0.021	0.18	49.0
284	5	wildflower	0.024	0.011	0.08	<22.0
	6	wildflower	0.020	0.013	0.11	<22.0
285	7	wildflower	0.019	0.011	0.91	65.2
	8	wildflower	0.023	0.012	0.05	33.4
286	9	wildflower	0.028	0.017	0.33	38.7
		Mean± SD	0.027 ± 0.011	0.024 ± 0.025	0.23 ± 0.27	59.7±52.5
287	10	acacia	0.024	0.013	0.03	<22.0
207	11	acacia	0.017	0.007	0.05	<22.0
288	12	acacia	0.029	0.025	0.03	<22.0
200	13	acacia	0.015	0.013	0.05	<22.0
200	14	acacia	0.017	0.012	0.03	<22.0
289	15	acacia	0.007	0.007	0.06	<22.0
	Mean± SD		0.018 ± 0.008	0.013 ± 0.008	$0.04{\pm}0.01$	<22.0
290	16	eucalyptus	0.028	0.033	0.12	57.4
	17	eucalyptus	0.014	0.010	0.23	40.5
291	18	eucalyptus	0.017	0.007	0.09	44.0
		Mean± SD	0.020 ± 0.007	0.017 ± 0.014	0.15 ± 0.07	47.3±8.90
292	19	chesnut	0.041	0.028	0.52	151
	20	chesnut	0.021	0.010	1.45	157
293	21	chesnut	0.015	0.019	0.32	77.1
		Mean± SD	0.026 ± 0.014	0.019 ± 0.009	0.76 ± 0.60	128±44.5
294	22	citrus	0.017	0.012	0.04	<22.0
	23	citrus	0.029	0.015	0.30	31.8
205	24	citrus	0.044	0.051	0.10	<22.0
2)5	25	citrus	0.015	0.013	0.04	<22.0
207	26	citrus	0.025	0.028	0.08	<22.0
296		Mean± SD	0.026 ± 0.012	0.024 ± 0.017	0.11 ± 0.11	24.0 ± 4.38
207	27	linden	0.013	0.011	0.59	87.9
297	28	forest honey	0.015	0.011	1.62	104
298	Total	Minimum	0.007	0.007	0.03	<22.0
		Maximum	0.049	0.089	1.62	180
299		Median	0.020	0.013	0.10	26.9
		Mean± SD	0.023±0.010	0.019 ± 0.017	0.27 ± 0.40	50.6±46.3
• • • •						

Table 3.

304 Presence of significant (S) or not significant (NS) difference in term of radioactivity content 305 between honeys with different botanical origin (significance was accepted at P < 0.05)

²¹⁰ Po	wildflower	acacia	eucalyptus	chesnut	citrus	linden	forest
wildflower	-	NS	NS	NS	NS	NS	S
acacia	NS	-	S	S	NS	S	S
eucalyptus	NS	S	-	NS	NS	S	S
chesnut	NS	S	NS	-	S	NS	NS
citrus	NS	NS	NS	S	-	S	S
linden	NS	S	S	NS	S	-	S
forest	S	S	S	NS	S	S	-
⁴⁰ K	wild	acacia	eucalyptus	chesnut	citrus	linden	forest
wildflower	-	NS	NS	NS	NS	NS	NS
acacia	NS	-	S	S	NS	S	S
eucalyptus	NS	S	-	S	S	NS	S
chesnut	NS	S	S	-	S	NS	NS
citrus	NS	NS	S	S	-	S	S
linden	NS	S	NS	NS	S	-	NS
forest	NS	S	S	NS	S	NS	-
06							
07							
08							
09							

No significant difference (P > 0.05) was found between ²¹⁰Po concentration in wildflower honey purchased from large supermarket chains (0.23 \pm 0.27) and the concentration in wildflower honey samples produced by local beekeepers in Central Italy (0.40 \pm 0.46 Bqkg⁻¹) (Meli et al., 2016).

Regarding the ⁴⁰K, significant difference (P < 0.05) was found between the concentration of this radionuclide in acacia honey and that in eucalyptus, chesnut, linden and forest honey. Significant difference was found between its concentration in eucalyptus honey and that in acacia, chesnut, citrus and forest honey. No significant difference (P > 0.05) was found between ⁴⁰K activity concentration in wildflower honey and its concentration in all other kind of honey.

¹³⁷Cs was consistently below the MDA (2.1 Bqkg⁻¹) except in samples 27 (linden) and 28
(forest) which showed an activity concentration of 5.14 and 4.00 Bqkg⁻¹respectively. This points
to the presence of residual contamination from anthropogenic radioactivity in the analyzed
samples.

326 Table 4 (part A) shows a comparison between the values found in this study with those 327 reported by other authors for Italy and other European regions. Due to variations in 328 concentrations of natural radioisotopes in the environment, honeys of different origins are 329 expected to contain variable levels of radioactiviy. Such variations in the content of natural 330 radionuclides can be attributed to the botanical types of the plants from which the nectar is 331 collected, the preferential absorbability of those plants, variability of their soils, use of fertilizers, 332 radioactivity content of the irrigation water and the climatic conditions (Borawska et al., 2013). 333 Furthermore, different methods of sample solubilization and different analytical techniques may 334 also affect the results. In any case the values that were measured in this study were comparable 335 with those found by other researchers.

Table 4 A) Comparison of the some radionuclide activity concentration (mBqkg⁻¹) of honey produced in different regions of Italia and Europe; B) Comparison between the ²¹⁰Po,²³⁸U, ²²⁶Ra mean concentration (mBqkg⁻¹) found for honey in the present study and that reported by UNSCEAR (2000) as reference value and as mean concentration in European diet (excluding Italy)

40	nary)							
	Part A	¹³⁷ Cs	⁴⁰ K	²³⁸ U	²³⁵ U	²¹⁰ Po	²³² Th	²²⁶ Ra
	Italy (this study)	<2100-5140	<22000- 180000	7-49	<7	30-1620	<7	<200
	Marche, Italy (Meli et al., 2016)	<100	7280-100700	<7-43	<7	30-1980	<7	<340
	Poland (Borawska et al., 2013)	110-16390	5510-98890					
	Czech Republic (Poschl et al., 2011)	<201-39200	<2670- 132000					
	Yuguslavia (Esposito et al., 2002) (<20.0- <1700	<8000-87000	<1500- <38000			<200-<2200	<180- <2800
	Croazia (Barisic et al., 1999)	440±370	28300±15900					
	West Serbia (Djuric et al., 1996)	2400±450	27100±3200	2300±1500	110±90	-	260±40	
	Part B	²¹⁰ Po	By UNSCEAR	²³⁸ U	By UNSCEAR	²²⁶ Ra	By UNSCEAR	
	Food	Reference value	European	Reference value	European	Reference value	European	
	Milk products	15	2-220	1	0.1-4.9	5	<0.4-200	
	Meat products	60	37-67,000	2	1.6-5.6	15	2-220	
	Grain products	60	20-1,900	20	4.7-400	80	0.7-5200	
	Leafy vegetables	100	4-7,400	20	6-2200	50	2.2-1150	
	Roots and fruits	40	12-5,200	3	0.9-2900	30	5-9400	
	Fish products	2,000	50-120,000	30	2.5	100	8.5-7400	
	Water and beverages	5	0.1-7,600	1	0-1000	0.5	0-4000	

5-2,000

270

Range Honey (this

work)

0.5-100

<200

1-30

342 *3.2. Potential health hazards resulting from honey consumption*

343 Quality control of honey is of great importance given the overall increasing global 344 consumption of honey, in particular, in the European Union which is, as already mentioned, the 345 world's largest consumer of honey. There is no specific regulation regarding the presence of 346 radionuclides in honey. The Directive 2001/110/EC of the European Union Commission relating 347 to honey includes some general and specific properties regarding its composition but no 348 guidelines are provided regarding the content of radionuclides are given (European Commission, 349 2001). The Council Regulations EC 733/2008 and EC 1048/2009, which set the maximum levels 350 for certain contaminants in foodstuffs, do not address apiary products (EC, 2008 and 2009). For milk, its derivatives and products for children, the limits for ¹³⁷Cs were set at 370 Bgkg⁻¹ while 351 for other foods, the limits for ¹³⁷Cs were set at 600 Bq kg⁻¹. Consequently, at present, there are no 352 legal criteria with which to compare the results obtained in this study. The contents of ¹³⁷Cs 353 found in this investigation were <2.1 Bqkg⁻¹ in 26 samples and 5.14 and 4.00 Bqkg⁻¹ respectively 354 355 in two samples (27, linden and 28, forest) and therefore were consistently below the limit set by 356 European Community Regulations (EC, 2008 and 2009) and the Guideline levels established by 357 WHO in 1995 and amended in 2010, (WHO, 1995 (2010)).

Table 4 (part B) shows a comparison between the ²¹⁰Po,²³⁸U and ²²⁶Ra mean concentrations (mBqkg⁻¹) measured in honeys in this study and the corresponding values reported by UNSCEAR (2000) which serve as reference values and as mean concentrations for the European diet (excluding Italy). The results of the present investigation are comparable with the reference values and with those found in the European diet indicated by UNSCEAR.

The final aim of our investigation of honey was to estimate the dose of radiation attributable to the consumption of honey. The contribution to the radiation dose attributable to the ingestion of natural radionuclides was calculated for three segments of the population: infants

366 (1-2 year), children (7-10 years) and adults (>17 years). In addition, two different values of daily
367 honey ingestion were considered: 5 g (a teaspoon) and 25 g.

Table 5 shows the ²¹⁰Po committed effective dose (nSv y⁻¹) calculated for individuals belonging to the three segments of the population, the minimum and maximum, the median, the arithmetical mean and the relative standard deviation for every group of honey and for all samples. Considering a daily honey ingestion of 5 g, the maximum contribution to the internal dose (26000 nSv y⁻¹) by ²¹⁰Po accounts for about 1.1% of the average annual effective dose to which the world population (2.4 mSvy⁻¹) is exposed, whereas for a daily honey ingestion of 25 g, that value rises to 5.3%.

Table 5 shows the ²³⁸U and ²³⁴U committed effective dose (nSv y⁻¹) calculated for 375 376 individuals belonging to the three above-mentioned segments of population, the minimum and 377 maximum, the median, the arithmetical mean and the relative standard deviation for every group 378 of honey and for all samples. For a daily honey ingestion of 5 g, the maximum contributions to the internal dose from ²³⁸U (10.6 nSv y⁻¹) and ²³⁴U (20.8 nSvy⁻¹) correspond respectively to 4.4 379 10^{-4} % and 8.7 10^{-4} % of the natural radiation exposure in the world population, whereas, for a 380 daily honey ingestion of 25 g, these values rose to 53 (²³⁸U) and to 104 nSv y⁻¹ (²³⁴U) 381 respectively accounting for 2.2 10^{-3} % and 4.3 10^{-3} % of natural radiation exposure. 382

383 It is quite clear that the maximum dose obtained for ²³⁸U, ²³⁴U and ²¹⁰Po should not be a 384 cause for concern even assuming the most conservative hypothesis (maximum dose value for a 385 daily consumption of 25 g of honey).

Table 6 shows the mean concentrations and the mean committed effective doses for all radionuclides under study (²³⁸U, ²³⁴U, ²³⁵U, ²¹⁰Po, ²³²Th, ²²⁸Th, ²²⁶Ra, ⁴⁰K and ¹³⁷Cs) in infants, children and adults assuming a daily honey ingestion of 5g and 25g. Table 5. ²¹⁰Po, ²³⁸U and ²³⁴U committed effective dose (mean and relative standard deviation
 (SD) for every group of honey in nSvy⁻¹) from a daily honey ingestion of 5 and 25 g, calculated
 for individuals belonging to three segments of the population (infants, children and adults)

			5 gd ⁻¹			25 gd ⁻¹	
Group of honey	Radionuclide	infant	children	adult	infant	children	adult
wildflower	²¹⁰ Po	3700±4280	1090±1270	500±580	18500±21400	5460±6320	2520±2920
acacia		660±210	190±60	0.09±0.03	3300±1050	970±310	450±140
eucalyptus		2320±1170	609±340	320±161	1.600 ± 5830	3430±1720	1580 ± 0.800
chesnut		12100±9550	3570±.820	1650±1300	60400±47700	17900±14100	8240±6510
citrus		1770±1710	520±510	240±230	8807±8570	2620±2530	1210±1170
linden		9340±140	2760±414	1207±181	46700±7005	13800 ± 2070	6370±956
forest honey		25700±3855	7580±1137	3500 ± 525	128300±19245	37900 ± 5685	17500 ± 2625
Total ²¹⁰ Po	Minimum	470	140±	60±	2380	700	320
	Maximum	25700	$7580\pm$	$3500\pm$	128300	37900	17500
	Mean±SD	4320±6390	1280±1890	590±870	21600±32000	6380±9450	2940±4360
	Median	1580	470	216	7920	2340	1080
wildflower	²³⁸ U	5.810±2.41	3.29±1.37	2.18±0.90	29.04±12.05	16.46±6.83	10.89±4.52
acacia		3.890±1.71	2.20±0.97	1.460 ± 1.38	19.44±8.53	11.02±4.83	7.290±3.20
eucalyptus		4.250±1.59	2.410±0.90	1.590±0.60	21.24±7.96	12.04±4.51	7.960±2.98
chesnut		5.540±2.94	3.140±1.67	2.080±1.10	27.72±14.70	15.71±8.33	10.39±5.51
citrus		5.620±2.50	3.180±1.42	2.110±0.94	28.08±12.50	15.91±6.93	10.53±4.69
linden		2.808	1.591	1.053	14.04	7.96	5.265
forest honey		3.240	1.836	1.215	106.2	9.18	6.075
Total ²³⁸ U	Minimum	1.533	0.869	0.575	6.48	3.67	2.430
	Maximum	10.58	6.00	3.97	52.92	29.99	19.84
	Mean±SD	4.930±2.20	2.790±1.24	1.850 ± 0.82	24.65±10.99	13.97±6.22	9.240±4.12
	Median	4.320	2.45	1.62	21.6	12.24	8.100
wildflower	²³⁴ U	5.668±5.882	3.226±3.348	2.136±2.217	28.34±29.41	16.13±6.742	10.68±11.09
acacia		3.010±1.533	1.714±0.873	1.135±0.578	15.05±7.665	8.569±4.363	5.674±2.889
eucalyptus		3.900±3.328	2.220±1.895	1.470±1.255	19.50±16.64	11.10±9.473	7.350±6.273
chesnut		4.446±2.106	2.531±1.199	1.676±0.794	22.23±10.53	12.65±5.994	8.379±3.969
citrus		5.569±3.864	3.170±2.199	2.099±1.456	27.85±19.32	15.85±11.00	10.49±7.282
linden		2.574	1.465	0.970	12.87	7.326	4.851
forest honey		2.574	1.465	0.970	12.87	7.326	4.851
Total ²³⁴ U	Minimum	1.660	0.945	0.626	8.304	4.727	3.130
	Maximum	20.83	11.85	7.850	104.1	59.27	39.25
	Mean±SD	4.543±3.96	2.586 ± 2.254	1.712±1.493	22.71±19.8	$12.93{\pm}11.27$	8.561±7.463
	Median	3.042	1.732	1.147	15.21	8.658	5.733

393

Table 6. Radionuclide mean concentration (Bqkg⁻¹), conversion factor for ingestion, Q, (µSv Bq⁻¹) recommended by ICRP (2012) for three

segments of population (infants, children and adults), Mean Committed Effective Dose (µSvy⁻¹) by daily honey ingestion of 5 and 25 g and comparison

- with the Committed Effective Dose from diet (UNSCEAR, 2000)
- 398

Radionuclide	Conversion	Factor,	Q	Mean	Committed	effective	Dose	Committed	effective	Dose	Committed	Effective	Dose
					by	ingestion	5gd ⁻¹	by	ingestion	25gd ⁻¹	from	European	diet
	Infant	Children	Adult	concentration	Infant	Children	Adult	Infant	Children	Adult	Infant	Children	Adult
²³² Th	0.45	0.29	0.23	<0.007	<0.0057	<0.0036	<0.0029	<0.028	< 0.0183	<0.0145	0.26	0.32	0.38
²²⁸ Th	0.37	0.15	0.072	<0.007	<0.0047	<0.0019	<0.0009	<0.023	< 0.0095	<0.0045	0.38	0.30	0.22
²³⁸ U	0.12	0.068	0.045	0.023	0.0049	0.0028	0.0018	0.025	0.014	0.0092	0.23	0.26	0.25
²³⁵ U	0.13	0.071	0.047	< 0.007	< 0.0017	< 0.0009	< 0.0006	<0.0083	< 0.0045	<0.0030	0.012	0.012	0.012
²³⁴ U	0.13	0.074	0.049	0.019	0.0045	0.0026	0.0017	0.022	0.013	0.0086	0.25	0.28	0.28
²²⁶ Ra	0.96	0.80	0.28	<0.200	<0.346	<0.288	< 0.101	<1.728	<1.440	< 0.504	<7.5	<12	<6.3
²¹⁰ Po	8.8	2.6	1.2	0.27	4.32	1.28	0.59	21.6	6.38	2.94	180	100	70
⁴⁰ K	0.042	0.013	0.006	50.6	3.88	1.20	0.55	19.4	6.00	2.77			
¹³⁷ Cs	0.012	0.010	0.013	<2.1	<0.046	<0.038	< 0.050	<0.230	<0.192	<0.249			
399													

401 As regards ²³²Th, taking into account a concentration equal to the MDA value (0.007 Bqkg⁻¹), the committed effective dose (μ Sv y⁻¹) calculated for individuals belonging to the three 402 above mentioned segments of the population ranges from 0.0029 to 0.0057 µSvy⁻¹ and from 403 0.0145 to 0.028 μ Svy⁻¹ for a daily honey ingestion of 5 g and 25 g respectively. These values 404 405 account in any case for an absolutely negligible contribution to the average annual effective dose to which the world population is exposed. The same results were also obtained for ²²⁸Th, ²³⁵U 406 and ²²⁶Ra. The ⁴⁰K dose calculated in this study for comparison purposes taking into account a 407 mean concentration of 50.6 Bqkg⁻¹ was also reported in table 6. Potassium is an essential element 408 409 under homeostatic regulation in the body and it is not influenced by variations in environmental levels (Desideri et al., 2019). For ⁴⁰K, the committed effective dose (µSv y⁻¹) calculated for 410 411 individuals belonging to the three segments of the population (infants, children and adults) ranged from 0.55 to 3.88 and from 2.77 to 19.4 μ Svy⁻¹ for a daily honey ingestion of 5 g and 25 412 g respectively. These mean values account for 0.0245-0.169% and 0.120-0.844% respectively of 413 414 the natural radiation exposure in the world. The committed effective dose trend of natural radionuclides was 210 Po ${\sim}^{40}$ K > 226 Ra >> 238 U, ${\sim}^{234}$ U ${\sim}^{232}$ Th ${\sim}^{228}$ Th> 235 U. 415

416 Table 6 also shows the comparison between the Committed Effective Dose of natural 417 radionuclides due to a daily honey ingestion of 5 g or 25 g and that which is due to diet reported 418 by UNSCEAR (2000) for individuals belonging to the three segments of the population under study. In particular, for ²³²Th and ²²⁸Th, the dose values account for 0.8-10.8% and 0.46-6.0% 419 respectively of the dose from diet reported by UNSCEAR; for ²³⁸U and ²³⁴U, the dose values 420 account for 0.7-10.9% and 0. 6-8.8% respectively; for ²³⁵U the dose values account for 5-69%; 421 for ²²⁶Ra and ²¹⁰Po, the dose values account for 1.6-23.0% and 0.84-12.0% respectively of the 422 423 dose from diet reported by UNSCEAR (2000).

424 As far as 40 K is concerned, UNSCEAR (2000) indicates an annual effective dose from 425 40 K naturally present in our bodies of 165 and 185 µSv for adult and children respectively; this 426 dose value contributes to about 60% of the total exposure due to food ingestion (290 µSv). 427 Therefore, the detected average activities of 40 K in honey (50.6±46.3 Bqkg⁻¹), for the daily 428 ingestion of 5 or 25g of this food, would appear to pose only a minor risk (0.55-19.4 µSv y⁻¹) to 429 the internal radiation of the population.

For ¹³⁷Cs, the only artificial radionuclide that was detected, taking into account the maximum concentration observed (5.14 Bq kg⁻¹), the committed effective dose (μ Sv y⁻¹) calculated for individuals belonging to the three segments of the population under study (table 6) ranged from 0.093 to 0.122 and from 0.470 to 0.609 μ Svy⁻¹ for a daily honey ingestion of 5 g and 25 g respectively.

The results of the radiological characterization of the honey show that the levels of natural and artificial radioactivity were far below those assumed to be safe in food products by UNSCEAR for diet.

438

439

440 4. Conclusion

Natural radionuclides and ¹³⁷Cs were determined by alpha, gamma spectrometry and liquid scintillation in 28 kinds of honey widely consumed in Italy and purchased in major supermarket chains. Quality control is an important issue in regard to the rising global trends in total honey production and the fact that the European Union is the world's largest consumer of honey.

446 The radionuclides that were detected in honey showed a wide range of activity. These 447 activity levels were influenced by the area foraged by bees, by the type of flowers where the

448	nectar was collected and by the quality of the water in the vicinity of the hive. The radioactivity
449	found in the investigated honeys was chiefly attributable to 40 K, as honey is rich in potassium.
450	The honeys consumed in Italy were found to be of good quality. In fact, the levels of the
451	radionuclides that were measured were far below those assumed to be safe in food products by
452	UNSCEAR. We can therefore conclude that honey currently consumed in Italy is an absolutely
453	negligible source for internal contamination by radionuclides and thus a food of no concern in
454	terms of radiation risk.
455	
456	Funding
457	
458	This study was supported by the University of Urbino Carlo Bo.
459	
460	References
461	Altekin, E., Dizman, S., Keser, R.,(2015). Radioactivity and heavy metal concentrations in
462	various honey samples. Journal of Environmental Protection and Ecology 16, 716-722.
463	Barisic., D., Vertacnik, A., Bromenshenk, J., Kezic, N., Hus, M., Krajevic, P., Simpraga, M.,
464	Seletkovic, Z., (1999). Radionuclides and selected elements in soil and honey from Gorski
465	Kotar, Croatia. Apidologie, 30 (4), 277-287.
466	Belitz, H.D., Grosch, W., Schieberle, P. (2004). Food Chemistry. Springer-Verlag, pp. 88-891.
467	Bogdanov, S., (2006). Contaminants of bee products. Apidologie, 37, 1-18.
468	Borawska, M.H., Kapala, J., Puscion-Jakubik, A., Horembala, J., Markiewicz, R.,(2013)
469	Radioactivity of honeys from Polland after Fukushima accident. Bull. Environ. Contam.
470	<i>Toxicol.</i> 91, 489-492.

471	Brown, J.E., Gjelsvik, R., Ross, P., Kalas, J.A., Outola, I., Holm, E., (2011). Levels and transfer
472	of ²¹⁰ Po and ²¹⁰ Pb in Nordic terrestrial ecosystem. Journal of Environmental Radioactivity,
473	102, 430-437.

- Buldini, PL., Cavalli, S., Mevoli, A., Sharma, Jl. (2001). Ion chromatographic and voltametric
 determination of heavy and transition metals in honey. *Food Chemistry* 73, 487-495.
- 476 Desideri, D, Meli, M., Feduzi, L, Roselli, C (2006) The importance of Radiochemistry for the
 477 characterization of NORM and of environments contaminated by NORM. *International*478 *Journal of Environmental Analytical Chemistry*. 86(8-15), 601-613
- 479 Desideri, D., Battisti, P., Giardina,I. Roselli, C. Feduzi, L., Gorietti, D., Meli, M.A. (2019).
 480 Assessment of radioactivity in Italian baby food. *Food Chemistry*, 279, 408-415.
- 481 Djuric, G., Popovic, D., Torovic, D., Slivka, J., Mihaljiev, Z., (1996). Natural and fallout
 482 radionuclides in different types of honey. J. Environ. Biol., 17(4), 339-343.
- 483 EC, 2001. Council Regulation 2001/110/EC of 20 December 2001 relating to honey, Official
 484 Journal of the European Communities, Brussels, L10, 12 January 2002, p 47-52..
- EC, 2008. Council Regulation No 2008/733/EC of 15 July 2008 on the conditions governing
 imports of agricultural products originating in third countries following the accident at the
 Chernobyl nuclear power station. Official Journal of the European Communities,
 Brussels,L 201, 30 July 2008, p 1-7.
- 489 EC, 2009. Council Regulation No. 2009/1048/EC of 23 October 2009 amending Regulation (EC)
- 490 No 733/2008 on the conditions governing imports of agricultural products originating in
 491 third countries following the accident at the Chernobyl nuclear power station. Official
 492 Journal of the European Communities, Brussels,L 290, 7 November 2009, p 4.
- 493 Esposito, M., Polic, P., Bartolomei, P., Benzi, V., Martellini, M., Cvetkovic, O., Damjanov, V.,
- 494 Simic, M., Zunuc, Z., Zivancevic, B., Simic, S., Jovanovic, V. (2002). Survey of natural

- 495 and antrhropogenic radioactivity in environmental samples from Yuguslavia. J.
 496 Environmental Radioactivity, 61, 271-282
- 497 IAEA, 1989. Measurements of radionuclides in food and the environment, Technical Report
 498 series 295. IAEA, Vienna
- 499 ICRP, 2012. Annals of the ICRP. Compendium of Dose Coefficients based on ICRP Publication
- 500 60. Oxford: Pergammon Press; ICRP Publication 119.
- 501 ISO/FDIS 11929 (2010) Determination of the characteristic limits (decision threshold, detection
- 502 limit and limit of confidence interval) for measurement of ionizing radiation –
 503 Fundamentals and application.
- 504 ISO/DIS 20042 (2018a). Measurement of radioactivity Gamma emitting radionuclides —
- 505 Generic test method using gamma spectrometry
- ISO/DIS 22908 (2018b). Water quality Radium 226 and radium 228 Test method using liquid
 scintillation counting
- Meli, M.A., Desideri, D., Roselli, C., Feduzi, (2014). Assessment of ²¹⁰Po in Italian diet. *Food Chemistry*, 155, 87-90.
- Meli, M.A., Desideri, D., Roselli, C., Feduzi, L., and Benedetti, C., (2016). Radioactivity in
 honey of the central Italy. *Food Chemistry*, 202, 349-355.
- Meli, M.A., Fagiolino, I., Desideri, D., Roselli, C. (2018). Essential and toxic elements in honeys
 consumed in Italy. *Journal of Toxicology and Environmental Health, Part A.*. 81(21),
- 514 1123-1134.
- Persson, B., and Holm, E., (2011). Polonium-210 and lead-210 in the terrestrial environment: a
 historical review, *Journal of Environmental Radioactivity*, 102, 420-429.
- 517 Poschl, M., Pridal, A., Duchova, I, (2011). Radioactivity of honeybee honey in the Czech
 518 Republic. Analele Universitatii din Craiova, seia agricultura-Montanologie-Cadastru,
- 519 XLI/2, 225-230.

- 520 Sugiyama, H., Terada, H., Isomura, K., Iijima, I., Kobayashi, J. and Kitamura, K., (2009).
- Internal exposure to ²¹⁰Po and ⁴⁰K from ingestion of cooked daily foodstuffs for adults in
 Japanese cities, *The Journal of Toxicological Sciences* 34/4, 417-425.
- 523 Thakkar, A (2000). Rapid sequential separation of actinides using Eichrom's extraction
 524 chromatographic material. *Journal of Radioanalytical and Nuclear Chemistry*, 248(2),
 525 453-456
- 526 UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, Ionizing
 527 (2000). Sources and effects of ionizing radiation., New York. Report to the General
 528 Assembly with Annex, 2000.
- 529 Uwatse, O.B., Olatunji, M.A., Khandaker, M.U., Amin, Y.M., Bradley, D.A., Alkhorayef, M.,
 530 Alzimami, K., (2015). Measurement of natural and artificial radioactivity in infant
 531 powdered milk and estimation of the corresponding annual effective dose,).
 532 *Environmental Engineering Science*, 32/10, 838-845.
- Vanhanen, LP, Emmertz, A, Savage, GP (2011). Mineral analysis of mono-floral New Zealand
 honey. *Food Chemistry* 128(1), 236-240.
- WHO, 1995 (2010) Guideline levels for radionuclides in food contaminated following a nuclear
 or radiological emergency for use in international trade. Extract (pag 33-37) from the
 Codex general standard for contaminants and toxins in food and feed- GSCTFF (Codex
- 538 STAN 193-1995). Adopted 1995; Revised 1997, 2006, 2008, 2009; amended 2010.