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Abstract. Reversibility is the capability of a system of undoing its own
actions starting from the last performed one, in such a way that a past
consistent state is reached. This is not trivial for concurrent systems, as
the last performed action may not be uniquely identifiable. There are
several approaches to address causality-consistent reversibility, some in-
cluding a notion of forward-reverse bisimilarity. We introduce a minimal
process calculus for reversible systems to investigate compositionality
properties and equational characterizations of forward-reverse bisimilar-
ity as well as of its two components, i.e., forward bisimilarity and reverse
bisimilarity, so as to highlight their differences. The study is conducted
not only in a nondeterministic setting, but also in a stochastic one where
time reversibility and lumpability for Markov chains are exploited.

1 Introduction

Reversibility started to receive attention in computing several decades ago [15,3].
Landauer’s principle states that any irreversible manipulation of information,
such as bit erasure or computation path merging, must be accompanied by a
corresponding entropy increase. Therefore, any reversible computation, in which
no information is lost, may be potentially carried out without releasing any heat.
Nowadays, reversible computing has many applications ranging from biochemi-
cal reaction modeling and parallel discrete-event simulation to robotics, control
theory, fault tolerant systems, and concurrent program debugging.

In a reversible system, we can observe two directions of computation: a for-
ward one, coinciding with the normal way of computing, and a backward one,
along which the effects of the forward one are undone when needed in a causally
consistent way, i.e., by returning to a past consistent state. The latter task is
not easy to accomplish in a concurrent system, because the undo procedure
necessarily starts from the last performed action and this may not be unique.
The usually adopted strategy is that an action can be undone provided that all
of its consequences, if any, have been undone beforehand.

In the process algebra literature, two approaches have been developed to
reverse a computation based on keeping track of past actions: the dynamic one
of [7] and the static one of [24]. The former yields RCCS, a variant of CCS [20]
that uses stack-based memories attached to processes to record all the actions
executed by those processes. In contrast, the latter proposes a general method,
of which CCSK is a result, to reverse calculi, relying on the idea of retaining
within the process syntax all executed actions and dynamic operators.
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In [24] forward-reverse bisimilarity is introduced too. Unlike standard bisim-
ilarity [22,20], it is truly concurrent as it does not satisfy the expansion law of
parallel composition into a choice among all possible action sequencings. The
interleaving view can be restored by employing back-and-forth bisimilarity [8].
This is defined on computation paths instead of states, thus preserving not only
causality but also history as backward moves have to occur along the path fol-
lowed when going forward even in the presence of concurrency.

In this paper, we investigate compositionality properties and equational char-
acterizations of forward-reverse bisimilarity as well as of its two components, i.e.,
forward bisimilarity and reverse bisimilarity, so as to highlight their differences.
To this purpose, we introduce a minimal calculus including only the terminated
process 0, the unary action prefix operator a . where a stands for an action,
and the binary alternative composition operator + also called choice. These
operators are enough to compare the essential features of the three equivalences,
in a neutral way with respect to interleaving view vs. true concurrency.

The paper is divided into two parts. In Section 2, we conduct our study on
nondeterministic reversible processes, with the operational semantic rules de-
fined in the style of [24] generating only forward transitions that are viewed as
bidirectional, in lieu of a forward transition relation separated from a backward
transition relation. In Section 3, we repeat our study on stochastic reversible pro-
cesses, whose operational semantic rules in the style of [24] generate a single tran-
sition relation encompassing both forward transitions and backward transitions,
by exploiting time reversibility [13] and lumpability [14] for Markov chains. In
Section 4, we recap the differences between forward and reverse bisimilarities.

2 The Nondeterministic Case

In this section, we investigate forward bisimilarity, reverse bisimilarity, and
forward-reverse bisimilarity over nondeterministic reversible processes. We start
by introducing the syntax (Section 2.1) and the semantics (Section 2.2) for these
processes through a minimal calculus, then we provide the definitions of the three
equivalences (Section 2.3) and we study their congruence properties (Section 2.4)
and equational characterizations (Section 2.5).

2.1 Syntax of Nondeterministic Reversible Processes

In the formalization of a process, we usually describe only its future behavior,
hence the following syntax for sequential processes where a ∈ A:

P ::= 0 | a . P | P + P
However, in order to support the definition of the semantics in the style of [24], we
need to enrich the syntax above with information about the past, i.e., the actions
that have already been executed. Due to the absence of a parallel composition
operator, unlike [24] there is no need to add communication keys to executed
actions. It thus suffices to mark them with some symbol, which we choose to
be †. This yields the following syntax extended with information about the past:

P ::= 0 | a . P | a†. P | P + P
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We can syntactically characterize several classes of processes generated by the
grammar above through suitable predicates. Firstly, we have initial processes,
i.e., processes in which all the actions are unexecuted:

initial(0)
initial(a . P ) ⇐= initial(P )

initial(P1 + P2) ⇐= initial(P1) ∧ initial(P2)
Secondly, we have final processes, i.e., processes in which all the actions along

a single path have been executed:
final(0)

final(a†. P ) ⇐= final(P )
final(P1 + P2) ⇐= (final(P1) ∧ initial(P2))∨

(initial(P1) ∧ final(P2))
Multiple paths arise only in the presence of alternative compositions. At each
occurrence of +, only the subprocess chosen for execution advances, while the
other one, although not selected, is kept as an initial subprocess within the
overall process to support the definition of the semantics in the style of [24].

Thirdly, we have the processes that are reachable from an initial one, whose
set we denote by P:

reachable(0)
reachable(a . P ) ⇐= initial(P )
reachable(a†. P ) ⇐= reachable(P )

reachable(P1 + P2) ⇐= (reachable(P1) ∧ initial(P2))∨
(initial(P1) ∧ reachable(P2))

It is worth noting that:

– 0 is the only process that is both initial and final as well as reachable.
– Any initial or final process is reachable too.
– P also contains processes that are neither initial nor final, like e.g. a†. P with

initial(P ) and P �= 0.
– The relative positions of already executed actions and actions to be executed

matter; in particular, an action of the former kind can never follow one of
the latter kind. For instance, a†. b . P ∈ P if initial(P ) whereas b . a†. P /∈ P.

2.2 Semantics of Nondeterministic Reversible Processes

According to the approach of [24], dynamic operators such as action prefix and
alternative composition have to be made static by the semantics, so as to retain
within the syntax all the information needed to enable reversibility. For the sake
of minimality, unlike [24] we do not generate two distinct transition relations – a
forward one −→ and a backward one −� – but a single transition relation, which
we implicitly regard as being symmetric like in [8] to enforce the loop property :
any executed action can be undone and any undone action can be redone.

In our setting, a backward transition from P ′ to P (P ′ a−� P ) is subsumed

by the corresponding forward transition t from P to P ′ (P
a−→ P ′). As will

become clear with the definition of behavioral equivalences in Section 2.3, like
in [8] when going forward we view t as an outgoing transition of P , while when
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Actf

initial(P )

a . P
a−→ a†. P

Actp

P
b−→ P ′

a†. P b−→ a†. P ′

Chol

P1
a−→ P ′

1 initial(P2)

P1 + P2
a−→ P ′

1 + P2

Chor

P2
a−→ P ′

2 initial(P1)

P1 + P2
a−→ P1 + P ′

2

Table 1. Operational semantic rules for nondeterministic reversible processes

going backward we view t as an incoming transition of P ′. The semantic rules in
Table 1 generate the labeled transition system (P, A,−→) where −→ ⊆ P×A×P.

The first rule for action prefix (Actf where f stands for forward) applies
only if P is initial and retains the executed action in the target process of the
generated forward transition by decorating the action itself with †. The second
rule for action prefix (Actp where p stands for propagation) propagates actions
executed by inner initial subprocesses.

In both rules for alternative composition (Chol and Chor where l stands
for left and r stands for right), the subprocess that has not been selected for
execution is retained as an initial subprocess in the target process of the gen-
erated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in
that case it is the non-initial subprocess that can move, because the other one
has been discarded at the moment of the selection.

Any state corresponding to a process different from 0 has at least one out-
going transition and exactly one incoming transition due to the decoration of
executed actions. The labeled transition system underlying an initial process
turns out to be a tree, whose branching points correspond to occurrences of +.

Example 1. The labeled transition systems generated by the rules in Table 1
for the two initial processes a . 0 + a . 0 and a . 0 are depicted below:

0_a . 

0_a . 0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +

a a a

.

As far as the one on the left is concerned, we observe that, in the case of a
standard process calculus, a single a-transition from a . 0 + a . 0 to 0 would have
been generated due to the absence of action decorations within processes.

2.3 Bisimilarities for Nondeterministic Reversible Processes

The asymmetry between the relative positions of already executed actions and
actions to be executed within reachable processes, as well as the asymmetry
between the use of predicates initial and final in the operational semantic rules,
determine a number of asymmetries between forward and reverse bisimilarity
defined below that will become evident in Sections 2.4 and 2.5.
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The difference between the definitions of forward bisimilarity and reverse
bisimilarity is that the former considers only outgoing transitions [22,20] whereas
the latter considers only incoming transitions. We also address forward-reverse
bisimilarity [24], which considers both outgoing transitions and incoming ones.
All the equivalences are strong, i.e., they do not abstract from invisible actions.

Definition 1. We say that P1, P2 ∈ P are forward bisimilar, written P1 ∼FB P2,
iff (P1, P2) ∈ B for some forward bisimulation B. A symmetric relation B over P
is a forward bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

– Whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

Definition 2. We say that P1, P2 ∈ P are reverse bisimilar, written P1 ∼RB P2,
iff (P1, P2) ∈ B for some reverse bisimulation B. A symmetric relation B over P
is a reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

– Whenever P ′
1

a−→ P1, then P ′
2

a−→ P2 with (P ′
1, P

′
2) ∈ B.

Definition 3. We say that P1, P2 ∈ P are forward-reverse bisimilar, written
P1 ∼FRB P2, iff (P1, P2) ∈ B for some forward-reverse bisimulation B. A sym-
metric relation B over P is a forward-reverse bisimulation iff for all (P1, P2) ∈ B
and a ∈ A:

– Whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

– Whenever P ′
1

a−→ P1, then P ′
2

a−→ P2 with (P ′
1, P

′
2) ∈ B.

It holds that ∼FRB � ∼FB ∩ ∼RB. The inclusion is strict because for example
the two final processes a†. 0 and a†. 0 + c . 0 are identified by ∼FB and by ∼RB,
but distinguished by ∼FRB as in the latter process action c is enabled again after
undoing a. Moreover, ∼FB and ∼RB are incomparable because for instance:

a†. 0 ∼FB 0 but a†. 0 �∼RB 0
a . 0 ∼RB 0 but a . 0 �∼FB 0

The first asymmetry is that ∼FRB = ∼FB over initial processes, with ∼RB strictly
coarser, whilst ∼FRB �= ∼RB over final processes because, after going backward,
previously discarded subprocesses come into play again in the forward direction.

Example 2. The two processes shown in Example 1 are identified by all the
three equivalences. This is witnessed by any bisimulation that contains the pairs
(a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), and (a . 0 + a†. 0, a†. 0).

2.4 Congruence Properties

In principle, it makes sense that ∼FB identifies processes with a different past
and that ∼RB identifies processes with a different future, in particular with 0 that
has neither past nor future. However, for ∼FB this results in a compositionality
violation with respect to alternative composition. As an example:

a†. b . 0 ∼FB b . 0
a†. b . 0 + c . 0 �∼FB b . 0 + c . 0
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because in a†. b . 0 + c . 0 action c is disabled due to the presence of the already
executed action a†, while in b . 0 + c . 0 action c is enabled as there are no past
actions preventing it from occurring. Note that a similar phenomenon does not
happen with ∼RB as a†. b . 0 �∼RB b . 0 due to the incoming a-transition of a†. b . 0,
thus yielding the second asymmetry between forward and reverse bisimilarity.

This problem, which does not show up for ∼RB and ∼FRB because these two
equivalences cannot identify an initial process with a non-initial one, leads to
the following variant of ∼FB that is sensitive to the presence of the past.

Definition 4. We say that P1, P2 ∈ P are past-sensitive forward bisimilar,
written P1 ∼FB,ps P2, iff (P1, P2) ∈ B for some past-sensitive forward bisimula-
tion B. A symmetric relation B over P is a past-sensitive forward bisimulation iff
for all (P1, P2) ∈ B:
– initial(P1) ⇐⇒ initial(P2).

– For all a ∈ A, whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

Now ∼FB,ps is sensitive to the presence of the past:
a†. b . 0 �∼FB,ps b . 0

but can still identify non-initial processes having a different past:
a†1 . P ∼FB,ps a†2 . P

It holds that ∼FRB � ∼FB,ps ∩ ∼RB, with ∼FRB =∼FB,ps over initial processes
as well as ∼FB,ps and ∼RB being incomparable because e.g. for a1 �= a2:

a†1 . P ∼FB,ps a
†
2 . P but a†1 . P �∼RB a†2 . P

a1 . P ∼RB a2 . P but a1 . P �∼FB,ps a2 . P
We conclude by formalizing the congruence properties of all the considered

equivalences. When present in the results below, side conditions just ensure that
the overall processes are reachable.

Theorem 1. Let ∼ ∈ {∼FB,∼FB,ps,∼RB,∼FRB}, ∼′ ∈ {∼FB,ps,∼RB,∼FRB},
and P1, P2 ∈ P:

– If P1 ∼ P2 then for all a ∈ A:
• a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
• a†. P1 ∼ a†. P2.

– If P1 ∼′ P2 then for all P ∈ P:
• P1 + P ∼′ P2 + P and P + P1 ∼′ P + P2 provided that initial(P ) ∨
(initial(P1) ∧ initial(P2)).

– ∼FB,ps is the coarsest congruence with respect to + contained in ∼FB.

2.5 Equational Characterizations

We now investigate the equational characterizations of ∼FB,ps, ∼RB, and ∼FRB

so as to highlight the fundamental laws of these behavioral equivalences. In the
following, by deduction system we mean a set comprising the following axioms
and inference rules on P – possibly enriched by a set of additional axioms A –
corresponding to the fact that ∼FB,ps, ∼RB, and ∼FRB are equivalence relations
as well as congruences with respect to action prefix and alternative composition:
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(A1) (P1 + P2) + P3 = P1 + (P2 + P3)
(A2) P1 + P2 = P2 + P1

(A3) P + 0 = P

(A4) [∼FB,ps] a†. P = P if ¬initial(P )

(A5) [∼FB,ps] a†
1 . P = a†

2 . P if initial(P )
(A6) [∼FB,ps] P +Q = P if ¬initial(P ), where initial(Q)

(A7) [∼RB] a . P = P where initial(P )
(A8) [∼RB] P +Q = P if initial(Q)

(A9) [∼FB,ps] P + P = P where initial(P )
(A10) [∼FRB] P +Q = P if initial(Q) ∧ to initial(P ) = Q

Table 2. Axioms characterizing bisimilarity over nondeterministic reversible processes

– Reflexivity, symmetry, transitivity: P = P ,
P1 = P2

P2 = P1

,
P1 = P2 P2 = P3

P1 = P3

.

– .-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

– +-Substitutivity:
P1 = P2 initial(P ) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

It is well known that, in the case of bisimilarity over standard nondetermin-
istic processes, alternative composition turns out to be associative and commu-
tative and to admit 0 as neutral element [11]. The same holds true for ∼FB,ps,
∼RB, and ∼FRB because the two operational semantic rules for alternative com-
position are symmetric and 0 has no outgoing or incoming transitions. This is
formalized by axioms A1 to A3 in Table 2.

Then, we have axioms specific to ∼FB,ps. Axioms A4 and A5 together estab-
lish that the past can be neglected when moving only forward, but the presence
of the past cannot be ignored. Axiom A6 states that a previously non-selected
alternative can be discarded after starting moving only forward.

Likewise, we have axioms specific to ∼RB. Axiom A7 means that the fu-
ture can be completely canceled when moving only backward. Axiom A8 states
that a previously non-selected alternative can be discarded when moving only
backward. Since there are no constraints on P , axiom A8 subsumes axiom A3.

Finally, the idempotency of alternative composition in the case of bisimilarity
over standard nondeterministic processes, i.e., P+P = P [11], changes depending
on the considered equivalence:

– For ∼FB,ps, idempotency is explicitly formalized by axiom A9, which we note
to be disjoint from axiom A6 where P cannot be initial.

– For ∼RB, an additional axiom is not needed as idempotency follows from ax-
iom A8 by taking Q equal to P . Thus, the third asymmetry between forward
and reverse bisimilarity has to do with idempotency.
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– For ∼FRB, idempotency is formalized by axiom A10, where function to initial
brings a process back to its initial version by removing all action decorations:

to initial(0) = 0
to initial(a . P ) = a . P
to initial(a†. P ) = a . to initial(P )

to initial(P1 + P2) = to initial(P1) + to initial(P2)
This axiom appeared for the first time in [16] and subsumes axioms A9

and A6 for ∼FB,ps as well as axiom A8 for ∼RB.

To prove the ground completeness of the equational characterizations of the
three considered bisimilarities, as usual we introduce equivalence-specific normal
forms to which every process is shown to be reducible, then we work with normal
forms only. All the three normal forms rely on the fact that alternative compo-
sition is associative and commutative, hence the binary + can be generalized to
the n-ary

∑
i∈I for a finite nonempty index set I. In the following, we denote by

� the deduction relation and we examine the sets of additional axioms below:

– AFB,ps = {A1,A2,A3,A4,A5,A6,A9}.
– ARB = {A1,A2,A7,A8}.
– AFRB = {A1,A2,A3,A10}.

Definition 5. We say that P ∈ P is in ∼FB,ps-normal form, written ∼FB,ps-nf,
iff it is equal to one of the following:

– 0.
–

∑
i∈I ai . Pi, where each Pi is initial and in ∼FB,ps-nf.

– a†. P , where P is initial and in ∼FB,ps-nf.

All initial processes without 0 summands are in ∼FB,ps-nf. We observe that, in
the second case, a1 . P1 ∼FB,ps a2 . P2 trivially implies a1 = a2 and P1 ∼FB,ps P2.

Likewise, in the third case, a†1 . P1 ∼FB,ps a
†
2 . P2 trivially implies P1 ∼FB,ps P2.

These facts will be exploited in the proof of the forthcoming Theorem 2.

Lemma 1. For all P ∈ P there is Q ∈ P in ∼FB,ps-nf such that AFB,ps � P = Q.

Theorem 2. Let P1, P2 ∈ P. Then P1 ∼FB,ps P2 iff AFB,ps � P1 = P2.

Definition 6. We say that P ∈ P is in ∼RB-normal form, written ∼RB-nf,
iff it is equal to one of the following:

– 0.
– a†. P , where P is in ∼RB-nf.

The normal form above boils down to a final process consisting of a pos-
sibly empty, finite sequence of already executed actions terminated by 0. As a
consequence, a†1 . P1 ∼RB a†2 . P2 with P1 and P2 in ∼RB-nf implies a1 = a2 and

P1 ∼RB P2, because a
†
1 . P1 and a†2 . P2 must feature the same sequence of already

executed actions and the last executed action of P1 (resp. P2), when the process

is different from 0, is the same as the last executed action of a†1 . P1 (resp. a
†
2 . P2).

This fact will be exploited in the proof of the forthcoming Theorem 3.
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Lemma 2. For all P ∈ P there is Q ∈ P in ∼RB-nf such that ARB � P = Q.

Theorem 3. Let P1, P2 ∈ P. Then P1 ∼RB P2 iff ARB � P1 = P2.

Definition 7. We say that P ∈ P is in ∼FRB-normal form, written ∼FRB-nf,
iff it is equal to one of the following:

– 0.
–

∑
i∈I ai . Pi, where each Pi is initial and in ∼FRB-nf.

– a†. P , where P is in ∼FRB-nf.
– a†. P +

∑
i∈I ai . Pi, where P is in ∼FRB-nf and each Pi is initial and in

∼FRB-nf.

As for the second case above, which is concerned with initial processes, we
observe that a1 . P1 ∼FRB a2 . P2 trivially implies a1 = a2 and P1 ∼FRB P2. The
last two cases together, which are concerned with non-initial processes, yield a
process consisting of a finite sequence of already executed actions terminated by
an initial process, such that every action in the sequence may have an initial
process as an alternative. As a consequence, a†1 . P1 + P ′

1 ∼FRB a†2 . P2 + P ′
2

with P1, P2, P
′
1, P

′
2 in ∼FRB-nf, P

′
1 and P ′

2 initial, and P ′
1 and P ′

2 moving only

when going back to to initial(a†1 . P1) and to initial(a†2 . P2), implies a1 = a2,
P1 ∼FRB P2, and P ′

1 ∼FRB P ′
2. These facts will be exploited in the proof of the

forthcoming Theorem 4.

Lemma 3. For all P ∈ P there is Q ∈ P in ∼FRB-nf such that AFRB � P = Q.

Theorem 4. Let P1, P2 ∈ P. Then P1 ∼FRB P2 iff AFRB � P1 = P2.

3 The Markovian Case

In this section, we repeat the investigation over Markovian reversible processes.
We start by recalling the theory of continuous-time Markov chains (Section 3.1)
including time reversibility (Section 3.2) and lumpability (Section 3.3), then we
introduce syntax and semantics for these processes (Section 3.4), we provide the
definitions of the three equivalences (Section 3.5), and we study their congruence
properties and equational characterizations (Section 3.6).

3.1 Markov Chains: Definition, Representation, Terminology

A Markov chain is a discrete-state stochastic process characterized by the mem-
oryless property [14]. More precisely, a stochastic process X(t), t ∈ R≥0, over
a discrete state space S is a continuous-time Markov chain (CTMC) iff for
all n ∈ N, time instants t0 < t1 < · · · < tn < tn+1 ∈ R≥0, and states
s0, s1, . . . , sn, sn+1 ∈ S it holds that Pr{X(tn+1) = sn+1 | X(ti) = si, 0 ≤ i ≤ n}
= Pr{X(tn+1) = sn+1 | X(tn) = sn}, i.e., the probability of moving from one
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state to another does not depend on the particular path that has been followed
in the past to reach the current state, hence that path can be forgotten.

A CTMC is representable as a labeled transition system or as a state-indexed
matrix. In the first case, each transition is labeled with some probabilistic in-
formation describing the evolution from the source state to the target state of
the transition. In the second case, the same information is stored into an en-
try, indexed by those two states, of a matrix. The value of this probabilistic
information is a function of the time at which the state change takes place.

For the sake of simplicity, we restrict ourselves to time-homogeneous CTMCs,
in which conditional probabilities of the form Pr{X(t + t′) = s′ | X(t) = s}
do not depend on t, so that the considered information is simply a positive

real number given by limt′→0
Pr{X(t+t′)=s′|X(t)=s}

t′ . This is called the rate at
which the CTMC moves from state s to state s′ and uniquely characterizes the
exponentially distributed time taken by the considered move.

A CTMC is irreducible iff each of its states is reachable from every other state
with probability greater than 0. A state s ∈ S is recurrent iff the CTMC will
eventually return to s with probability 1, in which case s is positive recurrent iff
the expected number of steps until the CTMC returns to it is finite. A CTMC is
ergodic iff it is irreducible and all of its states are positive recurrent; ergodicity
coincides with irreducibility in the case that the CTMC has finitely many states.

Every time-homogeneous and ergodic CTMC X(t) is stationary, which means
that (X(ti + t′))1≤i≤n has the same joint distribution as (X(ti))1≤i≤n for all
n ∈ N≥1 and t1 < · · · < tn, t

′ ∈ R≥0. In this case, X(t) has a unique steady-state
probability distribution π that for all s ∈ S fulfills π(s) = limt→∞ Pr{X(t) = s |
X(0) = s′} for any s′ ∈ S. These probabilities can be computed by solving the
linear system of global balance equations π · Q = 0 subject to

∑
s∈S π(s) = 1

and π(s) ∈ R>0 for all s ∈ S. The infinitesimal generator matrix Q contains for
each pair of distinct states the rate of the corresponding move, which is 0 in the
absence of a direct move between them, while qs,s = −∑

s′ �=s qs,s′ for all s ∈ S,
i.e., every diagonal element contains the opposite of the total exit rate of the
corresponding state, so that each row of Q sums up to 0.

3.2 Time Reversibility of Continuous-Time Markov Chains

Due to state space explosion and numerical stability problems [27], the calcula-
tion of the solution of the global balance equation system is not always feasible.
However, it can be tackled in the case that the behavior of the considered CTMC
remains the same when the direction of time is reversed. A CTMC X(t) is time
reversible iff (X(ti))1≤i≤n has the same joint distribution as (X(t′ − ti))1≤i≤n

for all n ∈ N≥1 and t1 < · · · < tn, t
′ ∈ R≥0. In this case, X(t) and its time-

reversed version Xr(t) = X(t′ − t) are stochastically identical, in particular
they are stationary and share the same steady-state probability distribution π.
In order for a stationary CTMC X(t) to be time reversible, it is necessary and
sufficient that the partial balance equations π(s) · qs,s′ = π(s′) · qs′,s are satisfied
for all s, s′ ∈ S such that s �= s′ or, equivalently, that qs1,s2 · . . . ·qsn−1,sn ·qsn,s1 =
qs1,sn · qsn,sn−1

· . . . · qs2,s1 for all n ∈ N≥2 and distinct s1, . . . , sn ∈ S [13].
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The time-reversed version Xr(t) of a stationary CTMC X(t) can be defined
even when X(t) is not reversible. As shown in [13,10], this is accomplished by
using the steady-state probability distribution π of X(t), with Xr(t) turning out
to be a CTMC too and having the same steady-state probability distribution π.
More precisely, qrsj ,si = qsi,sj · π(si)/π(sj) for all si �= sj , i.e., the rate from
state sj to state si in the time-reversed CTMC is proportional to the rate from
state si to state sj in the original CTMC, where the coefficient is given by the
ratio of π(si) to π(sj). Note that the time-reversed version of Xr(t) is X(t).

3.3 Lumpability of Continuous-Time Markov Chains

A different approach to the state space explosion problem consists of aggregating
states and transitions in a suitable way. In particular, the focus is on exact ag-
gregations, i.e., partitions of the state space such that the probability of being in
any of the aggregated states is equal to the sum of the probabilities of the origi-
nal states it contains. In the following, we consider a time-homogeneous CTMC
X(t) with state space S and infinitesimal generator matrix Q; the formulas for
the elements of the matrix of the resulting aggregations are taken from [2].

The first notion of exact aggregation that we address is strong lumpabil-
ity [14]. It was later renamed ordinary lumpability in [28,5], which we prefer
to adopt so as not to generate confusion with the use of strong and weak for
behavioral equivalences in concurrency theory.

Definition 8. The partition P induced by an equivalence relation L over S
is an ordinary lumping iff for all (s1, s2) ∈ L and C ∈ P such that s1, s2 /∈ C:∑

s′∈C qs1,s′ =
∑

s′∈C qs2,s′
The resulting CTMC with state space P has infinitesimal generator matrix Q′

defined as follows for all C1, C2 ∈ P such that C1 �= C2:
q′C1,C2

=
∑

s′∈C2
qs,s′

where s ∈ C1.

The second notion of exact aggregation is exact lumpability [25,28,5], which
further enjoys the property that all the original states contained in the same
aggregated state have the same probability. While ordinary lumpability considers
the rates of outgoing transitions and does not check for rate equality within any
class, exact lumpability considers the rates of incoming transitions and applies
the rate equality check inside each class too.

Definition 9. The partition P induced by an equivalence relation L over S
is an exact lumping iff for all (s1, s2) ∈ L and C ∈ P:∑

s′∈C qs′,s1 =
∑

s′∈C qs′,s2
The resulting CTMC with state space P has infinitesimal generator matrix Q′

defined as follows for all C1, C2 ∈ P such that C1 �= C2:
q′C1,C2

=
∑

s′∈C1
qs′,s · (|C2|/|C1|)

where s ∈ C2.

The third notion of exact aggregation is strict lumpability [5], which is a
combination of the previous two.
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Definition 10. The partition P induced by an equivalence relation L over S
is a strict lumping iff it is both an ordinary lumping and an exact lumping.

The relationships between lumpability and time reversibility for CTMCs
have been investigated in [18,19]:

– An exact lumping of a CTMC corresponds to an ordinary lumping on the
time-reversed CTMC.

– An aggregation of a CTMC is a strict lumping iff it is a strict lumping for
the time-reversed CTMC too.

– An exact lumping of a CTMC is also an ordinary lumping whenever the
CTMC is time reversible, while the vice versa does not hold in general.

Example 3. Consider the three time-reversible, ergodic CTMCs depicted below:

s1

0s

s2

μ1

λ1 λ2

0s’

λ1 λ2+

0s"

λ2 .

μ2

s’ s"

μ μ

When solving the global balance equations for the first CTMC from the left,
we obtain:

π(s0) = μ1·μ2

μ1·μ2+λ1·μ2+λ2·μ1

π(s1) = λ1·μ2

μ1·μ2+λ1·μ2+λ2·μ1

π(s2) = λ2·μ1

μ1·μ2+λ1·μ2+λ2·μ1

If λ1 = λ2 but μ1 �= μ2, then no exact aggregation exists for that CTMC.
If μ1 = μ2 � μ but λ1 �= λ2, then the second CTMC from the left is an ordinary
lumping of the first one, where the aggregated state s′ contains the two original
states s1 and s2 and the solution of the global balance equations is the following:

π(s′0) = μ
μ+λ1+λ2

= π(s0)

π(s′) = λ1+λ2

μ+λ1+λ2
= π(s1) + π(s2)

with π(s1) �= π(s2).
If λ1 = λ2 � λ and μ1 = μ2 � μ, then the third CTMC from the left is a strict –
i.e., ordinary and exact – lumping of the first one, where the aggregated state s′′

contains the two original states s1 and s2 and the solution of the global balance
equations is the following:

π(s′′0) = μ
μ+2·λ = π(s0)

π(s′′) = 2·λ
μ+2·λ = π(s1) + π(s2)

with π(s1) = π(s2).

Example 4. The considered notions of lumpability are distinct from each other.
On the one hand, in the previous example the second CTMC from the left is an
ordinary lumping of the first one, but not an exact lumping as π(s1) �= π(s2)
when μ1 = μ2 and λ1 �= λ2. On the other hand, the CTMC on the right depicted
below is an exact lumping of the CTMC on the left – where the aggregated
state s′ contains the two original states s1 and s2 – when μ′ + μ′′ = ν′ + ν′′ –
corresponding to qs1,s1 +qs2,s1 = qs1,s2 +qs2,s2 , i.e., −(μ′+μ′′)+0 = 0−(ν′+ν′′)
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– but it is not an ordinary lumping if μ′ �= ν′ and μ′′ �= ν′′:

0s

s1 s2

s3 s4

’γ

’μ

"μ

"γ ’γ "γ

s’

s’3 4s’

"ν

’ν

λ2 .

’μ ’ν+

2

____ "μ "ν+

2

____

λ λ

0s’

Note that the two CTMCs above are ergodic, but not time reversible.

3.4 Syntax and Semantics of Markovian Reversible Processes

We have seen in Section 2 that a single forward transition relation is enough for
nondeterministic processes in a reversible setting. This is due to the fact that

P
a−→ P ′ iff P ′ a−� P , where according to [24] the backward transition relation

−� should be used in the second clause of the definition of ∼FRB and hence in
the definition of ∼RB as well.

A transition relation in a single direction is no longer sufficient in the case of
Markovian reversible processes. The reason is that every transition of these pro-
cesses is also labeled with its rate, a positive real number that uniquely identifies
the exponentially distributed duration of the action associated with the transi-
tion. In general, the rate may be different depending on whether the transition
goes forward or backward, without necessarily affecting time reversibility.

When moving from nondeterministic reversible processes to Markovian ones,
in the syntax we thus need to replace a and a† with <a, λ, μ> and <a†, λ, μ>
respectively, where λ ∈ R>0 is the rate of the forward a-transition whilst μ ∈ R>0

is the rate of the backward a-transition. Predicates initial, final, and reachable
are extended accordingly and the set of reachable processes is denoted by PM.

In order for the semantics to be consistent with the CTMC theory recalled in
Sections 3.1 to 3.3, we cannot use a transition relation −→ with forward rates
separated from a transition relation −� with backward rates, as would be the
case if we applied the approach of [24]. For instance, the two Markovian processes
depicted below would be identified by a Markovian variant of ∼FRB relying on
−→ and −�, but the CTMC underlying the labeled transition system of the
process on the right is not an exact lumping of the CTMC underlying the labeled
transition system of the process on the left if λ1 �= λ2, i.e., this Markovian variant
of ∼FRB would not induce strict lumping:

λ1 0_μ<a,    ,       >. 0_λ2 >.a,    ,       μ<+

λ2a,

0_λ2 >.a,    ,       μ<λ1 0_μ>.<a ,    ,       + λ1 0_μ<a,    ,       >. 0_λ2< >.μa ,    ,       +

λ1a,

μa, μa,

λ1 λ2+ 0_< >.a,           ,       μ

λ1 λ2+a, a,μ

λ1 λ2+ 0_>.μ<a ,           ,       
.
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Actf

initial(P )

<a, λ, μ> . P
a,λ−→M <a†, λ, μ> . P

Actr

initial(P )

<a†, λ, μ> . P
a,μ−→M <a, λ, μ> . P

Actp

P
b,ξ−→M P ′

<a†, λ, μ> . P
b,ξ−→M <a†, λ, μ> . P ′

Chol

P1
a,ξ−→M P ′

1 initial(P2)

P1 + P2
a,ξ−→M P ′

1 + P2

Chor

P2
a,ξ−→M P ′

2 initial(P1)

P1 + P2
a,ξ−→M P1 + P ′

2

Table 3. Operational semantic rules for Markovian reversible processes

We thus keep using a single transition relation, which is −→M ⊆ PM × (A×
R>0) × PM defined in Table 3. Unlike the one in Section 2.2, it embodies both
transitions with forward rates and transitions with backward rates. This has
been accomplished not only by extending all the rules in Table 1 according to
the new richer syntax, but also by adding a rule for action prefix (Actr where
r stands for reverse) that generates transitions with backward rates.

Any state corresponding to a process different from 0 can now have several
incoming transitions too. The labeled transition system underlying an initial
process turns out to be a tree-like extension of a birth-death process [23,21], with
branching points corresponding to occurrences of +. The reason is that between
any pair of connected states there can only be a transition from the former state
to the latter and a transition from the latter state back to the former, with
the two transitions sharing the same name as they are generated by the same
action <a, λ, μ>. The underlying CTMC, obtained by removing actions from
transitions, turns out to be not only ergodic, but also time reversible due to
its tree-like birth-death structure [13]. The considered calculus thus combines
causality-consistent reversibility with time reversibility like in [4].

Example 5. The labeled transition systems generated by the rules in Table 3
for the two Markovian processes <a, λ, μ> . 0 + <a, λ, μ> . 0 and <a, λ, μ> . 0
are shown below:

μa, μa,

a,μ

0_ 0_< λa,   ,       μ>. + <a,   ,       λ μ>.

λa, a,λ

0_μ>.λ<a ,   ,       0_< λa,   ,       μ>.+ 0_μ>.λa,   ,       < 0_< λa ,   ,       μ>.+

0_< λa,   ,       μ>.

λa,

0_< λ μa ,   ,       >.
.

The generation of a single a-transition from <a, λ, μ> . 0 + <a, λ, μ> . 0 on the
left would have been wrong, as it would have not reflected the total exit rate
2 ·λ of the source state. Several solutions to this problem have been proposed for
Markovian process calculi without reversibility, while in our setting the problem
is naturally prevented by action decorations within processes.
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3.5 Bisimilarities for Markovian Reversible Processes

We now define the Markovian variants of forward bisimilarity, reverse bisimi-
larity, and forward-reverse bisimilarity based on the CTMC theory recalled in
Sections 3.1 to 3.3.

In the forward case, it is known that the (discrete-time) probabilistic bisim-
ilarity of [17] and the (continuous-time) Markovian bisimilarity of [12] induce
an ordinary lumping on the Markov chains underlying the considered processes,
hence so does ∼MFB below. Unlike Definition 8, in Definition 11 the rate equality
check is applied inside each class too and hence not all ordinary lumpings can be
induced by ∼MFB, in particular not the one identifying every pair of processes.

The reason is that while in Markov chain theory one is interested in state
probabilities, in concurrency theory one experiments with processes by observ-
ing the labels of the transitions that are executed [9,1,17]. In particular, two
processes with different total exit rates cannot be identified by ∼MFB below,
which is perfectly justifiable from an observational viewpoint. As an example,
consider a state with a self-looping λ-transition and a state with a self-looping
μ-transition. The two states would be deemed ordinarily lumpable according to
Definition 8, although the more λ and μ are different, the easier it is for an
observer to tell those two states apart.

In the following, {| and |} denote multiset parentheses, while PM/B is the set
of equivalence classes induced by the equivalence relation B over PM.

Definition 11. We say that P1, P2 ∈ PM are Markovian forward bisimilar, writ-
ten P1 ∼MFB P2, iff (P1, P2) ∈ B for some Markovian forward bisimulation B.
An equivalence relation B over PM is a Markovian forward bisimulation iff
for all (P1, P2) ∈ B, a ∈ A, and C ∈ PM/B:

rateout(P1, a, C) = rateout(P2, a, C)

where rateout(P, a, C) =
∑{| ξ ∈ R>0 | ∃P ′ ∈ C.P

a,ξ−→M P ′ |}.
In the reverse case, incoming transitions are considered instead of outgoing

ones. As in [6,26], in the definition of ∼MRB below an additional condition about
total exit rate equality is needed, which in Definition 9 is naturally handled
through the diagonal elements of the infinitesimal generator matrix. It is easily
seen that ∼MRB induces an exact lumping on the Markov chains underlying the
considered processes, but not all exact lumpings can be induced.

Definition 12. We say that P1, P2 ∈ PM are Markovian reverse bisimilar, writ-
ten P1 ∼MRB P2, iff (P1, P2) ∈ B for some Markovian reverse bisimulation B.
An equivalence relation B over PM is a Markovian reverse bisimulation iff
for all (P1, P2) ∈ B and a ∈ A:

rateout(P1, a,PM) = rateout(P2, a,PM)
and for all C ∈ PM/B:

ratein(P1, a, C) = ratein(P2, a, C)

where ratein(P, a, C) =
∑{| ξ ∈ R>0 | ∃P ′ ∈ C.P ′ a,ξ−→M P |}.

In the forward-reverse case, ∼MFRB below induces a strict lumping on the
Markov chains underlying the considered processes.
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Definition 13. We say that P1, P2 ∈ PM are Markovian forward-reverse bisim-
ilar, written P1 ∼MFRB P2, iff (P1, P2) ∈ B for some Markovian forward-reverse
bisimulation B. An equivalence relation B over PM is a Markovian forward-
reverse bisimulation iff for all (P1, P2) ∈ B, a ∈ A, and C ∈ PM/B:

rateout(P1, a, C) = rateout(P2, a, C)
ratein(P1, a, C) = ratein(P2, a, C)

It is worth noting that any aggregated state resulting from an ordinary lump-
ing is ∼MFB-equivalent to each of the original states it contains, while this is not
necessarily the case for exact lumping and ∼MRB, where ∼MRB-equivalence cer-
tainly holds only among the original states contained in an aggregated state.
This is the fourth asymmetry between forward and reverse bisimilarity.

Example 6. The three CTMCs of Example 3 can be viewed as underlying the
labeled transition systems of the following three initial processes:

<a, λ1, μ1> . 0 +<a, λ2, μ2> . 0 corresponding to s0
<a, λ1 + λ2, μ> . 0 corresponding to s′0
<a, 2 · λ, μ> . 0 corresponding to s′′0

with:
<a†, λ1, μ1> . 0 +<a, λ2, μ2> . 0 corresponding to s1
<a, λ1, μ1> . 0 +<a†, λ2, μ2> . 0 corresponding to s2
<a†, λ1 + λ2, μ> . 0 corresponding to s′

<a†, 2 · λ, μ> . 0 corresponding to s′′

If μ1 = μ2 � μ but λ1 �= λ2, then:
<a, λ1, μ> . 0 +<a, λ2, μ> . 0 ∼MFB <a, λ1 + λ2, μ> . 0
<a†, λ1, μ> . 0 +<a, λ2, μ> . 0 ∼MFB <a†, λ1 + λ2, μ> . 0
<a, λ1, μ> . 0 +<a†, λ2, μ> . 0 ∼MFB <a†, λ1 + λ2, μ> . 0

If λ1 = λ2 � λ and μ1 = μ2 � μ, then:
<a, λ, μ> . 0 +<a, λ, μ> . 0 ∼MFB <a, 2 · λ, μ> . 0
<a†, λ, μ> . 0 +<a, λ, μ> . 0 ∼MFB <a†, 2 · λ, μ> . 0
<a, λ, μ> . 0 +<a†, λ, μ> . 0 ∼MFB <a†, 2 · λ, μ> . 0

but:
<a, λ, μ> . 0 +<a, λ, μ> . 0 �∼MRB <a, 2 · λ, μ> . 0
<a†, λ, μ> . 0 +<a, λ, μ> . 0 �∼MRB <a†, 2 · λ, μ> . 0
<a, λ, μ> . 0 +<a†, λ, μ> . 0 �∼MRB <a†, 2 · λ, μ> . 0

with the only exception of the following two contained in the same aggregate:
<a†, λ, μ> . 0 +<a, λ, μ> . 0 ∼MRB <a, λ, μ> . 0 +<a†, λ, μ> . 0

Unlike ∼FB, it holds that ∼MFB is sensitive to the presence of the past,
so that in Definition 11 it is not necessary to require initial(P1) ⇐⇒ initial(P2)
to gain compositionality with respect to alternative composition. For example:

<a†, λ, μ> .<b, δ, γ> . 0 �∼MFB <b, δ, γ> . 0
because the process on the left has an outgoing a-transition with rate μ that
cannot be matched by the process on the right.

Furthermore, unlike ∼FB,ps, it holds that ∼MFB cannot identify processes
with a different past. For instance:

<a†, λ, μ> . 0 �∼MFB <b†, δ, γ> . 0
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whenever a �= b or μ �= γ, as in that case the outgoing a-transition on the left
cannot be matched by the outgoing b-transition on the right.

Similarly, unlike ∼RB, we have that ∼MRB is sensitive to the presence of the
future and cannot identify processes with a different future. As an example:

<a, λ, μ> . 0 �∼MRB 0
because the process on the left has an incoming a-transition with rate μ that
cannot be matched by the process on the right. As another example:

<a, λ, μ> . 0 �∼MRB <b, δ, γ> . 0
whenever a �= b or μ �= γ, as in that case the incoming a-transition on the left
cannot be matched by the incoming b-transition on the right.

We conclude by showing that ∼MFRB coincides with ∼MRB (whilst ∼MFB is
strictly coarser) thus extending the first asymmetry between forward and reverse
bisimilarities (see page 5). This result stems from the definition of the operational
semantics and the consequent time reversibility of the underlying CTMCs.

Theorem 5. Let P1, P2 ∈ PM. Then P1 ∼MFRB P2 iff P1 ∼MRB P2.

3.6 Congruence Properties and Equational Characterizations

We start by observing that ∼MFB is not totally sensitive to the past, in the same
way as ∼MRB is not totally sensitive to the future. For both equivalences this
results in a compositionality violation with respect to +. As an example:

<a, λ, λ> . 0 ∼MFRB <a†, λ, λ> . 0
<a, λ, λ> . 0 +<c, κ1, κ2> . 0 �∼MFRB <a†, λ, λ> . 0 +<c, κ1, κ2> . 0

because in <a†, λ, λ> . 0+<c, κ1, κ2> . 0 action c is disabled due to the presence
of the already executed action a†, while in <a, λ, λ> . 0+<c, κ1, κ2> . 0 action c
is enabled as there are no past actions preventing it from occurring.

Note that ∼MFRB would not equate the first two processes if their two rates
were λ1 and λ2 with λ1 �= λ2 or there were any other process in place of 0. There-
fore, when investigating congruence with respect to alternative composition,
we will consider the set of processes P′

M = PM \ {<a, λ, λ> . 0 | a ∈ A, λ ∈ R>0}.
Theorem 6. Let ∼M ∈ {∼MFB,∼MRB} and P1, P2 ∈ PM:

– If P1 ∼M P2 then for all a ∈ A and λ, μ ∈ R>0:

• <a, λ, μ> . P1 ∼M <a, λ, μ> . P2 provided that initial(P1) ∧ initial(P2).
• <a†, λ, μ> . P1 ∼M <a†, λ, μ> . P2.

– If P1 ∼M P2 with P1, P2 ∈ P′
M then for all P ∈ P′

M:

• P1 + P ∼M P2 + P and P + P1 ∼M P + P2 provided that initial(P ) ∨
(initial(P1) ∧ initial(P2)).

With regard to equational characterizations, as expected ∼MFB and ∼MRB

are such that alternative composition is associative and commutative and admits
0 as neutral element. This is formalized by axioms AM,1 to AM,3 in Table 4.

Markovian variants of axioms A4 to A6 in Table 2 are not valid for ∼MFB

because this behavioral equivalence is sensitive to the presence of the past, cannot
identify processes with a different past, and views all the transitions as outgoing.
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(AM,1) (P1 + P2) + P3 = P1 + (P2 + P3)
(AM,2) P1 + P2 = P2 + P1

(AM,3) P + 0 = P

(AM,4) [∼MFB] <a, λ1, μ> . P +<a, λ2, μ> . P = <a, λ1 + λ2, μ> . P
where initial(P )

(AM,5) [∼MFB] <a†, λ1, μ> . P +<a, λ2, μ> .Q = <a†, λ1 + λ2, μ> . P
if to initial(P ) = Q,
where initial(Q)

Table 4. Axioms characterizing bisimilarity over Markovian reversible processes

Likewise, Markovian variants of axioms A7 and A8 in Table 2 are not valid
for ∼MRB because this behavioral equivalence is sensitive to the presence of
the future, cannot identify processes with a different future, and views all the
transitions as incoming.

As for idempotency, Markovian variants of axioms A9 and A10 in Table 2,
which are formalized by axioms AM,4 and AM,5 in Table 4, are valid only for
∼MFB as shown in Example 6. We further observe that in the considered example:

<a†, λ, μ> . 0 +<a, λ, μ> . 0 ∼MRB <a, λ, μ> . 0 +<a†, λ, μ> . 0
can be proved via axiom AM,2.

Theorem 7. Let AMFB = {AM,1,AM,2,AM,3,AM,4,AM,5} and P1, P2 ∈ P′
M.

Then P1 ∼MFB P2 iff AMFB � P1 = P2.

Theorem 8. Let AMRB = {AM,1,AM,2,AM,3} and P1, P2 ∈ P′
M. Then

P1 ∼MRB P2 iff AMRB � P1 = P2.

4 Conclusions

In this paper, we have discovered the following asymmetries that shed light on
forward bisimilarity, reverse bisimilarity, and forward-reverse bisimilarity:

1. In the nondeterministic case ∼FRB = ∼FB over initial processes only, while
in the Markovian case ∼MFRB = ∼MRB over all reachable processes.

2. The insensitivity to the presence of the past breaks the compositionality of
∼FB, while the insensitivity to the presence of the future does not violate
the compositionality of ∼RB. This does not happen in the Markovian case.

3. Forward bisimilarity needs explicit idempotency axioms, while reverse bisim-
ilarity does not, especially in the nondeterministic case.

4. Any aggregated state resulting from an ordinary lumping is ∼MFB-equivalent
to each of the original states it contains, while this is not necessarily the case
for exact lumping and ∼MRB, where ∼MRB-equivalence certainly holds only
among the original states contained in an aggregated state.

As future work, we plan to investigate logical characterizations of the same
equivalences, along with what changes when admitting irreversible actions.
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