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Abstract

Wearable devices have become increasingly popular in recent years, and they
offer a great opportunity for sensor-based continuous human activity recog-
nition in real-world scenarios. However, one of the major challenges is their
limited battery life. In this study, we propose an energy-aware human ac-
tivity recognition framework for wearable devices based on a lightweight ac-
curate trigger. The trigger acts as a binary classifier capable of recognizing,
with maximum accuracy, the presence or absence of one of the interesting
activities in the real-time input signal and it is responsible for starting the
energy-intensive classification procedure only when needed. The measure-
ment results conducted on a real wearable device show that the proposed
approach can reduce energy consumption by up to 95% in realistic case stud-
ies, with a cost of performance deterioration of at most 1% or 2% compared
to the traditional energy-intensive classification strategy.

Keywords: power-aware machine learning, ubiquitous motion tracking,
human activity recognition, wearable devices

1. Introduction

Sensor-based continuous Human Activity Recognition (HAR) has become
increasingly popular today thanks to the explosion of the market for wearable
devices, which ranges from the most complex smartphones to smartwatches
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in everyday life, are equipped with different sensors such as accelerometers,
gyroscopes, magnetometers, heart rate monitors, etc. which allow us to con-
stantly recognize what kind of activity we are doing. To use the parallelism
with ”the Era of Ubiquitous Listening” defined by MIT in 2014 with the
advent of voice assistants, we can say that today we are entering ”the Era of
Ubiquitous Motion Tracking” [1].

Compared to other recognition problems in the domains of computer vi-
sion or natural language processing, HAR tasks are relatively easy and do
not require extremely powerful computing resources. Several studies have
shown that previously trained machine learning models can be run directly
on wearable devices without relying on the computing power offered by the
cloud [2, 3, 4]. In fact, today’s smartwatches are equipped with gigabytes of
RAM and adopt multi-core processors capable of providing several GFLOPS
of computing power. However, they suffer from a significant limitation due to
reduced energy availability, which can significantly reduce battery life when
performing complex activities, such as executing machine learning (ML) mod-
els that are very energy-intensive.

In general, there are three approaches to implementing HAR on wearable
devices: (i) performing the entire computation on the devices; (ii) offloading
the entire computation to higher layers; and (iii) partitioning the computa-
tion and combining onboard processing and offloading, dynamically choosing
where the classification should be made [5, 6, 7]. The last two solutions have
to deal with two additional problems: the high energy consumption of the
communication interface, which must therefore be used wisely, and the pos-
sible loss of privacy due to the transmission and entrustment of sensitive
data to a remote entity. From a technical point of view, however, continuous
monitoring requires the wearable device to stay in an always-on state for
sampling and processing the onboard sensors’ data and recognizing human
activities.

Typically, HAR applications are interested in a narrow set of activities
that need to be monitored. For example, fitness applications focus on par-
ticular activities that improve an individual’s physical condition, such as
running, walking, climbing stairs, and cycling, while ignoring other activities
that are part of daily life, such as eating, writing, cooking, and washing. On
the other hand, other types of applications with a different purpose might
focus on other groups of activities like sanitizing or washing hands ignoring
the fitness ones [3]. This means that, given a particular human activity real-
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processes data that contains information that is not of interest, consuming
unnecessary energy.

In low-power telecommunication domains, such as wireless sensor net-
works, this is traditionally known as ’overhearing,’ referring to the device
being awake to receive and process data not intended for it [8]. In this do-
main, a solution has been found through the use of remote wake-up triggers,
which allow a device to be activated from a low-power state by a signal or
command received from a remote source [9, 10, 11]. Unfortunately, in sensor-
based HAR the wake-up signal must be searched in real-time within the data
coming from the internal sensors. In these conditions, a wake-up could be
a particular signature found on the accelerometer or gyroscope data which
reveals the presence of one of the activities of interest. If the signature is
found the energy-intensive HAR task can be activated to deeply recognize
the correct activity. From this point of view, the HAR trigger would behave
very similarly to the keyword-spotting technique of modern voice assistants
where a hardware sub-system is continuously processing the audio stream to
recognize pre-determined keywords or phrases that are used to activate the
entire natural language processing (NPL) pipeline [12].

Compared to recognizing a spoken keyword to intentionally activate a
device, triggering the HAR task presents several non-trivial challenges. For
instance, sometimes it is very difficult, if not impossible, to identify a priori
a univocal signature for each activity of interest. Even worse, it may be
challenging to find a signature that is common to all the activities of inter-
est and capable of properly activating the recognition task and, at the same
time, ignoring the non-interesting activities. Additionally, the trigger recog-
nition must be much less energy-expensive than the complete HAR task to
be efficient.

In this work, we propose a novel solution based on a deep-learning lightweight
accurate trigger aimed at reducing the energy consumption of the sensor-
based continuous HAR. In particular, the contributions of this work can be
summarized as follows:

• we provided a problem formulation with a theoretical treatment of the
triggering classification performance and energy saving;

• we experimentally characterized on a real wearable device the trade-off
between energy consumption and classification accuracy for three types
of widely used machine learning models;
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duce energy consumption by up to 95% in realistic case studies at a
cost of performance deterioration of at most 1% or 2%.

Notice that, to the best of our knowledge, this is the first contribution in the
existing literature describing a lightweight and accurate trigger for machine
learning-based human activity recognition in wearable devices.

The remainder of the article is organized as follows: in Section 2 we
report the main contributions in the current scientific literature regarding
energy-aware human activity recognition; in Section 3 we present the details
of the proposed deep-learning-based trigger; in Section 4 we describe the
proposed methodology to design a lightweight accurate trigger; in Section
5 we provide a description of the experimental setup used for evaluation of
the system (together with the related performance metrics); in Section 6 we
illustrate the experiments conducted to characterize the system; in Section
7 we summarize the main contributions and findings of our work.

2. Related work

Recently, executing ML pre-trained models on wearable devices for HAR
has become a real thing. Novac et al. in 2020, for instance, compare su-
pervised and unsupervised learning approaches deployed into an embedded
device by analyzing the classification accuracy with respect to the ROM foot-
print and to the inference time [13]; while Chen et al., in 2021, presented a
survey on the state-of-the-art of deep learning sensor-based HAR providing
information on public data sets that can be used for different tasks [14].
In 2021, Alessandrini et al. presented a recurrent neural network (RNN),
deployed on an embedded device, which takes in input data from Photo-
plethysmography (PPG) and tri-axial accelerometer sensors to infer the cur-
rent human activity [15]. In 2019, Bhat et al. created custom hardware that
integrates all steps of HAR, i.e., reading raw sensor data, feature genera-
tion, and activity classification using a deep neural network achieving 95%
accuracy and consuming 22.4µJ per operation [16].

Similarly, Coelho et al. [17] and Mayer et al. [18] showed the adequacy
of different deep learning models to be run on low-power platforms. Lastly,
Wang et al. in [19, 20] work on recognizing human activities from weakly la-
beled sensor data using Recurrent Attention Networks (RAN) and Attention-
Based CNNs showing that these models outperform classical deep learning
methods in accuracy and can simultaneously infer multi-activity types.
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last years, in none of the cases do authors analyze trade-offs between net-
work complexity and measured energy consumption in real conditions. On
the other hand, partial or total off-loading of the ML task in HAR is relatively
brand-new, especially if you take into consideration the works that focus on
the problem of energy consumption. In 2020, Samie et al. proposed a hier-
archical classification process such that a first classifier executes directly on
the IoT device, deciding whether to offload the computation to a gateway
or to perform it onboard based on the classification confidence [21]. Similar
authors in [22] proposed a two-stage approach that leverages a decision tree
(DT) classifier to recognize easy human activity classes, and a 1-dimensional
convolutional neural network (1D CNN) to recognize those activities marked
as ”complex” by the former classifier. A second solution that runs locally
on a wearable device and considers also the energy consumed during infer-
ence time is that proposed in [23]. Here, the authors proposed an early exit
neural architecture search (EExNAS) which, starting from the classification
confidence of the model, decides to offload the task to the cloud. Their so-
lution is then benchmarked on a public dataset and the energy consumption
is evaluated on an EFM32 processor. In [24] authors proposed an adaptive
human activity recognition architecture that consists of a first classier fol-
lowed by a multilayer CNN. The main goal of this work was to prove that an
adaptive architecture, which can dynamically choose at which classification
layer exit can result in faster inferencing and save energy. Similarly, Jha
et al. in 2022 proposed the Accuracy and Energy-Aware HAR (AE-HAR)
model which makes a decision that considers both the energy and the prob-
abilistic accuracy to decide whether to process data locally or not. The idea
is to minimize the mobile device energy consumption while maximizing the
probabilistic accuracy [25].

Although there are many approaches aimed at reducing the energy con-
sumption of wearable devices in the HAR domain, to the best of our knowl-
edge, no author has explored the use of a triggering system. Triggering has
a wide range of applications in signal processing, including data acquisition,
waveform generation, time-based analysis, and synchronization of multiple
instruments [26]. Several techniques are available to implement the trigger
function. One of the conventional approaches is the use of threshold detec-
tion, where a trigger signal is detected when the input signal exceeds a certain
threshold level [27]. Another approach is the use of pattern recognition algo-
rithms that identify specific patterns or sequences in the input signal. Other
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gering are also available [28]. The application of triggering has been exten-
sively used in many signal processing applications, such as in medical signal
processing, image processing, and digital signal processing. For instance, in
electroencephalography (EEG) signal processing, triggering is useful in de-
tecting specific events such as epileptic spikes or sleep apnea events [29]. In
the wireless sensor networks domain, triggering has been used as a solution to
reduce the energy consumed to receive and process unintended data [9, 10].
In this context, the use of remote wake-up triggers allows a device to be ac-
tivated from a low-power state by a command received from a remote source
only when an ”interesting signal” will be effectively sent to it [11].

In conclusion, in this work, we present a novel solution based on a deep-
learning-based lightweight trigger aimed at reducing the energy consumption
of wearable devices in the sensor-based HAR domain.

3. The proposed Lightweight Accurate Trigger

In this section, we present the details of the proposed deep-learning-based
trigger by presenting the problem formulation, a deep analysis of its energy
and classification performances.

3.1. Problem formulation

A sensor-based HAR task is devoted to classifying a set of predefined
activities starting from input data such as signals from the accelerometer,
gyroscope, magnetometer, etc. Real-time continuous monitoring of human
activities entails processing the input stream looking for predefined activities,
in order to be able to characterize them, within the possible activities that
a person can perform during the day. For instance, a step counter is contin-
uously monitoring the accelerometer signals to find human step signatures
to count it. In general, let N denote the number of predefined activities in
the classification problem, which are named a1, a2, ..., aN , and compose the
set A, the HAR problem constructs a function F for predicting the activity
sequence starting from the input signals st:

F (st) = {a1, a2, ..., at}, at ∈ A (1)

In a real-time continuous recognition system we need to consider that the
activities carried out by people are, most likely, more than the ones learned
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all possible human activity. With no other gimmick, the unknown activities
are matched as any of the available ones, and this leads to misclassifications.
Instead, a better approach, presented by Reyes Ortiz et al., introduces the
concept of Unknown Activities (UAs). Here, if the prediction confidence
level of any known classes is below a certain threshold, the system returns
the ”unknown” class which means that none of the known activities are
present in the input data [31].

Adding the ”unknown” class rewrites Equation 1 as:

F (st) =

{
{a1, a2, ..., at}, at ∈ A, if max(c(at)) > th

{unknown}, otherwise (2)

Where max(c(at)) represents the maxim value of classification confidence
of each activity ∈ A.

If on the one hand, this is a solution to the problem of incorrect clas-
sification, on the other it still involves a large consumption of computing
and energy resources whenever the input does not contain an activity of our
interest (i.e. F (st) /∈ A).

Starting from these premises, we propose to make use of a trigger system
that starts the classification procedure only when one of the known activities
is present in the input signal. Ideally, the trigger system should act as a
binary classifier capable of recognizing, with maximum accuracy, the presence
or not of one of the interesting classes in the input data, while it should be the
most computationally light in order to consume the least possible energy. We
call this system Lightweight Accurate Trigger (LAT). In particular, it detects
if the input data belongs to the UAs class or to the subset of interesting
activities A.

3.2. Energy saving

In general, for an ideal LAT (i.e. a 100% accurate binary classifier), the
energy efficiency strictly depends on the ratio between its energy consumption
and that of the baseline (i.e. by using only a complete classifier), and on
the probability that any of the activities of interest is present in the input
signal p(A). The effective classification energy (ECE), starting from the
energy consumed by the LAT (ELAT ) and by the baseline (EBASE), can be
calculated as:

ECE = p(A)× (ELAT + EBASE) + (1− p(A))× ELAT (3)
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Figure 1: Theoretical energy saved by the triggered approach with respect to the baseline
(i.e. by using only the complete classifier) when varying the EBASE/ELAT ratio for
different probability p(A)

Figure 1 reports the theoretical energy saved by the triggered approach
with respect to the baseline when varying the EBASE/ELAT ratio for different
probability p(A). As expected, when the probability of finding one of the
interesting classes is high, in order to have a significant energy saving, the
ratio between the energy consumed by the baseline and by the LAT must
be at least one order of magnitude lower. On the contrary, for probability
values lower than 0.5, there are large potential gains in terms of energy. For
instance, with a LAT that consumes only one-tenth of the baseline energy,
we can save up to 55% for probabilities lower than or equal to 0.3.

Dealing with a non-ideal classifier entails considering the energy contri-
butions due to classification errors. In particular, the output of the LAT,
regarding the class of the interesting activities A, might be a true positive
(TP ), true negative (TN), false positive (FP ), or false negative (FN). If
a TP occurs, the system triggers the complete classifier behaving as in the
baseline. In this case, however, the consumed energy, in addition to the basic
contribution (EBASE), must also account for the extra energy consumed by
the binary classifier ELAT . On the other hand, in the case of TN the total
amount of EBASE energy is saved by avoiding executing the complete classi-
fier. When a FP occurs, on the contrary, the system misses the opportunity
to save energy by unnecessarily invoking the full classifier and spending an
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case reduces the energy consumption but at the cost of misclassification. By
taking into account non-idealities, Equation 3 becomes:

ECE =
[
p(A)× TPR + (1− p(A))× FPR

]
× (ELAT + EBASE)+

[
(1− p(A))× TNR + p(A)× FNR

]
× ELAT

(4)

Where TPR, FPR, TNR, and FNR represent, respectively, the rate of the
corresponding true or false output.

Considering that, for a given classifier:

TPR = 1− FNR (5)

and

TNR = 1− FPR (6)

we can rewrite Equation 4 using only FPR and FNR:

ECE =
[
p(A)× (1− FNR) + (1− p(A))× FPR

]
× (ELAT + EBASE)+

[
(1− p(A))× (1− FPR) + p(A)× FNR

]
× ELAT

(7)
Figure 2 shows the theoretical energy saved with respect to the baseline

of the proposed approach when varying the FPR of the LAT for different
probabilities p(A). Since each FP results in a missed opportunity to save
energy, it is obvious that as the FPR increases, the percentage of energy
saved by the system decreases. Moreover, the energy waste results higher
for lower values of p(A) which, in turn, means a higher number of negative
samples in the input which proportionally increases the number of FP .

On the contrary, Figure 3 shows how the percentage of energy saved by
the system depends on the FNR for different values of the probability p(A).
In particular, for all reported values of probability, there is an increase in
the amount of energy saved which, in turn, is greater for higher values of
p(A). Although there is a decrease in energy consumption, it must not be
forgotten that this is not a viable way to reduce it, as each FN corresponds
to an unrecoverable failure of the classification system.
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Figure 2: Theoretical energy saved by the triggered approach with respect to the baseline
when varying the FPR of the LAT classifier for different values of the probability p(A)
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Figure 3: Theoretical energy saved by the triggered approach with respect to the baseline
when varying the FNR of the LAT classifier for different values of the probability p(A)

In summary, for the proposed approach in order to produce significant
energy savings, the following conditions are simultaneously required:

EBASE ≫ ELAT (8)
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FPR = as low as possible (10)

3.3. Classification performances
One of the constraints to realizing a good LAT is to keep the overall mis-

classification rate at least as low as the baseline. In the proposed approach,
misclassification happens in one of the following cases:

• the LAT misclassifies a true input as false (FN) so that the complete
classifier is not triggered;

• the LAT correctly identifies a positive input (TP ), the complete clas-
sifier is triggered, but it misclassifies the input.

• the LAT misclassifies a false input (FP ), the complete classifier is trig-
gered, but it misclassifies the input.

Definitely, the misclassification rate of the proposed system MCRsystem

can be described by:

MCRsystem = FNR + TPR×MCRbase + FPR×MCRbase (11)

Where FNR, TPR, and FPR refer to LAT and MCRbase is the misclas-
sification rate of the baseline. Moreover, by rewriting Equation 11 as

MCRsystem = FNR + (TPR + FPR)×MCRbase (12)

we can highlight that the misclassification rate of the proposed system
(MCRsystem) is dominated primarily by the value of FNR because each TP
sample returned by the LAT involves the normal activity of the base classifier
and each FP should largely be mitigated by its higher classifying capability.
For these reasons, the last requirement that a LAT should meet to be suitably
applied to a continuous HAR system is:

FNR = as low as possible (13)

Notice that, concerning the four mentioned requirements, it must be spec-
ified that, as (10) and (13) deal with the classification performance, the LAT
architecture should be chosen properly in order to meet these constraints.
In the same way, the fulfillment of requirement (9) strictly depends on the
architecture complexity of the LAT which translates into its energy consump-
tion. Finally, equation (9) suggests that the LAT cannot be applied to those
applications in which the probability of occurrence of interesting activities is
too high.
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A LAT for sensor-based HAR can be designed in two different ways: (i)
through traditional signal processing and template matching techniques, or
(ii) via a holistic approach based on machine learning. The first approach
requires a deep understanding of the physical model of each human activ-
ity in order to identify the most appropriate signatures that allow for rapid
recognition. On the other hand, creating a trigger sensitive to multiple ac-
tivities seems far from a simple possibility. Instead, our proposed approach
plans to train a binary classifier based on machine learning techniques that
can recognize the presence of a set of interesting activities within the signals
from the accelerometer and gyroscope.

In this work, we proposed to use both convolutional neural networks
(CNNs) and Long Short Term Memory (LSTM) networks thanks to its im-
proved accuracy and effectiveness established in HAR tasks [32, 33]. Further-
more, studies have shown that combining CNN and LSTM networks provides
a promising solution for HAR classification problems. Various studies have
proposed hybrid CNN-LSTM architectures, such as DeepConvLSTM and
AttSense, which have proven to outperform pure LSTM networks [34, 35].
The reason behind such a successful approach is that the combined adoption
of CNN and LSTM architecture allows for capturing both spatial and tempo-
ral features, which are two characteristics that are typical of human activities
extracted from sensor devices. Therefore we evaluated the performance of
all three types of deep networks both to create the LAT and the complete
classifier.

4.1. The n+1 dataset for HAR

There are many datasets traditionally used to train and test machine
learning models in HAR but, unfortunately, almost none contain also data
related to UAs sampled during normal daily life. We define the latter as n+1
datasets since in addition to the n different classes used in HAR problems
they contain one more class that represents data collected in the most varied
human activities which do not include any of the n previous.

In the following, we provide a procedure to derive both a n+1 and a bi-
narized dataset starting from a classic HAR dataset to build, respectively,
a traditional classifier and a LAT. In particular, given A the entire set of
activities stored in a traditional dataset, we can obtain a corresponding n+1

12
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taining, respectively, the records relating only to some of the activities of the
original dataset, which we chose as activity of interest, and the rest we label
as unknown activities (UAs). To obtain Ã we rewrite the original labels of

the A′′ partition as ”0” while for the Â we rewrite also the labels of the A′

partition as ”1”.

Original dataset (A)

Unknown activities (A’’)

Interesting activities (A’)

Unknown activities ( 𝑨𝟎’’)

Label rewriting

Interesting activities ( 𝑨𝟏’)

Label rewriting

Binarized dataset (Â)

Partitioning

Partitioning

N+1 dataset (Ã)

HAR

LAT

Walking
Jogging
Stairs
Sitting

Standing
Typing

Brushing Teeth
Eating Soup
Eating Chips

Walking
Jogging
Stairs
Sitting

Standing

Typing
Brushing Teeth

Eating Soup
Eating Chips

“1”

“0”

“0”
“1”

Walking
Jogging
Stairs
Sitting

Standing
“0”

Figure 4: The proposed workflow to train and test both LAT and HAR models starting
from common HAR datasets.

Figure 4 shows an example of the application of the proposed procedure
to a particular dataset containing the following activities: Walking, Jogging,
Stairs, Sitting, Standing, Typing, Brushing Teeth, Eating Soup, and Eating
Chips. In the first step, from the original dataset, we derive A′ containing the
activities: Walking, Jogging, Stairs, Sitting, and Standing and A′′ containing
Typing, Brushing Teeth, Eating Soup, and Eating Chips. Each label of the
records contained in the A′′ partition is then replaced with ”0” to obtain a
single label partition A′′

0. In the same way, the single label partition A′
1 is

obtained by replacing with ”1” each label of A′. Finally, a binarized dataset
Â is obtained by combining A′′

0 and A′
1 which is then used to explore the

design space of the LAT. In parallel, the n+1 dataset (Ã) is obtained by
adding the unknown activities (the A′′

0 partition) to the A′ partition (i.e. the

activities of interest). The Ã is then used to tune the design space of a tradi-
tional HAR system. Notice that, to maintain a balanced number of samples
among the classes, after grouping different activities, a rebalancing phase is
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The choice of how to partition the dataset introduces an interesting pa-
rameter for which to evaluate sensitivity because it is presumable that dif-
ferent combinations of activities lead to different performances of the LAT.
For example, it seems intuitive that considering activities of interest that
are rather similar but very different from what we chose as UAs, the binary
classifier behaves better than in the reverse case. This will therefore be one
of the objects of study of the present work.

4.2. Design workflow

As described in section 3, the efficiency and the effectiveness of a LAT
should be defined with respect to a traditional approach in which we used an
always-on classifier. For this reason, to design a LAT we must first build and
characterize the traditional classifier. Figure 5 shows the proposed workflow
used to build both the classifier and to evaluate the best LAT configuration
taking into account the trade-off between energy saved and classification
accuracy. In particular, starting from the original dataset, we create the
binarized (Â) and the n+1 datasets (Ã) as described in the previous section,
then we start building the classification model (the right part of the figure).
Notice that, in this work, the classifiers focus on the signals gathered from
the triaxial accelerometer and gyroscope that are properly divided into time
windows lasting 2 seconds with a 75% overlap. Choosing the size of the time
window and the percentage of overlap is a non-trivial task because the length
of the time window impacts the classification performance of the models [36].
For instance, in HAR tasks, different window lengths have been used in the
literature, from 1 s up to 30 s [4, 37, 38, 39]. In this study, we opted for a 2
seconds time window and for 75% of overlap as a reasonable choice, given the
characteristics of the adopted datasets, in terms of activities to be classified
and of sampling ratios, as reported also in[3, 4]. Then, the windowed data
are used to find the best hyperparameters setting of the classifier by means
of a Hyperband Tuner that takes in input the dataset, split into training,
validation, and testing, together with an exploration range for each model
hyperparameter[40, 41].

Once the best configuration of the hyperparameters is found, the models
are trained and tested using the original dataset divided into ”train” and
”test”, where 75% are used as the training set and 25% as the test set. The
training-testing procedure is performed five times with five different seeds of
the random generator in order to have five different dataset splits to evaluate
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Figure 5: The proposed workflow to build both the LATs and the complete models.

the robustness of the approach. Then, each model, after being trained and
tested, is uploaded to a wearable device to evaluate its energy consumption
and inference time.

Since the classifier will have to carry out the inference in real-time, it is
necessary that it respects the time constraints foreseen in the design phase.
In particular, since the sensor-based HAR is carried out over time windows
of a predetermined size (2 seconds in this work), the time required to carry
out the inference must never exceed the length of this window. If not, it will
be necessary to revise the model by reducing the range of hyperparameters
in the Hyperband Tuner and restarting characterizing it.

Once the best classification model has been found, we proceed to the
design and evaluation of different LAT models with increasing complexity
using the dataset Â (left side of Figure 5). Notice that, in this case, we
don’t make use of an automatic hyperparameters tuner, because we don’t
just look for the model that performs better, but we characterize a family of
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possible trade-off between accuracy and energy consumption.

5. Experimental setup

In this section, we present the experimental setup provided to evaluate
the effectiveness and energy efficiency of the proposed approach.

5.1. Machine learning models

To build the baseline classifier we proposed to tune the following models:
i) an LSTM network composed of three LSTM layers followed by three dense
layers (3LSTM 3D); ii) a CNN network composed of three convolutional
layers followed by three dense layers (3Conv 3D); a hybrid network composed
of two convolutional layers and two LSTM layers followed by three dense
layers (2Conv 2LSTM 3D); Notice that, in order to reduce the overfitting,
we intersperse each dense layer with a dropout layer with a drop probability
set to 0.2.

Concerning the LAT, we explored the hyperparameters space of the fol-
lowing networks obtained by reducing the deepness of the previous one: i)
an LSTM network composed of two LSTM layers followed by a single dense
layer (2LSTM 1D); ii) a CNN network composed of two convolutional layers
followed by a single dense layer (2Conv 1D); iii) a hybrid network composed
of one convolutional layer and one LSTM layer followed by a single dense
layer (1Conv 1LSTM 1D). Also in this case we add a dropout layer to re-
duce overfitting.

To implement and test the proposed models we make use of the Ten-
sorFlow end-to-end machine learning platform powered by Google [42] and
to find the best hyperparameter configuration of each classifier, as reported
in Section 4.2, we make use of the Hyperband Tuner provided by Keras
[40, 41]. Once trained and characterized, each model has been installed and
executed on a real smartwatch using the TensorFlow Lite library [43]. All
phases of training, testing, and exploration of the hyperparameter space were
conducted on a workstation equipped with two Intel® Xeon® Silver 4314 pro-
cessors and three NVIDIA® A100 graphical processing units (GPU).

5.2. Datasets

We evaluated the proposed approach on two publicly available HAR
datasets, namelyWISDM andWatch HAR, and on a specially created dataset
we called Ad-hoc DB.
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Smartwatch Activity and Biometrics Dataset” was published by Gary Weiss
in 2019 and it includes data collected from 51 subjects, each of whom was
asked to perform 18 tasks for three minutes each. Data (sampled at 20 Hz)
contains both accelerometer and gyroscope signals and were recorded using
a smartwatch placed on the dominant hand and a smartphone placed on the
pocket during the following activities: walking, jogging, stairs, sitting, stand-
ing, typing, brushing teeth, eating soup, eating chips, eating pasta, drinking,
eating a sandwich, kicking a soccer ball, playing tennis, dribbling, writing,
clapping, and folding clothes.

Watch HAR [45]: published by Ada Alevizaki and Niki Trigoniit in 2022,
contains data collected in a laboratory environment, where users performed
activities commonly executed in the home or work environments while wear-
ing a smartwatch on their dominant hand. The 13 users, both male and
female, aged between 23 and 67 years old, executed in their own style the
following 16 activities: brushing teeth, preparing sandwich, reading book, typ-
ing, using phone, using remote control, walking freely, walking holding a tray,
walking with handbag, walking with hands in pockets, walking with object un-
derarm, washing face and hands, washing mug, washing plate, writing. Each
user performed each activity for approximately 1 to 3 minutes.

Ad-hoc DB : we built an n+1 HAR dataset aimed at studying the recog-
nition of handwashing and handrubbing activities performed during the day.
In particular, we collected sensor data from the triaxial accelerometer and
gyroscope of a smartwatch positioned on the wrist of the dominant hand
of four participants during real-life activities. Each subject was wearing the
smartwatch for several hours on different days and was asked to annotate the
start and the end of each handwashing or handrubbing activity performed
during the day. Together with the interesting activities, we collected also
UAs data by randomly sampling the sensors during the day. For each sub-
ject, we collected about 2 hours of total time spent washing hands, about
2 hours and 30 minutes of time spent rubbing, and about 3 hours of UAs.
Notice that the subjects were not instructed on how to wash or rub their
hands leaving them completely free to use their usual way so to collect data
about the unstructured way people normally use to wash their hands.

5.3. The wearable device

As a case study, we used an OPPO Watch 46mm equipped with a Qual-
comm ® Snapdragon Wear™ 3100 which has 1 GB of ram and 8 GB of
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sensors such as accelerometer, gyroscope, magnetic field sensor, barometer,
etc. The whole device is powered by means of a 430 mAh Li-Po battery that
ensures up to 36 hours of autonomy. Concerning the software, the device
runs Wear OS by Google which allows a high degree of programmability and
also supports the TensorflowLite libraries for machine learning. For the pur-
pose of this work, the smartwatch has been opened, the battery has been
removed and it has been powered using measurement setup described below.

5.4. Energy Consumption Measurement Setup

In order to monitor the energy consumption, the smartwatch has been
opened as shown in Figure 6 and, after removing the battery, we measured the
voltage drop across a sensing resistor (1.5Ω) placed in series with the power
supply of the device. The smartwatch was powered at 3.85V through an
NGMO2 Rohde & Schwarz dual-channel power supply [46], and we sampled
the signals during the experiments by means of a National Instruments NI-
DAQmx PCI-6251 16-channel data acquisition board connected to a BNC-
2120 shielded connector block [47, 48].

Figure 6: The OPPO Watch 46mm connected to the external power supply and to the
measurement setup.

5.5. Classification Performance Metrics

To evaluate the performance in the classification of multi-class problems,
the following quantities have been evaluated for each of the classes of the
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number of true positives predicted for class i; TNi, the number of true neg-
atives predicted for class i; FPi, the number of false positives predicted for
class i; FNi, the number of false negatives predicted for class i.

Subsequently, these indicators have been used to compute the following
metrics (corresponding to the so-called macro-averaging measures) [49]:

Precision =
1

N

N∑

i=1

TPi

TPi + FPi

(14)

Recall =
1

N

N∑

i=1

TPi

TPi + FNi

(15)

Accuracy =
1

N

N∑

i=1

TPi + TNi

TPi + TNi + FPi + FNi

(16)

6. Experiments and results

In the following, we present the results of the analysis performed to char-
acterize the effectiveness and efficiency of the proposed approach.

6.1. Performance of the classifications models

Table 1 shows the results of the hyperparameters exploration for each
of the proposed models. In particular, H1, H2, H3, and H4 represent the
number of the hidden units inside of a layer, for instance, in a convolutional
layer they are the number of internal filters while in an LSTM layer are the
number of cell units. On the other hand, D1, D2, and D3 represent the
number of computing elements (neurons) inside each dense layer.

The table also reports the size of each model once converted to Tensor-
FlowLite format and the corresponding average execution time and energy
consumption, together with the standard deviation, measured in the inference
phase repeated ten times. Both 3LSTM 3D and 2Conv 2LSTM 3D networks
required several iterations forcing the hyperparameter space reduction to be
able to respect the real-time constraints while, concerning the 3Conv 3D net-
work, the best configuration found by the tuner was directly matching the
requirements. Due to the high efficiency of the simple convolutional network,
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with the model size, inference time, and energy consumption.

parameter 3LSTM 3D 3Conv 3D 2Conv 2LSTM 3D

H1 544 192 320
H2 512 864 1024
H3 896 928 1024
H4 - - 608
D1 416 416 512
D2 576 224 192
D3 #classes #classes #classes
size [kB] 10,101 10,137 10,000
time [ms] 1, 987± 96 681± 23 1, 808± 88
energy [mJ] 306± 12 123± 5 252± 11

the measured inference time is around 681 ms which results in energy con-
sumption of just 123 mJ while the other two models show inference times
close to two seconds with consequent energy consumption which reaches up
to 306 mJ.

From the classification performance point of view, the 3Conv 3D network
outclasses the other two in all three datasets. Table 2 reports the perfor-
mances obtained by the proposed models using the hyperparameter settings
described in Table 1. Notice that, each value, together with its standard de-
viation, has been obtained as the average of five training-testing runs using
different random seeds to split the dataset into training and testing parti-
tions. The 3Conv 3D network reaches the best accuracy of about 96% on top
of the WISDM dataset while 3LSTM 3D and 2Conv 2LSTM 3D achieved a
maximum accuracy of 89% and 91%, respectively. Even referring to preci-
sion and recall, the 3Conv 3D network is always the best with a gap ranging
from about 8% to 3%. The low value of the standard deviations measured
for each model testifies to the substantial independence of the results from
the dataset-splitting procedure.

On the other hand, in these experiments, Watch HAR and WISDM have
been converted into n+1 datasets by choosing the partitioning that makes
more sense, i.e. trying to form the two groups by relegating in the first one
the activities that make greater use of arms and hands and in another, the
activities that involve the whole body more. For instance, concerning the

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 2: Best classification performances obtained on top of the three reference datasets

metric dataset 3LSTM 3D 3Conv 3D 2Conv 2LSTM 3D

accuracy

Ad-hoc DB 0.878± 0.008 0.916± 0.004 0.886± 0.010
Watch HAR 0.821± 0.008 0.916± 0.009 0.824± 0.007
WISDM 0.889± 0.006 0.958± 0.002 0.909± 0.008

precision

Ad-hoc DB 0.882± 0.006 0.915± 0.004 0.889± 0.003
Watch HAR 0.822± 0.004 0.908± 0.006 0.825± 0.007
WISDM 0.887± 0.005 0.942± 0.005 0.909± 0.009

recall

Ad-hoc DB 0.881± 0.007 0.915± 0.003 0.894± 0.010
Watch HAR 0.817± 0.009 0.911± 0.014 0.823± 0.008
WISDM 0.887± 0, 007 0.978± 0.003 0.907± 0.005

MCR

Ad-hoc DB 0.122± 0.008 0.084± 0.004 0.114± 0.010
Watch HAR 0.179± 0.008 0.084± 0.009 0.176± 0.007
WISDM 0.111± 0.006 0.042± 0.002 0.091± 0.008

Whatch HAR dataset, we have chosen as an activity of interest: brushing
teeth, preparing sandwich, reading book, typing, using phone, using remote
control, washing face and hands, washing mug, washing plate, writing while
the following activities have been chosen as UAs: walking freely, walking
holding a tray, walking with handbag, walking with hands in pockets, walking
with object underarm.

Similarly, regarding the WISDM dataset, we have chosen the following as
activities of interest: typing, brushing teeth, eating soup, eating chips, eating
pasta, drinking, eating a sandwich, writing, clapping, and folding clothes
while as uninteresting activities we chose: walking, jogging, stairs, sitting,
standing, kicking a soccer ball, playing tennis, dribbling. Notice that, in
Section 6.3 we will show the results of a deep analysis of the sensitivity of
the proposed approach concerning the choice of partitioning.

Given its enormous energy efficiency and high classification capability,
the 3Conv 3D network was used as a reference base model in the rest of the
paper.

6.2. LAT characterization

Concerning the LAT characterization, we explored the hyperparameters
space of the following three proposed network models on top of the three

21



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 1 2 3 4 5 6 7

# of hidden units 104

0.85

0.9

0.95

a
c
c
u
ra

c
y

2LSTM_1D

2Conv_1D

1Conv_1LSTM_1D

(a) Ad-hoc DB

0 1 2 3 4 5 6 7

# of hidden units 104

0.85

0.9

0.95

a
c
c
u
ra

c
y

2LSTM_1D

2Conv_1D

1Conv_1LSTM_1D

(b) Watch HAR

0 1 2 3 4 5 6 7

# of hidden units 104

0.85

0.9

0.95

a
c
c
u
ra

c
y

2LSTM_1D

2Conv_1D

1Conv_1LSTM_1D

(c) WISDM

Figure 7: Accuracy obtained by the proposed LAT models when varying the total number
of hidden units on top of the three selected datasets.

binarized datasets.
Figure 7 reports the classification accuracy obtained by the LAT models

when varying the total number of hidden units on top of the three selected
datasets. As expected, increasing the network size increases its classification
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Figure 8: Pareto diagram reporting the energy consumed in a single inference by each
LAT configuration Vs its FNR.

accuracy which, however, after a certain level reaches the maximum value and
then stabilizes or, in the case of 2LSTM 1D on WISDM, starts to decrease
significantly. Moreover, as for the baseline classifier, the pure convolutional
model (2Conv 1D) produces the best performance in terms of classification
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configuration (1Conv 1LSTM 1D).
Figure 8 shows the Pareto diagrams obtained by plotting the energy con-

sumed in a single inference by each LAT configuration versus the correspond-
ing FNR. On each plot, the configuration that represents the best compromise
between energy consumption and FNR level (i.e. the point minimizing both
energy consumption and FNR) has been circled in red. For instance, con-
cerning the Ad-hoc DB and Watch HAR datesets, the best model turns out
to be the 2Conv 1D with 256 and 128 hidden units respectively in the first
and second layers. Similarly, in the WISDM dataset, the best model is still
a 2Conv 1D network but with 512 and 128 hidden units.

Therefore, thanks to its high energy efficiency and high classification accu-
racy, the two-layer convolutional network turns out to be the best deputy to
build a LAT. For this purpose, we reported in Table 3 the complete character-
ization of the proposed system assuming the 3Conv 3D network as the base
classifier to which the LAT, consisting of the 2Conv 1D model with the best
configuration, was applied. The table reports, for the three datasets, the av-
erage classification performance ad its standard deviations together with the
LAT size, inference time, and energy obtained in five runs using different ran-
dom seeds. From the classification performance point of view, as described
in Section 3.3, we reported the FNR, TPR, FPR, MCRbase, MCRsystem,
MMCRsystem, and the ∆MMCRsystem where the last two metrics refer, re-
spectively, to the measured MCRsystem and the delta MMCRsystem. The
latter, in particular, is the misclassification overhead introduced by the LAT
with respect to the base classifier. Notice that, while the MCRsystem, which
has been calculated using Equation 12, represents the theoretical misclassifi-
cation, the MMCRsystem has been measured in the experimental conditions
by cascading the trained LAT and the base classifier and by testing the re-
sulting chain on top of the three available datasets. The reason why the
theoretical and the measured MCR can be significantly different is to be
found in the fact that the samples poorly classified by the LAT (generating
FN , for example) are largely the same ones for which the baseline classifier
makes errors. Consequently, in several cases, the errors made by the two
classifiers in cascade do not add up, effectively reducing the real measured
MCR of the system.

Concerning the results shown in Table 3, it can be seen that the FNR of
the LAT varies from 10% to about 2% depending on the dataset used. In
the worst case, i.e. using the Ad-hoc DB, the theoretical MCRsystem changes
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Table 3: Best performance of the proposed LAT model together with the model size,
inference time, and energy consumption.

Ad-hoc DB Watch HAR WISDM

# of elements 256x128x2 256x128x2 512x128x2
FNR 0.104± 0.035 0.048± 0.011 0.016± 0.003
TPR 0.896± 0.035 0.952± 0.011 0.984± 0.003
FPR 0.102± 0.019 0.071± 0.014 0.027± 0.009
MCRbase 0.084± 0.004 0.084± 0.009 0.042± 0.002
MCRsystem 0.188± 0.041 0.134± 0.029 0.059± 0.020
MMCRsystem 0.095± 0.013 0.091± 0.009 0.044± 0.003
∆MMCRsystem 0.011± 0.017 0.007± 0.018 0.002± 0.005

base classifier (3Conv 3D)

size [kB] 10,137
time [ms] 681± 23
energy [mJ] 123± 5

LAT

size [kB] 423 423 808
time [ms] 58.38± 3.32 56.32± 5.61 213.60± 11.06
energy [mJ] 4.73± 0.94 4.57± 0.81 17.32± 6.30
Ebase/ELAT 26.01± 6.23 25.89± 5.87 7.10± 2.87
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overhead of more than 10 percentage points even if, fortunately, the measured
misclassification rate (MMCRsystem) does not exceed 0.095. In this way, the
real overhead (∆MMCRsystem) is limited to about 1%±1.7%. In the case of
Watch HAR and WISDM datasets, the results appear even better with a real
overhead of around 0.7% ± 1.8% and 0.2% ± 0.5% respectively. Therefore,
it can be concluded that, from the experimental data, the introduction of
the proposed LAT leads to a performance deterioration of at most 1% or 2%
compared to the basic classifier.
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Figure 9: Theoretical energy saved by the triggered approach with respect to the baseline
when varying the FNR of the LAT classifier for different values of the probability p(A)

Concerning the resource utilization (energy, time inference, and energy),
the table reports for comparison also the characterization data of the base
classifier (3Conv 3D)) to which the LAT was applied. Thanks to the low
complexity of the LAT and to its reduced inference time, results that the
energy ratio between the base classifier and the LAT ranges from 7× to 26×
depending on the number of hidden units of the LAT. Likewise, the size of
the LAT models ranges from about 400 to 800 kB whereas the base classifier
occupies more than 10 MB of memory.

Figure 9 plots the energy saved by the proposed approach when varying
p(A), i.e. the probability that any of the activities of interest is present in the
input signal, by calculating ECE as reported in Equation 7, starting from
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instance, that for a 0.5 probability of having one of the activities of interest
of the WISDM n + 1 dataset, the proposed approach can save almost 40%
of the energy. In the case of the Watch HAR and Ad-hoc DB, on the other
hand, energy saving exceeds 50%. Moreover, considering a realistic case, i.e.
a person wearing a smartwatch on which an application for monitoring some
of the daily activities is installed, this percentage could grow further. Take as
an example the application described in [3] which has the task of monitoring
the washing and sanitization of hands (Ad-hoc DB). For this application, it
can be estimated that if the person washed/sanitized their hands 30 times
a day and each time took 30 seconds, p(a) = 30 × 30/86400 = 0.01 giving
rise to an energy saving of about 95%. On the other hand, concerning the
WISDM dataset, we can imagine, for example, a person who spends about
6 hours a day, p(a) = 6/24 = 0.25, in typing, brushing teeth, eating soup,
eating chips, eating pasta, drinking, eating a sandwich, writing, clapping, and
folding clothes and, in this case, the proposed approach will save up to 60%
of smartwatch energy.

6.3. Sensitivity to the clustering of the activities

To investigate how much the choice of which activities to include in the
A′ and A′′ partitions of the derived datasets affects the performance of the
proposed approach, we performed a series of experiments in which human ac-
tivities were randomly assigned to the two partitions, and on these, the whole
system has been characterized. The workflow has been repeated ten times
using different random seeds in order to measure the average performance
together with the standard deviation.

Table 4: Classification performance of the LAT and the base classifier when randomly
choosing the composition of partitions A′ and A′′ for the WISDM dataset.

accuracy precision recall

Classifier 0.9425 ± 0.0061 0.9413 ± 0.0062 0.9307 ± 0.0065
LAT 0.9559 ± 0.0115 0.9509 ± 0.0145 0.9506 ± 0.0124

Table 4 reports the results obtained by training and testing both the best
base classifier and the LAT on top of the WISDM dataset. In both cases,
the reduced value of the measured standard deviations suggests a negligible
dependence on the activities selected to be assigned to the two partitions
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bustness of the proposed approach.

7. Conclusion

Continuous HAR has become increasingly popular, thanks to smart-
phones and smartwatches that are equipped with various sensors, such as
accelerometers, gyroscopes, magnetometers, and heart rate monitors. These
sensors enable constant activity recognition. In the era of ubiquitous mo-
tion tracking, the issue of energy consumption in battery-powered wearable
devices has become more pressing, as it limits the usage time.

In this paper, we propose a lightweight and accurate trigger to reduce
energy consumption in sensor-based continuous HAR using deep learning
models. We provide a theoretical formulation of the proposed approach and
a comprehensive experimental characterization of its energy consumption,
measured on a real hardware wearable device. The experimental results,
conducted on realistic scenarios, showed energy savings ranging from 60%
to 95%, depending on the selected HAR application, with a performance
deterioration cost of at most 1% or 2% compared to the basic classifier.
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