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Abstract
During the inspiral of two merging black holes, if the spin of one or of both bodies are
misaligned with respect to the orbital angular momentum L̂, the total spin Ŝ and L̂ will
have a precessing motion around the direction of the total angular momentum Ĵ of the
system. The orbital plane of the system will also precess over time due to the general
relativistic spin-spin and spin-orbit interactions. The imprinting of the precession will
appears as phase and amplitude modulations in the observed signal, thus precessing
gravitational waves will have a more rich structure than the charasteristic chirp-shape
of the aligned-spin ones. These precession-induced modulations will be important not
only for waves from binary black holes which lie in the current LIGO-Virgo frequency
band sensitivity, but also for waves emitted by supermassive BBH and for binary neut-
ron stars mergers or stellar mass BH spiraling into supermassive black holes (these low
frequency gravitational waves will be the target signals for space based GW detectors
like LISA). Imprints of precession have been investigated in several signals of the cur-
rent ≃ 90 BBH detections of Advanced LIGO and Virgo detectors, and there are almost
two signals with evidence of marginal precession: GW190412 [3] and GW200129 [4].
In addition, the observation of GW signals with precession not only have the goal to test
General Relativity in strong field regime and to study binary formation channels using
spin-distribution population [5], [6], but the most promising challenge is to improve the
performance of early warning alerts for electromagnetic follow-up of the GW sources
[7]. In this research work a search for GW signals emitted by BBH with precession of
the spins is proposed. The thesis is divided in five chapters organized as follow: the first
chapter is dedicated to an introduction of GWs, who’s existence is predicted by the the-
ory of General Relativity. After showing that they are solutions of Einsten’s linearized
field equations, an useful formalism used to describe the interaction between a GW and
a detector is illustrated. Also, the main astrophysical sources of GWs are described; In
the second chapter GW detectors and the interferometric technique are described. In
addition, several noise sources at different frequency ranges which affect the detectors
output data are illustrated. In the third chapter the theory of precession of spins in BBH
systems is introduced. In particular, the simple precession motion, which occurs when
the direction of the binary’s total angular momentum is approximatly constant in time,
will be analized and the equations to describe the orbital plane of the system and the
spin-induced modulations in the gravitational signature will be derived. The fourth and
the fifth chapters contain the main contribution of this work. In the fourth chapter the
tools Sbank and Banksim of the pipeline PyCBC are described, used for the generation
of the precessing-spin and aligned-spin template banks and the computation of their
effectualness respectively. In the fifth chapter, first an outline of the pipeline MBTA
based on the matched-filtering technique is depicted; then the results of Monte Carlo
tests, performed running MBTA to analize the capability of the template banks to re-
cover simulated signals of GW with precession of the spins in Gaussian noise and in a
file of O3 data, are discussed.
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"Un punto microscopico brilla,
poi un altro, poi un altro: è l’impercettibile,
è l’enorme. Questo lumicino è un focolare,

una stella, un sole, un universo;
ma questo universo è niente. Ogni numero è zero

di fronte all’Infinito. L’inaccessibile unito
all’impenetrabile, l’impenetrabile unito

all’inespicabile, l’inespicabile unito
all’incommensurabile: questo è il cielo."

Victor Hugo, Les contemplations
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Chapter 1

Gravitational Waves Astronomy

Albert Einstein, more than 100 years ago in his General Relativity (GR) theory, de-
scribed no longer the Gravity as a force acting in a flat space-time: Gravity is embedded
in the geometry of the space-time determined by the energy and momentum contents
of the Universe. Gravitational Waves (GWs) are oscillations of the space-time metric
which, accordingly to GR, propagate in the free space with the speed of light in va-
cuum. Their coupling with matter and radiation is extremely weak making them very
challenging to detect. Astrophysical objects with extremly high accelerations generate
waves of distorted space-time carrying away energy and momentum from the source,
and in 2015 the two LIGO (Laser Interferometer Gravitational Wave Observatory) In-
terferometers in USA detected for the first time a GW signal emitted by the coalescence
of two black holes orbiting each other in a binary system, matching the predictions of
GR. This event is a milestone in physics and marked the beginning of the Gravitational
Wave Astronomy, providing not only the first direct proof of the existence of GWs, but
also the first direct evidence of the existence of black holes. Few years later, in 2017,
the first GW signal emitted by the merger of a pair of neutron stars was discovered.
Unlike all previous GW detections, corresponding to BBH mergers and not expected to
produce a detectable electromagnetic signal, the aftermath of this merger was seen by
70 observatories across the world in the electromagnetic spectrum, marking the begin-
ning of the Multi-Messenger Astronomy between GWs and Electromagnetic radion.
In the first chapter will be introduced the Einstein’s GR theory and the linearized Ein-
stein’s field equations, then will be decribed how GWs propagate in a flat space-time as
waves with two independent polarizations and the properties of their sources.

1.1 From Einstein’s equations to Gravitational Waves
The theory of GR describes space-time as a four-dimensional variety with a pseudo-
Riemannian metric. By choosing a local coordinate system xµ, the infinitesimal length
ds is expressed as a function of the infinitesimal change in coordinates dxµ, and the
metric tensor gµν which rapresent the distance element between two events, evaluated
in a given space-time point x, is given by:

ds2(x) = gµν(x)dx
µdxν (1.1)

1



In order to find gµν and the equations of motion for matter and energy, Einstein’s field
equations must be solved:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.2)

where Rµν = Rλ
µλν and R = gµνR

µν are the Ricci’s tensor and the Ricci’s scalar
respectively, G = 6, 67 · 10−11Nm2/kg2 is the gravitational constant, c = 3 · 108m/s
is the speed of light, T µν is the energy-momentum tensor that describes the distribution
and evolution of mass and energy densities in space-time, in particular the components
T00 and Ti0 correspond to the mass and momentum densities respectively1. The constant
term 8πG/c4 it is required to reproduce the Newtonian limit in the case of weak field
and non relativistic motion. Equation 1.2 can be interpreted as follows: matter defines
the geometry of space-time, geometry determines the motion of matter2, which means
that the distribution of matter and its motion cannot be described independently from the
gravitational field generated by them and the Gravity represent the curvature of space-
time. The equations 1.2 corresponds to a 10 coupled, non-linear, partial derivatives
equations system, (since the Ricci’s tensor Rµν depends on the first and second partial
derivatives of the metric tensor gµν which in turn is coupled to the GW’s source Tµν).
To solve them one can take advantage of the Einstein’s Principle of Equivalence, which
in its more general formulation asserts that it’s always possible to choose a reference
system in space-time such that, around each event x̄µ, it’s possible to define a system of
locally inertial coordinates for which the effects of acceleration due to the gravitational
field are null:

gµν(x̄) = ηµν (1.3)
∂ρgµν(x̄) = 0 (1.4)

That is, the gravitational field propagates in a flat space-time described by the Minkowski
metric ηµν . Suppose we are interested in to find the solutions for a source with Tµν = 0;
the solutions are given by small perturbations of the flat space-time metric, and it is
possible to write the metric tensor as the sum of a perturbative term |hµν | ≪ 1 and the
metric tensor of Minkowski’s flat space-time ηµν :

gµν = ηµν + hµν (1.5)

with

ηµν =

⎡⎢⎢⎣
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
The assumptions we made define the so-called weak field approximation or the linear-
ized GR theory and allow to write the Einstein’s equations in a flat space-time. The

1The Latin indices indicate the spatial components, the Greek indices the spatio-temporal compon-
ents.

2J. A. Wheeler, in Geons, Black Holes, and Quantum Foam (2000),p. 235.
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only contractions of the Riemann tensor are the Ricci tensor and the scalar of curvature
R, therefore in the first order in hµν the Riemann tensor becomes:

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) (1.6)

replacing this expression in 1.2, we obtain the linearized field equations:

□h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν (1.7)

where □ = ηµν∂
µ∂ν = ∂µ∂

µ is the D’Alambertian operator of the flat space-time and
for a more compact form of the eq.1.7, the metric perturbation "trace-reversed" has been
introduced:

h̄µν = hµν −
1

2
ηµνh (1.8)

h = ηµνhµν (1.9)

It should be noted that −h = h − 2h = ηµν h̄µν = h̄, therefore the above expressions
can be inverted. it is possible to choose the Lorenz gauge ∂ν h̄µν = 0 which provides
4 conditions for the symmetric matrix h̄µν , reducing the 10 independent components to
6. In this gauge the last 3 terms in the left part of the eq. 1.7 are zero and we obtain a
wave equation:

□h̄µν = −16πG

c4
Tµν . (1.10)

The Lorenz gauge and the eq. 1.10 together imply that ∂νTµν = 0, which represents
the law of energy-momentum conservation in the GR linearized theory. In the next
paragraph an advantageous reference frame to study GW will be introduced.

1.1.1 The Gauge Transformations
In order to study the properties of GW and their interaction with matter (including a
detector), one should explore the properties of the eq. 1.10 away from the source, that
is for Tµν = 0. The associated homogeneous eq. of the eq. 1.10 is defined as:

□h̄µν = 0 (1.11)

where □ = ∇2 − (1/c2)∂0
2. The eq. 1.11 provides the existence of a free gravitational

field that travels at the speed of light in vacuum. The Lorenz gauge does not completely
solve the gauge invariance, but choosing h̄ = 0 we obtain h̄µν = hµν and the Lorenz
condition became:

∂0h00 + ∂ih0i = 0 (1.12)

the additional condition h0i = 0 implies that ∂0h00 = 0, then the Newtonian potential
h00 of the source that generated the GW, becomes constant over time. For the spatial
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components hij the Lorenz condition reads ∂jhij = 0. We now define the Transverse-
Traceless gauge (TT-gauge) [1]:

h0µ = 0;hii = 0; ∂ihij = 0 (1.13)

In the TT-gauge the symmetric matrix hµν is further reduced to only 2 degrees of free-
dom (d.o.f.) which correspond to the two GW polarizations. We will indicate the metric
in the TT-gauge with hTTij . A generic solution of the eq. 1.11 can be written as a super-
position of plane waves hTTij (x) = ϵij(k)e

ikµxµ , where k = (ω/c, k⃗) is the wave vector,
and ϵij(k) is defined as the polarization tensor. The non-zero components of hTTij lies in
the plane transverse to the direction of the propagation vector. In the particular case of
a wave traveling in the direction ẑ, with k = (ω, 0, 0, ω/c), one has [8]:

ϵij = h+ϵ
+
ij + h×ϵ

×
ij (1.14)

where h+ and h× define the plus and cross GW’s amplitudes respectively:

ϵ+ =

⎡⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤⎥⎥⎦

ϵ× =

⎡⎢⎢⎣
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎦
A general solution can be written in an intuitive form as follows:

hTTab (t, z) =

[︃
h+ h×
h× −h+

]︃
ab

cos[ω(t− z/c)]

plus an arbitrary phase in the cosine, where a,b are the indices in the transverse plane
x-y. The reference system corresponding to the TT-gauge will be indicated as TT-frame.
Note that the TT-frame is not the reference system normally used in experiments, infact
it can be shown that in this frame any test particles that are at rest before the arrival of
a GW, remain at rest after the passage of the wave. In the next section we describe the
effects of a GW interacting with a ring of test masses.

1.1.2 Gravitational Waves propagation and interaction with matter
Let be an idealized detector rapresented by a ring of free-falling masses. In GR the
trajectory of an object under the influence of gravity only is called geodesic, and the
geodesic deviation equation relates the Riemann curvature tensor to the relative accel-
eration of two neighboring geodesics. So if ξµ = xµ2 − xµ1 is the four-vector distance
between two free falling masses, the motion equation is given by [8]:

D2ξµ

Dτ 2
+Rµ

νρσξ
ρdx

ν

dτ

dxσ

dτ
= 0 (1.15)
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where D/Dτ is the covariant derivative. In the weak field approximation the eq. 1.15
can be written as:

d2ξi

dτ 2
+Ri

0j0ξ
j

(︃
dx0

dτ

)︃2

= 0 (1.16)

which represents the classical equation of the tidal force. The Riemann tensorRi
0j0 is of

the order o(h), since we are neglecting all the background effects. Limiting ourselves to
considering only the terms of linear orders in h, the proper time τ measured by a clock
placed on a test particle initially at rest is equal to the time of the coordinates t, and one
can write t = τ and dx0/dτ = c, so the previous eq.1.16 becomes:

ξ̈
i
= −c2Ri

0j0ξ
j (1.17)

The next step is to compute the tensorRi
0j0 in the detector’s own reference frame. Since

in the GR linearized theory the Riemann tensor is invariant, it’s convenient to compute
it in the TT-frame and we obtain Ri

0j0 = −1/2c2ḧ
TT

ij . Finally, the geodesic deviation
equation in the detector’s own reference frame becomes [8]:

ξ̈
i
=

1

2
ḧ
TT

ij ξ
j (1.18)

which allows us to immediately write the effects of a GW interacting with particles of
mass m in terms of a Newtonian force (also called Riemann force):

Fi =
m

2
ḧ
TT

ij ξ
j (1.19)

Ground-based GW detectors are in a non-inertial reference frame (due to Earth’s ro-
tation motion), however thanks to the eq. 1.19 the detector’s response to GW can be
analyzed in Newtonian limit. The effects of GWs cannot be seen on isolated bodies,
infact a single test mass in a reference in free fall with it remains at rest. Let’s consider
now a ring of particles of mass m initially at rest in the proper reference of the detector.
By fixing the origin in the center of the ring, ξi describes the distance of the mass from
the origin. If the ring is placed in the x-y plane and the GW propagates in the ẑ direc-
tion, then the components of hTTij with i = 3, j = 3 are null, a particle initially placed
in z = 0 remains in this position even after the passage of the GW. Let’s consider a plus
polarized GW (h× = 0) and let be hTTij = 0 with the initial conditions z = 0 e t = 0,
we have:

hTTab = h+ sinωt

[︃
1 0
0 −1

]︃
Indicating with x0, y0 the unperturbed positions, and with δx(t), δy(t) the displacements
induced by the GW, from the eq. 1.18 we can compute:

δẍ = −h+
2
(x0 + δx)ω2 sinωt

δÿ =
h+
2
(y0 + δy)ω2 sinωt

(1.20)

5



Notice that δx is of the order o(h+) on the right side, therefore the terms δx, δy can be
neglected with respect to x0, y0. Integrating the eq. 1.20 we get:

δx(t) =
h+
2
x0 sinωt

δy(t) = −h+
2
y0 sinωt

(1.21)

Similarly, for a cross polarized GW (h+ = 0) and with the same initial conditions, one
has:

δx(t) =
hx
2
y0 sinωt

δy(t) = −hx
2
x0 sinωt

(1.22)

The resulting displacements are shown in the figure 1.1. The effect of a GW interacting

Figure 1.1: Graphical rapresentation of the effects of polarized waves (top + polariza-
tion, bottom × polarization).

with free-falling masses is to vary the relative distances along the directions perpendicu-
lar to the waves propagation direction. The effect is proportional to the distance between
the masses. In particular, a plus polarized GW alternately stretches and compresses the
ring of particles in the x and y directions, while a cross polarized GW exhibits the same
behavior in the rotated direction of π/4. Within the GR it’s not possible to define a local
energy carried by a single wave. What one can do is to compute an integrated average
of the energy-momentum tensor, on a region of space-time smaller compared to the
background curvature. In such conditions the energy carried by a plane wave turns out
to be:

TGW00 =
c4

16πG
< ḣ

2

+ + ḣ
2

x > (1.23)

and also:

∂iFi =
m

2
ḧ
TT

ij δij = 0 (1.24)

since hTTij has null trace, the Newtonian force has null divergence. By drawing the lines
of force in the x-y plane for the polarized waves h+ and h× shown in the figure 1.2 , it is
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observed that the axes of symmetry have a typical quadrupolar model, which highlights
the difference between electromagnetic (vector field) and gravitational (tensor field)
radiation. The physical effects of GW can be evaluated, alternatively, considering the

Figure 1.2: Lines of force corresponding to the "plus" on the left and "cross" on the
right polarizations of the GW. The arrows follow the direction of the force when sinωt
is positive, they go in the opposite direction if sinωt is negative. [1].

proper distances [1]. The perturbed metric in terms of the polarizations h+ and h× can
be used to write the invariant interval as:

ds2 = −c2dt2 + dz2 + 1 + h+cos[ω(t− z/c)]dx2+

1− h+cos[ω(t− z/c)]dy2 + 2h× cos[ω(t− z/c)]dxdy
(1.25)

Consider now two events with coordinates (t, x1, 0, 0) and (t, x2, 0, 0). In the TT-gauge
the distance x2−x1 = L remain constant, even if there is a GW which propagates along
the ẑ axes. While, the proper distance s between the two events, in linear terms in h+,
is given by:

s = L[1 + h+ cosωt]
1
2 ≃ L[1 +

1

2
h+ cosωt] (1.26)

that is, the proper distance changes periodically over time due to the GW. In order to
find the geodesic equation in terms of the proper distance, let be L the distance vector
between the two events, thus s2 = L2 + hij(t)LiLj . In linear terms in h it is possible to
write s ≃ L+ hij(LiLj/2L) which implies:

s̈ ≃ 1

2
hij¨
Li
L
Lj (1.27)

If Li/L = ni and defining si = s/ni, we obtain:

sï ≃
1

2
hij¨ Lj ≃

1

2
hij¨ sj (1.28)

where the identity Lj = sj was used, valid for lower orders. The 1.28 is the equation
searched. If two mirrors play the role of free masses, between which a beam of laser
light makes a round trip, it is the proper distance between the mirrors that determines
the time taken by the light for the path, consequently it is possible to reveal the ef-
fects of GW by measuring this "round-trip" time. The application of this principle to a
gravitational interferometer will be discussed in the second chapter.
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1.1.3 Gravitational Waves Energy
The eq. 1.11 is valid in vacuum, in order to identify the properties of the GW sources
it’s necessary to solve the eq. 1.10 when Tµν ̸= 0. By choosing the Gauge condition
such that [8]:

∂µh
µ
ν =

1

2
∂νh

µ
µ (1.29)

we have:

□hµν = −16πG

c4
[Tµν −

1

2
ηµνT

λ
λ ] (1.30)

The eq. 1.30 it’s a non-homogeneous equation of known solution (called retardet potential):

hµν(t, x⃗) =
4G

c4

∫︂
d3x⃗

[Tµν − (1/2)ηµνT
λ
λ ]t−r/c

|x⃗− x′⃗ |
(1.31)

Assuming that the size of the source R is very small compared to the distance of the
observation point and to the wavelength λ of the emitted GW, it is possible to carry
out a multipoles series expansion similarly to what is done in electromagnetism (this
expantion allows to approximate, at great distances, the electric potential generated by
a system of elettric charges). It can be demonstrated that, as a consequence of the
conservation laws of the total momentum and of the angular momentum, the quadru-
pole expantion is the first efficient non-null term for GW radiation. To determine the
components of the quadrupole momentum tensor we use an analogy with the electro-
magnetic case [9]. Defined the electric quadrupole tensor as:

Qjk =
∑︂
i

qi(xijxik −
1

3
δjkr

2
i ) (1.32)

replacing the charge q with a continuous mass distribution ρ, in the TT-gauge the pro-
jection of the mass quadrupole tensor Ijk is given by:

Ijk =

∫︂
ρ(xjxk −

1

3
δjkr

2)d3x (1.33)

Thus for the amplitude we get3:

hTTjk =
2G

rc4

(︄
d2ITTjk
dt2

)︄
t−r/c

(1.34)

Note that there is no radiation associated with a time-varying mass monopole or di-
pole, meaning that an object undergoing a spherically-symmetric collapse or explo-
sion does not radiate. The power emitted in the electromagnetic case is given by
Ėel = 1/(20c5)Q

(3)
ij Q

(3)
jk , where (3) indicates the third derivative with respect to time.

Therefore we can express the power emitted in GW as:

ĖGW =
G

5c5

⟨︂
I
(3)
jk I

(3)
jk

⟩︂
(1.35)

3This is a solution obtained by integrating a delayed Green function, hence the delay time t-r/c.

8



where the angle brackets indicate a value averaged over the set of frequencies of the
quadrupole motions. It is now possible to estimate the order of magnitude of the energy
emitted in the form of GW from a source. Consider a body with mass M , size R, with
the quadrupole tensor varying in times of scale T , we have:

I
(3)
jk ≈ MR2

T 3
(1.36)

from the eq. 1.35 we get:

ĖGW ≈ G

c5

(︃
MR2

T 3

)︃2

≈ G

c5

(︃
Mv3

R

)︃2

≈ L0

(︂v
c

)︂6(︃RS

R

)︃2

(1.37)

where we introduced v = R/T the speed of the body, the constant L0 = c5/G =
3, 6 · 1059erg/s, and RS = 2GM/c2 the Schwarzschild radius associated to the mass
M . Note that the weak field approximation for a self-gravitating system is equivalent
to neglect the velocities of the internal motions typical of the source, so v/c≪ 1. If we
consider an astrophysical system that satisfies the virial theorem, we have:

GM2

R
≈Mv2 (1.38)

from which RS/R ≈ v2/c2, and the eq. 1.37 becomes:

ĖGW ≈ L0

(︃
RS

R

)︃5

(1.39)

It can be deduced from the eq. 1.39 that the power emitted in the form of GW increases
as the source approaches its Schwarzschild radius, therefore the emission of GW as-
sumes importance for relativistic and compact objects. From the eq.1.33 one can derive
the order of magnitude of the amplitude of the GW emitted:

h ≈ G

rc4
MR2

T 2
≈ RS

r

(︂v
c

)︂2
(1.40)

where r is the distance of the astrophysical source. In order to give an example, for a
source in the Virgo cluster of galaxies (about 10 Mpc from Earth)4we typically have
h ≈ 10−21. To this end, it is important to understand what frequency the GW emitted
must have in order to be detectable from Earth, that is, they enter in the sensitivity
frequency band of the interferometers. The maximum frequency of a GW is found to
be:

f ≤ c3

4πGM
≃ 104Hz

M⊙

M
(1.41)

From now on the Sun will be identified by the symbol ⊙ and its mass by M⊙, which
cames from its hyerogliphic rapresentation.

4The parsec (symbol pc and meaning parallax of one arcsecond) is used in astronomy to measures
distances to objects outside the Solar System. It corresponds to approximately 3.26 light-years.
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1.2 Sources of Gravitational Waves
The equations of Einstein’s GR theory couple the metric of space-time with the energy
and momentum of matter and radiation, thus providing the mechanism to generate GW
as a consequence of radially asymmetric accelerations of masses. At largest scales (low
frequencies 10−15 − 10−18Hz) the expected sources can be classified as:

• Stochastic sources: fluctuations of the primordial Universe;

• Extreme Inspiral: Supermassive black holes binaries, formed when galaxies merged.

At lower scales (high frequencies 10−4 − 104Hz) the expected sources can be identified
as:

• Continuous sources: Pulsars or mini mountains on neutron stars (caused by phase
transitions on the crust);

• Inspiral sources: stellar mass black holes binaries, neutron stars binaries, neutron
star- black hole binaries, characterized by a coalescence time smaller than the age
of the Universe;

• Burst sources: Supernovae or Hypernovae explosions (last phase of the life of
stars with masses > 100M⊙) which collapse in neutron stars or black holes.

In the following paraghrafs some of the aforementioned sources will be described.

1.2.1 Supernovae
The term Supernova indicates stella nova, a term invented by Galileo Galilei to indicate
objects that appeared to be new stars, that had not been observed before in the sky. The
name is a bit ironic, since Supernovae are actually stars at the end of their life cycle.
Pratically, a Supernova explosion is a catastrophic event in which large stars disintregate
completely. Vast clouds of stellar debris are ejected and rapidly heated to temperatures
of millions of degrees. These expanding clouds of hot gas shine with a great variety of
shapes and are referred as remnants of the Supernovae. Five supernovae have been seen
with naked eye during the last millennium: On 1 May 1006, in the Lupus constellation,
visible for 3 months during daylight e only after 3 years faded below naked-eye visib-
ility at night; in the year 1054 in the Taurus constellation, this one was the progenitor
of the Crab Nebula, in 1572 observed by Tycho Brahe in the Cassiopea constellation
and one observed by Kepler in 1604; to the great of joy of modern astronomers, on
23 February 1987, a supernova appeared in the Large Magellanic Cloud (SN 1987A).
Nowdays more than 5000 have been detecte. Supernovae are classified into two types.
If a supernova’s spectrum contains lines of hydrogen it is classified Type II; otherwise it
is a Type I. In each of these two types there are subdivisions according to the presence
of lines from other elements or the shape of the light curve. A supernova remnant is the
structure left over after a supernova explosion: a high-density neutron star (or a black
hole) lies at the center of the exploded star [10], whereas the ejecta appear as an expand-
ing bubble of hot gas that shocks and sweeps up the interstellar medium. The emitted
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GW’s amplitude depends on the speed and asymmetry of the collapse. If f is the char-
acteristic frequency (the inverse of the collapse time) and EGW is the energy emitted in
the form of gravitational radiation, an observer along the direction perpendicular to the
collapse can measure a strain of the order [8]:

h ∼ 2, 7 · 10−20

(︃
EGw
M⊙c2

)︃2(︃
1 kHz

f

)︃(︃
10 kpc

r

)︃
(1.42)

where 10 kpc is the Milky Way radius. The detection technique used to characterize
the short-lived signal of SN’s asymmetric collaps consists in to find excess power in the
data. In figure 1.3 it is possible to observe an example of GW burst signal.

Figure 1.3: An example of GW burst signal. Imagine from
https://www.ligo.org/science/GW-Burst.php.

1.2.2 Neutron Stars and Pulsars
The only object that can squeeze matter until all the electrons and protons merge into
neutrons is the gravitational collapse of the core of a massive star. When a star collapses
into a neutron star, its size shrinks to some 10 − 20 km, with a density of atomic
nucleus ≈ 1014 g/cm3 and enormuous gravitational field close to the surface. The
inner structure is described by the relationship of volume, pressure and temperature, an
equation of state (EoS). These stars exists and the masses of a few have been computed
in binary systems. Since angular momentum is conserved, the rotation can become very
fast, with periods of the order few ms up to 1 s. Neutron Stars in young Supernovae
remnant are typically Pulsars (short for pulsating stars), i.e., for these NSs the magnetic
dipole is not aligned with the axis of rotation (the magnetic poles are in different places
then the poles of rotation) and so as the star rotates, a pulse of radiation is observed
every time one of the magnetic poles passes through our field of view. The first pulsar
was discovered by chance in 1967, when Jocelyn Bell Burnell announced that she had
discovered a regularly blinking star. If we define the three main moments of inertia as
I1 = (1/5)M(b2 + c2), I2 = (1/5)M(a2 + c2), I3 = (1/5)M(a2 + b2), where a,b,c are
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the three semiaxis of the rotating star with angular velocity ω, then the power emitted
in GW is given by [9]:

ĖGW =
32G

5c5
(I1 − I2)

2ω6 (1.43)

which highlights the dipendence of the radiation on the angular velocity of the Pulsar,
and that for symmetrical axis rotations (I1 ≡ I2) there isn’t GW emission. The waves
amplitudes depends on the moment of inertia I3, on the star’s distance from Earth, on
the ellipticity in the equatorial plane ϵ ≡ I1−I2

I3
, and on the emitted frequency f (twice

the rotation frequency)[9], accorting to the following relation :

h ∼ 8 · 10−19ϵ

(︃
I33

1038K g m2

)︃2(︃
f

1 kHz

)︃2(︃
10 kpc

r

)︃
(1.44)

For a Pulsar with mass M ≃ 1.4 M⊙ and radius R ≃ 10 km, an irregularity on
the stellar surface of the order < 1 mm and with a rotational frequency of 5 rounds
per second is sufficient in order to have a detectable signal by current detectors. The
signal of these sources is weak, considering that they evolve in long periods of time and
generally the ellipticity is supposed to be very small (ϵ ≈ 10−5). It should be noticed,
however, that the periodicity allows integration over sufficiently long times to increase
the signal-to-noise ratio of the signal. An interesting technique for finding these long
strains is to try to extract the GW signals in the data generated by an ensemble of Pulsars
observed for a long period of time.

1.2.3 Binary Systems
Chandrasekhar in 1934 demostrated that a star with mass larger than 1.44M⊙ (Chandrasekhar
limit) cannot die into a white dwarf and will collapse; it will become a neutron star or,
if its mass is larger than 3–5 times the mass of the Sun, a black hole. The first analytical
solution of Einstein’s equations was found in 1915, just a month after the publica-
tion of Einstein’s original paper, by Karl Schwarzschild[9]. Schwarzschild’s solution
describes the gravitational field in the vacuum surrounding a single, spherical, non-
rotating massive object. In this spacetime metric (called the Schwarzschild metric) an
object with radius R and a mass M would be a black hole if M > Rc2

2G
, thus the Schwar-

zschild radius associated to a body of mass M is rS = 2GM
c2

. In 1963, the mathematician
Roy Kerr found an exact solution to Einstein’s equations for the case of a rotating non-
charged black hole and two years later Ezra Newman extended it to the more general
case of rotating charged black holes. In fact, according to the so-called no-hair theorem
[11] a black hole can be completely described by three parameters: mass, angular mo-
mentum and electric charge. Black holes are not just exotic solutions of the GR theory.
In the first chapter we have shown that they form by gravitational collapse of massive
stars and there are striking evidences that they are part of several binary systems and
that they are present in the center of most galaxies, including our own (the Milky Way
hosts in its center a black hole of roughly 4 million solar masses, as determined from
the orbit of nearby stars). Binary systems in which one object is a compact object (a
pulsar, a neutron star, or a black hole) have been observed to be periodical emitters of
gamma radiation. A particular class of binary systems are microquasars, binary systems
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comprising a black hole, which exhibit relativistic jets (they are morphologically sim-
ilar to the AGN). In quasars, the accreting object is a supermassive (millions to several
billions of solar masses) BH; in microquasars, the mass of the compact object is only
a few solar masses. LIGO-Virgo interferometers are sensitive enough to detect signals
coming from binary systems composed by two neutron stars (BNS), two black holes
(BBH), or a neutron star and a black hole (NSBH). The system loses energy due to
gravitational radiation, and thus spirals closer and closer providing an enormous quant-
ity of energy at the moment of the merger, which last only a few seconds. The objects
perform a sequence of Keplerian orbits with slowly-decreasing orbital period and ra-
dius, while the emitted GW amplitude and frequency slowly increase. The Inspiral GW
signal is thus called chirp (see the waveform in figure 1.4).

Figure 1.4: Example of the Inspiral GW (chirp signal). Imagine from:
https://www.ligo.org/science/GW-Inspiral.php.

While the compact stars are well separated, the computation of the signal can be
developed in the context of the linearized theory and well-modeled waveforms are ob-
tained. When the two stars merge, the new single stellar object will find itself in an
"excited" state before returning to equilibrium, during which the frequency changes
from Hz to kHz. The fundamental features of the gravitational radiation emitted by a
compact binary can be derived by modeling the binary as two point masses m1,m2 in
a non-relativistic circular keplerian orbit with the angular momentum vector directed
along the ẑ axis. By calculating the quadrupole moment of the system and using it in
eq. 1.34, the resulting GW polarization amplitudes are given by:

h+(t) = A
(1 + cos2 ι)

2
cos(2πfgwtret + 2ϕ) (1.45)

h×(t) = A cos ι sin(2πfgwtret + 2ϕ) (1.46)

A =
4

r

(︃
G

c2
Mc

)︃5/3 (︂π
c
fgw

)︂2/3
(1.47)

where we have introduced the chirp mass Mc = µ3/5M2/5, with µ = m1 ·m2/M and
M = m1 + m2 the reduced mass and the total mass of the system respectively, fgw
is twice the orbital frequency, ι (inclination) is the angle between the orbital angular
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momentum and the line of sight of a distant observer and ϕ is a reference orbital phase.
The orbital frequency ωs is related to the orbital radius R by the third Keplero’s law:
ω2
s = GM/R3. If fGW = ωGW/2π is the GW frequency, where ωGW = 2ωs, the

temporal evolution of the chirp signal can be expressed as [1]:

fgw(t) =
1

π

(︃
5

256

1

tc − t

)︃3/8(︃
GMc

c3

)︃−5/8

(1.48)

where tc is the coalescence time i.e. the instant at which, when the separation distance
between the two stars is r = 0 the frequency becomes formally infinite. In terms of
coalescence time measured by an observer τ = tcoal − t, with t retarded time, the 1.48
became:

fGW (τ) ≃ 134 Hz

(︃
1.21M⊙

Mc

)︃5/8(︃
1 s

τ

)︃3/8

(1.49)

having set Mc = 1.21 M⊙ as the chirp mass for a system of two neutron stars of equal
mass 1.4M⊙. Equivalently, one can write:

τ ≃ 2.18s

(︃
1.21M⊙

Mc

)︃5/3(︃
100 Hz

fGW

)︃8/3

(1.50)

from which we can compute that for 10 Hz we obtain the radiation emitted at τ = 17
minutes before the coalescence, for 100 Hz in the last 2 seconds, for 1 kHz in the last
milliseconds. The polarization of the radiation depends on the inclination of the source:
for face-on or face-off sources (ι = (0, π) ) the polarization is circular, for edge-on
sources (ι = (π/2) ) the polarization it’s linear and for intermediate inclinations it is
elliptical. In chapter three we wil see that for binary BBH systems where the BH spins
are misaligned with respect to the orbital angular momentum, precession effects leave
characteristic modulations in the emitted gravitational waveforms.

1.2.4 Stochastic Gravitational Wave Background
Just like the Cosmic Microwave Background (CMB), which could be defined as the
remaining light of the Big Bang, the Cosmic Gravitational Wave Background is an
isotropic background of GW that could have been originated from the Big Bang [12].
Being composed by a random superposition of numerous emission events, they would
provide indications of the evolutionary history of the early Universe, approximately
between the instants t ≈ 10−36 − 10−32 s after the Big Bang,while it is known that the
CMB was produced about 300 thousand years after the Big Bang, when the Universe
became transparent to photons due to the electromagnetic decoupling. The strain of
these GWs would be very similar to the spectrum of continuous noise at frequencies
lower than 1 Hz (figure 1.5), with uniform distribution. The amplitude of the signal
depends on the cosmological model and sometimes on unknown parameters. One pos-
sible way to detect them could be through the use of spaced based rather than ground
based interferometers such as the Laser Interferometer Space Antenna (LISA) future
NASA’s project5. LISA will consist of three spacecraft in heliocentric Earth-trailing

5https://lisa.nasa.gov/
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Figure 1.5: Example of GW signal from a stochastic source. Imagine from
https://www.ligo.org/science/GW-Stochastic.php.

orbits, 5 million kilometres apart at the corners of an (approximately) equilateral tri-
angle. Each of LISA’s spacecraft house freely falling test masses. Unlike ground-based
detectors LISA will not suffer from low frequency noise caused by seismic activity and
has been designed for the detection of GW emitted by inspiral supermassive black holes
up to distances of a few Gpc, the merger of supermassive black holes at cosmological
distances z ≊ 3.5 and the inspiral of binary White Dwarf stars in the nearby Universe.

1.3 Evidences of Gravitational Waves existence
In 1974 Hulse and Taylor discovered the Pulsar binary systems PRS 1913 + 16, now
known as Hulse-Taylor Pulsar, and they observed that the orbital period of the binary,
at a distance of about 6400 pc, was decreasing in agreement with the prediction of
Einstein’s GR theory (about 40 s in 30 years). It was possible to deduce, from the time
of arrival of the detected pulses, the binary orbital parameters. The masses of the two
NSs were estimated to be ≈ 1.4M⊙ with period 7.75 hours and the maximum and the
minimum separation to be 4.8 and 1.1 solar radii respectively. The indirect evidence of
GW was established after years of data taking and Hulse and Taylor were awarded with
a Nobel Prize in Physics in 1993. The GWs emitted by such a system induce a GW
strain of the order of 10−23 when they now reach the Earth, and their direct observation
is out of the frequency sensitivity for the current ground-based GW detectors. The first
direct evidence of GW existence was established in 2015 by the LIGO Observatory,
which captured the signal emitted by the merger of a pair of black holes gravitationally
bounded in a binary system (Nobel Prize in Physics 2017 awarded to Rainer Weiss,
Barry C. Barish and Kip S. Thorne). The GW signal labelled as GW1509146 was

6GW names represent the date and time when the signals are detected in Coordinated Universal Time
(UTC). Previous event names only include the date, but as the detectors improve their sensitivity, it’s
possible to detect more than one event per day. So, recently is added the time to the names. As an
example GW200208222617 was observed on the 8th February 2020 at 22:26:17 UTC time.
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detected on September 14th, 2015 during the first observig run (O1, September 2015-
Jenuary 2016). The shape of the GW waveform observed is shown in Figure 1.3 where
three phases are well identified:

• Inspiral: the approach of the two BHs, in this phase frequency and amplitude
increase slowly;

• Merger: the plunge of the BHs, frequency and amplitude increase rapidly;

• Ringdown: the newly formed BH is instable and the radiation emitted is the sum
of contributions from different quasi-normal modes; each quasi-normal mode is
an harmonic oscillation with exponential damping. After this phase no radiation
is emitted.

The observed frequencies of the event are in the range [35 − 350] Hz. The masses
of the initial BHws were estimated to be 36+5

−4 and 29+4
−4 M⊙ with the final BH having

a total mass of about 62+4
−4 M⊙, releasing a quantity of energy in GWs corresponding

to about 3 M⊙c
2. The luminosity distance of the binary system was estimated to be

410+160
−180 Mpc.

Figure 1.6: The first gravitational-wave event (GW150914) observed by LIGO: left
from the Hanford (H1) site; right from the Livingston (L1) site. Credit Phys. Rev. Lett.
116, 061102 (2016).

A handful of GWs events associated to BBH mergers were detected during O1, but
a special GW event, different in nature from the previous, has been detected on August
17, 2017. The italian Virgo Observatory joined LIGO during the second run (O2) and
the LIGO-Virgo Collaboration detected a GW signal (GW170817) associated with the
merger of two neutron stars and (1.75 ± 0.05) s later, the NASA’s satellites Fermi
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Figure 1.7: Top: The waveform of the merger of a BBH system with the paramet-
ers measured from GW150914. Estimated gravitational-wave strain amplitude from
GW150914 projected onto H1. Bottom: The BH separation in units of Schwarzschild
radii and the relative velocity normalized to the speed of light c. From Phys. Rev. Lett.
116, 061102 (2016).

and INTEGRAL observed independently in the same sky region a short Gamma-ray
Burst (GRB 170817A). The masses of the initial NSs were estimated to be in the range
[1.36, 2.26] M⊙ and [0.86, 1.36] M⊙ respectively, with the mass of the final object of
about 2.82M⊙. The signal appeared much weaker in Virgo because of the lower sensit-
ivity, however its information permitted to drastically reduce the position of the source
in 28 squared degrees at 90% confidence level. These observations were followed by
an extensive multimessenger campaign covering all the electromagnetic spectrum: a
bright optical transient (SSS17a) was discovered in the NGC 4993 galaxy located at
40 Mpc of the Earth by the Swope Telescope in South America and shortly after the
event was followed-up by ground and space observatories all around the world: X-ray
and radio counterparts were discovered respectively 9 and 16 days after the merger,
while no neutrino candidates were seen. The BNS event also generated a kilonova radi-
ation, characterized by a longer optical afterglow. A total of 16000 times the mass of the
Earth in heavy elements is believed to have formed, for some of them spectroscopical
signatures have been observed. These observations had a far-reaching impact in nuclear
and high-energy astrophysics, just quoting two aspects:

• strong evidence that the merger of BNS are progenitors of short GRBs;

• BNS mergers are one of the main sites of production of r-process nucleosynthesis
elements.
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The third observing run (O3) started on 1 April 2019 (divided in two data collection
periods, O3a and O3b, separated by a month long break in October 2019) and con-
cluded on April 2020 and about 90 new GWs candidate events have been reported,
including the first intermediate high mass black holes (IHMBH) event GW190521, the
first inequal-mass BBH event GW190412 (with marginal precession), and the first NS-
BH candidate events GW190814 and GW190426. All the confirmed detections to date
can be found in the third Gravitational Wave Transient Catalog (GWTC-3), which com-
bines observations of the three observing runs (O1-O2-O3) [13].
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"La filosofia (la natura) è scritta in questo grandissimo libro
che perpetuamente ci sta aperto innanzi a gli occhi

(io dico l’Universo), ma non si può intendere se prima
non s’impara a intender la lingua e conoscer

i caratteri ne’ quali è scritto."
Galileo Galilei, Il Saggiatore
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Chapter 2

Detection of Gravitational Waves

In the previous chapter we have shown that GW are generated by aspherical motions
of matter distributions bringing information about the curvature of the space-time. In
the weak-field approximation, the local metric is deformed by the addition of a dynam-
ical tensor term hµν fulfilling the equation □hµν = 0. This is a wave equation whose
simplest solutions are transverse plane waves propagating at the speed of light. These
waves changes the distance L between two masses by an amount of δL = Lh, oscil-
lating in time. A figure of merit for a GW detector will be the space strain h = δL/L
and another one will be the horizon distance, i.e., the maximum distance to which the
coalescence of two 1.4M⊙ BNS could be seen. The amplitude of these signals it’si
very weak ,especially if the source is too far (h is proportional to 1/R, where R is the
distance of the source), and are expected to cause changes in distances of the order
10−20 on Earth. The first attempt to detect gravitational waves on Earth was to detect
the elastic energy induced by the compression and relaxation of a metal bar due to the
variation of distances. The detectors were metal cylinders, and the energy converted
into longitudinal oscillations of the bar was measured by piezoelectric transducers. The
first large gravitational wave bar detector, built by Joseph Weber in the early 1960s,
was a 1.2 ton aluminum cylindrical bar of 1.5 m length and 61 cm diameter working
at room temperature isolated from acoustic and ground vibrations. The sensitivity of
Weber’s antenna was of the order of h ≈ 10−16 over timescales of 10−3s. Bar detect-
ors (for example ALLEGRO, AURIGA, Nautilus) reached a strain sensitivities of the
order h ≈ 10−21, thanks to the introduction of cryogenic techniques which allow for
a substantial reduction of the thermal noise and the use of superconducting sensors.
However, their frequency bandwidths remain very narrow (tens of Hz) and the res-
onant frequencies (1 kHz) correspond to typical acoustic wavelengths of the order of
the detector length. Nowadays the most sensitive GW detectors are Michelson-type
interferometers with kilometer-long arms and very stable laser beams. Resonant Fabry-
Perot cavities are installed along their arms in a way that the light beams suffer multiple
reflections increasing by a large factor the effective arm lengths. The lengths of the
perpendicular arms of the interferometer will be differently modified by the incoming
GW and the interference pattern will change accordingly. These detectors are per nature
broadband, being their sensitivity limited only by the smallest time difference they are
able to measure. The largest GW observatories currently operating are the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) and the italian observatory VIRGO.

20



LIGO is built over two sites in the USA (at Hanford, Washington, and at Livingston,
Louisiana, 3000 km apart), each one with a 4 km-long arm interferometer, while Virgo
is installed in the countryard of Pisa in Italy, and consists of a 3 km long-arm inter-
ferometer. Others Interferometers exists: GEO600 is a British German interferometer
with 600 m-long arms located near Hannover, in Germany; KAGRA with 3 km-long
arms is located underground at the Kamioka Observatory in Gifu Prefecture, in Japan.
Another LIGO detector (INDIGO1.) is planned to be built in India within 2035. A
close collaboration among all of the GW observatories is in place. The networfk data
together with the development of new detectors (for example interferometers in space)
will allow us to explore different frequency bands and to detect GW generated by dif-
ferent astrophysical sources. The LISA (Laser interferometer Space Antenna) project,
approved by ESA2 will consists of three spacecrafts in heliocentric Earth-trailing or-
bits, 5 million km apart in the corners of an (approximately) equilateral triangle. Each
of LISA’s spacecraft house freely falling test masses. Unlike ground-based detectors,
LISA will not suffer from low frequency noise caused by seismic activity and has been
designed for the detection of GW emitted by the inspiral of supermassive black holes up
to distances of about few Gpc; the merger of supermassive black holes at cosmological
distances z ≊ 3.5 and the inspiral of binary White Dwarf in the nearby Universe. In
this chapter the interferometric technique and the principal detector’s noise sources will
be introduced, and the response of an Interferometer to GW signals and the detector
sensitivity will be described.

2.1 Characterization of a Gravitational Waves detector
The idea of using the interferometric technique to measure the space-time metric per-
turbations caused by a passing GW was proposed by Gertsensshtein and Pustovoit for
the first time in 1963 [14]. In a simple model the beam of a laser source is divided in two
by a semi-reflective mirror (beam-splitter) placed on the vertix of the "L" formed by the
IFO’s arms, which ideally reflects the 50% of the incident light and transmits the other
50%; each beam travels along the two orthogonal arms, travelling towards the highly
reflective mirrors which are placed at the end of the arms; from here the beams go back
and recombine in the beam-splitter. The resulting beam is finally collected by the pho-
todiode which measures the power of the incident light. The output of the photodiode is
sometimes called the asymmetric door [1] while the position of the input laser is called
the symmetric door. The quantity of light collected by the asymmetric door depends
on the interference between the beams when they recombine: constructive interference
occurs if the optical paths differs by an integer number of the wavelength λ0 of the laser
light; destructive interference occurs if the optical paths differs by (n + 1/2)λ0. In the
second case, a null signal is detected in the asymmetric door, which corresponds to the
dark fringe condition. Let Lx and Ly be the lengths of the IFO’s arms in the x-y plane,
the electric field resulting in the asymmetric door is given by [8]:

E =
iE0

2
(e2ik0Lx + e2ik0Ly) (2.1)

1www.gw-indigo.org
2https://lisa.nasa.gov
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where k0 = 2π/λ0 is the wave number. Defining L = (Lx+Ly)/2 and ∆L = Ly−Lx,
one can rewrite the eq. 2.1 as:

E =
iE0

2
e2ik0L(eik0∆L + e−ik0∆L) = iE0e

2ik0L cos(k0∆L) (2.2)

thus we can write the output power in the asymmetric door as:

Pout = |E|2 = |E0|2 cos2(
2π∆L

λ0
) =

Pin
2

[1 + cos

(︃
4π∆L

λ0

)︃
] (2.3)

Note that it depends on the difference of the path length ∆L. Defining the phase differ-
ence of the optical path as:

∆ϕ =
4π

λ0
∆L (2.4)

the eq. 2.3 reads:

Pout =
Pin
2

[1 + cos(∆ϕ)] (2.5)

The IFO translates the arms-length difference into a modulation of the output electric
field. In an appropriate frequency range with mirrors suspended by mechanical pen-
dulums and perfectly isolated, a ground-based IFO can be considered in free fall (with
respect to the horizontal plane). Let be ω0 the pendulum resonance frequency, the mir-
rors will behave like free-falling masses if ωGW ≫ ω0, where ωGW = 2πfGW and fGW
is the GW’s frequency. Let’s consider the case of a GW h+ that travel along the ẑ axis,
with the IFO placed in the x-y plane. The photon geodesic equation is ds2 = 0. When
a GW (with frequency ωGW = L/c≪ 1) interacts with an IFO, the eq.1.21 provide the
following equations for the motion of the mirrors:

∆x =
1

2
h+Lx

∆y = −1

2
h+Ly

(2.6)

The minus sign for the eq. for ∆y indicate that when one arm stretches, the other one
shortens. If the two arms have the same length Lx = Ly = L, the total displacement is
∆L = ∆x−∆y = hL, thus:

∆ϕ =
4π

λ0
hL (2.7)

By measuring the output power it is also possible to compute the amplitude strain h
of the GW, because the phase shift is proportional to the length of the arms. We show
this with the following analytical example. Let Virgo be the reference IFO with L =
3 km, laser wavelenght λ0 = 1 · 10−6 m (infrared light), and the GW’s amplitude
h ≈ 10−21 (typical value for a GW signal from a SN explosion, see section 1.2.1). We
obtain ∆L = hL ≃ 3 · 10−18 m and with the eq. 2.7 we can compute the phase-shift
∆ϕ ≃ 3, 6 · 10−11. Because of the weakness of these signals, it’s necessary to amplify
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Figure 2.1: IFO scheme implemented with Fabry-Perot cavities. Imagine from:
ligo.caltech.edu.

the phase difference as much as possible trying to leave unchanged the lenght of the
detector’s arms. A way to do it is to increase the optical path of the light by adding
a Fabry-Perot cavity in each of the two arms (figure 2.1). A Fabry-Perot cavity is a
resonant system composed by two semi-reflective mirrors facing each other. It works
as follows: if the distance L between the two mirrors is an integer multiple of the laser
wavelength λ0, the laser field is trapped inside the cavity and travels back and forth
undergoing multiple reflections. Since each interaction is in phase with the previous one
(resonance condition), the resulting laser field is strongly amplified. The light remains
in the cavity for a time proportional to the Finesse of the cavity, which is a characteristic
of the cavity and describes the sharpness of the resonance [15]. The general formula for
the Finesse, in the case of mirrors highly reflective, is given by:

F ≃
π
√
rIrE

1− rIrE
(2.8)

where rI and rE are the reflection coefficients of the Input and End mirrors respectively.
The Fabry-Perot cavity induces a phase variation according to the following formula
[8]:

∆ϕFP =
2F

π
∆ϕ =

8F

λ0
hL (2.9)

this equation tell us that for each round-trip the phase shift is increased by an amount
of 2F/π, defined as the gain of the cavity. Now we define the time of storage as the
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time that the photons spends in the cavity τs = 2L/c. Considering that a wave in the
cavity makes a path equal to F times the distance between the mirrors, the storage time
becomes τs = L/c · F/π. If the IFO arms-length is intended as the length of the F-P
cavity itself, then the higher the Finesse value, the greater the phase shift signal. Sup-
pose we want to know how much the suspended masses can move when the IFO is in
the resonant condition. The phase shift is ∆ϕ = 4π/λ · ∆x, for the next resonance
condition it must be ∆ϕ ≪ 2π/F , if now we use the Virgo’s values for the finesse and
laser wavelenght F ≃ 450 and λ ≃ 1.064 µm respectively, then by the two expres-
sions for ∆ϕ we obtain that the pendulum suspended masses can move at a maximum
of ∆x = λ/2F = 1.064 µm/900 ≈ 1 nm. Therefore the phase change of the re-
flected beam can be quite steep if the resonance condition is not constantly maintained.
To keep the cavity in resonance, and therefore to ensure asymmetrical output in a dark
fringe condition, the motion of the mirrors is controlled in real time by a "feed-back"
system (or feedback circuit). An IFO can also be defined as a "null instrument", that is,
a measuring instrument which in the absence of a signal records zero at the output. In
fact, in the absence of a GW signal, no signal is observed at the output of the asymmetric
door. This means that much of the initial laser field is reflected back through the sym-
metrical door. It is possible to reuse this light by placing a highly reflective mirror called
Power Recycling Mirror (PRM), before the beam-splitter. This technique is known as
"recycling light" or recirculation of light, and the purpose is to increase the effective
power of the laser circulating inside the IFO. The PRM and the whole IFO built up a
new cavity, called recycling cavity, which increases the laser power according to the
Finesse of the new cavity. Virgo is a Michelson interferometer with 3 km longs arms.
The mirrors that delimit them are suspended, by chains of pendulums, inside gigantic
vacuum bells 2 m in diameter and 11 m high, in order to isolate them from the seismic
vibrations always present on the ground and from the sound vibrations transmitted by
the air. The laser light beams propagate within ultra-high vacuum tubes of 1.2 m in
diameter and 3 km in length, so as not to be disturbed by the convective motions of the
air. The surfaces of the mirrors are perfectly smooth, at the level of a few nanometers
(billionths of a meter). The laser is ultra-stabilized in wavelength and intensity of the
light beam. The Finesse of the arm cavities is about 450, which means that the effective
length travelled by the beams is increased by a factor 290 with respect to the physical
arm length. Advanced Virgo employs the squeezing technique: a carefully prepared
state of vacuum of the optical field, a so-called squeezed vacuum, is injected into the
interferometer from the output port.

2.1.1 Noise Sources
Many phenomena can mimic the effect of a GW by moving the mirrors or disturbing
the laser beam. Several extreme technologies, in many different areas including optics,
mechanics, electronics, and ultra-high vacuum, have been developed in order to beat the
noises that can generate false signals. The sensitivity of a ground-based GW detector is
mainly limited by three different sources of noises, classified as thermal, readout, and
seismic:

• The thermal noise is associated with the internal dissipation phenomena of mech-
anical systems in thermal equilibrium with the environment, which in turn is
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connected to the thermal motion of the microscopic elements that make up the
mechanical system itself (Brownian motion of the test masses due to the impact
of the surrounding air molecules). It’s dominant at intermediate frequencies (10-
500 Hz). The main contribution comes essentially from the thermal oscillations
of the suspensions (pendulum modes, vertical modes, violin modes) and thermal
oscillations of the mirrors (normal modes). To minimize such effects the test
masses are placed in very high vacuum environments and the frequencies of the
intrinsic resonances of the system are set as far as possible from the target signal
frequency band;

• The intrinsic readout noise is due to the fluctuations induced by the quantum
nature of the interactios between the laser light beam and the mirrors, and it’s
dominant at high frequencies (> 500 Hz). The light beam may be modeled as a
discrete set of photons obeying in their arrival time to the mirror to Poisson statist-
ics. The number of photons measured has a statistical intrinsic fluctuation called
“shot noise”, which decreases with the increasing of the laser power. On the other
hand, the increase of the laser power can increases the momentum transfer to the
mirrors (“radiation pressure”), which will change the phase of the beams. In fact,
the mirrors are subject to a force due to radiation pressure that can be expressed
as F = 2n · ℏω0/c, where n is the number of photons hitting the mirror per
unit of time. Each fluctuation of the photon flux causes a variation of the phase
difference given by [8]:

∆ϕ̃ =
4π

λ

√
8P0ℏω0

Mω2c
(2.10)

where M is the mass of the mirror, P0 is the imput laser power. The sum in quad-
rature of the radiation pressure force and the eq. 2.10 gives the total contribution
of the shot-noise on the phase-shift at the output of the IFO:

∆ϕ̃n =

√︄
2ℏω0

ηP0

+

(︃
4π

λ

)︃2
8P0ℏω0

(Mω2c)2
(2.11)

where η is the quantum efficiency of the photodiode. It can be shown that there
is an optimal power for which ∆ϕ̃n has a minimum, and it is given by:

∆ϕ̃QL =
4π

λ

1

η1/4

√︃
4ℏ
Mω2

(2.12)

The eq. 2.12 represents the quantum limit for the computation of the phase shift
in the signal. To minimize such effect, the tests masses should be as heavy as
possible and the Heisenberg uncertainties relations (the quantum limit) carefully
handled. One way to overcome this limit would be to make the two noises related
to each other. Devices designed to achieve this goal are called Quantum non-
demolition, which are used to inject Squeezed light states (that is non-classic
light states) into the detector. For more details see the reference [16];

• The seismic noise dominate at low frequencies (<10 Hz) and accounts for all
the natural or human-made perturbations comprising a large range of phenom-
ena like earthquakes, environment perturbations or nearby motor vehicles traffic.
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The measured spectrum of such noise, in a quiet location, decreases with the
frequency. These vibrations can produce a displacement of the mirrors of the
order δx̃ ∼ 10 µm that can mimic a GW signal. To minimize such effects the
test masses are isolated from the ground through several attenuation stages (pen-
dulums systems) characterized by resonance frequencies much lower than the
expected signal frequencies. For frequencies much greater than the resonance
frequency ω ≫ ω0 , if we describe the motion of the mirrors in terms of the
movement of the suspension point as a function of the movement of the oscil-
lating mass δx̃

x̃
= −ω2

0

ω2 , then the seismic vibrations are attenuated by a factor of
ω2
0/ω

2 with a single pendulum and by a factor of (ω2
0/ω

2)n with n pendulums in
cascade. To access lower frequencies (1–10 Hz), the possibility to build large in-
terferometers underground in a low seismic region are being studied (For istance
the Einstein Telescope3).

Among several improvements the Phase I of Advanced Virgo Plus foresees the install-
ation of a Signal Recycling mirror to implement a technique that will increase the sens-
itivity in the mid-high frequency range; the suspended SR mirrors will replace the SR
lens. The squeezing technique will also be improved by the addition of a 300 m long
Fabry-Perot Filter cavity that the squeezed vacuum state will travel through before be-
ing injected into the interferometer: this will allow to improve the sensitivity not only at
high frequency by beating the quantum photon counting noise but also at low frequen-
cies by overcoming the quantum noise coming from the pressure exerted on the mirrors
by the impinging laser radiation. In section 2.1.3 the sensitivity plot of Advanced Virgo
counting for all the noises sources is shown.

2.1.2 Detector response to Gravitational Waves
We want to write down the GW signature of a binary system measured under the ap-
proximation of the Newtonian quadrupole-moment which neglects spins. A convenient
choise for the Cartesian coordinates is to direct the x̂ and ŷ axes along the IFO’s arms
and the ẑ axis along the vertical direction as shown in figure 2.2. Let be N̂ the unit
vector pointing towards the GW source and (θ, ϕ) the spherical polar coordinates of N̂
with respect to the Cartesian coordinates [2]. The orbital angular momentum is given
by L = µ

√
MrL̂, where M = m1 +m2 is the binary total mass, µ the reduced mass,

r the orbital distance between the two stellar objects. The binary’s circular orbit if
projected onto the plane of the sky at the detector’s location (i.e. orthogonal to the
wave’s propagation direction) looks elliptical. The principal axis of this ellipse which
points towards ±N̂× L̂ will be called the principal ” + ” direction and an axis rotated
counterclokwise from it by π/4 will be called the the principal ” × ” direction. Any
plane-fronted GW traveling in the −N̂ direction can be written as a linear combination
of h+(t) and h×(t). Then, the gravitational fields are given by:

h+(t) = −2µM

rD

[︂
1 + (L · N̂)2

]︂
cos 2ϕ(t) (2.13)

h×(t) = −2µM

rD

[︂
−2L̂ · N̂

]︂
sin 2ϕ(t)

3https://www.einstein-telescope.it
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D is the distance from the source and ϕ(t) is the angle in the orbital plane from the
principal directions to the diameter r. The strain h(t) produced by a GW in the IFO will
be a linear combination of h+(t) and h×(t) but also of the antenna pattern functions F+

and F×, which depend on the source direction (θ, ϕ) and on the polarization angle ψ
[17]:

F+ = −1

2
(1 + cos2 θ) cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

F× =
1

2
(1 + cos2 θ) cos 2ϕ sin 2ψ − cos θ sin 2ϕ cos 2ψ

(2.14)

The polarization angle ψ is given by (up to an arbitrary multiple of π):

ψ = arctan

(︄
L · ẑ− (L · N̂)(ẑ · N̂)

N̂ · (L× ẑ)

)︄
(2.15)

Thus, the GW strain at the output of a detector can be expressed as [18]:

h(t) = h+(t)F+(θ, ϕ, ψ) + h×(t)F×(θ, ϕ, ψ) (2.16)

The detector response is greatest when the GW propagates along the ẑ axis and it’s null
on the bisectors of the x -y quadrants. Note that, for θ = 0 and ψ = π/4, the effect in
the two arms of the IFO is the same, and no phase shift is produced. The raw data from
a GW detector comes from the time-varying intensity of the laser light measured at the
interferometer output, that’s why they need to be calibrated to obtain the corresponding
strain amplitude. We will see that for quantify the precession modulation effects on a

Figure 2.2: A Cartesian coordinate system (x̂, ŷ, ẑ) attached to a GW detector, and the
geometry of a coalescing binary relative to these coordinates. Figure from [2].

GW signal, it’s convenient to divide the GW in an amplitude modulation and a phase
modulation, for this reason we shall rewrite the strain in the convetional amplitude-
phase form:

h(t) = −A(t) cos[2ϕ(t) + φ] (2.17)
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where A(t) and φ are given by:

A(t) =
2µM

rD

(︂
[1 + (L̂ · N̂)]2F 2

+(θ, ϕ, ψ) + 4[L̂ · N̂]2F 2
×(θ, ϕ, ψ)

)︂1/2
(2.18)

φ = tan−1

(︄
2L̂ · N̂F×(θ, ϕ, ψ)

[1 + (L̂ · N̂)]2F+(θ, ϕ, ψ)

)︄

We will refer to φ as the signal’s polarization phase. When precession of the spins
is ignored, all the parameters in the previous formulas are constant in time except the
orbital distance and the orbital phase. The orbital diameter can be computed integrating
the inspiral rate dr/dt = (dE/dt)(dE/dr), where the Newtonian expression for the
energy E = −1/2µM/r can be used, and the energy loss is given by the quadrupole
formula dE/dt = −32/5µ2M3/r5. The orbital diameter r(t) is given by the equation:

r(t) =

(︃
256

5
µM2

)︃1/4

(tc − t)1/4 (2.19)

with tc the collision time at which formally r → 0. In absence of precession the vari-
ation in time of the orbital phase ϕ̇ is simply the angular velocity Ω of the two stars
in the orbital plane. However, this is no longer valid in presence of precession, be-
cause L̂ vary in time. To deal with this, the carrier phase of the waveform is defined
ϕC(t) ≃

∫︁
Ω(t)dt. It’s convenient to specify the constant of integration in carrier phase

equation so that ϕC(tc) ≃ ϕ(tc) whether the orbit is precessing or not. Computing the
integral using Ω = M1/2/r3/2 using the equation 2.19, at the lowest order in M/r, we
find:

ϕC(t) = ϕ(tc)−
[︃
1

5
(µ3/5M2/5)−1(tc − 1)

]︃5/8
(2.20)

We will compute in section 3.2.1 the precessional correction needed when the preces-
sion of the orbital plane is not neglected.

2.1.3 Detector Sensitivity
Over the years the sensitivity of LIGO and Virgo has improved due to a combination of
detector upgrades, improved data quality and data analysis techniques. During O3 many
upgrades and repairs were completed, including mirror cleaning at LIGO Livingston,
replacing vacuum equipment at LIGO Hanford, and increasing the laser power in Virgo.
Continuous maintenance throughout the observing runs allows the detectors to maintain
or increase their sensitivity. There are several ways to estimate the sensitivity of a GW
detector, one is in terms of the BNS range, that is the distance at which the merger of
a BNS system gives a signal-to-noise ratio (SNR) equal to 8; the distance is averaged
over all the possible sky localizations and binary orientations. The wider the range,
the farther you look and greater is the probability to capture signals. Figure 2.3 shows
the median BNS range for each detector between O3a and O3b, the range is increased
by 13.3% for Virgo, 6.5% for LIGO Hanford, and stayed around the same for LIGO
Livingston (the most sensitive detector) with a slight decrease in sensitivity of 1.5%.
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Figure 2.3: The median binary neutron star ranges for each detector during the first
(O1) and second observing runs (O2), the first part of observing run 3 (O3a), and the
second part of observing run 3 (O3b). The ranges are shown in units of megaparsecs.
Credits: LIGO-Virgo-KAGRA Collaborations/Hannah Middleton/OzGrav.

Another way to define the sensitivity of a GW detector is to express it as function
of the GW frequency in terms of the amplitude spectral density of the interferometer
output noise, expressed in units of GW strain |h|/

√
Hz. Thus, the lower the curve

(and hence the lower the noise), the more sensitive the detector in that frequency range.
Suppose we want to measure the signal h(t), and that the contribution of noises can be
expressed as an additive function n(t). The total signal can be written as the sum of
contributions s(t) = h(t) + n(t). The power Spectral density is defined as:

Sh(ω) = lim
T→∞

1

T

∫︂ T/2

−T/2
p(t)e−iωtdt (2.21)

that is, it’s the Fourier transform of the autocorrelation function p(t) of the total signal:

p(t) =
1

T

∫︂ T/2

−T/2
s(t)s(t− τ)dτ (2.22)

where T is the observation time. The linear power spectral density is given by the
square root of the equation 2.21, Slh(ω) =

√︁
|Sh(ω)|. Advanced Virgo is sensitive in

the frequency interval from a few Hertz to several thousands of Hertz (kHz). The plot
in figure 2.4 shows the projected sensitivity for the fifth observation run, O5, foreseen
to start in the year 2026. The final expected sensitivity (black curve) results from the
sum of all the noises contribution expected to be the most relevant during O5.
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Figure 2.4: The projected sensitivity of Advanced Virgo for the future O5 science
run. The black curve rapresent the final expected sensitivity with the contribution of
all noises. Reference https://www.virgo-gw.eu/it/science/detector/sensitivity/.
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Chapter 3

Binary Black Holes systems

Measurement of spin-precession in GW signals from BBH is a blossoming field in GW
astronomy, as it relates to both general relativistic dynamics in strong field regime and
astrophysical binary formation scenarios. The signal GW190412 was recorded during
LIGO’s and Virgo’s O3a observing run with a network signal-to-noise ratio (SNR) of
19. It is different from others observations due to its asymmetric masses: a 30 M⊙ BH
merged with a 8 M⊙ BH companion, with a final renmant BH of 37 M⊙. In addition,
it shows marginal precession (with parameters values consistent with the ones expec-
ted for precessing sources) and strong evidence for gravitational radiation beyond the
leading quadrupolar order. The signal GW200129 was recorded during O3b with single
mass values m1 = 39 M⊙, m2 = 22 M⊙ and total mass of Mtot = 61 M⊙, and the
binary’s orbit precesses at a rate ten orders of magnitude faster than previous weak-field
measurements from binary pulsars. According to current binary population estimates a
GW200129-like signal is extremely unlikely, and therefore presents a direct challenge
to many current binary formation models. Until recently it was believed that BHs in
nature appear in two broad mass ranges: stellar mass BH with (M ≈ 3 − 50 M⊙),
produced by the core collapse of massive stars (commonly classified as first generation
BHs), and supermassive BH (M ≈ 105 − 1015M⊙), which are found in the centers
of galaxies and are produced by a still uncertain combination of processes. However,
there are evidences for an Intermediate-Mass BH class (IMBH) with masses in the range
M ≈ 102 − 104 M⊙ , classified as second (or higher) generation black holes, repres-
enting the remnant of others BBH mergers. Such a sub-population of hierarchically
assembled BHs presents distinctive GW signatures: high masses within the so called
Pair-Instability mass gap (sometimes also referred to as "upper mass gap", in contrast
with the “lower mass gap” between BHs and NSs) and dimensionless spins clustered
at the characteristic value of 0.7. Then, repeated mergers are expected to cluster in the
high mass - high spin region of the parameter space, especially if different generations
of mergers are combined. It is expect that a mixed binary, composed by a first genera-
tion BH and a second generation BH, will present a mass ratio more unequal compared
to other events where both components come from the same generation. For these
reasons, IMBH mergers are promising candidates for GW observation of spin-induced
orbital precession [19]. To date there is a single IMBH hierarchical-merger candidate,
represented by the GW signal GW190521 recorded during O3b [20], with the primary
and secondary BHs masses falling in the mass gap predicted by PI theory: 85+21

14 M⊙
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and 66+17
−18 M⊙, with the highest final mass ever recorded of about ≈ 142+28

−16 M⊙ . This
signal was characterized by a very short duration (approximately 0.1 s) and bandwidth
(around 4 cycles in the frequency band (30−80 Hz) )with a three-detector SNR of 14.7
and a peak luminosity close to the merger of about Epeak = 3.7+0.7

−0.9 · 1056 erg s−1. The
signal also shows mild evidence of precession due to non-zero in-plane spins compon-
ents and evidences for higher-order multipoles beyond the dominant (2,±2) mode. A
brief review of the current formation channels proposed for IMBH class as well as the
basic theory of spin-precession motion will be addressed in this chapter. Furthermore,
for the study of the precession motion, two cases of interest will be analized: the case
when the two bodies have nearly equal masses and the case when one of the bodies
has negligible spin. For both the dynamic of the system is characterized by the simple
precession motion, which occurs when the direction of the binary’s total angular mo-
mentum Ĵ is constant in time and the orbital plane precesses around this direction. The
approximate, analytical solutions for the simple precession motion will be derived.

3.1 X-Ray Binaries
Stars form by gravitational instabilities of interstellar masses and gases. For given con-
ditions of density and temperature, gas clouds (mostly hydrogen and helium) collapse
and if their mass is suitable eventually start termonuclear reactions. Stellar masses are
limitated by the conditions that i) nuclear reaction can switch-on in the stellar core and
ii) the radion drag of the produced luminosity on the plasma does not disrupt the star’s
structure. The heavier the star, the stronger its gravitational energy, and the more effect-
ive are the nuclear processes powering it. Average stars like the Sun spend the most of
their lifetime in the so called main sequence of the Hertzsprung-Russell diagram1 burn-
ing hydrogen into helium through proton-proton nuclear reactions. At the end of the
principal fuel, the star will have a massive core of helium and new fusion reactions may
start, converting it into carbon. Further reactions coverting carbon in heavier elements
will continue until the thermonuclear process become inefficient (the most abundant
elements heavier than carbon created by the stellar fusion processes are nitrogen, oxy-
gen and iron, the latter being the most stable atom). The fate of a star depends on it’s
mass:

• Progenitor stars with masses M < 0.1 M⊙ are left with an inert core at the end
of nuclear fuel combustion and the stellar object will became Brown Dwarf with
M < 0.08M⊙;

• Stars with masses M ≤ 8 M⊙ will give White Dwarf, while stars with M >
10M⊙ could produce neutron stars or black holes;

• Stars with masses M ≤ 20M⊙ results in either an oxygen-neon- magnesium core
or iron core. The object undergoes electron capture converting mostly proton-
electron pairs into neutrons and collapsing violently on a time scale of seconds.
The outer infalling material is thought to bounce on the newly formed neutron

1Usually abbreviated to H-R diagram, is a theoretical tool that relates the effective temperature and
luminosity of stars.
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core, producing a supernova explosion which includes a burst of neutrinos from
the neutronization process. The resulting collapsed core is a degenerate and com-
pact sphere of neutrons with density comparable to atomic nuclei. Asymmetries
in the supernova explosion can lead to an extremely fast spinning neutron star or
Pulsar;

• Stars with masses above 20M⊙ have an extremely strong gravitational field and
the collapse can’t be contrasted: they will produce black holes.

The existence of the bright cosmic X-ray sources discovered in the 1960s represented
an exciting and challenging astrophysical problem. No physical process known was
able to produce the enormous X-ray luminosity observed. The optical identifications of
the sources Sco X-1 and Cyg X-2 stimulated theorists and observers to learn more about
these new X-ray stars. The general deal about the nature of these exotic objects was to
consider them candidates for either white dwarfs, neutron stars or black holes, because
these sources were only theoretical concepts. It was the discovery by Uhuru satellite
(launched in december 1971) of the eclipsing X-ray source Cen X-3 which revealed the
existence of a binary system in which the X-ray energy source was a rapidly spinning
NS exchanging mass in a binary system. There are two scenarios widely accepted
for compact objects in which the mass can be transferred from a star onto its orbiting
compact object:

• High-mass X-ray binaries (HMXBs): the material transferred onto the compact
object is provided by a powerful stellar wind from an early-type massive star (OB
type stars), creating a comet-shaped shock front (see figure 3.1 ). The accretion
disc is small and fluctuations in wind density are converted in X-ray flux. For
instance, the X-ray binary systems Cen X-3 and Cyg X-1 belongs to this class;

• Low-mass X-ray binaries (LMXBs): the mass-losing star is a low mass object, it
will not have a strong stellar wind and hence cannot power the X-ray source by
the same mechanism as in HMXBs. In LMXBs a low-mass star transfer it’s mass
to a companion because it fills its Roche lobe (surface of equal gravity) and the
mass flows through the inner Lagrangian point, L1 (see figure 3.1). The Matter
flowing out of the star forms a stream that impacts the accretion disc (creating a
bulge or thickened region) and, by viscous forces, is gradually accreted onto the
compact object where the X-rays are generated. This mass transfer is only stable
if the donor star is less massive than the acceptor companion. X-ray binaries of
this type are for example Sco X-1 and Her X-1.

Uhuru satellite discoveried several eclipsing X-ray binaries, and from it’s data was pos-
sible to observe that HMXBs and LMXBs systems have a non-homogeneous distribu-
tions in the sky. The mass donors in HMXBs have a very short lifetime, and they are
found close to their formation site, generally in the spiral arms of the Milky way. The
much longer lived LMXBs are associated with older stellar populations distributed in
the central regions of the Galaxy.
All the discussion of interacting binaries so far has been in terms of a compact object
which is accreting matter from its companion, the basic model of the binary is almost
independent of what type of compact object it contains. However, the accretion rates
vary depending on the compact objects involved.
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Figure 3.1: Artist’s conception of the two principal mechanisms by which matter is
transferred onto a compact object in a X-ray binary system. On top a LMXB system
and on bottom a HMXB system are rapresented. Figure from the book "Exploring the
X-ray Universe", Seward FD and Charles PA.

3.1.1 Evolutionary Scenarios
The evolutionary scenarios of binary systems, from a pair of main-sequence stars to a
relativistic binary consisting of NSs or BHs, is fully confirmed by more than 30 years of
astronomical observations and is now considered standard [21]. Initially the two stellar
objects are orbiting each other in their Roche lobes. As the more massive star evolves
away from the main sequence, it will expand until overflowing its Roche lobe. The
material outside of the lobe will fall onto the companion and this can lead to a stable
mass-transfer or to a common-envelope between the stars. During this phase the star
accreting mass from the companion achieve a large angular momentum, and the donor,
if massive enough, eventually undergo core collapse to form a BH, and the system as
a whole would become an High Mass X-ray binary. As the secondary body expands
and evolves it would eventually fill its own Roche lobe and the binary would then go
through a common-envelope phase. The common-envelope phase is highly dissipative
and would probably lead to both contraction and circularization of the binary’s orbit, in
addition the accretion-mass process can allow the BH to spin-up. The secondary body
would undergo supernova explosion and form a stellar mass BH (or a NS) leaving a
pair or BHs (or NS-BH). Before the supernova explosion of the secondary body, it is
expect that the spin of the BH is aligned with the binary’s orbital angular momentum.
However, the kick associated with the supernova explosion can cause the orbital an-
gular momentum to became tilted with respect to the total angular momentum. Thus,
it is expected that the BH’s spin can be misaligned with respect to the post-supernova
orbital angular momentum. At some point the inspiral must terminate: the two objects
fall towards each other with a plunge and then merge. The remaining object will be
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a BH. When NSs are involved the physics of the merger is greatly complicated: tidal
forces before the plunge may in fact distrupt one or both NSs, dispersing neutron-rich
matter onto the circumstellar environment. Tidal disruption can held the production of
electromagnetic emission from the system at different wavelengths, possibly an accre-
tion disk around the remaining compact object and a jet orthogonal to the disk due to
relativistic beaming (Gamma-Ray Bursts emission). Neutron-rich matter released dur-
ing NS disruption may undergo rapid neutron-capture process (r-process) resulting in
the production of heavy elements which will produce an infrared emission (kilonova
emission), as observed for the event GW170817.
In the case of LMXB, an evolved late type star fill its Roche lobe and transfer mater-
ial through its inner Lagrangian point to the giant companion. Because of the angular
momentum conservation law, the material of the donor can’t fall directly onto the ac-
ceptor companion, but orbits around it forming an accretion disc. The major difference
between this model and the one for HMXBs is the mechanism of the mass-transfer.
The coalescence rate density, i.e. the number of coalescence events per unit of time and
volume, can be computed via population synthesis codes, which evolve large numbers
of simulated binaries assuming particular distributions of initial parameters. Current
uncertainties in modeling common envelopes and supernova kicks imply a large uncer-
tainty of the theoretical estimates [13]. However, from the population properties of the
GWs detections through GWTC-3 it was possible to infer for NS-BH systems a mer-
ger rate of 7.8 Gpc−3yr−1 − 140 Gpc−3yr−1, and for BBH systems a merger rate of
17.9 Gpc−3yr−1 − 44 Gpc−3yr−1 at a fiducial redshift of z=0.2.

3.1.2 Mass-Spin Constrains
Determining stellar masses in binaries by measuring their relative velocities and the
size of the orbit, has been the fundamental method used by astronomers for almost 100
years. The velocity of each object can be determined with the Doppler effect, one in the
optical and the other one in X-rays. If they are eclipsing, the inclination of the system
is known to an high degree of accuracy, and therefore It’s possible to solve the mass
function f(M) of the system defined as:

f(M) =
PorbK

3

2πG
=

m1sin
3ι

(1 +m2/m1)2
(3.1)

where Porb is the orbital period of the binary, K is the velocity amplitude of the rotat-
ing object and ι is the inclination angle. By measuring the K velocity is possible to
compute the mass ratio of the two stars. The most direct measurement comes from op-
tical spectroscopy, which gives the orbital radial velocity curve of either the secondary
(mass losing) star or, if it’s present, the accretion disc around the compact object. For
a BH-NS system it’s possible to measure the velocity amplitude of the mass donor K2,
and the mass function became:

f(M) =
PK3

2

2πG
=

m3
xsin

3ι

(mx +m2)2
(3.2)

which depends only on the directly observable quantities P andK2. To computemx it’s
necessary to know m2 and ι accurately. Recent measurements consistently indicate that
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BHs masses span in the range 5M⊙ ≤MBH ≤ 5×108M⊙. From GWs signals collected
by LIGO-Virgo the BHs masses distribution in binaries has been localized with peaks
emerging at chirp masses of 8.3+0.3

−0.5M⊙ and 27.9+1.9
−1.8M⊙. A BH can be completely

described by three parameters, the mass, spin angular momentum J and charge ("No
hair" theorem). The maximum value possible for the spin is given by Jmax = GM2/c.
It is customary to use a dimensionless spin parameter χ = cS/Gm2 with values in
the range [−1, 1]: negative values implies a counter-rotating BH; zero corresponds
to a non-spinning BH which is referred to as a Schwarzschild BH; 1 corresponds to a
maximally spinning BH and is known as a Kerr BH. A Schwarzschild (non-spinning)
BH has RISCO = 3 RS , where RS is the radius of the event horizon. For a Kerr BH
is RISCO = 0.5 RS , which means that the accretion disc can extend much closer to
the event horizon. The angular momentum J can be estimated by measuring the tem-
perature of the accreting material, which depends on RISCO. Observations of HMXB
indicate that BH spins can be nearly maximal, values range from < 0.25 for the system
LMC X-3 to ≈ 1 for the system 1915 + 10. BHs in binaries may develop high spins
because of the mass-transfer process [22][23]. Alternatively, BHs born from the merger
of two smaller BHs are expected to have high natal spins[24]. In O3 data collected
by LIGO-Virgo there are evidences of negative aligned-spins, an increase of spin mag-
nitude for systems with large unequal mass ratio, and evidences of misalignement of the
spins [25]. The mass-spin properties of BBHs inferred from their GW signatures reveal
important clues about how these binaries form. BHs that evolved together from the
same binary system will have spins that are preferentially aligned with the orbital an-
gular momentum, otherwise if the BHs formed separately from each other and became
gravitationally bound there is no preference for aligned-spins configuration [26]. The
fidelity with which GW detectors can measure off-axis spins, and therefore to observe
precession, will have important implications for the use of GW to study BBH formation
channels[27][28].
The computation of NS masses is difficult due to the unknown equation of state (EOS)
of neutron matter. However, maintaining hydrostatic equilibrium requires an upper limit
on the mass (maximum stiffness) to be ≈ 3M⊙. From LIGO-Virgo data a broad and rel-
atively flat NS’s mass distribution extending in the range 1.2−2M⊙ has been observed,
with a narrow cluster at 1.35M⊙. The spin of a NS can be characterized by the dimen-
sionless vector χ = cS/Gm2 with m the NS’s mass, and it is limited by the break-up
velocity to be χ ≤ 0.7. Known NSs are far from this limit, with the fastest-spinning
one with χ ≈ 0.4 [29]. In the following discussions the upper limit |Si| ≤ m2

i for all
bodies will be applied.

3.1.3 IMBH and merger rates
Intermediate-mass black holes (IMBH), classified as the BHs with masses in the range
102−105 M⊙, bridge the gap between stellar BHs and supermassive BHs (SMBH) [30].
IMBH are predicted to form or via direct collaps of highly massive stars (≥ 230 M⊙),
commonly referred as population III stars, or via hierarchical mergers of smaller BHs,
in poor metal star clusters or in active galactic nuclei (AGN) [31], [32]. More exotic
possible scenario like primordial BBH (multiple) mergers are also proposed [33]. Sev-
eral ultra-luminous X-ray sources, defined as those with a total isotropic luminosity
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of ≥ 1039 erg s−1 , have been studied as IMBH candidates but only a few support
evidences consistent with the predictions. Some IMBH candidates lies in the center of
dwarf galaxies and are associated with low-luminosity AGN. The only strong candidate
IMBH event in the LIGO-Virgo collected data is the signal GW190521, with the mass
of the primary component in the range where Pair Instability supernova theory (PI) is
expected to suppress BH formation[34], [35]. PI develops when a star have an helium
core mass of about ≥ 32M⊙, and the effective production of electron-positron pairs in
the stellar core constrast the radiation pressure [36]. This leads to a contraction of the
core, raising-up the internal temperature for the ignition of oxygen or silicon. If the star
collapses into a BH before its helium core enters the PI regime and it is inside a dense
stellar environment, it has a chance to capture a companion by dynamical exchange.
For example, BHs in AGN disks might pair with other BHs and are expected to merge
due to gas torques, producing second generation BHs. For stars with helium core mass
in the range 32 ≥MHe/M⊙ ≥ 64, the instability manifests as Pulsational Pair Instabil-
ity (PPI): the star undergoes a number of oscillations that eject material and remove
the stellar envelope, bringing the star back to a stable configuration after the mass loss.
After PPI, the star ends its life with a core-collapse supernova and if it is in a dense
stellar environment and is not ejected by the gravitational recoil, it has a chance to form
a new binary system with another BH. Alternatively, a gravitational bond between a
carbon-oxygen core and a main sequence star might form a binary with an over-sized
envelope that will finish it’s life collapsing into a giant BH. For larger star’s helium core
mass 64 ≥ MHe/M⊙ ≥ 135, PI drives to a complete disruption of the star leaving no
compact object, or to a direct collapse to a giant BH. The combined effect of PI and
PPI is expected to carve a mass gap in the BH mass function, with a lower boundary of
≈ 50 − 65 M⊙ and an upper boundary of ≥ 120 M⊙. However, these boundaries of
the mass-gap are highly uncertain because they depend on stellar evolution and on our
understanding of PI and PPI supernovae instabilities.
The mechanisms which could fill the PI gap for BBH masses can be divided in the
following possible scenarios:

• Hierarchical merger scenario [37]: A second generation (2g) BH can be formed
by a previous first generation-first generation (1g-1g) BHs merger in a dense
star cluster or through migration-mediated interactions in an AGN disk. When
formed, a 2g BH is subject to a relativistic gravitational recoil velocity (kick)
which can eject it from its birth-place, subsequently may acquire a new com-
panion through dynamical exchanges. The companion can be a 1g BH or a 2g
BH [38]. The relativistic kick at birth strongly depends on BH spin: maximally
spinning BHs or counter-aligned spin BHs receive the largest kicks. Hierarchical
mergers are expected to happen more likely in globular clusters which have the
highest escape velocity, rather than in open clusters and young star clusters. Con-
cerning the predicted mass ratios, from simulations studies results that 1g + 2g
BHs mergers tend to have more unequal mass ratios than 2g + 2g BHs mergers.
The preference of GW190521 for a mass ratio q ≈ 1 suggests that this system is
more likely consistent with a 2g+2g BHs (or higher) merger. Spin measurements
can be a distinguishing feature of 2g BHs, because merger remnants are expected
to be rapidly rotating with χ ≈ 0.7. Since they acquire companions through dy-
namical exchanges, spins are expected to be isotropically distributed with respect
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to the orbital angular momentum.

• Stellar merger scenario: If a star grows an over-sized hydrogen envelope with
respect to its helium core, it might directly collapse to a BH with mass in the range
≈ 60−100M⊙ without entering the PI/PPI regime [34]. For a star to develop this
over-sized hydrogen envelope, one or more mergers between a giant helium-core
star and a main-sequence star are required [39]. A BH formed by a stellar merger
in a globular cluster can acquire a new companion, then a BH can form from triple
or multiple stellar systems. The primary mass distribution predicted by the stellar
merger model scales approximately asm−5 withm > 60M⊙. The expected mass
ratio is q ≈ 0.4−0.6. Hence, the primary mass and the mass ratio predicted by this
scenario are compatible with the ones measured for the event GW190521. This
scenario predicts high spins isotropically distributed. The key difference between
the hierarchical merger scenario and the stellar merger scenario is that the latter
does not imply relativistic kicks at birth, hence it might be more common in star
clusters [40].

• AGN disk scenario [41]: The nucleus of an active galaxy might hosts tens of
thousands of stellar-mass BHs that moved into the innermost orbit. In this dense
gaseous environment, BH orbits are efficiently torqued by gas-drag until they
align with the AGN disk, where they can acquire companions and merge. When
these BHs merge there is a high chance that they are not ejected, because of the
high escape velocity (thousands of km s−1 ). Hence, AGN disks are expected to
host 2g BHs with masses in the PI mass-gap. The prediction of mass ratios are
highly uncertain but the spin magnitudes are expected to be as high as χ ≈ 0.7.
Since BH orbits tend to align with the AGN disk, there might be some preference
for the aligned-spin configuration. BBH mergers in an AGN disk may have an
associated electromagnetic counterpart (ultra-violet flare [42]), however there are
no observational evidences.

Searches for IMBH binaries with total mass ≤ 500 M⊙ and primary mass > 100 M⊙
were carried out from initial LIGO and Virgo and from the first and second observing
runs, but no significant candidates were identified. From those studies a stringent upper
limit of the local IMBH merger rate of ≈ 0.20 Gpc−3yr−1 for binaries with equal
component masses m1 = m2 = 100 M⊙ was estabilished. The signal GW190521,
under the assumption of stellar merger scenario, yield an estimates of the merger rate
for similar systems to be ≈ 0.13+0.30

−0.11 Gpc
−3yr−1. The merger rate for IMBH formed

via AGN disk scenario is ≈ 1 − 10 Gpc−3 yr−1 In upcoming future observing runs
is expected the detector network’s sensitivity to BBH mergers to increase significantly,
with potentially several hundreds of detections per year, reaching out redshifts in the
range z = 0.01 − 0.1 and z > 100. We may thereby observe a large sample of events
similar to GW190521. This will enable us to better understand the still uncertain natal
spin and mass distribution of BHs as a product of stellar collapse including PI, stellar
cluster dynamics, merger kicks due to GW emission, and formation channel of highly
spinning BHs.
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3.2 Spin-induced orbital Precession
When one or both components of a compact binary system are rapidly rotating and the
spins form a non-zero angle with the orbital angular momentum L, the spin-spin and
spin-orbit interactions cause the binary’s orbital plane to precess. The direction of the
total angular momentum J = L+S remains constant except for small radiation-reaction
effects. For semplicity, it will be assumed the inspiral of the binary in the adiabatic limit
so that it’s possible to assume that the binary has in every istant circular orbits. With
these assumptions the precession equations take the following form, accurate through
post2-Newtonian order [2]:

L̇ =
1

r3

[︃
4M1 + 3M2

2M1

S1 +
4M2 + 3M1

2M2

S2

]︃
× L (3.3)

− 3

2r3
[(S2 · L̂)S1 + (S1 · L̂)S2]× L̂

−32µ2

5r

(︃
M

r

)︃5/2

L̂

S1̇ =
1

r3

[︃
4M1 + 3M2

2M1

(µM1/2r1/2)L̂

]︃
× S1 (3.4)

+
1

r3

[︃
1

2
S2 −

3

2
(S1 · L̂)L̂

]︃
× S1

S2̇ =
1

r3

[︃
4M2 + 3M1

2M2

(µM1/2r1/2)L̂

]︃
× S2 (3.5)

+
1

r3

[︃
1

2
S1 −

3

2
(S1 · L̂)L̂

]︃
× S2

These are a set of coupled differential equations. In the formula of L̇ the terms in the
first square bracket which involve one spin are due to post1.5-Newtonian order spin-
orbit coupling; the terms in the second square bracket involving two spins are due to
post2-Newtonian order spin-spin coupling; the last term is due to radiation-reaction and
it’s the only term that changes the magnitude of any of the angular momenta. To the
lowest order, radiation-reaction causes L to decrease in module but does not affect the
single spins |S1| and |S2|, i.e. dSi/dt = 0 the magnitude of the spins is constant during
the inspiral. The previous equations implies that:

J̇ = L̇ = −32µ2

5r

(︃
M

r

)︃5/2

L̂ (3.6)

Therefore, the loss in magnitude of the total angular momentum J experienced by the
system is caused by the loss of the orbital angular momentum L rather than the spin.
To compute the evolution of a precessing binary we numerically integrate these equa-
tions until the adiabatic approximation is no longer valid. This occurs when the binary
reaches its Minimum Energy Circular Orbit (MECO, also known as the innermost circu-
lar orbit for non-spinning binaries) after which the two compact objects plunges in one
other [43]. In the next section we will compute approximate, analytic, solution for L(t)
in two cases of interest. The solution of the precession equations for the case of binaries

40



with general masses and spins distributions need numerical simulation solutions and it
is beyond the scope of this dissertation.

3.2.1 Simple Precession motion
In this section we derive the solutions of the inspiral and precession equations for two
cases: 1) M1 = M2, which could rapresent a symmetric BBH system; 2) S2 = 0,
which could represent a very asymmetric system (m1 >> m2). In the latter case, the
spin S1 of the larger body will dominate the orbital precession, unless it is parallel or
anti-parallel to L̂. Spin-Spin effects can be ignored since they occur at higher post-
Newtonian order (2PN) and are therefore typically smaller than the leading spin-orbit
term (1.5PN). Also, spin-spin effects are not present for a system with only one spinning
component. For both cases under examination, the motion of L̂ is a rotation around the
nearly fixed direction of Ĵ occurring in a time scale much longer than the orbital period.
Precession can result in a short epoch characterized by a qualitatively different motion
of Ĵ if the spins are large and initially approximately anti-aligned with L̂. In fact,
L̂ slowly shrinks due to GW emission while S1 and S2 are constant. At some point
Ĵ will transition from being dominated by L̂, to being dominated by S1 + S2. This
phenomenon is called transitional precession and leads to an episode of complicated
three- dimensional tumbling of the binary. Once the vectors have been re-oriented and
the transition ends, simple precession is typically restored. Neglecting the spin-spin
coupling, the equations governing the orbital plane’s precession become2:

L̇ =
−32µ2

5r

(︃
M

r

)︃5/2

(3.7)

Ṡ = 0 (3.8)

L̇̂ =

(︃
2 +

3M2

2M1

)︃
J

r3
× L̂ (3.9)

Ṡ̂ =

(︃
2 +

3M2

2M1

)︃
J

r3
× Ŝ (3.10)

Following the discussion in [2], let’s describe qualitatively the solutions of the evolu-
tion equations obtained. The orbital evolution consists in two motions: a precession
of the plane containing L and S and the motion of these vectors in this plane. The
in-plane evolution is driven by radiation-reaction induced orbital shrinkage, |S| will re-
main almost constant during the course of inspiral while |L| will decay with time. The
precession of the plane containing L and S can take two different behaviours: i)simple
precession occurs when J > 0 and both L and S precess around a near constant J with
an angular velocity given by:

Ωp =

(︃
2 +

3M2

2M1

)︃
J

r3
(3.11)

J changes in magnitude but not in direction; ii) transitional precession occurs when
L and S are anti-aligned such that J ∼ 0 and the system tumble randomly in space

2To derive these simplified precession equations we used the result that J × L = (L + S) × L =
(L× L) + (S × L) reduces to J × L = S × L (and similarly J × S = L× S)[44].
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and causes J to swing around a new direction (see figure 3.2). At this point L and
S resume their simple precession motion but now around the new direction of J [2].
The strenght of the precession can be characterized by the precession angle defined

Figure 3.2: The evolution of orbital angular momentum L, spin angular momentum S
and total angular momentum J during simple and transitional precession. In case i) only
simple precession occurs as J remains relatively large and roughly constant in direction
while L and S precess about it. In case ii) the evolution undergoes simple precession
at early times t1 until the time t2 when L has become anti-aligned with S with equal
magnitudes, so that J = L+ S ∼ 0. The system will undergo a period of transitional
precession, during which the system will tumble randomly in space, until |L| < |S| and
simple precession is resumed at time t3. This figure is based upon figure 2 in [2].

as dα/dt = Ωp and by the opening angle of the precessing cone λL between J and
L, which is determined primarly by the total spin in the plane and the binary’s mass-
ratio. At leading order, the magnitude of the binary’s orbital angular momentum is
L = µ

√
Mr, then we can write [45]:

cosλL(t) = L̂ · Ĵ =
µ
√︁
Mr(t) + S||[︂

(µ
√︁
Mr(t) + S||)2 + S2

⊥

]︂ (3.12)

where S|| and S⊥ are the total spin components parallel and perpendicular to L respect-
ively, and rest approximately constant during the inspiral (see figure 3.3). In general,
the larger the opening angle and stronger is the precession. However, in the regime
of simple precession motion λL slowly increases during inspiral and also tipically var-
ies very little over the duration that is visible in GW detectors, so that it’s possible to
make the semplifying assumption that it remains constant in time. By integrating the
equation 3.12, one can obtain an estimate of the number of precessions observable in
the frequency sensitivity range of GW detectors, and how it scales with the frequency
of the emitted GWs. For this purpose we consider two options: i) when L >> S we
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Figure 3.3: During simple precession the orbital angular momentum L of the binary
will precess about the total angular momentum J with frequency Ωp. The opening angle
λL and the precession angle α are also identified.

have J ≃ L, and the precessing angle is dα/dt ∝ L/r3 ∝ r−5/2, since the Newtonian
angular momentum is L = µM1/2r1/2 and equation 2.19 implies that dr/dt ∝ r−3 .
From these two relations we can compute dα/dr in this way:

dα

dr
=
r−5/2dt

r−3dt
∝ r1/2 (3.13)

integrating in dr we have α(r) ∝ r3/2 or α(f) ∝ f−1 where f is the frequency of
the emitted GW at orbital separation r3. That is, most of the precessions occurr at
low frequencies and the precessing angle takes preferentially small values (the cone
of precession is narrow when S is small); ii) when S >> L we have J ≃ S, then
dα/dr ∝ S/r3. But we know that the total spin is constant in time, i.e. dS/dt = 0,
therefore dα/dt is also constant and we have α(r) ∝ r or α(f) ∝ f−2/3. Putting back
the constant factors that we omitted for the computation, we find the following power
law:

α(f)

2π
≈

{︄
11(1 + 3M1

4M2
)10M⊙

M
10Hz
f

L >> S

1.9(1 + 3M1

4M2
)M1

M2

S
M2

(︂
10M⊙
M

10Hz
f

)︂2/3
S >> L

(3.14)

An interesting consideration is that in the case L >> S the number of precessions is
independent of the total spin and we can assume that slowly spinning bodies produce
roughly as many as precessions as rapidly spinning ones. However, during the inspiral
the precessing motion is much slower than the orbital motion, as a consequence the
precessing motion contributes relatively little to the loss of energy due to gravitational
radiation, and therefore is weak during the inspiral. The main effect of precession will
be an amplitude modulation as the orbital plane precesses and radiates GWs predomin-
antly in the direction orthogonal to the orbital plane.

3.2.2 Algebraic solution to Simple Precession equations
Following the analysis given in [2], we derive now an algebraic expression for the for-
mulas needed to compute the simple precession motion. It is convenient to introduce

3From the third Kepler’s law ω2
GW = GM/r3 and knowing that f = ω/2π, we derive f2 ∝ r−3
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the following notation:

κ ≡ S · L γ(t) ≡ S/L(t) (3.15)

where κ is a constant of the motion as a consequence of the eq. (3.7) and (3.8), γ grows
with time but it is bounded above by:

γ ≤ M2
1 +M2

2

M1M2

(︁M
r

)︁1/2 (3.16)

The magnitude and direction of the total angular momentum can be expressed as:

J = L
√︁
1 + 2κγ + γ2 (3.17)

Ĵ =
L̂+ γŜ√︁

1 + 2κγ + γ2
(3.18)

L̂ and Ŝ are precessing around Ĵ with the precessional angular velocity given by:

Ωp =
(︁
2 +

3M2

2M1

)︁√︁
1 + 2κγ + γ2

L

r3
(3.19)

and now we want to determine the motion of Ĵ . This can be achieved differenziating
the eq. 3.18 and using the corresponding eq. 3.9 and 3.10, then we obtain:

J̇̂=
γ̇[Ŝ(1 + κγ)− L̂(κ+ γ)]

(1 + 2κγ + γ2)3/2
(3.20)

From this eq. we can deduce that the motion of Ĵ is a circular motion along the great-
circle arc (see figure 3.4) produced by the motion of L̂ towards Ŝ.

Figure 3.4: Simple precession. Ĵ udergoes tight-spiral motion with fixed direction, L̂
and Ŝ are precessing around Ĵ.

The opening angle of the cone generated by the precessing motion of Ĵ takes the
following expression:

λJ = arcsin
(︁ |J̇̂|
Ωp

)︁
= arcsin

(︁ 16
5
(M/r)3/2γ

√
1− κ2

1 + 3
4
(M1/M2)(1 + 2κγ + γ2)3/2

)︁
(3.21)
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Similarly, the opening angle of the precessing cone generated by L̂ in it’s motion is
given by:

λL = arcsin
(︁ |L̇̂|
Ωp

)︁
= arcsin

(︁ γ
√
1− κ2

(1 + 2κγ + γ2)1/2
)︁

(3.22)

Their value changes in time because of the inspiral motion, so Ĵ and L̂ undergo tight
spirals rather than precise circular motions. Note that even if the precession timescale is
much shorter than the inspiral timescale Ω−1

p << L/L̇, Ĵ can still change significantly
in one precession period if it’s magnitude is much smaller than the magnitude of L̂ (as
can happen if L and S are antialigned and have equal magnitude). For this reason, a
paremeter ϵ = (L/J)× (ratio of precession timescale to inspiral timescale) is defined,
that is:

ϵ =
L

J

L̇/L

Ωp

=
16

5

(M/r)3/2

(1 + 3
4
M2/M1)(1 + 2κλ+ λ2)

(3.23)

being small compared to unity in simple precessionregime. It can be demonstrated that:

sinλJ
sinλL

= ϵ (3.24)

Thus, for ϵ being small means that for simple precession motion the condition sinλJ <<
sinλL holds.

3.3 Detector response to Gravitational Waves from a
Precessing Binary

After writing down the post-Newtonian equations that describe the precession of the
orbital plane, we derive the equations that describe the corresponding modulations in
the GW signature [46]. The equations are simply obtained using the same formulas
2.13 and 2.18 of the non-precessing case for the wave fields h+(t) and h×(t) and for
the amplitude A(t) and polarization phase φ respectively, but replacing in those expres-
sions the time varying L̂(t) derived by solving the precession equations 3.3. Thus, the
precession-modulated GW can be written as:

hp+(t) = −2µM

rD

[︂
1 + (L̂(t) · N̂)2

]︂
cos 2ϕ(t) (3.25)

hp×(t) = −2µM

rD

[︂
−2L̂(t) · N̂

]︂
sin 2ϕ(t)

And the detector strain as well:

hp(t) = −A(t) cos[2ϕ(t) + φ(t)] (3.26)
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where the amplitude and the phase assume the following expressions:

A(t) =
2µM

rD

(︂
[1 + (L̂(t) · N̂)]2F 2

+(θ, ϕ, ψ(t)) + 4[L̂(t) · N̂]2F 2
×(θ, ϕ, ψ(t)

)︂1/2
(3.27)

φ(t) = arctan−1

(︄
2L̂(t) · N̂F×(θ, ϕ, ψ(t))

[1 + (L̂(t) · N̂)]2F+(θ, ϕ, ψ(t))

)︄
(3.28)

The precession causes also the polarization angle to vary in time, and it’s given by:

ψ(t) = arctan

(︄
L̂(t) · ẑ− (L̂(t) · N̂)(ẑ · N̂)

N̂ · (L̂(t)× ẑ)

)︄
(3.29)

Recall that in section 2.1.2 we introduced a distinction between the carrier phase ϕC(t),
defined as the integral of the bodies’s angular velocity in the orbital plane, and ϕ(t),
defined as the angle between the orbital separation r̂ and the principal + direction
±L̂× N̂. We define now the precessional correction to ϕ(t) which arises from the
changing orientation of the orbital plane as ϕ(t) ≃ ϕC(t) + δϕ(t), where:

δϕ(t) = −
∫︂ t

tc

(︄
L̂ · N̂

1− (L̂ · N̂)2

)︄
(L̂× N̂) · L̂ dt (3.30)

It depends on the full time history of L̂ between times t and tc and by the uncertainity
in the position of the binary in the sky. The precession modulated waveform with the
phase correction due to the precession assumes then the following expression:

h(t) = −A(t) cos[2ϕC(t) + 2δϕ(t) + φ(t)] (3.31)

the term 2δϕ can change the total number of the cycles in the wave fields and the ob-
served waveform by roughly twice the total number of precessions. For the computation
of A(t) and φ(t) one need to solve the equations 3.3 for L̂(t) and plugs the result into
equations 3.27.

Figure 3.5: Example of a precessing GW signals with modulations in phase and amp-
litudes.

46



3.4 Observability of precession in GW signals
The first basic picture of the precession effects comes from the opening angle defined
in eq. 3.12. In simple precession cases cosλL slowly increases during the inspiral, so
that µ,M, S|| and S⊥ can be considered approximately constant. If we consider the
case where the spin is entirely in the orbital plane, i.e. S|| = 0, then, cosλ will be
zero if S⊥ = 0 and increase linearly for small S⊥ and as µ decreases. If we consider
S|| ̸= 0, the strenght of precession will be reduced for systems with a positive aligned-
spin component and increased for those ones with negative aligned-spin component
[47]. A negative S|| is necessary to achieve large opening angles (> 90◦) but such
systems are considerate to be rare [48]. The measurability of precession also depends on
the orientation of the binary with respect to the detector [49]. In particular, Precession
effects will be minimal if the source is face-on oriented θJN ∼ 0◦ or 180◦, i.e. the
observer is along the direction of Ĵ , and will be strongest for binaries edge-on oriented
θJN ∼ 90◦. The parameter χp or precessing-spin, defined as [50]:

χp =
1

A2m2
2

max(A1S1⊥, A2S2⊥) (3.32)

with A1 = 2 + 3q/2, A2 = 2 + 3/2q and q = m1/m2(m1 > m2), estimates a time-
average of the in-plane spin components that drive precession and takes values between
zero (non-precessing systems) and +1 (maximally precessing systems). However, In
most cases GW data analysis provide a well-constrained spin quantity called effective
spin χeff , which is the mass weighted combination of the projection of the two spins
along the orbital angular momentum [51]:

χeff =
m1S1|| +m2S2||

m1 +m2

(3.33)

The impact of χp on GW signals is much lower than of χeff and therefore its measure-
ment is less precise. However, the authors in [52] and in [53] show that if they do not
include χp in their analysis, they would lost substantial information, despite the large
uncertainties. To date, almost all detection searches of LIGO-Virgo ignored the effects
of spins-precession and the evidences of spin-induced orbital precession were searched
by either calculating Bayes factors or statistically comparing posterior distributions for
parameters characterizing precession to their prior distributions. However, the authors
in this study [54] suggest to use a new statistic (SKY-maxed SNR) to search for compact
objects with generic spins. Applying this statistic for the construction of template banks
and using them in a real pipeline analysis of simulated Gaussian noise, two important
results have been found: i) despite that the generic spin banks have a roughly a factor
of ten more templates than the aligned-spin banks and the increase of background rate,
in certain regions of the parameter space, namely at high mass-ratios and large in-plane
spins, there is an overall improvement of about 7% in signal recovery at a fixed false-
alarm rate ii) this gain in sensitivity comes at small loss of sensitivity of about 4% for
systems that are already well covered by aligned-spin templates. In recent years others
studies explored the general phenomenology of precession effects, invastigating where
in the parameter space will be possible to accurately identify precession and it’s impact
on GW searches. As expected, the evidence for precession increases with large in-plane
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spins, more unequal components masses and edge-on oriented sources, as reported in
[55]. We will use the methods and the considerations mentioned in this section for the
data analysis proposed in this work.
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"Salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle

che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle."

Dante Alighieri, Inferno
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Chapter 4

Detecting Precessing Gravitational
Waves signals

4.1 Introduction
In the next two chapter I will describe the results of my research work, which aimed to
improve the sensitivity search of the data analysis pipeline MBTA to GW signals emit-
ted by spin-precession binary black holes systems. The current detection searches for
GW from compact object binaries employ only waveforms models with spin aligned
(or anti-aligned) with the orbital angular momentum. However, parameter inference
algorithms consider precessing waveforms and it’s already demostrated that for sys-
tems with strong precessional features it’s possible to break the degeneracies between
physical parameters in the emitted GW signal and therfore better measure the compon-
ent spins. The data analysis problem for the spinning case is complicated by the large
number of parameters needed to characterize the system, including the initial directions
of the spins, position and orientation of the binary with respect to the detectors. In
addition, some complications arise when using the matched filtering technique. The
latter is the detection strategy commonly used to extract GW signals from noise and is
based on evaluating the correlation between the detector output data and a set of wave-
forms models that must reproduce the expected signal. It is an optimal filter method in
Gaussian noise, however the output data of interferometers are often contaminated by
non-gaussian transient noises called glitches, which can have instrumental and environ-
mental origin. To reduce the effects of these non-stationarities signal-based vetos can
be defined to rejects triggers.
The filter output can be maximized using waveforms models that describe as more ac-
curately as possible the expected signal involving more parameters, for instance the
spin of the single components.We will describe a phase, amplitude and sky location
maximized SNR statistic, also called sky-maxed SNR, applicable to search for binary
systems carrying generic (precessing) spins. This statistic is applied for the generation
of template banks for both Aligned-Spin (AS) and Precessing-Spin (PS) BBH systems
as well as for the computation of their effectiveness i.e. their ability to recover injected
signals of simulated population of generic-spin systems). These banks are then analized
in Gaussian noise and in realistic data by running Monte Carlo tests with the pipeline
MBTA, with the purpose of i) check the ability of the pipeline MBTA to detect precess-
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ing simulated GW signals (injections) and discriminate them from glitches in the data;
ii) investigate the expected gain in signal power when using PS banks compared to AS
banks, due to having templates which more accurately model the precession effects;
iii) measure the increase of background false-alarms incurred by filtering the data with
more templates.
In this chapter we focus on the generation and validation of the template banks, with
a detailed description of the parameters-space, waveforms approximants and tools em-
ployed; the next chapter will be focused on the data analysis results with MBTA. For
PyCBC tools references see [56],[57],[58], [59], [60], [61].

4.2 The matched filtering technique
The standard filter choice for GW from compact binaries coalescences (CBC) is the
match-filtering technique, since the expected signal is well modeled. It consists in com-
puting the correlation between the data and a bank of templates (also called filters)
corresponding to the expected signal waveforms. The parameters of the source are in
general not known a-priori, so the data must be correlated with many possible expected
signal waveforms. A generic GW signal generated by the coalescence of compact bin-
ary system is described by 15 parameters (ignoring the eccentricity and the parameters
of the internal structure of neutron stars for NS-BH systems): the component masses
m1,m2; the component dimensionless spin vectors χ1, χ2; the sky location of the sig-
nal with respect to the frame of the observer (θ, ϕ); the distance D of the the source;
the coalescence time tc; the inclination of the binary with respect to the line-of-sight
to the system ι; a polarization angle Ψ; and an orbital phase at coalescence ϕc. The
approximation of the waveform model should be chosed such that it mimics as most
accurate as possible the expected signal, to make the matched filter output effective.
Theoretical signal templates can be calculated by employing perturbative-or numerical
simulations to solve the Einstein’s equations of GR. During the early stage of the co-
alescences, called Inspiral, the dynamics of the binary as well as the expected GW
weveform can be calculated using PN approximation to GR. the templates that have to
model the complete inspiral-merger-ringdown stages requires imputs from Numerical
relativity simulation and perturbative General Relativity. Proper calculation of the GW
from the merger of the binaries involving NSs also requires considering the effect of
nuclear matter, in addition to GR.
The templates bank can be considered the collection of points that span the parameter
space. Consider the data output s(t) of a GW detector which consist of noise n(t), that
we assume both stationary and Gaussian, and eventually of GW signal of known shape
h(t): under the Gaussian assumption, it’s possible to express the probabilities of noise
hypothesis s(t) = n(t) and signal hypothesis s(t) = n(t) + h(t) of the observed data
respectively as:

P (s|n) ∝ e−R[⟨s|s⟩]/2 (4.1)

P (s|h) ∝ e−R[⟨s−h|s−h⟩]/2 (4.2)
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where ℜ indicate the real part. The inner product between the detector strain and the
GW signal define the filter output and is given by:

⟨s|h⟩ = 4ℜ
∫︂ ∞

0

s̃(f)[h̃(f)]∗

Sn(f)
df (4.3)

where the tilde indicates the Fourier transform, the asterisk is the conjugate complex
and Sn(f) is the one sided (f > 0) spectral power density which describe the statistical
properties of the noise. The log-likelihood ratio Λ ≡ P (s|h)/P (s|n) between the signal
and noise hypothesis define the general prescriction for searching for a GW signal of
known form in stationary and Gaussian noise:

logΛ ≡ λ = R[⟨s|h⟩]− 1

2
R[⟨h|h⟩] (4.4)

The output of the matched filter, the signal-to-noise ratio (SNR), is directly related to
the probability that a GW signal is buried in the data, thus we define the matched-filter
SNR, ρ, by maximizing λ over an overall amplitude:

ρ2/2 = max(λ)|amp =
(R[⟨s|h⟩])2

⟨h|h⟩
= (R[⟨s|ĥ⟩])2 (4.5)

and we recall here the phase-maximized filter SNR for non-precessing templates:

max(λ)|D,ϕc,θ,ϕ,ψ =
1

2
max(ρ2)|ϕc =

1

2
|⟨s|h+⟩|2 (4.6)

The observed signal h(t) at the detector is the sum of the two gravitational polarization
h+ and h× multiplied by the response function of the detector F+ and F× to each po-
larization, shown in the formula (2.16). The exact form of the signal is not known and
it’s necessary to maximize over a priori unknown template parameters which determ-
ine the expected signal. For some parameters the maximization step can be performed
analytically, or in a computationally efficient way using fast Fourier transform (FFT) al-
gorithms, whereas for the remaining ones, one has to repeat the matched-filter operation
a large number of times. In making the connection between the two waveforms polar-
izations and the template waveform h(t), aligned-spin searches rely on the assumption
that only the quadrupole (l, |m|) = (2, 2) modes of the waveform are dominant, neg-
lecting the subdminant modes. Additionally, for AS searches the stationary phase ap-
proximation holds and the two polarizations are identical up to an amplitude scaling
that only depends on ι and a constant phase shift h+ = ±ih×. As a results, it is pos-
sible to quickly maximize over all parameters describing the system except for the two
masses and the projections of the spins in the direction of the orbital angular momentum
ϵ = (m1,m2, χ1z, χ2z). When we consider waveforms with generically oriented spins,
we have to take into account that there are six dimensionless spin components and that
the orientation of the source with respect to the detector varies as the orbit precesses.
Furthemore, detectors have different orientations and locations so they will not observe
the same combination of the source sky angles and the approximization h+ = ±ih×
no longer holds. In the next section we will derive the mathematical formalism of the
sky maxed SNR statistic applicable to precessing spin systems, which maximizes the
matched-filter SNR over the detector sky-location of the source in addition of the phase
and amplitude of the observed signal.
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4.2.1 The Sky-Maxed SNR statistic
For the precessing spin template, the signal h(t) is rewrited expressing the detector
related angles (θ, ϕ, ψ) and the distance of the sourceD in terms of an overall amplitude
and phase between the GW polarizations:

h = K(θ, ϕ, ψ,D)[h+(t; tc, ϵ, ι, ϕc) cos k(θ, ϕ, ψ) + h×(t; tc, ϵ, ι, ϕc) sin k(θ, ϕ, ψ)]
(4.7)

where ϵ = (m1,m2, χ1̂, χ2̂) and we factorize the amplitude and the phase as:

eik =
F+ + iF×√︁
F 2
+ + F 2

×
(4.8)

K =
1

D

√︂
F 2
+ + F 2

×

In a similar manner for the aligned-spin case, it’s possible to perform the maximization
over the amplitude and the phase, but this would leave the additional parameters ι and
the sky angles plus the four new spin components to be covered using a discrete bank.
The sky maxed SNR statistic consider a scheme that maximize not only over the overall
amplitude and phase, but also over the sky-location dependent antenna factors, remov-
ing all the detector-dependent quantities from the parameters used when constructing
the template bank, allowing to use the coincidence method for a multi-detector analysis.
In practice, maximizing the log-likelihood defined in equation (4.6) overK and ϕc leads
to:

max(λ)|K,ϕc =
1

2

u2|ρ+|2 + 2uγ + |ρ×|2

u2 + 2I+× + 1
(4.9)

where we define:

ρ+,× = ⟨s|h+,×⟩ (4.10)
γ = R[ρ+ρ

∗
×]

⟨h+|h×⟩ = I+,× + iJ+,× I+,×, J+,× ∈ ℜ

and the sky angles dependence is factorized in terms of:

u ≡ 1

tan k

√︄
⟨h+|h+⟩
⟨h×|h×⟩

(4.11)

but we need to further reduce the dimension of the parameter space, to do so we derive
the equation (4.9) with respect u and solving for the roots leads to a quadratic equation
in u:

(I+×|ρ+|2 − γ)u2 + (|ρ+|2 − |ρ×|2)u+ (γ − I+×|ρ×|2) = 0 (4.12)

substituting the roots of this equation back in the equation (4.9) one obtain two extremal
values for λ. We are interested in the maximum value of the log-likelihood (i.e. when
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the square-root term is positive), then we take the positive extremal value to obtain:

max(λ)|K,ϕc,u =

(4.13)

1

4

(︁ |ρ+|2 − 2γI+,× + |ρ×|2 +
√︁

(|ρ+|2 − |ρ×|2)2 + 4(I+×|ρ+|2 − γ)(I+×|ρ×|2 − γ)

1− I2+,×

)︁
this equation is the log-likelihood maximized over an overall amplitude, phase and sky
location of the binary. The terms within the square root will always take positive val-
ues and therfore produce real and positive values for λ. Additionally, for precessing
waveforms it’s not possible for h+ and h× to be identical, so the ill defined case for
I+,× = ±1 can never occur. Notice that the likelihood can be maximized over the
colascence time tc by computing ρ+,× for a discrete set of values of tc using FFT al-
gorithm and piking the largest value of λ, however this case requires the computation
of two inverse FFT which increase the computational cost of the search. In analogy to
the non-precessing case, we define the sky-maxed SNR for the matched-filter threshold,
ρSM , as:

max(λ)|K,ϕc,u =
1

2
max(ρ2)|ϕc,u =

1

2
ρ2SM (4.14)

In the non-precessing limit the sky maxed SNR formula collaps in the equation usually
used for AS searches. Infact, if h+ = ±ih× then:

ρ+ = ±iρ× (4.15)
I+,× ≡ ℜ[⟨h+|h×⟩] = 0 (4.16)

and inserting these conditions in equation (4.9), the latter collapse to the form (4.6).

4.3 A stochastic placement algorithm for spinning Tem-
plate Banks

The PyCBC’s tool Sbank1 is an algorithm used for the generation of matched-filter tem-
plate banks in an arbitrary parameter space, developed for minimize the computational
cost without reducing the detactibility of signals. The framework use a positive-definite
metric to measure the fractional loss in (squared) SNR of a putative signal filtered
through the optimal filter. The metric gives the geometric structure of a Riemannian
manifold (or signal manifold) but we refer to it as parameter space. Sbank can also
compute template banks using direct matches instead of a metric. In the absence of a
metric the distances between points in the parameter space are computed by generating
both waveforms and calculating an explicit overlap between them. The latter is op-
timal for the generation of generic-spin oriented waveforms, such as the IMRPhenomX
metric, but one should take into account that when using the direct match method the
computational cost is much higher. Since the number of templates have to be finite, the

1In 2021 Sbank has been split-off from the larger LALsuite package as a standalone module.
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parameter space will be covered with a discrete lattice and to evaluate the maximum
SNR that is lost due to the discretization of the parameter space , the minumum match
(or maximum mismatch) among templates has to be computed, defining the match ber-
ween two templates as:

M(hi, hj) = max
(hi, hj)√︁

(hi, hi)(hj, hj)
(4.17)

The algorithm works as follow:

• begin with a seed bank B which may be empty;

• randomly choose the parameters λ⃗ of a target signal g and compute the corres-
ponding waveform h;

• a match M(g, h) is computed between g and all the templates included in the
bank h ∈ B, where M(g, h) defines the fraction of the signal power of g that
would be recovered if using the template h as the optimal filter;

• the Fitting Factor (FF ) for a template is defined as the match maximized over all
the templates in the bank FF (λ⃗,B) ≡ maxM(hi|g). The correspondent template
mismatch will be 1-FF;

• if the FF falls below a given threshold ("minimal match") then the proposed tem-
plate is added to the bank, otherwise is discarded;

• continue this process until no new points are added, because they are too close to
the previously retained points or some others stopping criterion are met.

When constructing the template banks the discretization of the parameter space is gov-
erned by three requirements[61]: cover the full parameter space as densely as possible;
the templates have to be placed over the parameter space such that the loss of SNR
due to the mismatch of two close templates with arbitrary values of the parameters is
minimal; the computational cost of the search using the full template bank need to be
manageable. For the aligned-spin placement the match is calculated using the phase-
maximized matched-filter SNR:

M(g, h) ≡ max|ϕc,tcℜ[⟨g|h(ϕc, tc)⟩] = max|tc⟨g|h(0, tc)⟩| (4.18)

The maximization over time and phase shift is performed only on the template h and
not on the proposed waveform g because the match doesn’t depend on the sky position
or orientation of the source. A minimal match of 0.97 is chosed which imply a max-
imum loss of 3% in SNR power. For the precessing waveform placement the match is
calculated with the sky-maxed SNR:

M(g, h) ≡ max|(ϕc,tc,u)ℜ[⟨g|h(ϕc, tc, u)⟩|] (4.19)

In the precessing case the maximization over ϕc and u is made only in the template
waveform and not on the proposed waveform g. A putative signal h(t) is conputed
chosing a specific sky location and orientation and compared versus the h+ and h×
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components of all the templates in the banks using the equation (4.17). If the putative
signal is accepted in the bank, the sky location and h(t) are discarded and only the h+
and h× components of that point are retained. This choise will result in an increase
of the number of proposed points, for this reason a lower MM = 0.90 is chosen, in-
creasing the maximum loss of SNR power to 10%. The bank generation output is a file
with the list of parameters of the templates. The stochastic template bank should not
over-populate the parameter space, however if it properly populates all regions depends
by the properties of the signal manifold, infact the distribution of the resulting points
strongly depends upon the choise of the coordinate system. The most obvious coordin-
ates on the signal manifold are the masses m1 and m2 of the two components compact
objects, but using the masses the determinant of the metric may vary significantly over
the parameter space and as a consequence a much higher density of templates may be
needed in the low mass region with respect to the high mass region. A better coordinate
system is rapresented by the chirp times, defined bas:

θ1 =
5

128ν
(πfL)

−5/3, θ2 =
−π
4ν

(πMfL)
−2/3 (4.20)

τ0 =
θ1

2πfL
, τ3 =

θ2
2πfL

(4.21)

Using this coordinate system the determinant of the metric does not vary much ove the
parameter space and can be considered approximately a flat space metric. Sbank is
widly used for the generation of templates banks in frequency domain. It can run also
in time-domain but many of the optimizations used to speed up the computation do not
work for time-domain waveforms, which are often much slower to generate than the
frequency-domain ones.

4.3.1 Parameters space and waveforms models
To measure the binary’s properties the detector data are cross correlated with a set of
theoretical waveform models. The accuracy of the measured parameters depends not
only on the strenght of the signal but also on the accuracy of the waveforms. Since
the first two observing runs (O1-O2) of LIGO and Virgo two families of waveform
models are used to search for BBH coalescences, IMRPhenom (Ref. [62], [63], [64])
and SEOBNR (Ref. [65], [66]). Both rely on several physical approximations, although
in these models the effect of varying spin directions on the full waveform remains un-
modelled. Based on the BH spin configurations, coalescing BBH systems with spins
can be considered to be:

• Aligned-Spin: the BH spins are paraller or anti-parallel to L, so L× Si = 0 (i =
1, 2) for each BH. From the symmetries of the system, the BHs orbit in a fixed
plane, that is the direction of the orbital angular momentum L̂ remains fixed.
In the frame where L̂||ẑ the symmetry also implies that any linear momentum
emission is perpendicular to L̂;

• Precessing-Spin: One or both BHs have non-zero spin components perpendicular
to L̂. The precence of the perpendicular compontents of the spins S⊥

i causes
the orbital plane to precess over the course of the coalescence. This leads to
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modulations of the amplitude and phase of the waveform. Emission of the linear
momentum is now also possible perpendicular to the orbital plane, which breaks
the symmetry between the ±m multipoles.

In this section the parameters of the simulated sources are described. We consider GWs
emitted by low masses BBH and high masses BBH. For each type two categories of
GW signals are generated, one corresponding to aligned-spin (AS) and the other to
precessing-spin (PS). For the former the SEOBNR family approximants [67] are used,
for the latter IMRPhenom approximants [68]. We thus generate component masses
uniformly in the range Mtot ∈ [20, 100] M⊙ for low masses BBH, and in the range
Mtot ∈ [100, 500]M⊙ for high masses BBH. The dimensionless spins ai ≃ c|Si|/Gm2

i

are uniformly generated in the range [0, 0.99] compatibly with the range of validity of
the waveform approximants. We will always refer to the masses of the signal observed
by the observatory, referred to as detector frame masses. Sources at cosmological dis-
tances will be redshifted with respect to the observer, causing the signal to appear to
have higher masses than the actual ones measured in the source frame. The choise of
the mass ranges addresses the considerations proposed in previous studies, specifically
the paper arXiv:160302444v2 for the low mass range and the paper Phys. Rev. D 102,
2020 for the high mass range respectively. To be able to characterize the full range
of potential systems, waveforms models of the gravitational radiation emitted by BBHs
are continuously being improved. In particular, physical effects associated with unequal
masses and misaligned spins have recently been extended in phenomenological models
covering the inspiral, merger and ringdown of BBHs [68]. For the generation of our
template banks, the following approximants will be employed:

• IMRPhenomTPHM (TM) and IMRPhenomXPHM (FD) approximants which in-
clude precession and higher multipoles beyond the dominat quadrupole (2,±2),
optimized for high mass systems;

• IMRPhenomTP (TD) and IMRPhenomPv2 (FD) approximants which include
precession and the dominant modes (2,±2), suitable for low mass systems;

• SEOBNRv4opt (TD) and SEOBNRv4ROM (FD) approximants are used in both
low and high masses ranges and they are the most commonly wavefoms used for
aligned-spin searches in MBTA.

The parameter space ranges and the signal starting frequency are chosen identically for
the template banks and the simulated signals (injections) used to test the coverage of the
banks. All the approximants used are implemented in LSC Algorithm Library Simu-
lation (LALSimulation) repository. However, the models IMRphenomXPHM, IMRPh-
enomTPHM and IMRPhenomTP are not implemented in Sbank. For adding them in
the code I needed to download a copy of the software and modify the executables wave-
forms.py and tau0tau3.py accordingly. In tables below are listed the number of tem-
plates for each template bank obtained in the two mass ranges respectively. Notice that
in a first approach of the research, for the low mass template banks in frequency domain,
it was chosen to explore a larger mass range with a total mass in the range [20, 200]M⊙
and a frequency cut-off of 23 Hz. Subsequently, with new results available in literature
regarding the improvement of the detectors’s sensitivity and data analysis techniques,
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the frequency cut-off was lowered to 15 Hz for the generation of the low mass template
banks in time domain.

Time Domain Templates Banks Low mass range
q = m1/m2 ≤ 9
Mtot = m1 +m2 [20, 100]M⊙
|χ1|, |χ2| ≤ |0.99|
fcut−off 15 Hz
SEOBNRv4opt (MM=0.97) 3798 templates
IMRPhenomTP (MM=0.90) 4492 templates
IMRPhenomTP (MM=0.93) 14332 templates
IMRPhenomTP (MM=0.95) 35150 templates

Table 4.1: Characterization of low mass templates banks in time domain. Notice that
the MM is the minimal match used as threshold for the templates placement.

Time domain Templates Banks High mass range
q = m1/m2 ≤ 9
Mtot = m1 +m2 [100, 500]M⊙
|χ1|, |χ2| ≤ |0.99|
fcut−off 15 Hz
IMRPhenomTPHM (MM=0.90) 4423 templates
IMRPhenomTP (MM=0.90) 118 templates
SEOBNRv4opt (MM=0.97) 146 templates

Table 4.2: Characterization of high mass templates banks in time domain. Notice that
the MM is the minimal match used as threshold for the templates placement.

Frequency Domain Templates Banks Low mass range
m1, m2 [10, 100]M⊙
Mtot = m1 +m2 [20, 200]M⊙
|χ1|, |χ2| ≤ |0.99|
fcut−off 23 Hz
IMRPhenomPv2 (MM=0.90) 63860 templates
IMRPhenomD (MM=0.97) 3672 templates
IMRPhenomPv2 + seed IMRPhenomD
(MM=0.90)

66829 templates

SEOBNRv4ROM (MM=0.97) 3984 templates

Table 4.3: Characterization of low mass templates banks in frequency domain. Notice
that the MM is the minimal match used as threshold for the templates placement.
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Frequency domain Templates Banks High mass range
m1, m2 [50, 250]M⊙
Mtot = m1 +m2 [100, 500]M⊙
|χ1|, |χ2| ≤ |0.99|
fcut−off 15 Hz
IMRPhenomXPHM (MM=0.90) 10338 templates
SEOBNRv4ROM (MM=0.97) 132 templates

Table 4.4: Characterization of high mass templates banks in frequency domain. Notice
that the MM is the minimal match used as threshold for the templates placement.

The choise of using waveforms models including HOM in the high mass ranges
reflects the results of several studies which have shown that the omission of HOM in
searches can reduce the detection of systems with large mass ratio q = m1/m2 ≥ 4
and large total mass M = m1 +m2 > 100M⊙ [69]. Infact, for edge-on systems, espe-
cially ones with high mass ratio the HOM are an important contribution to the full GW
emission. In addition, HOM have a stronger effect in signals emitted by large total mass
sources, the amplitude of the HOM grows as the mass ratio q of the system and at high
values of total mass M the dominant modes (2,±2) can fall below the sensitive band
of GW detectors while higher m modes at high frequrncy are still observable. Their
presence was also crucial in reducing uncertainties in the mass ratio and component
spins of the recently reported unequal-mass binary mergers GW190412 (Abbott et al.
2020a) and GW190814 (Abbott et al. 2020b), the higher-order multipoles enable better
constraints of the binary inclination angle which is coupled to the source-frame mass
estimates through the luminosity distance DL, and therefore the redshift. Our purpose
is not to compare these different models but rather to understand the effect of adding
precession in a search and to quantify the expected gain in SNR recovery when using
precessing waveforms rather than aligned spin waveforms. Note that the precessing
spin banks have a roughly larger number of templates than the aligned spin banks as
expected, due to the increased degrees of freedom of the signal space. The level of
agreement between two gravitational waveforms can be ascertained by computing the
match M. A value of M = 1 implies the waveforms are in perfect agreement. The
smaller the value of M, the larger the disagreement between the two waveforms. In
the next section we will compute the effectualness of the banks using the fitting factors
distribution as figures of merit.

4.4 Template Banks Effectualness
In order to check if a template bank is able to recover an expected simulated signal,
the effectualnsess (or Fitting Factor distribution) of the bank can be computed. The
PyCBC’s tool Banksim compute the overlaps (fitting factors) M(h|g) ∈ [0, 1] for each
waveform gi in the parameter space we consider with the filter waveforms hi in the
template bank. The distribution of fitting factors allows us to understand what fraction
of the SNR we will recover for each waveform using that filter. The minimum FF is
basically a measure of the sparsity of the template coverage. The maximum mismatch,
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relative to the minimum FF, represents the maximum relative loss of SNR due to the
parameter space discretization. For every approximant model considered for the tem-
plate banks, sets of twenty thousands injections have been generated. The masses are
drawn uniformly in component masses, spins are drawn uniformly in component spin
magnitude and all the angular parameters are drawn isotropically.
Let’s start with the banksim tests for the time domain banks. In the low mass region
(table 4.1) there are four template banks, one with the AS approximant SEOBNRv4
(MM=0.97) and three with the PS approximant IMRPhenomTP, generated with three
different minimal match thresholds (0.90, 0.93 and 0.95 respectivly). The FF distribu-
tions for each bank are plotted in figure 4.1. The simulated signals are 20k injections
of the type IMRPhenomTPHM in plot a), IMRPhenomTP (in plot b) and SEOBNRv4
in plot c). The FF distributions of the PS banks (blue, green and red curves) in the
plots a) and b) show that the PS banks perform better with respect to the AS bank (pink
curve) in detecting precessing singnals, as expected. The pink curve shows a long tail
of precessing signals detected with FF smaller than 0.97, i.e. smaller than the minimum
FF used to produce the bank. This means that is lost more than 3% of SNR for those
signals. Notice that in the case of AS injections in plot c) the PS banks are able to re-
cover nearly signals with FF values near the threshold, which imply that the PS search
performs as good as the AS search.
In the high mass region (table 4.2) there are three template banks, one with AS ap-
proximants SEOBNRv4 (MM=0.97), one with the PS approximant IMRPhenomTP
(MM=0.90) and one with the PS approximant IMRPhenomTPHM (MM=0.90). Three
banksim tests are performed, with 20k injections of the type IMRPhenomTPHM in plot
a), IMRphenomTP in plot b), and SEOBNRv4 in plot c), showed in figure 4.2. In this
case the performances of the banks are midly worst. However, the plots show that the
FF distributions of the AS bank SEOBNRv4 (the green curve) has long tails of pre-
cessing signals recovered with values of the match much more lower than the PS banks
(pink and blue curves), implying an higher loss in SNR with the AS search.
The banksim tests for the template banks in frequency domain show a similar trend. In
the low masses region (table 4.3) there are four banks, two AS with the approximants
SEOBNRv4ROM and IMRPhenomD (MM = 0.97 and MM = 0.90 respectively), and
two PS with the approximant IMRPhenomPv2 (MM=0.90), one generated with an AS
bank seed generated with the approximant IMRPhenomD, and the other one generated
withoud the seed. The banksim tests are performed with 20k injections of the type IM-
RphenomPv2 shown in the plot a), and SEOBNRv4 shown in the plot c) , in figure 4.3.
The AS bank recover most of the precessing injections with FF < 0.90, reducing the
search sensitivity. Note that the seed is used for a more uniform coverage of the para-
meter space, and that’s why the PS bank IMRPhenomPv2 generated with the AS seed
has an higher number of templates with respect to the one without the seed. However,
the performance of the bank (the blue curve) is as good as the one without the seed
(the pink curve) and doesn’t significantly improve the signal recovery fraction, for this
reason it will be not used for further examinations.
In the high mass region (table 4.4) there are two banks, one AS with approximant
SEOBNRv4ROM (MM=0.97) and one PS generated with the approximant IMRPh-
enomXPHM (MM=0.90). The banksim test with injection IMRPhenomXPHM (plot
b) and SEOBNRv4ROM (plot d) in figure 4.3 show that the precessing bank recover a
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Figure 4.1: Cumulative distribution of fitting factors of the low mass template banks in
time domain.

larger number of precessing injections with FF > 0.90 wrt the AS bank. In addition,
in the case of AS injections the AS bank performs better, but the PS bank is able to
recover injections with high values of the match which imply that there insn’t a loss in
the search.

Reasuming, we obtained that the majority of precessing injections are recovered
with FF < 0.90, and then with a loss of SNR larger than 10% , if precession effects
(and HOM) are neglected in the waveforms filters. When precessing template banks are
used the tails of the fitting factors distributions are significantly reduced, which imply a
gain in SNR recovery in the search. Plotting the signal recovery fraction (the detected
injections with values of the match higher than the threshold) as function of the mass
ratio and the precessing spin parameter χp we can see that for both time domain banks
(in figure 4.4) and frequency domain banks (in figure 4.5) as the mass ratios of the
systems become larger the signal recovery fraction can become as small as 0.65 when
omitting precession and HOM, implying that ignoring these effects in a search would
reduce the detection rate, especially for high mass systems.

Note that modelling the orbital angular momentum is relevant for the computation
of the opening angle β. For the waveform models IMRPhenomXPHM/TPHM is used
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Figure 4.2: Cumulative distribution of fitting factors of the high mass template banks in
time domain.
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Figure 4.3: Cumulative distribution of fitting factors of the low mass (plots on the left)
and high mass (plots on the right) template banks in frequency domain.
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Figure 4.4: The signal recovery fraction plotted as function of mass ratio and precessing
spin for Time Domain Template Banks.

the 4PN approximation (Ref. [70], [71]):

L4PN =
η√
x

[︁
L0 + L1 x+ L2 x

2 + L3 x
3 + L4 x

4 + LSO1.5 x
3/2 + LSO2.5 x

5/2 + LSO3.5 x
7/2
]︁

(4.22)

where x = (G Mtot π fGW

c3
)2/3, η = m1 ·m2/M

2
tot is the symmetric mass ratio, La are the

orbital coefficient at a-PN order, LSO are the spin-orbit contributions and we neglect
spin-spin terms (the coefficients can be found in ref. [72],[73] ). While for the waveform
models IMRPhenomPv2 the 2PN approximation is used:

L2PN =
η√
x

[︁
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(︁2
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η
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)︁
x+

(︁27
8

− 19η

8
+
η2

24

)︁
x2
]︁

(4.23)

4.5 Preliminary results and considerations
The results in the previous section demonstrate that when including precession effects
in the waveform templates the search efficiency will increase. However, in a real search,
the SNR threshold is a function of the number of templates which depends on the size
of the parameter space. The precessing banks are roughly an order of magnitude larger
than the corresponding aligned spin banks. This increase in the number of templates
will increase the false alarm rate (background triggers generated by noise) of the search,
and therfore a signal would require an higher SNR to be detected with the same con-
fidence. In the next chapter we will assess the sensitivity of a precessing search with
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Figure 4.5: The signal recovery fraction plotted as function of the mass ratio and pre-
cessing spin for Frequency Domain Template Banks.
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Figure 4.6: Illustration of N-frame on the left and J-frame on the right.

our precessing banks in Gaussian and real noise at a constant FAR. To identify, if any,
"highly precessing" regions in the parameter space, two variables can be used: i) the
opening angle J⃗ · L⃗ = L2 + S1 · L + S2 · L = JL cos θJL which characterizes the in-
trinsic amount of precession in the system and ii) the inclination angle cos θJN between
J and the line of sightN which modulates how much precession an observer would see.
Larger mass ratio implies more precessional cycles in the detector frequency bandwith,
therby the increase in sensitivity of the precessing search as the mass ratio increase is
an expected consequence of the fact that the magnitude of L decreases as the mass ratio
increases, allowing larger opening angles of the precessing cone cos θJL. For the com-
putation of the angles cos θJN and cos θJL it’s necessary to apply a rotation of the spins
from the co-coprecessing frame (N⃗ -frame, plot on the left in figure 4.6) to the detector
frame (J⃗-frame, plot on the right in figure 4.6) [74]. Then we plot cos θJN and cos θJL
as function of the main match and show the plots for the frequency domain template
banks in figure 4.7 and for time domain template banks in figure 4.8. If we compare the
two searches, we can observe a lower number of injections but with higher values of
the match in the left sides of the plots for the PS search wrt the AS search as expected.

In general the region where (cos θJL ≈ −1) is less populated because sources with
(θJL ≈ 180◦) are considerate rare. Another reason is that for the simulatate signals
used the mass ratio is always q ≤ 9, accordingly θJL assume only a restricted number
of values and the precessing cone is narrow.

4.6 IMRPhenomTPHM vs IMRPhenomXPHM
For the generation of the template banks in high mass region we used two approx-
imants of the phenomenological models which include multipoles beyond the dom-
inant quadrupole in the precessing frame: IMRPhenomTPHM [75] in time domain
and IMRPhenomXPHM [72] in frequency domain. They are not the same waveform,
for istance they do not include the same higher order modes: IMRPhenomTPHM in-
cludes (l, |m|) = (2,2)(2,1)(3,3)(4,4)(5,5), while IMRPhenomXPHM includes (l, |m|) =
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Figure 4.7: Match plotted as a function of the orientation of the source and the precess-
ing cone for frequency domain templates banks.

Figure 4.8: Match plotted as a function of the orientation of the source and the precess-
ing cone for time domain templates banks.
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(2,2)(2,1)(3,3)(3,2)(4,4). The templates banks obtained with them have a huge differ-
ence in the number of templates and in this section we want to point out similarities
and differences between the two waveforms, althought the description of the technical
details is beyond the purpose of this section. As shown in previous studies, a precessing
waveform can be decomposed into the waveform as observed in a co-precessing frame
and a time or frequency- dependent rotation that describes the precessional dynamics
[76]. The rotation can be expressend in terms of three Euler angles (α, β, γ) between
the two frames, then the relation between the modes can be expressed as:

hPlm(t) = Dl
m,m′(α, β, γ) hCPlm′(t) (4.24)

where Dl
m,m′ are the Wigner D-matrices. Both models are based on the so called

twisting-up approximation [77], which maps non precessing signals to precessing ones
in terms of a time dependent rotation described by three Eeuler angles, and both mod-
els inherit the implementation of the next-to-next-to leading order (NNLO) effective
single-spin approximation and the double-spin multiscale analysis (MSA) approxima-
tion. The MSA system of equations is known to result in numerical instabilities when S
and L are nearly misaligned. Such instabilities results in a failure of the waveform gen-
eration. In order to help alleviate these situations, for our template banks we opted to
use the NNLO approximation implemented by default in LALSuite. For data analysis
methods based on matched filtering it’s particular convenient to use waveform model in
frequency domain, because the noise in characterized in frequency domain and allow
computationally efficient Bayesian inference analysis. However, the model constructed
in the time domain allow several improvements: the inspiral description is more accur-
ate thanks to the numerical integration of the post-Newtonian spin evolution; it’s not
used the stationary phase approximation, which is not suited for the merger and ring-
down evolution of the GW signal. The merger is improved by employing a smoother
approximation for the precessing Euler angles substituting in the uncertain plunge dy-
namic a simpler description from the MECO (minimum energy circular orbit) time to
the coalescence time; finally in the ringdown a more consistent behaviour is ensured
with BH perturbation theory by determining the Euler angles from the quasi-normal
modes frequencies. For high mass systems like GW190521 (≡ 150M⊙) with short-
lived signal these shortcomings are not negligible, indeed the authors in [75] [78] show
that the re-analysis of two high mass events GW190521 and GW170729 with IMRPh-
enomTPHM not only provide a better fit to the data than IMRPhenomXPHM, but also
shows a much more consistent behaviour when varying the options for precession ap-
proximation and final spin, renforcing the idea that a time domain treatement in GW
data analysis for high mass systems guarantees a cleaner separation between the ring-
down and the inspiral-merger regimes (this is is not possible in the frequency domain
due to the "smearing effect" of the Fourier transform).
For the further analysis proposed in this dissertation, we will use the template banks in
time domain. The choise is motivated not only for the considerations aforementioned,
but also by the necessity of the pipeline MBTA to have in input a time domain waveform
model for the template banks.
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"It has been said that astronomy
is a humbling and character-building experience.

There is perhaps no better demonstration
of the folly of human conceits

than this distant image of our tiny world.
To me, it underscores our responsibility

to deal more kindly with one another,
and to preserve and cherish the pale blue dot,

the only home we’ve ever known."
Carl Sagan, Pale blue dot: a vision of the human future in space
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Chapter 5

Searching for Precessing Binary Black
Holes Systems with MBTA

The multi-Band Template Analysis pipeline (MBTA) is a coincident, matched-filtering
based analysis pipeline that can run in a low-latency online mode and, since recent
years, in offline mode. It uses several banks of waveforms filters to cover the detect-
ors bandwidth, i.e., the templates are split across multiple frequency bands to reduce
the computational cost. It then constructs its background by making every possible
coincidence from single detector triggers over a few hours of data. The pipeline also
implements signal-based vetoes to reject instrumental transients. During O3 the MB-
TAOnline analysis contributed to trigger 42 low latency alerts with a median latency of
36 seconds. Among the latters, 34 had a False Alarm Rate below the alert threshold and
5 were retracted because of data quality analysis indicating a likely non-astrophysical
origin. The non-retracted MBTA’s GW candidates were confirmed by off-line searches.
MBTA search did not assign a significance to single detector triggers, therefore during
O3 submitted only coincidences to GraceDB (Gravitational Candidate Event Database).

5.1 The Multi-Band Template Analysis pipeline
In order to perform a precessing search we need to understand the impact of signal-
based vetoes that real GW searches employ. The goal of these vetoes is to discriminate
between triggers produced by real GW signals and spurious triggers, which have in-
strumental and enviromental origin, known as glitches. The latters, commonly generate
high SNR for matched filtering output, and it is possible to confuse them with GW
triggers, primarly for very short signals of high mass systems. Correctly estimating the
increase in sensitivity with a precessing search require to analyze the precessing banks
in gaussian and in real noise and measure the efficiency in background at a constant
False alarm rate (FAR). MBTA is one of the numerous search pipelines of the LIGO-
Virgo Collaboration developed for GW data analysis. In particular, MBTA has been
designed to run in low-latency, online mode, to search for signals involving neutron
stars and black holes with the aim of rapidly identify GW candidate events suitable for
electromagnetic follow-up observations with a latency of few seconds during the detect-
ors data acquisition. However, in recent years MBTA has been optimized to run also
in off-line mode, improving the noise rejection tools and consequently the detection
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efficiency. The pipeline performs a coincident analysis, each detector in the network is
analyzed separately before the results are combined (passing phase-amplitude and time
coincidence tests) to identify coincident events, and it is able to do triggers clustering,
false alarm rate estimation and trigger submission to GraceDB. It uses the IO feature of
the Frame format and Virgo DAQ tools. For the description of the pipeline’s archtecture
the following references [Mbta User’s guide] [79] [80] [81] [82] will be mainly used.
The pipeline includes four main functions:

• MbtaRT: search for triggers in the data stream provided by a single interfero-
meter. A threshold equal to 5 is commonly used. It’s also able to do triggers
clustering and work in combination with MbClustering;

• MbCoinc: search for the coincidence between triggers from different interfero-
meters and estimate the significance of the candidates computing the FAR;

• MbClustering: the triggers provided by the previous coincidence steps are passed
to this script to cluster in time the triggers;

• MbAlert: select potential triggers for EM follow-up. The candidate events must
have passed some automated data quality checks, but they may later be retracted.

Both the on-line and off-line implementions of the pipeline run combining these ap-
plications together. In the offline version the main difference concern the adaptation
to run on data with the addition of simulated signals and several optimizations for the
detection efficiency. The update of the PSD is done on a longer period with respect to
the online version, and the filtering step is run in two times, one in parallel on the full
preeprocessed data and one with injections for data quality prescriptions. The FAR is
estimated by using the full data taking period of interest and the relation between the
FAR and the SNR is determined by the run without the injections. The latter is then
used to associate a FAR to coincident triggers. In the next sections the main functions
used by MBTA will be described in more detail.

5.1.1 Data pre-processing
Before processing the data through matched filtering, two pre-pocessing steps are ap-
plied: decimation and gating. The former re-samples the data at 4096 Hz after a suit-
able low-pass filtering in the frequency domain, the goal of the latter is to remove short
stretches of bad data whatever a veto-flag is active (CAT1 for unknown issues, CAT2
for known instrumental or enviromental noises). The istantaneous sensitivity is assessed
from the binary neutron stars range mentioned in section 2.1.3, computed from an es-
timate of a current PSD; the gating procedure is activated whenever the range value
gets below a threshold. This method is potentially unsafe since it is based on a local
estimate of the BNS range and gating could be triggered by loud astrophysical signals.
The parameter space is split in 4 specific template bank regions, matching the BNS,
NSBH, BBH and high mass BBH systems. To avoid to miss strong and short signals
from high mass nearby BBH, the high mass part of the parameter space is analysed
without applying the gating.
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5.1.2 MBTA Run Time: Filtering the data
MBTA Run Time (MbtaRT) is the code that searches for GW candidate events in the
detector data. It relies on the matched filter technique, as such the data are cross correl-
ated with template banks describing a predicted signal for a certain parameter space. To
generate the template waveforms MBTA uses the LSC Algorithm Library (LAL). The
parameters (mass-spin) are organized in banks (template banks) and are generated in
advance with the PyCBC’s stochastic method Sbank, then the waveforms are loated in
MBTA. The template bank is constructed using a reference noise power spectrum taken
at a time when the detectors are performing well. The main characteristic of MBTA is
that it splits the matched filter across two frequency bands, one called high frequency
(HF), the other one called low frequency band (LF) used for low mass systems. This
results in two benefits: i) the phase of the signal is tracked over fewer cycles, which
means less templates are needed to cover the same parameter space and ii) a reduced
sampling rate can be used for the lower frequency band, reducing the computational cost
of the fast Fourier transforms involved in the filtering. The full band signal to-noise ra-
tio (SNR) is then computed by coherently combining the matched filtering outputs from
the two frequency bands:

S(t,M) =

∫︂ fmax

fmin

h(f)T (M, f)df =

∫︂ fc

fmin

h(f)TLF (M, f)df +

∫︂ fmax

fc

h(f)THF (M, f)df

(5.1)

Where h(f) is the detector signal in frequency domain, T (M, f) is the filter generated
in frequency domain with set of parameters M , fmin and fmax are the minimum and
maximum frequency of the full band; fc is the separation frequency which divides the
two bands and is chosen with the criterion to obtain an SNR roughly equally shared
between the two bands, depending on the detector and on the mass ratio of the estimated
sources. As the MBTA analysis is divided over two frequency bands, it needs both a
bank of templates covering the full frequency band called virtual templates (VT), and
banks of templates used for matched filtering in the HF and LF bands respectively,
called real templates (RT). VT are not used to filter the data but their parameters are
associated to the triggers on the MbtaRT analysis output. The algorithm performs a
coherent combination of the separated filter signals. Both the phase and quadrature
matched filtering time series are computed for each band:

(h, T )P (t) = 4

∫︂
h(t)T ∗(f)

Sn(f)
e2iπftdf (5.2)

(h, T )Q(t) = 4

∫︂
h(t)T ∗(f)

Sn(f)
e2iπft−π/2df

These time series are translated and rotated to be aligned in time and phase, and coher-
ently summed as follow:

(h, V T )P (t) = (h,RTLF )P (t) + (h,RTHF )P (t+ δt) cos(δϕ)− (h,RTHF )Q(t+ δt) sin(δϕ)
(5.3)

(h, V T )Q(t) = (h,RTLF )Q(t) + (h,RTHF )P (t+ δt) sin(δϕ) + (h,RTHF )Q(t+ δt) cos(δϕ)
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The time and phase offesets δt and δϕ correspond to the time it takes for the signal to
chirp from the low frequency cut-off of the low frequency band to the low frequency
cut-off of the high frequency band and its phase at that point, but in practice depend on
the relationship between the virtual template and its associated real templates. Each VT
is built in the time domain and matched filtered with its associated RT in each frequency
band. This association is done by searching for the best match among real templates
with parameters close to the corrsponding virtual template:

M(V T,RT ) = max(tc,ϕ0) =
(V T,RT )√︁

(V T, V T )(RT,RT )
(5.4)

and as usual M = 1 for the match of two identical signals. In figures 5.1 qnd 5.2 the
signal recombination over the frequency bands and the output of the matched filtering
are shown respectively. The matched filtering in LF band is performed at a down-sample
rate shortening the FFT, to recombine the signal an up-sampling is done in time domain
using a quadratic interpolation. The association among each VT and all the RT in each
band is performed during the inizialitation phase and the RT with the highest match is
chosen to be associated to the VT.

Figure 5.1: Example of matched filtering outputs of a pure signal without noise. Top
plots: the raw low frequency band output (blue), the interpolated low frequency band
output (purple) and the high frequency band output (green). Bottom plot: the usual
single band matched filtered output compared to the recombined MBTA matched filter
output. The left plots are for the template in phase, right for in quadrature.
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Figure 5.2: Signal output (quadratic some of the in-phase and quadrature outputs) for
each band, the recombined signal (red) and the usual single band analysis (black).

5.1.3 SNR computation
In each frequency band the matched filter output is examined. The SNR time series
(ρi(t)) for each frequency band is computed as follow:

SNRi(t) =

√︂
(h,RTi)2P (t) + (h,RTi)2Q(t)

(RTi, RTi)
i = 1, Nbands (5.5)

where RTi is the real template associated with the VT on the band i. The total SNR of
the full band will be:

SNR(t) =

√︂
(h, V T )2P (t) + (h, V T )2Q(t)

(V T, V T )
(5.6)

For each VT the average fraction αi of the SNR2 expected in a band i is estimated
as αi = (RTi, RTi)/(V T, V T ). The individual threshold for the frequency band i is
computed as the global threshold multiplied by the square root of the fraction αi. In
figure 5.3. the sharing of SNR among the band is shown for a two bands analysis. The
total SNR threshold is set to 5, in this case the SNR2 is equally divided over the two
band then α1 = α2 = 1/2 and the band threshold is 5/

√
2. In figure is also shown that

the SNR between the two bands is much more asymmetric if the triggers are produced
by background noises than the one produced by simulated signals.
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Figure 5.3: Example of SNR sharing between the low frequency and high frequency
band for single detector triggers. The combined SNR cut was 5. The blue dots are
for injections which usually have roughly the same SNR in each band, while for noise
triggers (red dots), the SNR sharing between bands could be much more asymmetric.

5.1.4 The χ2 test
For each unit stretch of processed data the single detector ranking statistic threshold
ρmin is selected, and a trigger is recorded if ρ ≥ ρmin. However, high energy matched
filtering output can be driven by powerful glitches. To mitigate this problem a basic
acceptance criterion is applied. For two frequency bands a 2-degree of freedom χ2

observable is designed to compare the distribution of SNR between the two bands:

χ2 =
i=1∑︂

Nbands

[(h,RTi)P − (h, V T )Pαi cos(ϕ0 + δϕi−1)]
2+ (5.7)

i=1∑︂
Nbands

[(h,RTi)Q − (h, V T )Qαi sin(ϕ0 + δϕi−1)]
2

where δϕi..(Nbands−1) are the phase shifts of the signal at the frequency separation between
the bands with δϕ0. If we consider the signal as a sum of a waveform plus Gaussian
noise, it can be shown that the equation 5.7 follows a χ2-probability distribution with
an expected value equal to 2(Nbands− 1). Due to the discretness of the parameter space
(and approximations of post-Newtonian expansion), the match between the templates
and the expected signal is not perfect and this make the 5.7 a non-central distribution
with a non centrality parameter B · SNR2, where B depends on the mismatch and on
the number of degree of freedom. In MBTA the cut on χ2 is chosen such that:

χ2 < A(2 +B · SNR2) (5.8)

A and B have been computed in an empirical way and set to 3 and 0.025 respectively.
For more details on the SNR computation and consistency test see references [83] [84]
[85] [86]. The output of the matched filter if the input signal matches perfectly a tem-
plate is a narrow peak. However, the simulated signals are only an approximation of the
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expected GW signature, then the filter output will be broader but still gathered around
the peak. In case of triggers produced by glitches the outpus is expected to present
a much wider distribution and multiple maximums. This trend can be used to better
discriminate signals from glitches.

During the observing run O3 another approach was adopted which is a variant of
the autocorrelation-based least-squares test described in [87], a reweighted SNR ρrw is
defined:

ρrw =

{︃
ρrw = ρ ξ2PQ ≤ 1

ρrw = ρ
(︁A+(ξ2PQ)α

A+1

)︁−1/β
ξ2PQ > 1

(5.9)

with ξ2PQ a discretized version of:

ξ2PQ =
1

2∆t

∫︂ t0+∆t/2

t0−∆t/2

|
(︃
ρP (t)
ρQ(t)

)︃
− ρR(ϕ)

(︃
AP (t-t0)
AQ(t-t0)

)︃
|2dt (5.10)

where ρ and ϕ are the modulus and phase of the complex SNR of the trigger recorded
at time t0, R is the rotation matrix associated to ϕ, ρP and ρQ are the matched filter
outputs with the in-phase and in-quadrature templates respectively, AP and AQ are
the autocorrelations of the templates with its in-phase and in-quadrature avatars, with
normalized maximum at t = t0. Parameters are empirically chosen A = 10, α = 5,
β = 8. The glitches can still produce loud triggers which survive to all the applied
cuts and vetoes, however when detectors show evidence for poor data quality another
quantity ER is computed, sensitive to an excess in the rate of triggers survived once the
χ2 cut is applied and the ρrw is considered. In order to penalize those noise triggers a
new ranking statistic is defined that takes into account ER:

ρrw,ER
=

{︃
ρrw,ER

= ρrw ER ≤ 0.3
ρrw,ER

= ρrw[1− A(ER − 0.3)α] ER > 0.3
(5.11)

where A = 1 and α = 2. Note that the statistic ρrw,ER
is not applied in Gaussian noise

analysis.

5.1.5 Coincidences
Single detector triggers that pass the χ2 test are checked for coincidences across detect-
ors by the MbCoinc process. Candidate events are defined as time coincidences between
single detectors triggers found with the same template, if exact match is asked, or trig-
gers from two detectors if their time and mass parameters match within expected uncer-
tainties. The time coincidence criterion applied is to allow the maximum time delays
(since GWs travels at speed of light) ∆tHL = 15 ms and ∆tH1V 1 = ∆tL1V 1 = 40 ms,
accounting for both the time of flight of the signal from one detector to another and for
the experimental uncertainty in the arrival time measurement. MBTA can also find triple
detector coincidences, identified as a pair of H1L1 and H1V1 coincidences sharing the
same H1 trigger. Searching for triggers from multiple detectors not only significantly
reduces the background noise, but also provides information to improve the accuracy
of the sky localization reconstruction of the GW sources. Triggers generated by astro-
physical events are expected to show correlations across detectors not only between the
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arrival times but also the phase and amplitude of the signal. With the time differences,
phase differences, and relative amplitudes of the detectors (labeled as i,j,k) are built the
probabilities P∆tij , P∆ϕij , PRAij

which quantify how likely the measured parameters
are for a population of sources and are added into the quadratic sum of the individual
ranking statistics when computing the combined ranking statistic for double or triple
coincidences:

ρ2RS,ij = ρ2rw,ER,i
+ ρ2rw,ER,j

+ 2 ln(P∆tijP∆ϕijPRAij
) (5.12)

ρ2RS,ijk = ρ2RS,ij + ρ2RS,ik − ρ2rw,ER i

5.1.6 Clustering the triggers
Finally, a clustering across the template banks is performed to group coincidences that
are close in time and therefore likely to originate from the same event. A single event (a
noise trigger or a real GW signal) can be strong enough to involve more than one tem-
plate, hence most of the triggers produced by the matched filtering separated in time
less than a minimum gap are gathered in time clusters by the algorithm MbClustering,
applied after the coincidence search step. The clustering algorithm is based only on
the trigger timing, running all over the parameters space, independently of the masses
or spin values of the triggers. The clustering procedure reduces the number of candid-
ates, making each of them more significant. For each cluster of triggers only the event
with the highest ranking statistic is chosen and significant triggers can be submitted to
GraceDB by the MbAlert process.

5.1.7 False alarms rate estimation
Coincidences are assesed by determining their false alarm rate (FAR), i.e. the rate of
coincidences from noise triggers with ranking statistics as high or higher than that of the
considered concidence. The FAR computation is done by assuming that the detectors
are independent, producing uncorrelated triggers with stationary trigger rates. A sample
of single detectors triggers is built using the last 24 hours of data for the online search
and about 6 days for the offline runs. It’s computation require two main steps: the first
one is to determine an initial FAR for each single search (a given region and a given
type of double or triple coincidence) by building a background model using random co-
incidences of single detectors triggers; the second step is to account for these multiple
searches running in parallel, to provide the final FAR relative to the overall coincidence
time by adding to the previously computed FAR trial factors. Starting with single de-
tectors triggers, which are largely dominated by noise, fake coincidences are built by
making all possible combinations with identical template from different detectors. To
get the cRS for a fake coincidence the parameter consistency checks are applied using
the single trigger parameters for the phase and amplitude and a random value, within
the allowed range, for the time of flight. Then, the FAR for double coincidences with a
given cRS is computed by multiplying the single detector trigger rates by the probability
to have random fake coincidences with that cRS. If we define the single detector trigger
rate Ri, measured as the ratio of the number of triggers above a chosen threshold over
the time period of the search R = Ni

Ti
, then the probabilities of random coincidences
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between two (double coincidence rate) and three detectors (triple coincidence rate) are
Rij = RiRjdtij andRijk = RiRjdtijRkdtik respectively, where dtij is the time window
allowed for the coincidences. These probabilities must be multiplied with the factors
Mij

Ni·Nj
for double coincidences and Mij

Ni·Nj ·Nk
for triples coincidences, where Mij is the

number of pairs having at least the given cRS, and NiNj is the combinations of triggers
independently of their arrival time but coming from the same template. The FAR can
be computed as:

FARdouble = Rij
Mij

NiNj

=
Mijdtij
TiTj

(5.13)

FARtriples = Rijk
Mij

NiNjNk

=
Mijdtijdtik
TiTjTk

The larger are the time intervals the lower will be the minimum estimable FAR. This
FAR estimation is local and enlarging the time intervals the computation start to be
less local but more accurate. Within a region HL, HV, LV and HLV events are not
always possible, due to insensitive orientation of the antenna patterns of the detectors.
To account for this effect the value of the FAR is divided by trial factors κcoinc that
capture the relative searched volume of each type of coincidence. They are estimated
using an astrophysical source population simulation and counting the number of sources
expected to be detected as different coincidence types. The typical values used for
κcoinc are 0.909 , 0.002 , 0.007 for HL, HV, LV, and 0.083 for HLV respectively. For the
searches running on the three regions BNS, BBH and NSBH a trial factor κregion = 1/3
is applied. The fourth region that looks for high mass BBH events is ignored since it
produces only very significant events, given its higher threshold. The inverse false alarm
rate (IFAR) of a cluster is computed from the FAR for the particular type of coincidence
in a specific region, according to:

IFAR =
κregion κcoinc

κcluster FAR(ρRS)
(5.14)

where the FAR obtained before clustering is scaled by the factor κcluster equal to the
average number of clustered events divided by the number of events before clustering.
This factor was estimated to be 0.59 for BNS and 0.44 for BBH and NSBH for the
online configuration. True astrophysical events are expected to have high values of the
IFAR.

5.2 A search for BBH with precessing-spins
In this chapter we will study the effect of introducing templates banks with waveforms
including precession (and higher order modes) in a real GW search, simulating a search
running Monte Carlo tests with the MBTA pipeline. The performances comparison
between a search for detecting BBH simulated signals with aligned-spin (AS) and
precessing-spin (PS) tempate banks is the content of this chapter. The target sources
are divided in two parameters space as discussed in the last chapter. In particular, the
high mass region with Mtot = [100 − 500]M⊙ will be analized with the PS bank IM-
RPhenomTPHM including 4423 templates and the AS bank SEOBNRv4 including 146
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Figure 5.4: Template banks with the total mass versus mass ratio as function of the
duration in seconds of the waveforms. Top panel high mass templates banks in time
domain, bottom panel low mass template banks in time domain.

templates. It can be noticed that the PS bank contains more templates than the AS bank,
this means that the growth in efficiency expected using a PS bank has to deal with a lar-
ger number of false alarms. The low mass region with Mtot = [20 − 100]M⊙ will be
analized with the PS bank IMRPhenomTP with 4492 templates and the AS bank SEOB-
NRv4 with 3798 templates. In figure 5.4 are shown the template banks plots with the
total mass versus mass ratio as function of the duration in seconds of the waveforms.
The injection sets parameters used for the simulations are listed in the table below.
Each set contains 10k waveforms generated with the approximant IMRPhenomTPHM
with a low frequency cut-off of 15 Hz, uniform distributions in masses and distance
(200 Mpc− 2 Gpc) and spin magnitude up to |0.99|. In figure 5.5 are shown the chirp
mass and the total mass distributions versus the mass ratio plots for the low mass and
high mass injections. To obtain statistically significant results analyzing short period of
data, the injections are separated at an interval of about 15 s.
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Figure 5.5: Chirp mass and total mass distributions versus the mass ratio plots for the
high mass (top panel) and low mass injections (bottom panel).

Simulated population parameters distributions
Spin magnitude |χi| (0, 0.99)
Cosine of sky location (polar) cosθ (−1, 1)
Cosine of inclination cosι (0, 1)
Polarization angle Ψ (0, 2 π)
Sky location (azimuth) ϕ (0, 2 π)
Distance D 200Mpc−2 Gpc

Table 5.1: Injections properties.

In the next sections we will analyze the results for searching single detectors triggers
in Gaussian noise, double detectors coincidences in Gaussian noise and double detectors
coincidences in a chunk of O3 data. This analysis considers only LIGO Hanford (H)
and Livingstone (L) detectors and only one-band MBTA search have been performed.
The pipeline’s version used for the simulations is v5r27.

5.2.1 Monte Carlo test running MBTA
When a run is submitted, the configuration file contains all the components needed for
the analysis:

• the input data chunk with the dector noise that have to be analyzed (gaussian
noise or real data);
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• the injections data file;

• the templates bank data file;

When the run is finished all the output files with filtered data which refers to the same
time chunk and the same injection set are merged into one file containing the triggers
found in time coincidence for H1 and L1 detectors. In the next sections, for comparing
the results of the two analysis (aligned-spin and precessing-spin) three main aspects
will be taken into account: the efficiency of the search, that is the number of injections
found with a proposed cut in FAR; the gain in the combined ranking statistic of the
recovered injections; and the performance in terms of the Inverse FAR (IFAR), i.e. the
significance associated to the coincident events found by MBTA.

5.2.2 Single detector triggers in Gaussian Noise
A preliminary Monte Carlo test has been performed searching for single detector (L)
triggers. The first step is to run the template banks in Gaussian noise without injections
for the computation of the FAR associated to the noise triggers events. The period of
time analyzed is T = 210.000 s and the minimum FAR reached is 2.5 ·10−6 Hz (therby
the maximum IFAR is 106 s). The trigger rates, i.e. the number of events over the time
analized TR = Nev

T
for high mass banks and low mass template banks are reported in

tables 5.1 and 5.2 respectively. From the plots of the FAR in figure 5.6 we can observe
that the trigger rates are higher for the PS banks as expected, since an higher number
of templates pick-up extra noise. After the FAR compitation step, the templates banks
are analized in Gaussian noise adding the set of ten thousands injections. Events in
the data file are searched in a time window of 1 s around the gps time of an injection.
Plotting the IFAR of the detected injections in figure 5.7 it is possible to observe that
the performances of the two search PS and AS are comparable, i.e. the PS and AS
banks recover the same number of precessing injections for various cut in FAR and
censequently there is no gain in the efficiency in both high mass and low mass regions
of the parameters space. Investigating on the sets of low mass and high injections
used for the tests, it was found that most of them have low values of the precessing
parameter χp and therfore with weak precession, for this reason new injections have
been generated with higher values of the χp (see figure 5.8) which will be used in the
coincidence tests described in the next sections.

81



Figure 5.6: FAR of the single noise-triggers for high mass (top panel) and low mass
(bottom panel) template banks in Gaussian noise.

High mass banks FAR [Hz] Trigger rate
IMRPhenomTPHM (4423) 5 Hz 1 Ev ∼ 0.2 s
SEOBNRv4 (146) 1, 5 · 10−1 Hz 1 Ev ∼ 6.6 s

Table 5.2: Single detector (L) trigger rates for high mass templates banks in Gaussian
noise.
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Low mass banks FAR [Hz] Trigger rate
IMRPhenomTP (4882) 30 Hz 1 Ev ∼ 0.03 s
SEOBNRv4 (3798) 15 Hz 1 Ev ∼ 0.07 s

Table 5.3: Single detector (L) trigger rates for low mass templates banks in Gaussian
noise.

Figure 5.7: IFAR of the detected injections for high mass (top panel) and low mass
(bottom panel) template banks in Gaussian noise.
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Figure 5.8: Distributions of the precessing spin parameter (0 < χp < 1) of the low
precessing injections (top panel) and high precessing injections (bottom panel) respect-
ively.

5.2.3 Coincident detectors triggers in Gaussian Noise
The first step is to run MBTA with template banks in Gaussian noise without injections
for the computation of the FAR for the noise events. For two detectors (HL) coin-
cidences the period of time analyzed is again T = 210.000 s and the minimum FAR
reached is about 10−13 Hz (computed with the formula for FARdouble in eq. 5.13). A
cut in FAR < 10−7 Hz for the comparison of the detected injections from the two
analysis is chosen, which is a common threshold used to send out significant GW alerts
for CBC sources. The plots of the FAR in figures 5.9 and 5.10 show again that the
precessing banks trigger more noise events because they have more templates, however
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the SNR of the events are not higher than 10 (a different trend will be shown for noise
events in real data in the next section). In tables 5.3 and 5.4 are reported the trigger
rates.

Figure 5.9: FAR of the coincidence (HL) noise-triggers for high mass template banks
in Gaussian noise.
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Figure 5.10: FAR of the coincidence (HL) noise-triggers for low mass template banks
in Gaussian noise.

High mass banks FAR [Hz] Trigger rate
IMRPhenomTPHM (4423) 0, 7 · 10−3 Hz 1 Ev ∼ 1, 4 · 103 s
SEOBNRv4 (146) 2, 5 · 10−6 Hz 1 Ev ∼ 0.4 · 106 s

Table 5.4: Coincidence detectors (HL) trigger rates for high mass templates banks in
Gaussian noise.

Low mass banks FAR [Hz] Trigger rate
IMRPhenomTP (4882) 5, 7 · 10−3 Hz 1 Ev∼ 0, 2 · 103 s
SEOBNRv4 (3798) 2, 6 · 10−3 Hz 1 Ev ∼ 0.3 · 103 s

Table 5.5: Coincidence detectors (HL) trigger rates for low mass templates banks in
Gaussian noise.

In the high mass region from the plot of the IFAR in figure 5.11 we can observe
that the total number of the found weak precessing injections (strong precessing) with
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the cut in FAR < 10−7 Hz proposed is 8515 (8821) for IMRPhenomTPHM bank
and 8091 (8474) for SEOBNRv4 bank, over a total of 10k precessing injections. An
injection is considered found if a coincidence event is present within ±1 s the injec-
tion’s GPS time. The PS bank is more efficient for IFAR ≤ 1010 s values, after which
the AS bank starts to recover more weak precessing injections (figure 5.11 top panel).
The switch is not present in the plot of IFAR for the detected injections with strong
precession, where the PS bank in high mass region performs better (figure 5.11 bottom
panel).

Figure 5.11: IFAR of the "weak" precessing detected injections (top panel) and of the
"strong" precessing detected injection (bottom panel) for high mass template banks in
Gaussian noise.

If we plot the relative difference of the combined ranking statistics for the two
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searches cRSprec−cRSnon−prec

cRSnon−prec
we expect that this difference is positive if a precessing-

spin search recovers higher SNR (we will refer as common injections the simulated
signals found by both PS and AS banks). In figure 5.12 are plotted the relative dif-
ference cRS as function of the the precessing spin (0 < χp < 1) and effective spin
parameter (−1 < χeff < 1) for weak and strong precessing injections respectively, and
we can observe that the precessing-spin bank gains in SNR power of about 10% with
respect to the aligned-spin bank with the cut in FAR proposed.

Figure 5.12: Relative difference of the cRS as function of the precessing spin parameter
(left panel) and the effective spin parameter (right panel) for the common injections
detected by the high mass template banks in Gaussian noise. Top panel "weak" pre-
cessing injections, bottom panel "strong" precessing injections. The color bar represent
the number of injections in a pixel.

In low mass region from the plots of IFAR in figure 5.13 we observe that the total
number of the found injections (stronger precessing) with the same cut in FAR is 5638
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(5788) for IMRPhenomTP bank and 5564 (5729) for SEOBNRv4 bank. The PS bank
recover more precessing injections but this time the switch in efficiency starts for lower
values of the IFAR > 108 s and in this case is present also in the plot for stronger
precessing injections. The PS bank is less efficient and endeed in the plot of the relative
difference cRS in figure 5.14 the gain in SNR power is only about of 2% with the same
cut in FAR used in the high mass region.

Figure 5.13: IFAR of the "weak" precessing detected injections (top panel) and of the
"strong" precessing detected injection (bottom panel) for low mass template banks in
Gaussian noise.
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Figure 5.14: Relative difference of the cRS as function of the precessing spin parameter
(left panel) and the effective spin parameter (right panel) for the common injections
detected by the low mass template banks in Gaussian noise. Top panel "weak" precess-
ing injections, bottom panel "strong" precessing injections. The color bar represent the
number of injections in a pixel.

These results are expected because precessing spin template banks shows higher
fitting factors with respect to the aligned-spin banks in the banksim tests described in the
last chapter, however should be considered as an average effect, because it is possible
that some specific injections may have an higher match with a non-precessing template.
The adaptive process to compute PSD used to perform the matched filter can make
some differences between the two analysis low masses and high masses, because the
FFT lenght involved are related to the templates duration and can affects the computed
SNR, producing fluctuation on found/missed injections close to the SNR threshold.
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5.2.4 Coincident detectors triggers in O3 data
As done previously, the first step is to check how noisy are the banks running MBTA
with templates banks and a chunk of O3 data (GPS start time 1361995000) without
injections. The minimum FAR reached and the cut in FAR chosen are the same of the
ones for the search of coincidences in Gaussian noise. In figures 5.15 and 5.16 are
plotted the FAR distributions of coincident noise-triggers in O3 data. Notice that in this
case the SNR of the events reach higher values with respect to the gaussian triggers.
After this check, the template banks are analyzed in real data adding the injections set.

From the plot of the IFAR of the detected injections for high mass banks in figure
5.17, we can observe that with the cut FAR < 10−7 Hz the total number of weak
precessing injections (strong precessing) found by the PS bank is 3224 (3481) while the
ones found by the AS bank is 3958 (4430), that is the performance of SEOBNRv4 bank
is better and in addition is more efficient in recovering strong precessing injections with
respect to the IMRPhenomTPHM bank. The common injections recovered is reduced
of about 30% and this effect is reflected in the plot of the relative difference of the
combined ranking statistics in figure 5.19, the precessing bank gains about 20% in SNR
power.

91



Figure 5.15: FAR of the coincidence (HL) noise-triggers for high mass template banks
in O3 data.
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Figure 5.16: FAR of the coincidence (HL) noise-triggers for low mass template banks
in O3 data.
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Figure 5.17: IFAR of the detected injections for high mass template banks in O3 data.
Top panel weak precessing injections, bottom panel strong precessing injections.

In low mass region the situation change and from the plots of the IFAR of the detec-
ted injections by the low mass banks in figure 5.18, we can obserbe that with the same
cut in FAR the total number of found weak precessing injections (strong precessing) by
the PS bank is 3850 (3986) while the ones found by the AS bank is 3643 (3677), that is
the bank IMRPhenomTP is more efficient. In the plots of the cRS in figure 5.20 we can
observe that there is a gain of about 5% in SNR power when recovering weak precessing
injections and a gain of about 7% when recovering strong precessing injections.
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Figure 5.18: IFAR of the detected injections for low mass template banks in O3 data.
Top panel weak precessing injections, bottom panel strong precessing injections.
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Figure 5.19: Relative difference of the cRS as function of the precessing spin parameter
(left panel) and the effective spin parameter (right panel) for the common injections
detected by the high mass template banks in O3 data. Top panel "weak" precessing
injections, bottom panel "strong" precessing injections. The color bar represent the
number of injections in a pixel.

96



Figure 5.20: Relative difference of the cRS as function of the precessing spin parameter
(left panel) and the effective spin parameter (right panel) for the common injections
detected by the low mass template banks in O3 data. Top panel weak precessing injec-
tions, bottom panel strong precessing injections. The color bar represent the number of
the injections in a pixel.

We investigate on the missed injections by the two searches and made the plots of
the chirp mass and of the precessing parameter χp versus the effective distance, being
the effective distance in a double concidence search the minimum distance between
the injections recovered in the two detectors data (HL). The injections distribution is
uniform in distance in the range [200 Mpc, 2 Gpc]. The plots for the missed weak
(strong) precessing injections by the high mass template banks in figure 5.21 (5.22)
show that most of the lost injections by both banks overlap all over the space, but in
general the IMRPhenomTPHM bank looses more injections also for high values of
χp. Fluctuations in missed injections can be associated to random association of noise
triggers occurred at the injection gps time.While the plots for the missed weak (strong)
precessing injections by the low mass template banks in figure 5.23 (5.24) show that in
this case the performance of the two searches is comparable.
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Figure 5.21: Chirp mass (top panel) and precessing parameter χp (bottom panel) versus
the effective distance of the weak precessing injections missed by the high mass tem-
plate banks in O3 data.
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Figure 5.22: Chirp mass (top panel) and precessing parameter χp (bottom panel) versus
the effective distance of the strong precessing injections missed by the high mass tem-
plate banks in O3 data.
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Figure 5.23: Chirp mass (top panel) and precessing parameter χp (bottom panel) versus
the effective distance of the weak precessing injections missed by the low mass template
banks in O3 data.
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Figure 5.24: Chirp mass (top panel) and precessing parameter χp (bottom panel) versus
the effective distance of the strong precessing injections missed by the low mass tem-
plate banks in O3 data.

5.2.5 Search Sensitivity estimations with fixed false-alarm rates
As we have discussed in the previous section, the precessing spin search presents a
tiny gain in the recovered SNR than the aligned-spin one for the common detected
injections. However, in high mass region the higher number of noise triggers of the
IMRPhenomTPHM bank (due to the larger number of templates) with respect to the
SEOBNRv4 bank, is not compensated by the gain on the recovered SNR. In low mass
region the two analysis performances appear to be similar but there is an advantage in
using precessing templates for values of the IFAR limits < 107 with a gain on the re-
covered SNR of about 5% (7% in case of strong precessing injections), while for higher
values of the IFAR limits the aligned-spin bank is more efficient. For the comparison of
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the relative search sensitivity of the two analysis, we plot the mass ratio (q) versus χp
of the detected injections by the precessing-spin bank divided by the ones detected by
the aligned spin bank; we expect values larger than the unity when the precessing-spin
search is more efficient. In figure 5.25 we show the plots of the relative search sensitivy
for high mass templates banks, in figure 5.26 the ones for low mass template banks.
The goodness of the precessing-spin search is more evident in low mass region, where
there are values > 1 almost all over the parameter space. We can conclude that a search
with precessing-spin template banks can slighlty improve the sensitivity search of the
pipeline MBTA for the detection of gravitational wave signals emitted by precessing-
spin binary black holes systems with masses in the range [20, 100]M⊙.

Figure 5.25: Relative search sensitivity of the high mass templates banks in fuction
of the mass ratio versus the precessing-spin parameter of the found injections by the
two analysis. Top panel weak precessing injections, bottom panel strong precessing
injections. The numbers are the relative efficiencies.
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Figure 5.26: Relative search sensitivity of the low mass templates banks in fuction
of the mass ratio versus the precessing-spin parameter of the found injections by the
two analysis. Top panel weak precessing injections, bottom panel strong precessing
injections. The numbers are the relative efficiencies.

5.3 Conclusions and future prospects
In this dissertation a search for gravitational wave signals emitted by Binary Black
Holes with precessing-spin have been proposed, with the aim of improving the sensit-
ivy search of the pipeline MBTA.
The first part of this work is dedicated to the generation of the templates banks used
as filters in the matched filter technique. The target sources have been explored in
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two parameters space: a low mass region, where BBH have a total mass in the range
[20, 100 ]M⊙; and an high mass region where the BBH have a total mass in the range
[100, 500 ]M⊙. Both aligned-spin and precessing-spin templates have been gener-
ated, employing the effective-one-body models SEOBNRv4 for the aligned-spin wave-
forms and the phenomenological models IMRPhenom (in time domain and in frequency
domain) for the precessing-spin waveforms. For the construction of the banks the
PyCBC’s tool Sbank has been used, being the latter a stochastic placement algorithm
for generic spin-oriented template banks which uses the sky-maxed SNR statistic for the
computation of the match. Then the effectualness of the template banks have been com-
puted, i.e. their capability to recover injected signals. For the latter test the PyCBC’s
tool Banksim has been used. From these preliminary studies it is found, as expected,
that the precessing-spin banks have a larger number of templates, since modelling the
waveforms with precession effects requires additional parameters than the aligned-spin
ones, and that the precessing-spin banks recover precessing signals with higher values
of the fitting factors with respect to the aligned-spin ones. The fitting factors distribu-
tions plots show that employing precessing-spin wavefroms as filters in a GW search
may generally improve the detection efficiency.
However, the banksim test doesn’t includes noise transients (glitches) which affect the
output data of GW detectors, for this reason the second part of this work focused on
studying the implications of adding precessing template banks in a real GW search,
analyzing the banks in Gaussian noise first and in a data file of O3 later, performing
Monte Carlo tests with the pipeline MBTA. The purposes of the analysis were to check
the capability of MBTA to detect precessing simulated GW signals and discriminate
them from glitches in the data; to investigate the expected gain in SNR power when
using precessing-spin filters compared to aligned-spin ones in a search; to measure the
increase of the background false-alarms incurred by filtering the data with more tem-
plates.
For the comparison of the two searches (precessing and aligned) three figures of merit
have been used: the efficiency of the search, that is the number of injections found with
a cut in FAR < 10−7 (currently used to asses the significance of GW candidate events
for public alerts), the gain in the combined ranking statistic of the common recovered
injections, and the performance in terms of the inverse FAR (IFAR), i.e. the significance
associated to the coincident events found by MBTA, where coincident events refers to
injections found by two detectors (HL) at the same GPS time. From the results of these
studies comes out that a precessing-spin search presents a tiny gain in the recovered
SNR of the common found injections with the respect to the aligned-spin search. In
particular, for high mass template banks the higher number of noise triggers, due to
the larger number of templates, does not compensate the gain of the recovered SNR.
For low mass template banks there is a gain of about 5 − 7%. In addition, the relat-
ive search sensitivity which compare the efficiency of the two searches in terms of the
mass ratio of the detected injections versus the precessing-spin parameter 0 < χp < 1
(which quantify the precession in the injected signal), shows that the precessing-spin
search is more efficient than the non-precessing one in a big part of the parameter space
analyzed, especially in the low mass region. The conclusion is that using precessing
template banks as filters in a GW search for low mass BBH with precession of the spins
can slightly improve the detection efficiency of the pipeline MBTA. A problem found
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is that the gain in SNR is not compenseted by the increase of the false-alarms, then the
search could be more efficient by improving the signal consistency tests (χ2 tests) trying
to reduce the noise. Another interesting possibility would be to analize a template bank
with precessing waveforms generated with only high values of the mass ratio and of χp.
The pipeline MBTA has been used to perform low-latency searches for compact bin-
ary coalescences signals ever since the science run S6 and VSR2/VSR3 of the first-
generation gravitational wave detectors. Due to the diversity of the GW signals ob-
served by the advanced detectors in recent years, which include BNS mergers enabling
electromagnetic emission, heavy BBH mergers and candidate events of IMBH as well
as NS-BH mergers, it’s necessary to improve MBTA. It worth to mention the most re-
cent development of the pipeline, like: the adaptation to perform off-line searches, high
statistics injections runs, extension of the search to high mass systems, the inclusion of
sub-threshold information to improve the sky location of the sources. In the prospective
of the future third generation GW detectors, new challenges await all the pipelines used
for on-line and/or off-line searches by the LIGO-Virgo Collaboration, and MBTA is
well suited to expand its new features to a detection extended both at low frequencies
and high frequencies through its multiband analysis.
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