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ABSTRACT Lysobacter niastensis belongs to a group of bacterial predators that pro-
duce a number of bioactive small molecules endowed with lytic properties toward other
microorganisms. Here, we report the draft genome sequence of the type strain DSM
18481 and the identification of gene clusters implicated in the biosynthesis of secondary
metabolites.

ysobacter niastensis is an aerobic, rod-shaped, gliding gammaproteobacterium

belonging to the Lysobacteraceae family (1, 2). The type strain DSM 18481 of L. nias-
tensis was isolated from greenhouse soil in the Republic of Korea (2). Lysobacter species
are bacterial predators endowed with the ability to produce lytic enzymes and pep-
tides capable of causing the death of prokaryotic and eukaryotic microorganisms (3).
Despite the limited genetic information available on the genus Lysobacter, some strains
are emerging sources for novel antibiotics and are amenable for biosynthetic engineer-
ing (4, 5). Here, the genome of L. niastensis DSM 184817 was sequenced and analyzed
for the presence of biosynthetic gene clusters (BGCs) encoding secondary metabolites.

L. niastensis DSM 184817 was obtained from the DSMZ and aerobically grown at
28°C in Reasoner’s 2A (R2A) medium. DNA extraction was performed using a QlAamp
DNA minikit (Qiagen). A genomic library of L. niastensis was obtained with the TruSeq
DNA PCR-free sample preparation kit (Illumina, Inc.,, San Diego, CA, USA). Genome
sequencing was performed with a NextSeq 500 sequencing system, according to the
supplier’s protocol (lllumina, UK), and library samples were loaded into a midoutput kit
v2.5 (300 cycles) (lllumina, UK), producing 1,670,224 paired-end reads. The raw
sequence reads were filtered and trimmed using the command-line fastg-mcf software
(https://expressionanalysis.github.io/ea-utils/). Fastq files of lllumina paired-end reads
(150 bp) were used as input in the MEGANnnotator pipeline for microbial genome as-
sembly and annotation (6). This pipeline employed the program SPAdes v3.14.0 for de
novo assembly of the genome sequence with the option “--careful” and a list of k-mer
sizes of 21, 33, 55, 77, 99, and 127 (7). The genome quality was evaluated with the pro-
gram CheckM (8), estimating a genome completeness of 99.89% and 0.86% contamina-
tion. The contigs were then submitted to the National Center for Biotechnology
Information (NCBI) for the prediction of protein-encoding open reading frames (ORFs)
and tRNA and rRNA genes using the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) (9). All tools were run with default parameters unless otherwise specified.

The draft genome sequence of L. niastensis is 4,034,846 bp long. It was assembled into
15 contigs with an N, value of 390,805 bp, an average coverage of 117, and a mean GC
content of 66.88%. Genome annotation identified 3,723 ORFs, 49 tRNA genes, and 3 rRNA
genes.

The presence of six BGCs encoding putative secondary metabolites was predicted
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using the program antiSMASH v5.1.2 (10) (Table 1). Two BGCs were involved in the bio-
synthesis of putative fatty acids (eicosapentaenoic acid and an arylpolyene), two
encoded putative bacteriocins, one was predicted as a hybrid system composed of a
nonribosomal peptide synthetase (NRPS) and a type | polyketide synthase (T1PKS), and
one was predicted as an NRPS-like cluster. Interestingly, 4 out of 6 BGCs showed no sig-
nificant similarity with BGCs involved in the synthesis of known compounds, suggest-
ing that their products represent novel secondary metabolites which deserve more in-
depth chemical and biosynthetic characterization.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under accession number JADLZT000000000. The version described
in this paper is JADLZT000000000.1. The raw sequencing reads are available at the
Sequence Read Archive under accession number SRR13014585 and are associated with
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BioProject accession number PRINA675736.
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