
1 

 

 

 

UNIVERSITY OF URBINO CARLO BO 

Department of Biomolecular Sciences 

Ph.D. Course in Biomolecular and Health Sciences 

XXXVI cycle 

 

FLOW CYTOMETRIC AND 

ARTIFICIAL INTELLIGENCE APPROACH 

TO DIAGNOSTIC MARKERS 

FOR B-CELL LYMPHOMAS 

 

SSD: BIO/17 

 

Coordinator: Prof. Marco Bruno Luigi Rocchi  

Supervisor:  Prof. Stefano Papa  

Co-Supervisor: Dr. Massimo Geuna 

Ph.D. student: Dr. Elena Casanova 

 

ACADEMIC YEAR 2022-2023 



2 

 

 

 

 

 

 

 

 

 

 

In loving memory of Letizia,  

my travelling companion in Biology studies  

and now my guardian angel. 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 

 

 

 

 

 

 

 

 

INDEX 

 

 

  



4 

 

 
ABSTRACT ............................................................................................................................... 5 

INTRODUCTION ..................................................................................................................... 8 

1.1 Impact of B-cell non-Hodgkin lymphoma on global health ............................................ 9 

1.2 Mature B cell lymphoid neoplasms heterogeneity in WHO classifications ..................... 9 

1.3 Immunophenotypic characterization of mature B cell lymphoid neoplasms ................. 15 

1.4 Cluster analysis to get important biological informations ............................................. 17 

1.5 Machine Learning: ability to classify ............................................................................. 18 

1.6 Interesting implementations in AI for a more refined classification .............................. 19 

AIM OF THESIS ..................................................................................................................... 22 

MATERIALS AND METHODS ............................................................................................. 24 

3.1 Sample collection ........................................................................................................... 25 

3.2 Flow cytometry .............................................................................................................. 25 

3.3 Machine Learning .......................................................................................................... 28 

3.4 PPScore Calculation ....................................................................................................... 29 

3.5 Uniform Manifold Approximation and Projection (UMAP) ......................................... 30 

RESULTS ................................................................................................................................ 31 

4.1  FC could help in classifying lymphoid neoplasms .................................................... 32 

4.2 Classification trees in ML allow to define homogeneous groups of neoplasms, 

characterized by the expression of specific surface markers ..................................... 32 

4.3 Predictive models could categorize B-NHL in up to nine of the most common 

pathological entities with optimal accuracies ............................................................ 37 

4.4  FC can contribute significantly to the study of B-NHLs performed on tissue samples

 ...................................................................................................................................38 

4.5 PPScore is useful to evaluate the impact of each marker to define every B-NHL 

category ...................................................................................................................... 39 

4.6 UMAP separates B-NHL categories in clusters with a high degree of accuracy             

..................................................................................................................................  42 

DISCUSSION .......................................................................................................................... 44 

CONCLUSIONS...................................................................................................................... 51 

REFERENCES ........................................................................................................................ 53 

ACKNOWLEDGEMENTS ..................................................................................................... 60 

 

 



5 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

  



6 

 

Mature B-cell lymphoid neoplasms are a wide and highly heterogeneous group of 

malignancies. Different morphology, phenotype, genotype, aggressiveness and response to 

therapy characterize each of these entities and individual cases within the same entity. 

Immunophenotypic characterization is a key element for their classification in order to guide 

to the correct therapeutic plan. Although the phenotypic study is routinely performed by 

immunohistochemistry (IHC), we verified that the use of flow cytometry (FC) could bring 

several advantages. Indeed, immunophenotype reveals the expression of genes (revealed by 

IHC) through the detection of cell surface and/or intracellular proteins (identified by FC) that 

are the final expression of these genes. Consequently, cytometric analysis can provide a wide 

range of information comparable in value to gene sequencing. Applied to samples from 

various sources (peripheral blood, bone marrow aspirates, lymph node and tissue biopsies, 

fine needle aspiration samples, and pleural and peritoneal effusions) from patients affected by 

the most common mature B-cell Non-Hodgkin lymphomas (B-NHL), FC allows the 

quantitative expression of multiple markers to be evaluated by analyzing millions of cells 

simultaneously and easily defining clonal populations. This results in the ability to almost 

perfectly isolate each neoplastic subpopulation and study it in its uniqueness. This feature 

distinguishes FC analysis from IHC, which, by presenting the global appearance of the 

sample being examined, preserves the architecture of the tissue while revealing all mixed 

clones. In addition, like IHC, FC can provide information about intracellular antigens. 

However, FC can be widely applied to fine needle aspiration (FNA) specimens and is more 

sensitive and specific than IHC. In addition, FC can be applied to peripheral blood (PB) 

samples of leukemia stage lymphoma. In any case, FC provides faster and less biased results 

than IHC because the data are expressed quantitatively. 

However, the large amount of data generated by FC is very complex to analyze as a whole. In 

particular, it is difficult to correlate each marker with the precise diagnosis of a disease. 

Artificial intelligence (AI) can help by using sophisticated software and computing systems 

to compare and stratify all this data in a short time. In this way, AI provides more 

manageable data with a two-dimensional representation that is easier to interpret. 

In a previous study, which, according to the authors, we have decided to reproduce in some 

parts for the sake of clarity, since it prepares the data presented in this work, we applied 

machine learning (ML) algorithms to a large dataset of B-NHL immunophenotypes to 

generate a robust and clinically applicable prediction system. This system would also allow 

us to overcome the time-consuming, optimize the use of antibodies and standardize a 

clinically applicable predictive system by establishing a panel of antibodies to be 

systematically used in a multiparametric immunophenotypic analysis of samples performed 

with a high-complexity flow cytometer.. 

We then applied additional intracellular markers to a homogeneous case series of 615 tissue 

samples whose diagnoses, all confirmed by histologic analysis, were grouped into 8 major 

categories of B-NHL patients. The Predictive Power Score (ppscore) method allowed us to 

assess the impact of each marker in defining each lymphoma category. Considering that a 

ppscore greater than 0.22 (the baseline score) is statistically significant for discriminating 

diagnostic categories, we surprisingly noticed the discriminatory power of intracellular 
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markers not commonly used in a multiparametric immunophenotypic approach to lymphoma 

diagnosis, such as IRF4 and Bcl6.The role of these markers was validated by combining each 

one with all the others in a classification tree, resulting in a structural relationship tree that 

separates the entire database into quasi-homogeneous groups of lymphomas. Finally, the 

Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction 

technique divides the 8 categories of lymphomas into clusters. Interestingly, the application 

of UMAP to the 10 markers evaluated as having the greatest impact on diagnosis results in a 

greater separation of clusters, but does not recognize different lymphoma entities. Exploring 

the expression of all markers used in the phenotypic panel, where all antibodies contribute to 

the UMAP representation independently of their statistical significance, the 8 groups of B-

NHL result clearly defined and separated into clusters.  

In conclusion, it is conceivable that the implementation of artificial intelligence applied to 

multiparametric flow cytometry could significantly contribute to an optimal diagnostic 

process where histopathological examination still remains the gold standard. 

It remains to be investigated whether the use of these methods with a large number of 

markers can also predict categories of molecular or genetic alterations, which would be useful 

for a better classification even for therapeutic purposes of B-NHL. 
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1.1 Impact of B-cell non-Hodgkin lymphoma on global health 

B-cell Non-Hodgkin lymphomas (B-NHL) are one of the major health problems worldwide. 

The age-standardized rate (ASR) of B-NHL incidence showed an increasing trend during the 

last 30 years, in both sexes and in most geographic regions, even if globally, the incidence of 

different types of B-NHL varies considerably across the world. However, death and 

disability-adjusted life years (DALYs) caused by B-NHL showed decreasing trends globally, 

but this category of neoplasms remains a substantial challenge
 
(Cai et al, 2021). The increase 

in overall survival rates of B-NHL was largely ascribed to the progress in several treatment 

studies and the application of the relevant research achievements, which included monoclonal 

antibody (mAbs), small molecule inhibitors, and the targeted chimeric antigen receptor T 

cells (CAR-T).    

 

 

1.2 Mature B cell lymphoid neoplasms heterogeneity in WHO classifications 

Mature B-cell lymphoid neoplasms encompass a heterogeneous and extensive group of 

malignancies arising from B cells at various stages of differentiation and maturation. These 

neoplasms can exhibit significant variability in their morphologic, phenotypic, and genotypic 

features, as well as differences in their clinical behavior and response to treatment. The 

heterogeneity of these lymphoid neoplasms makes accurate diagnosis and classification, 

crucial for determining the appropriate treatment strategy. Various techniques, such as 

immunohistochemistry, flow cytometry, and genetic testing, are employed to identify specific 

markers and genetic alterations associated with each subtype. Due to the distinct biological 

characteristics and clinical behavior of each entity, treatment approaches can differ 

significantly. Some lymphomas may be more responsive to chemotherapy, while others may 

benefit from targeted therapies, immunotherapy, or stem cell transplantation. As research 

advances, more tailored and precise treatments continue to emerge for these diverse entities, 

improving overall patient outcomes. 

The World Health Organization (WHO) classification of lymphoid tumors has provided a 

global reference for the diagnosis of lymphoid neoplasms since its 3
rd

 edition in 2001, which 

was based on the Revised European American Lymphoma (R.E.A.L) Classification, 

developed by the International Lymphoma Study Group (ILSG) in the early 1990s (Jaffe et 

al, 2001). The definitions established in successive editions of the WHO classifications have 

been adopted not only in clinical, as in basic and translational research, but have also been 

incorporated into the International Classification of Diseases (ICD) codes, thus serving as a 

global reference for epidemiological monitoring in all national and international health policy 

organizations.  

From the 4
th

 revised edition (Swerdlow et al, 2017; Jiang et al, 2017), it is possible to deduce 

what the differentiation between the most common types of mature B-cell lymphoid 

neoplasms may be. The major categories of B-NHL are listed below: 
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 Diffuse Large B-cell Lymphoma (DLBCL) is the most common type of B-NHL, 

and it is characterized by a diverse morphology and clinical behavior.  DLBCL can be 

further classified into distinct molecular subtypes, each with its own prognosis and 

response to therapy. Despite recent therapeutic advances (Chiappella et al, 2017), up 

to 50% of patients relapse after standard chemoimmunotherapy R-CHOP 

(rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone). Predictive 

biologic and gene expression markers remain undefined, but their identification is 

becoming increasingly urgent, as exciting research results on new therapeutic agents 

lead to hope for new monoclonal antibodies conjugated to cytotoxic drugs and 

bispecific antibodies that may lead to promising results for relapsing/refractory 

patients
 
(Papageorgiou et al, 2022). Some of the characteristic markers used to 

classify DLBCL subtypes include: 

 

o Cell of origin markers: 

 Germinal center B-cell (GCB) subtype: CD10, BCL6 and 

MUM1/IRF4 (also known as MUM1/CD40). 

 Activated B cell (ABC) subtype: CD10 negative, BCL6 negative and 

MUM1/IRF4 positive. 

 MYC, BCL2 and BCL6 are often evaluated for rearrangements or gene 

amplifications: 

 Double-hit lymphoma: presence of concomitant rearrangements 

or gene amplifications of MYC and BCL2 or MYC and BCL6. 

 Triple-hit lymphoma: presence of concomitant rearrangements 

or gene amplifications of MYC, BCL2 and BCL6. 

o CD5 expression: CD5-positive DLBCL is associated with a worse prognosis. 

o EBV (Epstein-Barr virus) status: Presence of EBV in tumor cells, which may 

influence prognosis. 

 

 Follicular lymphoma (FL) is the second most common type of B-NHL in western 

countries, it is typically indolent, slow-growing, and has a characteristic nodular 

growth pattern. It is associated with specific genetic abnormalities: these include the 

t(14;18) translocation, which is the hallmark of FL, and leads to overexpression of 

BCL2, which contributes to lymphoma cell survival by preventing apoptosis. Also, 

the cytomorphology is characteristic: the tumor is composed of follicle center cells, 

usually a mixture of centrocytes (small cells with cleaved nuclei) and centroblasts 

(large noncleaved nuclei). Different markers are commonly used for the diagnosis and 

classification of FL: 

o CD20 molecule is universally expressed by normal B cells in all stages of 

development, from the pre-B cell up to the mature plasma cell as well as by 

most B cell malignancies (Staschenko et al, 1980), and it is almost always 

expressed on FL cells. CD20-targeted therapies, such as Rituximab or 

Obinutuzumab (Freeman et al, 2018), have been highly effective in treating 
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and have become an integral part of the treatment approach in combination 

with chemotherapy for this disease. 

o CD10 is commonly found on the surface of normal germinal center B-cells 

and it is also expressed in FL cells, thus it is helpful in distinguishing FL from 

other types of lymphoma. 

o CD5 and CD23 are usually negative in FL and can help differentiate it from 

other types of B-NHL, such as chronic lymphocytic leukemia (CLL). 

o BCL6 appears overexpressed in FL: this dysregulation causes the uncontrolled 

growth of abnormal B cells and hinders the normal process of apoptosis. 

Understanding the role of the BCL6 gene in FL has been essential for the 

development of targeted therapies that aim to inhibit or block the activity of 

this gene. 

 

Common initial treatments are bendamustine (Treanda) plus rituximab and R-CHOP. 

 

 Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic Lymphoma 

(SLL) are essentially the same disease, but they differ in their clinical presentation. 

CLL primarily presents with an increased number of abnormal B cells in the blood 

and bone marrow, whereas SLL presents with lymph node enlargement. The 

diagnosis of CLL requires ≥5 × 10
3
/μL of circulating monoclonal B lymphocytes with 

a CLL immunophenotype in the peripheral blood (PB). The term SLL refers to cases 

with a circulating CLL cell count <5 × 10
3
/μL and recognized lymph node, splenic, or 

extramedullary involvement. It is important to consider that CLL and SLL are 

complex diseases with various subtypes and clinical presentations. Evaluation of 

factors such as clinical symptoms, blood counts, and imaging contribute to accurate 

diagnosis, risk stratification, and treatment planning. Treatment strategies for 

CLL/SLL may include watchful waiting, targeted therapies (e.g. monoclonal 

antibodies and/or BCR inhibitors), chemotherapy (i.e. fludarabine, cyclophosphamide, 

bendamustine), and sometimes stem cell transplantation, depending on the specific 

case and disease progression. There are specific characteristic markers associated with 

these conditions, which are used to aid in diagnosis and management: 

 

o CD5 is a cell surface marker typically found on normal mature T cells, but is 

also expressed on abnormal lymphocytes in CLL/SLL, distinguishing it from 

other types of lymphoma. 

o CD19 is a cell surface protein that is typically present on B cells, including 

CLL/SLL cells. However, in CLL/SLL, the expression of CD19 is usually 

maintained, and this characteristic can be exploited for targeted therapies 

using monoclonal antibodies directed against CD19, such as Tafasitamab 

(Boxhammer et al, 2019). 

o CD20 is an important therapeutic target in CLL/SLL (Freeman et al, 2018), 

nevertheless its expression level is usually low. Some instance may account 

for a certain degree of heterogeneity in CD20 expression:  
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 Clonal Heterogeneity: CLL/SLL is a heterogeneous disease, meaning 

that cancer cells within an individual patient can differ in their 

characteristics. Some cells may express higher levels of CD20, while 

others may have lower or even undetectable levels (Tam et al, 2008).  

 Clonal Evolution: over time, CLL/SLL cells can undergo changes and 

acquire new genetic mutations, leading to variations in CD20 

expression levels (Zhang et al, 2014).  

 Microenvironment Interactions: the interaction between CLL/SLL cells 

and the surrounding microenvironment can affect the expression of 

CD20 (Dubois et al, 2023).  

o CD23 expression is important in CLL/SLL as it aids in the accurate diagnosis 

and differentiation between these two diseases and other B-NHL subtypes, 

which can have implications for treatment decisions and prognosis.  

 Differentiating CLL/SLL from Mantle Cell Lymphoma (MCL):  MCL 

and CLL/SLL share CD5 expression, CD23 is usually absent in MCL, 

while it is almost always present in CLL/SLL, rarely dimly positive 

and in the most of cases brightly positive. However, with dimly 

positive expression, interpretation should be cautious (Gong et al, 

2001; Barna et al, 2008; Yoshino et al, 2020) 

 Therapeutic considerations: in the context of targeted therapies, certain 

treatments, such as monoclonal antibodies like lumiliximab (Schnaiter 

et al, 2010), target CD23 and can be used as part of the treatment 

regimen for CLL. 

o Immunoglobulin heavy chain variable region (IgVH): Genetic analysis of the 

immunoglobulin heavy chain variable region gene is essential for the 

diagnosis and prognosis of CLL/SLL. The mutational status of 

immunoglobulin genes can influence disease progression and patient outcome 

(Lee et al, 2021). 

o ZAP-70 (Zeta-Associated Protein 70) is a key signaling molecule in 

lymphocytes: its expression is associated with more aggressive forms of 

CLL/SLL (Schroers et al, 2005). 

o CD38 is also a marker associated with a more advanced and aggressive form 

of CLL/SLL that predicts poorer outcomes (Schroers et al, 2005). 

o Disruption of the TP53 gene, either by deletion at chromosome 17p13.1 

(del17p) or mutations, is the most important prognostic/predictive biomarker 

in CLL
 
(Bomben et al, 2023). 

 

 Mantle Cell Lymphoma (MCL) is characterized by the overexpression of cyclin D1 

due to the t(11;14) translocation, which involves the fusion of the CCND1 (cyclin D1) 

gene on chromosome 11 and the immunoglobulin heavy chain gene on chromosome 

14. As a result of this translocation, cyclin D1 is overproduced, leading to 

uncontrolled cell growth and proliferation. Thus MCL typically presents with an 

aggressive clinical course, it tends to grow and spread rapidly. It often involves 

multiple lymph nodes, bone marrow, and other organs at the time of diagnosis. 
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However its incidence is relatively rare, accounting for approximately 6% of all B-

NHL. MCL is more commonly diagnosed in older adults, with a median age of 

around 60 years, and it is also more prevalent in men than women. Treatment for 

MCL usually involves a combination of chemotherapy, targeted therapy, 

immunotherapy, and stem cell transplantation, depending on the stage and 

aggressiveness of the disease
 
(Kumar et al, 2022). Despite initial responses to 

treatment, MCL often relapses after remission. The prognosis for MCL varies 

depending on several factors, including the patient's age, overall health status, the 

stage of the disease at diagnosis, and specific biological features of the lymphoma 

cells. The international prognostic index (IPI) and the Mantle Cell Lymphoma 

International Prognostic Index (MIPI) are some of the tools used to assess prognosis. 

Flow cytometry is an essential diagnostic tool used in the evaluation of Mantle Cell 

Lymphoma (MCL). The analysis of specific markers expressed on the surface of cells 

helps identify and differentiate MCL from other lymphomas. Some of the key 

markers are used in flow cytometry to diagnose MCL: 

 

o Almost all cases of MCL show overexpression of Cyclin D1. 

o The classic immunophenotype is strongly positive for pan-B cell antigens 

CD5, CD19, CD43, positive for FMC7, and negative for CD10, CD23, and 

Bcl-6 (Inamdar et al, 2016). 

o Also CD20, CD22 and CD79b are expressed and they are essential in 

confirming the B-cell lineage of the lymphoma. 

o CD38 and CD200 can aid in differentiating the usual aggressive MCL variants 

(CD38
+
/CD200

-
) and rare, non-nodal cases with monoclonal asymptomatic 

lymphocytosis, cyclin D1–positive (MALD1), which are CD38
-
/CD200

+  

(Espinet et al, 2014). 

 

Burkitt lymphoma (BL) is a highly aggressive type of B-cell cancer that can affect both 

children and adults. Research on BL has uncovered the first recurrent chromosomal 

abnormality in cancer, known as t(8;14)(q24;q32), and subsequently revealed the pivotal 

role of the MYC gene and Epstein-Barr virus (EBV) in the development of this 

malignancy. Most patients with BL are treated with chemoimmunotherapy, such as R-

CHOP, R-CODOX-M (rituximab, cyclophosphamide, vincristine, doxorubicin, and 

methotrexate), R-IVAC (rituximab, ifosfamide, etoposide, cytarabine), DA-EPOCH-

R (rituximab with dose adjusted etoposide, prednisolone, vincristine, cyclophosphamide 

and doxorubicin). However, patients with relapsed or refractory disease usually die of 

lymphoma (López et al, 2022). BL usually exhibits a characteristic immunophenotype: 

o BL cells are positive for pan-B-cell antigens CD19, CD22 and CD79a, with a 

monoclonal light chain expression of kappa or lambda.  

o CD10, CD38, CD43, CD71 and Bcl-6 are also expressed.  

o The blast markers CD34 and TdT are negative.    

o SPF are very high (>30%) as is the proliferation marker Ki-67 (100%)  
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 Marginal Zone Lymphomas (MZL) can be subdivided into three categories: 

extranodal (MALT), nodal (NMZL), and splenic marginal zone lymphomas (SMZL). 

The frequency varies by category: MALT lymphoma is approximately 7.5% of B-

NHL, NMZL is less than 2%, and SMZL is less than 1%. They are often associated 

with chronic inflammatory conditions and can behave indolently or aggressively 

depending on the subtype. Common initial treatments are bendamustine (Treanda) 

plus rituximab and R-CHOP. In cases without adequate morphology, 

immunophenotypic characterization by flow cytometry (FC) relies heavily on 

exclusion of other low-grade lymphomas
 
(Arcaini et al, 2003; Kost et al, 2008): 

 

o MZL expresses typical pan-B-cell antigens CD19, CD20, and CD79a. 

o CD5, CD10, CD23, and CD43 are not expressed. 

o Expression of CD11c is highly associated with SMZL.  

o Levels of CD19 expression in conjunction with CD11c and CD38 expression 

can distinguish MZL from CD10 negative FL. 

 

 Lymphoplasmacytic lymphoma (LPL) is a rare type of low-grade or indolent B-

NHL, composed of small lymphocytes, plasmacytoid lymphocytes, and plasma cells 

that typically involve the bone marrow. 
 
The 2008 World Health Organization (WHO) 

guidelines for the classification of blood disorders define Waldenström's 

macroglobulinemia (WM) as a subset of LPL that has a measurable presence of 

monoclonal immunoglobulin  (Ig) M gammopathy, with bone marrow involvement by 

LPL. The abnormal presence of monoclonal IgM can lead to an increase in blood 

viscosity in up to 30% of patients. Symptoms can vary considerably among individual 

patients, and many patients are asymptomatic at diagnosis (Naderi et Yang, 2013). 

The typical immunophenotype of LPL demonstrates: 

 

o expression of CD19, CD20, CD22, FMC7, BCL2, CD38, and CD79a with 

monotypic surface light chain.  

o CD5, CD10, and CD23 are usually absent (Konoplev et al, 2005).  However, 

up to 20% of cases may express CD5, CD10, or CD23 (Hunter et al, 2005).   

o Immunoglobulin light-chain restriction can usually be demonstrated in both 

the small lymphocytes and plasma cells on tissue sections.  

o The plasma cells in LPL have been reported to have a unique 

immunophenotype, when compared with plasma cells found in marginal-zone 

lymphoma or plasma cell myeloma, with coexpression of PAX5 and CD45 

with CD19, respectively (Morice et al, 2009).  

 

Treatments for LPL generally include watchful waiting; combinations of 

chemotherapy drugs that may be used include DRC (dexamethasone, rituximab and 

cyclophosphamide), BRD (bortezomib and rituximab, with or without 

dexamethasone), CVP (cyclophosphamide, vincristine and prednisone, with or 

without rituximab), thalidomide with rituximab; targeted therapy drugs used alone or 
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in combination with rituximab, bortezomib and ibrutinib; stem cell transplant; 

radiotherapy. 

 

 High-grade B-cell Lymphoma (HGBL) is a group of aggressive lymphomas with 

multiple subtypes, which can present significant challenges in diagnosis and 

treatment. This category includes tumors with Burkitt-like or blastoid morphology 

that do not have double-hit cytogenetics and that cannot be classified as other well-

defined lymphoma subtypes. Most of them have germinal center B-cell phenotype, 

and up to 45% carry a single-hit MYC rearrangement, but otherwise, they have no 

unifying immunophenotypic or cytogenetic characteristics (Olszewski et al, 

2022).
 
HGBL includes also Double-hit Lymphoma (DHL) and Triple-hit Lymphoma 

(THL), which are aggressive subtypes of DLBCL with concurrent rearrangements of 

MYC and BCL2 and/or BCL6 genes (Kim et al, 2020), and encompasses other 

aggressive B-cell lymphomas with similar genetic alterations, leading to poor 

prognosis and resistance to standard treatments. Treatment approaches for high-grade 

B-NHL typically involve intensive chemotherapy regimens, sometimes combined 

with targeted therapies and immunotherapy (most often R-CHOP), depending on the 

subtype and individual patient factors. Novel therapies, including chimeric antigen 

receptor (CAR) T-cell therapy, have shown promising results in relapsed or refractory 

cases (Denlinger et al, 2022). There are currently no established immunophenotypic 

criteria for the examination of lymphomas with MYC rearrangements. 

Immunophenotyping can be performed by standard methods using a panel of 

monoclonal antibodies against CD20, CD38, CD10, CD43, CD27, FMC-7, Ki-67, 

bcl-2, CD79b, CD23, CD22, and surface immunoglobulins (IgM, IgD, IgG, and IgA) 

to identify antigen expression in the tumor cell population (Tsagarakis et al, 2020). 

The last edition is WHO-HAEM5, the drafting of which began in 2018 and was completed in 

2022. It applies a hierarchical system for the classification of hematologic malignancies, 

organizing diseases in order of increasing levels of specification: category (e.g., mature B-

cell), family/class (e.g., large B-cell lymphomas), entity/type (e.g., diffuse large B-cell 

lymphoma, not otherwise specified), and subtype (e.g, diffuse large B-cell lymphoma, not 

otherwise specified, germinal center B-cell-like)
 
(Alaggio et al, 2022). 

 

 

1.3 Immunophenotypic characterization of mature B cell lymphoid neoplasms  

Immunophenotypic characterization is a key element for B-NHL classification, in order to 

direct to the correct therapeutic plan. Although the phenotypic study is routinely performed 

by immunohistochemistry (IHC), we verified that the use of flow cytometry (FC) could bring 

several advantages (van Oostrum et al, 2019). Indeed, the immunophenotype reveals 

expression of genes (unveiled by IHC) through detection of cell surface and/or intracellular 

proteins (identified by FC) which are the final expression of these genes. Consequently, 

cytometric analysis can provide a wide range of information, comparable in value to gene 

sequencing. Applied to samples derived from different sources (peripheral blood, bone 

javascript:;
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marrow aspirates, lymph node and tissue biopsies, fine needle aspiration samples and pleural 

and peritoneal effusions) of patients affected by the most common mature B-NHL, FC allows 

to evaluate the quantitative expression of several markers by analyzing millions of cells 

simultaneously, and easily defining clonal populations. This results in the ability to isolate 

almost perfectly each neoplastic subpopulation, examining it in its uniqueness. This feature 

differentiates FC analysis from IHC, which, by presenting the global appearance of the 

examined sample, preserves the architecture of the tissue while showing all the mixed clones. 

In addition, like IHC, FC can provide information on intracellular antigens. However, FC can 

be widely used in fine needle aspiration (FNA) samples, being more sensitive and specific 

than IHC (Barrena et al, 2011; Demurtas et al, 2010). Moreover, FC can be applied on 

peripheral blood (PB) samples of leukemia-stage lymphomas.  In any case, FC provides 

faster and less biased results than IHC because the data are expressed quantitatively.  

In the diagnostic process of certain diseases, it is already known the crucial role of FC, as in 

the demonstration of the typical CLL immunophenotype. CLL typically exhibits a 

characteristic immunophenotype, expressing CD5, CD19, CD20 
dim

, CD22 
dim

, CD23 , CD43
 

bright
, CD45

 dim
, CD79b 

dim/neg
, CD81 

dim
, CD200, and surface monoclonal immunoglobulin 

(Ig) 
dim

, but is negative for CD10, CD103, and CD123 and other T-cell and myeloid antigens. 

The primary distinction to consider when diagnosing CLL/SLL involves distinguishing it 

from conditions such as monoclonal B-cell lymphocytosis (MBL) and MCL. MBL is the 

presence of <5×10
3
/μL of circulating monoclonal B lymphocytes in the absence of associated 

lymphadenopathy, organomegaly, extramedullary involvement, or other features of B-cell 

lymphoproliferative disorders. CLL-type MBL (75% of MBL cases) has an 

immunophenotype identical to that of CLL, but the expression of CD200 and CD23 in 

combination with CD20, CD22, CD45, CD79b and CD81
 bright

 and CD43 differentiates CLL 

from MCL. Rarely, CLL cases may show an atypical immunophenotype, such as the absence 

of CD5 and CD23, normal intensity of CD20, CD22, and CD79b, aberrant expression of cell 

antigens, and atypical immunoreactivity (Salem et al, 2019). 

But definitively, FC is a rapid and cost-effective technique for evaluating the expression of 

many lymphoid markers in all mature B-cell neoplasms, including DLBCL, the most 

common B-NHL. In a recent study, a gene expression-based risk score was constructed based 

on the expression levels of BCL2, BCL6, CD11c and LAIR1 to predict the outcome of 

patients with DLBCL
 
(Devin et al, 2019). 

The typical immunophenotype of FL, identified by FC, by analyzing a lymph node FNA 

sample, such as a bone marrow aspirate (BM),  is CD19
+ (dim)

, CD20
+ (bright)

, CD10
+ (uniform)

, 

CD5
neg

, CD23
neg

, CD200
 neg

, CD11c
 neg

, with surface expression of restricted immunoglobulin 

κ-chain or λ-chain
 
(Khanlari et al, 2022). Evidence on FC of monotypic expression of light 

chains, uniform expression of CD10, and decreased intensity of CD19, CD20, and CD38 are 

other features that support the diagnosis of FL over reactive follicular hyperplasia (Mantei et 

al, 2009). 
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The high diagnostic accuracy and efficacy of FC in BL was also demonstrated. CD16/CD56 

expression without CD38
higher

 and the absence of CD16/CD56 with CD38
higher

 expression 

proved to be reliable, fast and cost-effective methods for the diagnosis of 11q aberration and 

MYC rearrangements, respectively, in CD10
+
 aggressive lymphomas (Rymkiewicz et al, 

2018). 

However, it has been shown that FC immunophenotyping can play an important role in the 

detection of aggressive MYC rearranged B-cell lymphomas (Tsagarakis et al, 2020). 

However, the detection of MYC rearranged B-cell lymphomas may pose a diagnostic 

challenge for flow cytometry specialists. It has been proposed that the expression of 

CD38
bright

 and CD45
low

 is highly specific for MYC-arranged HGBLs compared with non-

MYC-arranged DLBCLs, with a combined sensitivity of 67% and specificity of 

approximately 100%. This information could guide the efforts of the flow cytometrist in the 

second diagnostic step, namely the distinction between BL, DHL, and MYC-DLBCL. 

Previous studies have shown that there is significant overlap between BL, DHL, and MYC-

DLBCL in terms of expression of CD10, CD19, CD20, CD38, and CD45 (Mandelker et al., 

2014). Furthermore, decreased staining of CD20 and/or bright staining of CD38 have been 

described in association with LDL (Alsuwaidan et al., 2019; Wu et al., 2010). However, they 

cannot be used as biomarkers for early diagnosis of DHL because of their moderate 

sensitivity. 

Ultimately, the correct subclassification of B-cell lymphomas requires the integration of 

histologic and IHC findings, as well as the results of FC immunophenotyping, cytogenetic 

analysis, and molecular studies. For example, in the context of MCL, molecular measurement 

of minimal residual disease (MRD) is typically performed on peripheral blood or bone 

marrow using methods such as high-sensitivity FC, allele-specific oligonucleotide 

polymerase chain reaction (PCR), or next-generation sequencing (NGS)-based IGH clonal 

rearrangement assay
 
(Sethi et al, 2021). In other words, the integration of ancillary studies 

and biopsy results from other disease sites, in addition to careful histologic review and an 

expanded antibody panel, are essential to obtain a correct final classification. 

 

 

1.4 Cluster analysis to get important biological informations  

 

The large amount of data obtained by FC is very complex to analyze as a whole. In particular, 

it is difficult to correlate each marker with the precise diagnosis of a disease. To examine an 

archive containing several thousand of different data, cluster analysis can be very useful: it is 

indeed possible to see how markers are related to each other, thus obtaining important 

biological information and a rough classification of different cases.  

Gene expression profiling studies have been successfully used to identify molecules for use 

as potential prognosticators. In analogy to gene expression profiling, an original method 

adapted to oncohematology diagnostics, useful for identify the immunophenotypic signature 

of subgroups of CLL with different prognosis, called “surface antigen expression profiling”, 
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has been proposed previously. According to this method, surface marker expression data can 

be successfully analyzed with data mining tools identical to those used in gene expression 

profiling studies, including unsupervised and supervised algorithms, with the goal of 

identifying the immunophenotypic signature of CLL subpopulations with different prognoses. 

By expanding the panel of markers, some of them (e.g., TCL1, CCR7, FCRL2, FCRL3, and 

CD150) revealed to have surprising prognostic relevance in CLL (Zucchetto et al, 2011). 

It is possible to imagine applying this model to a larger database built by collecting a large 

number of phenotypes and thoroughly analyzing samples from patients with different 

oncohematological diseases. Results show that cases related to specific, different diseases 

(e.g. CLL, Hairy Cell Leukemia, FL, BL) cluster with specific markers, that characterize 

them and are co-expressed. Then it becomes interesting to investigate why certain markers 

are expressed in the same cluster and why cases with different diagnoses are found in the 

same clusters. Could there be a common origin in the form of a normal counterpart followed 

by different evolutionary paths? The resulting classification highlights biological similarities. 

It may be of interest to study whether these similarities are reflected in the clinic, in terms of 

aggressiveness and response to treatment, and whether they can be used to provide prognostic 

and therapeutic guidance. 

 

 

1.5 Machine Learning: ability to classify 

The satisfactory use of cluster analysis suggests proceeding down this path, using more 

sophisticated systems. To analyze a copious amount of data obtained by FC, another help 

comes from artificial intelligence (AI), which through the use of very complex software and 

computational systems can compare and stratify all this data in a short time. In this way, AI 

provides more simply manageable data with a two-dimensional representation that is easier to 

interpret. 

In this field, machine learning (ML) allows computers to learn from their own experience. As 

human beings, ML algorithms involve a period of "training", in which they learn a predictive 

model, based on supervised analysis, and a period of "validation", in which this model is 

applied to cases never seen before (Taye 2023). It is known that several tools have already 

been implemented in the medical field, for the interpretation of radiological (Kohli et al, 

2017; Wang et al, 2012), histopathological (Li et al, 2019; Bayramoglu et al, 2016) and 

fundus oculi (Xiao et al, 2017; Maji et al, 2015) images, as well as the prediction of clinical 

outcomes based on electronic medical records (Miotto et al, 2016). Since FC produces a large 

amount of data and its interpretation requires high analytical skills, it naturally represents the 

ideal field of application for ML algorithms: consequently, ML tools have already been 

applied to different stages of FC, from data pre-processing (O’Neill et al, 2013; Rahim et al, 

2018) to detection of disease or minimal residual disease (MRD) (Angeletti et al, 2018; Ko et 

al, 2018).  
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1.6 Interesting implementations in AI for a more refined classification  

 

Dimensionality reduction methods ranked highly, such as generic t-distributed stochastic 

neighbor embedding (t-SNE) and its initial Matlab-based implementation for FC data viSNE 

(Cheung et al, 2021). t-SNE is a nonlinear dimensionality reduction technique particularly 

effective in visualizing complex and nonlinear relationships within the data. It aims to map 

high-dimensional data points to a lower-dimensional space in such a way that similar data 

points in the original space are represented close together in the reduced space. Conversely, 

dissimilar data points are represented farther apart. The primary differences between t-SNE 

and ViSNE lie in their specific applications and the datasets they are best suited for. While t-

SNE is a general-purpose technique applicable to various high-dimensional datasets, ViSNE 

is tailored for single-cell data analysis. Both t-SNE and ViSNE have been widely used in the 

field of bioinformatics and single-cell genomics to reveal the underlying cellular 

heterogeneity and identify distinct cell populations within a sample. 

Software with graphical user interfaces also ranked highly, including PhenoGraph, SPADE1, 

FlowSOM, and Citrus, with unsupervised learning methods outnumbering supervised 

learning methods, and algorithm type popularity spread across K-Means, hierarchical, 

density-based, model-based, and other classes of clustering algorithms.   

PhenoGraph is an unsupervised clustering algorithm used to analyze high-dimensional single-

cell data, such as data obtained by FC and mass cytometry (CyTOF)
 
(Levine et al, 2015). It is 

widely used for its ability to identify cell populations based on their phenotypic profiles. 

PhenoGraph constructs indeed a graph representation of the high-dimensional data, where 

each cell represents a node and the edges between nodes are weighted based on the similarity 

between cell phenotypes. The underlying assumption is that cells belonging to the same 

population have similar phenotypes and are therefore more likely to be connected in the 

graph. 

SPADE1 (Spanning-tree Progression Analysis of Density-normalized Events) is another 

popular unsupervised algorithm for FC data analysis. SPADE1 constructs a density-based 

spanning tree to identify cell populations, thus it has been widely adopted in the field of 

single-cell analysis, because it provides valuable insights into cellular heterogeneity, 

differentiation, and cell-cell interactions. 

FlowSOM is an algorithm used for unsupervised clustering and visualization of high-

dimensional single-cell data, primarily in the context of FC (Van Gassen et al, 2015). 

FlowSOM uses self-organizing maps (SOMs), a type of artificial neural network, for 

dimensionality reduction and visualization of high-dimensional data. SOMs are particularly 

useful for preserving the topological relationships between cells, making them suitable for 

analyzing complex and heterogeneous datasets. 

Citrus is a method used for finding statistically significant associations between cellular 

phenotypes and experimental outcomes, such as disease status or treatment response 
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(Polikowsky et al, 2019). Citrus first performs dimensionality reduction using t-SNE or 

principal component analysis (PCA). This step reduces the high-dimensional FC data to a 

lower-dimensional space, making it more computationally tractable and facilitating the 

identification of phenotypic signatures. Then Citrus uses a random forest classifier to find 

features (fluorescent markers) that significantly stratify cells based on the experimental 

variable of interest. It evaluates the ability of each marker to discriminate between different 

experimental groups, considering both the purity of cell populations and the strength of 

association with the experimental variable. Thus Citrus ranks the markers based on their 

importance in stratifying the data. It selects the top-ranking markers to create a stratification 

signature, which is a set of markers defining the subpopulations of cells that are associated 

with the experimental outcome. 

In our project, we applied the Predictive Power Score (PPScore) method and the Uniform 

Manifold Approximation and Projection (UMAP) dimensionality reduction technique. 

PPScore is a Python library used for feature selection in machine learning and data analysis. 

It evaluates the predictive power of each feature in a data set by measuring its relationship 

with the target variable. It can be used to identify the most informative features, which can be 

useful for building more accurate predictive models or reducing dimensionality. 

UMAP is a dimensionality reduction technique used in the field of machine learning and data 

analysis to visualize and cluster high-dimensional data. It is an alternative to t-SNE, known 

for its efficiency in preserving global and local data structures during the dimensionality 

reduction process. Indeed, UMAP has gained significant attention, particularly in the context 

of single-cell data analysis, including applications in FC, mass cytometry and single-cell 

RNA sequencing (scRNA-seq) data analysis
 
(Becht et al, 2018) for some of the key 

advantages: 

 Preserving Global and Local Structures: UMAP aims to preserve both global and 

local structures of the data. It efficiently maintains the relationships between data 

points at different scales, allowing for a more accurate representation of complex data 

structures, such as clusters, gradients, and neighborhoods. 

 Non-Linearity: UMAP can handle non-linear relationships in the data, making it 

suitable for analyzing high-dimensional datasets with complex and non-linear 

relationships between variables. 

 Scalability: UMAP is computationally efficient and scalable to large datasets. It can 

handle millions of data points with relatively low memory requirements, which is 

especially crucial in the analysis of high-throughput single-cell data. 

 Flexibility: UMAP allows users to control the balance between preserving local and 

global structures through the "n_neighbors" parameter, providing flexibility in the 

visualization process. Adjusting this parameter enables users to emphasize different 

aspects of the data according to their specific research needs. 

 Robustness: UMAP is relatively robust to various input data types and noise, making 

it applicable to a wide range of data domains, including continuous, categorical, and 

mixed data. 
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 Visualization: UMAP produces visually appealing and informative two-dimensional 

embeddings, making it easier for researchers to explore and interpret complex 

datasets. These embeddings can provide insights into the underlying biological or 

functional characteristics of cell populations or other data points. 

 Interpretability: UMAP provides a set of parameters that allow users to control the 

trade-off between optimizing global and local structures. This enables researchers to 

fine-tune the visualization according to their domain knowledge and research 

questions. 

 Open-Source Implementation: UMAP is available as an open-source Python library, 

making it easily accessible and usable for the broader research community. 

It's interesting to note that unsupervised learning methods are dominant in this context. 

Unsupervised learning refers to machine learning techniques where the algorithm identifies 

patterns and structures in the data without explicit guidance or labeled examples. In contrast, 

supervised learning requires labeled data for training. 

In addition, the popularity of clustering algorithms seems to be diverse, with various types 

being used. Some of the common types mentioned are K-Means, hierarchical clustering, 

density-based clustering, model-based clustering, and other unspecified classes of algorithms. 

This indicates that different methods are preferred depending on the specific dataset and 

research goals. 
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The research project that constituted my PhD thesis work focuses on an in-depth study of the 

phenotypic characteristics of different types B-NHL. 

We know that lymphoid neoplasms are a very heterogeneous group of malignancies, which 

respond differently to specific treatments, and immunophenotypic characterization is a key 

element for their classification, in order to direct to the correct therapeutic plan. Their 

classification thus requires skillful evaluation by expert hematopathologists, but the risk of 

error remains higher in these tumors than in many other areas of pathology.  

We also know that FC, applied to samples derived from different sources of patients affected 

by the most common mature B-NHL, allows to evaluate at the same time the quantitative 

expression of several markers, easily defining clonal populations. 

My purpose is to identify which of the markers used over the past 20 years seemed most 

useful and specific for characterizing (and classifying) these types of lymphomas, analyzing 

cases received and characterized for immunophenotype at the Laboratory of 

Immunopathology of A.O. Ordine Mauriziano in Turin. 

Therefore, I firstly focused my attention on a wide series of B-NHL, obtained from both 

blood and non-blood samples, all with a diagnosis confirmed by pathologist and/or 

hematologist, to analyze by means of AI the expression of several markers. Secondly, to 

better evaluate the efficacy in the diagnostic process of intracellular markers, identified in the 

WHO classification of lymphoid tumors for their capacity to differentiate these pathologies, 

we consider a homogeneous case series constituted by only tissue samples, whose diagnoses, 

all confirmed by histologic analysis, were grouped into 8 major categories of B-NHL 

patients.  

Then, data obtained were evaluated with different statistical analysis systems, supplied by AI, 

to select the best approach able to identify the markers of greatest interest and most effective 

to characterize homogeneous groups of lymphomas. 

This work aims to be functional to set up an antibody panel for systematic use in a 

multiparametric immunophenotypic analysis of samples, performed with a high complexity 

flow cytometer. 
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3.1 Sample collection 

   

Six hundreds eighteen tissue samples (lymph nodes, biopsies, FNA), collected in our 

laboratory since 2009 to 2022, and all referred to the 8 major categories of B-NHL, were 

analyzed  in this study, including 193 DLBCL, 193 FL, 92 MZL (57 NMZL,12 SMZL, 23 

MALT), 67 CLL, 27 MCL,16 LPL, 10 BL, 20 HGBL. All diagnoses were established 

according to the 2017 WHO criteria and confirmed by histologic analysis.  

  
 

3.2 Flow cytometry   
 

All cases were extensively characterized for immunophenotype by multiparametric FC. A cell 

suspension of tissue samples was obtained by mechanical disaggregation, immediately 

counted and evaluated for cell viability in the hemacytometer. If viability was less than 70% 

and/or the total number of viable cells was greater than 10 x 10
6
, mononucleated cells were 

then purified
 
by density gradient; otherwise, death cells were excluded from analysis using 

7AAD (Beckman Coulter) staining. Cells
 
were then washed twice with RPMI 1640 + FBS 

10% and resuspended in the same medium at
 
5–20 x 10

6
/ml. Fifty to 100 ml of samples were 

directly added to a monoclonal antibody mixture, incubated 15–30 min at room temperature, 

washed twice with PBS/BSA 0.5%, resuspended and
 
immediately acquired. For detection of 

intracellular markers, after surface staining with backbone markers, cells were fixed, 

permeabilized and stained with appropriate amount of monoclonal antibody using FoxP3 

Staining Buffer Set (Miltenyi Biotec), according to manufacturer’s instructions. This study is 

a 14-year retrospective study: over this period, the instruments and reagents used have been 

changed several times, adapting to technological evolution. The oldest flow cytometric 

sample acquisitions (2009–2010) were performed by a CyAn ADP (Dako) equipped with 3 

solid state lasers (488 nm, 405 nm and 642 nm) and 8 colors; then, from 2010 to 2019 

samples were acquired with a 3-laser and 10-color Navios (Beckman Coulter) and finally, 

since 2020 with a 3-laser and 13-color DxFlex (Beckman Coulter). Analyses were performed 

by Kaluza 1.3 software (Beckman Coulter). Similarly, most of the antibodies used were 

initially only available with FITC, PE, PerCP and APC fluorochromes; over time, 

monoclonal antibodies conjugated with Pacific Blue, APC-Alexa700, APC-Alexa750, PE-

Cy5 / PE-Cy5.5 and PE-Cy7 have been added. Table 1 lists the antibodies used since 

2009. CD45, CD 19, CD20, CD5, FMC7, CD9, CD11c, CD22, CD23, CD24, CD25, CD31, 

CD38, CD43, CD44, CD79b, CD81, CD103, CD123 were provided by Beckman Coulter; 

Kappa and Lambda F(ab)2 polyclonal antibodies were provided by Agilent-Dako; CD6, 

CD21, CD72, CD74,  CD200, CXCR3, Bcl-2, MIB-1, IRF-4 were provided by Miltenyi 

Biotec GmbH; CD10 and Bcl-6 were provided by BD Biosciences. The expression of each 

marker was evaluated on monoclonal B cells only using a gating strategy where CD19 was 

combined with one or more antibodies to obtain a purity of clonal restricted cells greater than 

95% (Figure 1). Essentially, an initial set of test tubes, now condensed into a single tube with 

12 antibodies and 8 colors, is used to detect and identify the monoclonal cell population, i.e., 

the backbone markers which guarantee a purity of the monoclonal population greater than 
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95% in 97% of cases, and greater than 90% in the remaining samples. The percentage of 

positive cells was calculated by comparing unstained vs. stained cells in each sample.  

 

Table 1. Flow-cytometric antibodies selection. Recommended antibodies dilution each 1×10
6 

cells. Bcl-2, Bcl-6, MIB-1 and IRF-4 are transcription factors and require intracellular 

staining. mAb: monoclonal Antibody; poAB: polyclonal Antibody; Ms: Mouse; Gt: Goat; 

REA: Recombinant Human Antibody.  

Antigen  Clone  Clonality  Isotype  Conjugated   Dilution 

CD45  J33  Ms mAb  IgG1    Krome-Orange  1:33 

CD19  J3-119  Ms mAb  IgG1    PC7/PB  1:33 

CD20  B9E9   Ms mAb  IgG2a   FITC/PC5.5  1:20 

CD5    BL1a  Ms mAb  IgG2a   PC5.5   1:33  

Kappa   polyclonal  Rb poAb    F(ab’)2  FITC/APC  1:20 

Lambda  polyclonal    Rb poAb    F(ab’)2  PE  1:33 

FMC7  FMC7   Ms mAb   IgM  FITC  1:20 

CD6  M-T411   Ms mAb  IgG1k    APC  1:20 

CD9  ALB6   Ms mAb  IgG1    APC-Alexa Fluor750  1:33 

CD10  HI10a   Ms mAb  IgG1k    BV421  1:33 

CD11c  BU15   Ms mAb  IgG1    PE  1:20 

CD21  HB5   Ms mAb  IgG1    APC  1:20 

CD22   SJ10.1H11  Ms mAb  IgG1     APC  1:20 

CD23  HD50   Ms mAb  IgG2b   APC  1:20 

CD24  ALB9  Ms mAb  IgG1    APC-Alexa Fluor750  1:33 

CD25  1HT44H3   Ms mAb  IgG2a   APC  1:10 

CD31  1F11   Ms mAb  IgG1    PE  1:10 

CD38  T16   Ms mAb  IgG1    APC-Alexa Fluor750  1:33 

CD43  DTF1   Ms mAb  IgG1    APC-Alexa Fluor750  1:33 

CD44  J.173   Ms mAb  IgG1    FITC  1:10 

CD72  REA231   REA mAb IgG1    FITC  1:20 

CD74  5-329   Ms mAb  IgG1k    FITC  1:20 

CD79b  CB3-1   Ms mAb  IgG1    PE  1:10 

CD81    JS64    Ms mAb  IgG2a   PE   1:20  

CD103  2G5   Ms mAb  IgG2a   FITC  1:100 

CD123   SSDCLY107D  Ms mAb  IgG1     APC  1:20  

CD200  OX-104   Ms mAb  IgG1    FITC  1:100 

CXCR3  REA232   REA mAb  IgG1   PE  1:10 

Bcl-2  REA872  REA mAb  IgG1   FITC  1:50 

Bcl-6  K112-91  Ms mAb  IgG1k   PE  1:50 

MIB-1  REA183  REA mAb  IgG1   FITC  1:100 

IRF-4  REA201  REA mAb  IgG1   APC  1:20 
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Figure 1. Flow cytometric gating strategy in different sample types/lymphoma entities. The 

sequence of gate is aimed to obtain the greatest purity of neoplastic cells as identified by 

means of the clonal restriction of immunoglobulin light chains (kappa or lambda). In all 

cases the first four plots (A, B, C and D) follow an identical scheme: plots A are FS TOF 

(Forward Scatter Time Of Flight) vs FS INT (Forward Scatter Intensity) and the gate A is 

drawn to exclude doublets. Plots B, activated on gate A, are SS INT (Side Scatter Intensity) vs 

CD45 and the gate C is drawn around CD45 positive cells with low SS, to exclude 

granulocytes (CD45+/SS
high

) and unlysed/ghost erythrocytes (CD45-/SS
low

). Plots C, 

activated on the Boolean gate [A AND C], are FS INT vs SS INT were all the cells identified 

with the previous gates are further gated (gate B) to exclude debris (low FS and low SS). 

Plots D, activated on the Boolean gate [A AND C AND B], are CD19 (total B cells) vs CD3 

(total T cells) and the gate D is drawn to select all CD19 positive cells.  

Figure 1a. In a LN of a FL patient, plot E (gated on [A AND C AND B AND D]) shows the 

kappa/lambda distribution (with a ratio of 1/2.73) on the total CD19+ B cells. Plot F (gated 

on [A AND C AND B AND D]) shows the presence of a population of CD20+high, CD10+ 

cells that are gated in region F. The plot G E (gated on [A AND C AND B AND D AND F]) 

shows the expression of kappa and lambda light chains on CD19+, CD20+high, CD10+ 

cells: 94.6% of B cells (virtually 98.5%) are clonally restricted for lambda light chain.  

Figure 1b. On a FNAB referred to a  DLBCL patient, plot E (gated on [A AND C AND B 

AND D]) shows the kappa/lambda distribution (with a ratio of 2/1) on the total CD19+ B 

cells. Plot F (gated on [A AND C AND B AND D]) shows the presence of a minor population 

of CD19+ B cells with a high FS (Large B cells, gated on F). The plot G (gated on [A AND C 
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AND B AND D AND F]) shows the expression of kappa and lambda light chains on the 

CD19+ large B cells that are clonally restricted for kappa light chain (96% of expression at 

low intensity).  

Figure 1c. On a FNAB referred to a  MCL patient, plot E (gated on [A AND C AND B AND 

D]) shows the kappa/lambda distribution on the total CD19+ B cells with less than 1% of 

kappa positive cells. Plot F (gated on [A AND C AND B AND D]) shows that almost all 

CD19+ cells co-express CD5 and CD20, both at high fluorescence intensity, gated on F. The 

plot G (gated on [A AND C AND B AND D AND F]) shows the expression of kappa and 

lambda light chains on the CD19+, CD20+, CD5+ B cells that are clonally restricted for 

lambda light chain at 100% with high fluorescence intensity.  

Figure 1d. On a Spleen excised from a SL patient, plot E (gated on [A AND C AND B AND 

D]) shows the kappa/lambda distribution on the total CD19+ B cells with a kappa:lambda 

ratio of 3.4:1. Plot F (gated on [A AND C AND B AND D]) shows the expression of CD22 

and CD24 on the total B cells, a discrete population of CD22+high/CD24+low cells is 

clearly identified and gated on F. The plot G (gated on [A AND C AND B AND D AND F]) 

shows the expression of kappa and lambda light chains on the CD19+, CD22+high, 

CD24+low  B cells that are clonally restricted for kappa light chain with a purity of 97.9%.  

 

 

3.3 Machine Learning  

 

Each predictive model consists of a single classification tree, a supervised learning technique 

introduced by Breiman (Breiman et al, 1984). A classification tree is a rooted and directed 

acyclic graph (DAG) defined as ∪∪∪. The root node ∈ with an in-

degree 0 represents the most effective classification rule. The terminal nodes ∈ with an 

out-degree 0 represent the class to which a generic input sample is assigned. Each decision 

node d ∈ D implements a threshold (Th) comparison with an FC marker. The result of such 

comparison fires one of the two outgoing edges ef, et  ∈ E, enabling the connection to the 

nodes at the lower levels: if a marker m k  ≤ TH then the true branch et is active, otherwise the 

false branch ef is active. Depending on the values assumed by the FC markers of a given 

sample, only one root-to-leaf path is activated. Classification trees were obtained with a script 

developed in Python, using the open-source libraries Pandas (Mc Kinney, 2011)
 
for data 

preprocessing, and SciKit learn (Pedregosa et al, 2011) for training and validation. For each 

classification tree, the training algorithm was applied to a subset of the dataset containing the 

75% of the samples, while the validation was performed on the remaining 25% of the 

population. Since the training and validation samples were randomly drawn from the entire 

dataset, and since the available labels are significantly unbalanced, we ensured that all classes 

were represented in both the training and validation sets by using stratified random selection 

(Neyman, 1992). The settings for each classification tree were established through a 

comprehensive grid search analysis. This involved a thorough exploration of various 

configurations for classification trees based on empirical assessments. Specifically, the grid 

search analysis for each classification tree included the following parameters: 
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 Maximum depth, with values spanning from 6 to 12. 

 Minimum number of samples required for a split, with values ranging from 2 to 

10. 

 Minimum number of samples required for a leaf node, with values in the range of 

1 to 10. 

 Maximum number of features criterion (options: sqrt, log2, or unconstrained). 

Grid search was combined with the k-fold cross-validation (Bengio et al, 2004), where k is 

set according to the number of unique labels. It is important to note that k-fold was performed 

only on samples from the training set. The best performing model was selected based on its 

highest accuracy. It was then evaluated using the validation dataset. The training algorithm 

relies on the Gini impurity (Breiman, 1996)
 
or on the information gain (Quinlan, 1986) to 

quantify the amount of entropy of each possible partition. 

 

 

3.4 PPScore Calculation 

 

The PPScore quantifies the agreement between predicted values and actual observations, 

providing insights into the model's performance. To calculate the PPScore, we followed the 

approach proposed by Florian Wetschoreck (Wetschoreck, 2020). Leveraging the Predictive 

Power Score, we evaluated the predictive performance of each individual marker against all 

lymphoma categories. Initially, we entered into an Excel sheet the cases of B-NHL patients 

whose tissue samples we had received since 2009, reporting the measured value for each 

marker used. During this period, the flow cytometric data were obtained from different 

machines and different reagents settings. As the fresh samples were no longer available to 

repeat immunostainings, we tried to make the data collected over the years repeatable by 

excluding parameters such as the MFI or the choice of cutoff, which may vary by operator, 

different instruments, batches and fluorochromes of antibodies. Thus, we decided to express 

only the percentage of positive cells using the internal control of unstained cells as negative. 

Furthermore, the expression of more than 50 different antigens has been evaluated in the 

course of all these years. However, these markers were used with different frequencies, so it 

was necessary to understand which ones were useful to our study. Then we applied the PPS 

technique to the entire biopsy database, replacing missing values with the mode and 

eliminating markers with more than 55% missing values, regardless their diagnosis. These 

predictions were generated using the PPScore Python package 

(https://github.com/8080labs/ppscore/). The dataset from Excel was exported to a Pandas 

DataFrame and processed in Python. This metric quantifies the similarity between predicted 

and observed values within each bin.. The PPScore is calculated by analyzing the conditional 

mutual information between two features in a dataset. It measures the predictive relationship 

between the features by considering both the strength and the shape of the relationship. The 

calculation involves estimating the information shared by the features, taking into account the 

conditional distributions and probabilities. The PPScore algorithm captures both linear and 

non-linear relationships, providing a comprehensive measure of predictive power. The 

https://github.com/8080labs/ppscore/
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resulting score ranges from 0 to 1, with 0 indicating no predictive power and 1 indicating 

perfect predictive power. 

 

 

3.5 Uniform Manifold Approximation and Projection (UMAP)  

 

We chose the UMAP algorithm because it is competitive with t-SNE for visualization quality, 

and arguably preserves more of the global structure with superior run time performance. 

Furthermore, UMAP has no computational restrictions on embedding dimension, making it 

viable as a general purpose dimension reduction technique for machine learning
 
(McInnes et 

al, 2018). In our study, we used UMAP to visualize the relationships between the various 

markers used (x) and the diagnosis (y) related to the phenotypes included in our case series. 

We applied the UMAP algorithm using the UMAP-learn in Python and evaluated a set of 

different values for the n_neighbors parameter which determines the number of nearest 

neighbors used to construct the fuzzy topological representation, influencing the balance 

between local and global structure preservation in the resulting low-dimensional 

representation. At the same time, we kept the min_dist parameter, which controls the 

minimum distance between points in the low-dimensional representation, close to 0 in all 

experiments. UMAP transformed the high-dimensional data into a lower-dimensional space, 

capturing the intrinsic relationships and similarities among samples. The resulting 

embeddings were used for downstream analysis and visualization.  

The UMAP embeddings were visualized using the matplotlib Python package 

(https://ieeexplore.ieee.org/document/4160265). We color-coded the points in the UMAP plot 

to represent the different clusters representing the 8 major classes of B-NHL. 
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4.1  FC could help in classifying lymphoid neoplasms. 

 

In a previous study (Gaidano et al, 2020), we demonstrated how FC could significantly help 

to obtain a precise classification of B-NHL, sustaining the traditional approach performed by 

IHC. Moreover, the dataset comprised 1465 immunophenotypic profiles of clonal B-NHL, 

deriving from tissue biopsies, liquor, effusions, PB or BM samples, collected from 2003 to 

2019. The immunophenotypic panel included more than 50 antibodies. However surface 

markers with a 50% or higher missing-value rate were completely discarded from the 

database (Figure 2).   

              

 

Figure 2. List of surface markers associated with the percentage of samples characterized 

for each marker. The blue dotted line indicates the threshold (50%) above which markers 

were considered. 

 

 

To deal with missing values in the remaining markers, we replaced them with the mean 

values specific to each class. Then we used a ML algorithm to automatically select the most 

important and representative set of markers. 

 

4.2 Classification trees in ML allow to define homogeneous groups of neoplasms, 

characterized by the expression of specific surface markers. 

 

To validate the predictive models, the first step was to divide the entire dataset into two parts: 

 Training Set (75%): This portion of the data is used to build the classification tree 

models. In machine learning, this is where the model learns patterns and relationships 

in the data. 

 Validation Set (25%): This part of the data is used to evaluate the performance of the 

predictive models. It helps assess how well the models generalize to unseen data. 
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Then classification trees were employed to classify instances into different B-NHL classes. 

Classification trees consist of three key components: a starting point known as the root node, 

which corresponds to the most influential marker in terms of distinguishing characteristics, 

intermediary decision nodes featuring two branches, and terminal nodes called leaf nodes. 

These leaf nodes not only signify the B-NHL classification but also provide an indication of 

the likelihood that the assigned classification is accurate (Figure 3).  

 

  

a. 
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Figure 3. Classification trees of Model I (a), Model II (b), Model III (c), and Model IV (d). 

Values reported inside decision nodes represent threshold values. Percentage values 

reported in leaf nodes represent the prediction probability, i.e., how likely the achieved class 

is the correct one. 

 

 

Furthermore, given the unique nature of intracellular markers, not usually employed in 

immunophenotypic analysis performed by FC, we opted to create several predictive models, 

both with and without MIB1 and Bcl2. This approach allowed us to address the inherent issue 

of missing data in retrospective studies, yielding the most meaningful findings while avoiding 

any potential distortions. This approach began by ML techniques to the complete training 

dataset while excluding MIB1 and Bcl2 (referred to as Model I, Figure 3a). Subsequently, 

we introduced MIB1 and Bcl2 but omitted HCL and SL from the analysis due to inconsistent 

evaluation of these two markers in these LNH subclasses (referred to as Model II, Figure 

3b). To assess the specific contributions of MIB1 and Bcl2, the same dataset used for Model 

II was reanalyzed without including MIB1 and Bcl2, resulting in Model III (Figure 3c). 

Finally, to demonstrate that the significance of MIB1 and Bcl2 was not an artifact caused by 

the data filling method, we focused exclusively on non-blood samples, where these two 

markers were prevalent (comprising 74.81% of the samples for Bcl2 and 96.35% for MIB1). 

In this model, known as Model IV (Figure 3d), HCL and SL cases were excluded, due to the 

limited availability of non-blood samples from these subclasses (only 2 samples). 

d. 
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The most important markers in each model represent the root and the first branches of each 

tree; this reflects their ability to clearly discriminate between different classes (Figure 4). 

Some markers, such as CD5 and CD10, recur in all 4 models because of their fundamental 

role in leading to the diagnosis. Interestingly, it is absolutely important to introduce the use of 

intracytoplasmic markers, such as MIB1, which proves to be a powerful discriminator when 

applied to the phenotypic study of tissue biopsies (Model II and Model IV). 

 

   

Figure 4. Ten most representative markers characterize each model defined by the 

classification trees. 
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4.3 Predictive models could categorize B-NHL in up to nine of the most common 

pathological entities with optimal accuracies. 

Each individual tree created was tested on a separate validation set, consisting of samples that 

were not part of the initial training set. In this context, we used confusion matrices as a means 

to visualize the performance of each model. These matrices provide a visual representation of 

how predicted classifications compare to actual sample classifications. Specifically, the true 

class to which each sample belongs is shown on the ordinate axis, while the predicted class is 

displayed on the abscissa axis. In an ideal scenario where a classifier achieves 100% 

accuracy, all samples would align perfectly along the diagonal in the confusion matrix. 

Figures 5a to 5d present the confusion matrices generated by the Model I, Model II, Model 

III, and Model IV classification trees, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Confusion matrices and corresponding overall accuracy of algorithms deriving 

from Model I (Fig.5a), II (Fig.5b), III (Fig.5c) and IV (Fig.5d) 

 

The accuracy, which is calculated as the proportion of correctly predicted samples divided by 

the total number of samples, obtained from the confusion matrix of Model I, is 87.74%, for 

a. b. 

c. d. 
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Model II is 92.68%, for Model III is 89.3%, and for Model IV is 87.59%. It is important to 

underline that the obtained training accuracy for each model is respectively 85.97%, 91.27%, 

86.67%, and 87.35%. This means that there is no overfitting, i.e., the predictive models are 

neither too rigid nor calibrated on the training set, but they are rather capable of generalizing 

classification rules on new data quite effectively. 

 

4.4  FC can contribute significantly to the study of B-NHLs performed on tissue 

samples. 

In order to study more thoroughly the diagnostic and, if possible, prognostic value of the 

markers used in the phenotypic characterization of the samples analyzed, we selected, from 

the numerous cases received between 2009 and 2022, the most complete and significant 

phenotypes related to those patients who had received a diagnosis of B-NHL after undergoing 

biopsy collection. The reports were validated by IHC, so we simultaneously confirmed that 

FC can be an equally reliable tool in oncohematologic diagnostics performed on tissue. At the 

time of initial diagnosis, the mean age of the 618 patients, 318 men and 300 women, was 66 

years. However, the number of cases attributed to each gender and the average age of the 

patients varied according to the type of B-NHL diagnosed, as shown in Table 2. It is 

important to point out that the number of subjects reported for each category of B-NHL does 

not always reflect the real frequency of diagnosed cases: in fact, for some types of neoplasia 

(e.g., CLL), the analyses are mainly performed on PB. 

diagnosis tot cases 

average 

age  at 

time of 

diagnosis 

cases F 
average 

age F 
cases M 

average 

age  M 

DLBCL 193 66 96 68 97 63 

FL 193 64 102 63 91 65 

MZL 92 67 41 70 51 68 

CLL 67 71 31 72 36 69 

MCL 27 64 13 65 14 63 

LPL 16 69 7 71 9 68 

HGBL 20 67 9 73 11 62 

BL 10 48 1 70 9 46 

 
618 

 
300 

 

318 

 

Table 2. Patient characteristics in selected cases.   

Clonal populations, previously identified by mean of “backbone markers” (CD19, CD20, or 

any combination giving on gated cells a percentage of clonally restricted cell greater than 

95%), were characterized with the large panel of antibodies described above (see “Materials 

and Methods”). In this study, we included routinely some cytoplasmic (cy) and nuclear (nu) 
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markers such as cyCD79a, cyBCL-2, cyZAP70, nuMIB-1(Ki-67) and more recently 

nuIRF4/MUM1, nuBCL-6 and nuMNDA. 

 

4.5 PPScore is useful to evaluate the impact of each marker to define every B-NHL 

category. 

 

We evaluated the predictive power of each marker across all lymphoma categories using the 

PPScore. The PPScore method allowed us to evaluate the impact of each individual marker 

(x), including the diagnosis, on all other markers (y).  The closer the value obtained is to 1, 

the higher the correlation. (Table 3).  
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 Table 3. PPScore calculation considering the diagnostic impact of each single marker 

belonging to the entire antibody panel    

PPScore values > 0.22 (the baseline score) are statistically significant to discriminate 

diagnostic categories. The results obtained demonstrate how the use of surface and 

intracellular markers allows us to define the major categories of B-NHL with a high degree of 

accuracy. Ten or less markers seem to be sufficient to achieve an adequate classification 

capability. (Table 4).  

 

Table 4. Markers of greatest prognostic value according to PPScore calculation    

 

We further validated the role of these markers by combining them in a classification tree. 

Here, each marker is analyzed in combination with all the others leading to a structural 

relationship tree that separates the entire database in quasi-homogeneous groups of 

lymphomas (Figure 6). 

The distribution of most significant phenotypic markers in each category of B-NHL was 

obtained from statistical analysis in Python (Figure 7). 
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Figure 6. Classification tree based on 10 most predictive markers. 
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Figure 7. Box plot representation of clusters obtained from statistical analysis in Python 

 

Observing the distribution of the clusters in the box plots, it is interesting to note that most of 

the markers have a distribution that is strongly correlated with the different types of B-NHL, 

and that high expression (or lack of expression) of some of them is characteristic of some 

NHLs. 

 

 

4.6 UMAP separates B-NHL categories in clusters with a high degree of accuracy. 

 

The UMAP dimensionality reduction technique is employed to group the 8 lymphoma 

categories into distinct clusters. Notably, when UMAP is applied to the 10 markers that are 

identified as having the most significant impact on diagnosis (as shown in Figure 8), it leads 

to a more pronounced separation of clusters. However, it does not differentiate between 

various lymphoma entities, as indicated by the arrow. In contrast, by exploring the expression 

patterns of all markers included in the phenotypic panel (as illustrated in Figure 9), where 

each antibody contributes to the UMAP representation regardless of its statistical 

significance, a clear and distinct separation of the 8 B-NHL groups into clusters becomes 

evident. Thus, we can conclude that PPScore analysis unveiled 10 markers which, among all, 

strongly correlated with the diagnosis. Nevertheless, a greater number of markers, combining 

intracellular with unconventional markers (CD305, CD81), increases the ability of UMAP to 

separate different entities. 
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Figure 8. UMAP exploration on best predictor markers. 

 

 

 

Figure 9. UMAP exploration on all markers.  
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DISCUSSION 
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It seems clear that the diagnosis of B-NHLs to date is highly variable and complex and, as 

recommended by the WHO classification of hematopoietic and lymphoid tumors, can only be 

properly achieved by careful integration of clinical, morphologic, immunophenotypic, 

molecular, and cytogenetic data. Although guidelines recommend that diagnosis should be 

made by excisional lymph node biopsy and that histopathologic evaluation of tissue 

architecture should guide subsequent immunohistochemical and biomolecular studies 

(Campo et al, 2011; Cheson et al, 2014), the surgical procedure is not readily applicable to 

patients with deep neoplastic lesions (e.g., retrosternal or retroperitoneal) or to frail or 

debilitated patients in whom invasive surgery may cause clinical complications with severe 

physical and psychological consequences. Core needle biopsy (CNB), which is performed 

under ultrasound guidance with a 16-gauge needle in cases where surgery is not indicated or 

in cases of disease recurrence, could be an alternative to excisional biopsy for the diagnosis 

of B-NHL. It should also be noted that while CNB limits the preservation of tissue 

architecture but allows IHC investigations, fine-needle aspirate biopsy (FNAB) does not 

allow the preservation of tissue architecture nor the application of IHC. However, several 

studies have investigated and demonstrated its validity when combined with supporting 

techniques such as FC, the results of which allow to achieve a high degree of diagnostic 

accuracy to be achieved (Amador Ortiz et al, 2011; Hu et al, 2013). Indeed, as mentioned 

above, FC provides a much greater amount of information than IHC. In addition, FC allows 

near perfect isolation of neoplastic populations as if they were a single entity, whereas in IHC 

the various cellular components appear mixed. However, the large amount of data obtained is 

difficult to analyze as a whole. Above all, it is particularly complex to correlate the diagnosis 

of a given type of B-NHL with the expression of each marker, or with the co-expression of 

multiple markers. Help comes from AI, which, through sophisticated reduction systems, 

quickly compares and stratifies all the elements obtained. Thus we obtained information 

comfortably manageable, through more easily interpretable 2D graphs. The potential of AI, 

when applied to a diverse set of cases involving mature B-NHL, has proven surprising. 

Previously, ML allowed the identification of distinct groups of tumors based on the 

expression of surface markers. By including intracellular markers in the phenotyping of tissue 

samples from patients with B-NHL, we achieved a more comprehensive analysis with the 

goal of developing an AI-based classification system that would determine which markers are 

most effective in distinguishing different groups of lymphomas. 

First of all, we decide to express immunophenotype data using the percentage of positive 

cells for each marker used, regardless of the fluorescence intensity. The percentage is the 

only parameter insensitive to the change of instrument and or reagent, that were obvious in 

the long period of time in which the data were collected. Moreover, it is extremely easy, and 

fits with our intent to create an algorithm which could support decisions for future samples, 

possibly in different laboratories.  

Afterwards, we had to decide which AI technique was more suitable with our purpose. After 

several trials with different techniques, we decided to use trees as classifiers: in fact, more 

advanced AI techniques such as convolutional neural networks did not improve significantly 

the accuracy; moreover, they are much more complex and heavyweight and, most 

importantly, did not allow us to understand how the algorithm was working. On the other 
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hand, a classification tree is a simple but extremely effective technique which clearly shows 

us the way it arrives to classify samples, allowing to compare the behavior of the algorithm to 

the human one, eventually confirming or suggesting improvements to our routine clinical 

practice.  

A theoretical disadvantage of classification trees is that they define net cut-off values for 

markers: it is difficult to attribute any real meaning to these thresholds, and these values 

could potentially vary from one laboratory to another one, even if our database spans form 

2003 to 2019, using different markers, different instruments and different operators thus 

recapitulating, at least partially, a multicenter experience. However, the fact that trees use 

thresholds and that a single marker is used along the tree with different thresholds in order to 

discriminate different groups of B-NHL has indeed a biological meaning: it confirms that a 

marker is not just “positive” or “negative”, but rather the percentage of positive or negative 

cells is important to discriminate between different entities or group of entities. Moreover, it 

tells us that it could be incorrect to use fixed thresholds to define a marker as positive or 

negative because  

 there could be different thresholds for the same marker, indicating different B-

NHL  

 thresholds should vary from one marker to another one.   

 

In other words, the AI uses a threshold of a specific marker, defined as a percentage of 

positive cells, to split a population in two main categories (for example people with clear or 

dark eyes) and then it may use the same marker with a different threshold to split one (or 

both) category in two subcategories (for example people with green or blue eyes among the 

clear eyes category). Then the use of another marker allows AI to distinguish further 

categories (for example the eyes shape).   

Finally, we had to deal with missing values: as our database spans from 2003 to 2019, 

different markers have been used according to the best knowledge and techniques available at 

that time. In addition, the use of markers is a reflection of daily clinical practice, so some 

markers may be under-used in the setting of suspicion of a particular disease. This aspect is 

particularly important for MIB1 and Bcl2, as these two markers are mostly utilized on 

samples other than peripheral blood or bone marrow aspirates, and for HCL and SL classes, 

where we had virtually only blood samples. This issue led us to generate multiple models, as 

described in the Results section.  

These analyses allowed us not only to evaluate our data in the most honest way, but also to 

compare the performances with and without MIB1 and Bcl2, which are two markers that 

have been used more and more in our laboratory and are a source of satisfaction.  

   

In Model I, the whole dataset was analyzed, but MIB1 and Bcl2 were removed. The I tree is 

characterized by a good overall accuracy (87,74%) and a very good per class accuracy, 

ranging from 94,28 to 99,46%.  However, the best indicators are probably the positive 

predictive value (PPV) and negative predictive value (NPV) that range, respectively, from 

58,33 to 100% and from 96,56 to 99,73%. Merging information from the confusion matrix 

and the percentage of accuracy, sensitivity and specificity, we can say that Model I, overall, 

has high specificity and NPV, while sensitivity and PPV are suboptimal for some B-NHL 
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subclasses: the algorithm seems to confuse LPL with MZL, which is quite expected, 

considering that these 2 subclasses are both indolent lymphomas with largely overlapping 

features. The best recognized class in terms of sensitivity is CLL, probably thanks to the very 

high number of available samples the algorithm could learn from.    

Analyzing the tree, we can appreciate that it recapitulates the classical FC approach to B-

NHL classification: CD5 is the root that divides the right part of the tree (CD5+ve), where 

there are mainly MCL and CLL, distinguished by CD200, from the left part (CD5-ve). The 

CD5-ve section of the tree is divided by CD10 in a middle part (CD5-ve CD10+ve), mainly 

occupied by DLBCL, FCL and BL, and in a left part (CD5-ve CD10-ve), mainly identifying 

MZL, SL, HCL and LPL. However, there are some considerations worthies to be noted: as 

mentioned above, CD5 and CD10, together with many other markers, are recurrent into the 

tree with different thresholds. In this sense, it would be more correct to say CD5> or < 

32.704% (at least in this model), rather than CD5+ve or -ve. The same concept applies to all 

markers.   

 

Figure 4 clearly shows that, apart from CD5, CD10 and CD200, one of the most important 

parameters to classify B-NHL is cell size, a variable underused as classifier in FC 

(Ichinohasama et al, 1997; Manocha et al, 2003), despite its common use as a gate (to 

overcome the problem of the intrinsic variability, due to different set up and different 

instruments, of the Forward Scatter as a measure of the cell volume we calculate for each 

case the ratio between the forward scatter of neoplastic B cells and residual T lymphocytes).  

Some markers which are generally used in a particular setting can have a role in classifying 

other B-NHL: CD200 and CD23, for example, which are basically used to distinguish CLL 

from MCL, seem to be differentially expressed in other B-NHL, such as DLBCL or MZL.  

  

In Model II, MIB1 and Bcl2 were included, but we had to remove HCL and SL from the 

analyses because samples from these two subclasses were not consistently tested for these 

two markers. The introduction of MIB1 and Bcl2 in the analysis significantly enhances the 

overall accuracy (92,68%), with major improvements in sensitivity, specificity, PPV and 

NPV of every subclass, which are all extremely high.  

MIB1 is the most important marker in this algorithm (Figure 3B) and it represents the root of 

the tree.  MIB1 identifies Ki-67, i.e., a nuclear antigen which is expressed by proliferating 

cells. Ki-67 is known to be differentially expressed in B-NHL, being highly expressed in 

aggressive B-NHL and to have a strong prognostic impact.  

Model II surely outperforms Model I, but the starting dataset is not the same: to evaluate the 

net benefit of MIB1 and Bcl2, we have to compare Model II with Model III where MIB1 and 

Bcl2 were removed from the analysis. Although the benefit in terms of overall accuracy 

seems to be modest (92,68% in Model II vs 89,3% in Model III), we can appreciate that in 

the subclasses’ analyses the sensitivity and PPV drop when MIB1 and Bcl2 are removed. In 

summary, Model II outperforms Model III, whose tree and characteristics are very similar to 

Model I.  

Finally, to demonstrate that the importance of MIB1 and Bcl2 was not an artefact due to the 

filling methodology utilized, we analyzed non-blood samples only, which are for the most 

part characterized with these 2 markers (Model IV). This resulted in a significant reduction of 
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available samples, from 1465 to 548, however, the overall accuracy is still 86.86%, with very 

good data on sensitivity and PPV; more importantly, MIB1 is the second most important 

marker and Bcl2 is still between the most powerful and discriminatory markers, just like in 

Model II (Figure 3D). Considering the different starting datasets (Model II is much more 

enriched in CLL compared to Model IV), these two models have very similar trees.  

This clearly demonstrates that the importance of MIB1 and Bcl2 is real, excluding any 

artefactual effect.  

Given the data obtained on tissue samples, we conducted further analysis on a larger group of 

tissue samples, obtained between 2009 and 2022, in which additional intracellular markers, 

including BCL6, IRF4/MUM1, and MNDA, were added to the panel.  

The criteria for selecting the markers to be used in the analysis, the method of filling in 

missing data, and the expression of the data as a percentage of positive cells for the specific 

marker, were the same as those used in the previously described analysis.   

On the contrary, we decided to follow an alternative analytical strategy. Instead of grouping 

the cases in four different dataset (Models I to IV), we maintained a single dataset of cases 

and used three different analytical approaches.  

The first method we applied was PPSscore analysis. This is an analytical method used for 

feature selection in machine learning that can identify those features (in this case, markers) 

that have the greatest predictive power in relation to a target variable (in this case, 

diagnosis).  

The results of this approach were particularly interesting: among the top five markers with 

the greatest predictive power, three were intracellular markers (IRF4, which was found to be 

the main one, BCL6 and MIB1) one was cell size (GC) and finally an unconventional surface 

marker (CD305).  

It is interesting to note that IRF4 and BCL6 are among the main markers used in IHC for 

defining the two main subcategories of DLBCL (follicular center type and activated type), as 

well as for differentiating different types of both indolent (e.g., FL) and aggressive (e.g., 

HGBL) lymphomas. The predictive power of MIB1 has been discussed previously, and it is 

therefore predictable that it will also be present in this analytical model.  

The cell size parameter has also been previously discussed. It is not surprising that this 

parameter is among those with the greatest predictive power, infact cell size represent a 

fundamental criterion in histological analysis for the classification of lymphomas.  

The presence among the best predictive markers of CD305 is less easily explained both due 

to its scarce application in clinical FC and the relatively limited literature (van Dongen et al., 

2012). CD305 is considered a very useful marker in the diagnosis of HCL (Garnache Ottou et 

al., 2014), but is poorly described in other types of lymphoma. In our series, in which HCLs 

are not present, CD305 is highly expressed both in MCL and in a subset of DLBCL, 

furthermore it has a very wide distribution pattern in SLL/CLL (Figure 7).  

Further studies are needed to better understand the precise role of CD305 in the context of B-

NHL, nevertheless, it remains to underline the ability of AI models to identify unsuspected 

feature with clinical impact.  

As a second analytical approach we once again employed the tree classification model. The 

markers identified by the PPS score were again both as the root node (IRF4) and among the 

main intermediate nodes. Unlike the PPS score, in the tree classification model the CD10 
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takes on a more significant role and is placed immediately below the root node in the 

classification system. The differences between the two models are however relatively limited 

and, also in this model, CD305 plays a fundamental role in differentiating the different types 

of B-NHL.  

Finally, the third analytical approach was the analysis with the dimensional reduction model 

UMAP. Unlike the other two analytical systems, UMAP, rather than identifying markers with 

an intrinsic predictive value, creates maps in which the weight of each marker weighed in 

relation to that of all the other markers generates clusters.   

From our analysis conducted both using only the ten markers identified by the PPS score and 

using all the markers, it clearly emerges that through flow cytometric analysis it is possible to 

identify the main groups of lymphomas with high accuracy. Furthermore, the positioning of 

certain lymphoma groups in a specific space of the UMAP map is not random, but rather 

determined by the intrinsic characteristics of that type of lymphoma.  

As an example of this, we can observe how the distribution of DLBCLs can be defined in two 

main groups, one "close" to FLs and one "close" to MZLs, probably recapitulating the 

heterogeneity of DLBCLs. Finally, the "distance" between SLL/CLL and FL appreciable in 

all maps can be interpreted as the "distance" in terms of the normal counterpart of the two 

types of lymphoma.  

In conclusion, our results demonstrate that the combination of surface and intracellular 

markers allows accurate categorization of the major B-NHL groups, with only ten markers 

proving sufficient for effective classification. Furthermore, the use of a broader set of 

markers, including intracellular and unconventional markers, improved the ability of UMAP 

to discriminate between different entities. 

Ultimately, this study suggests that the integration of AI with multiparametric FC could 

significantly improve the diagnostic process in B-NHL, complementing traditional 

histopathologic examinations. Further research is needed to determine whether this approach 

can predict categories of malignancies with specific molecular or genetic alterations, which 

may have implications for improved classification and therapeutic decision-making in B-

NHL. 

With this study, we hope to have started a big job, aimed at helping to achieve a more 

accurate and standardized method in the diagnosis and search for cures of the most common 

types of B-NHL. Nevertheless, it must be emphasized that although AI holds great promise in 

B-NHL diagnosis, there are several pitfalls and challenges that need to be addressed: 

 AI models heavily rely on data quality. Biased or incomplete datasets can lead to 

prejudiced or inaccurate results. Ensuring that the training data is representative of 

diverse patient populations is essential to avoid biased outcomes. 

 AI algorithms need rigorous clinical validation to prove their effectiveness and safety. 

This process can be time-consuming and expensive, and results may not always align 

with initial expectations. 

 AI models can sometimes become overly tailored to the training data, resulting in 

poor generalization to new and unseen cases. Proper model validation and evaluation 

are essential to prevent overfitting. 
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 Many AI algorithms provide results without clear explanations.  

In some cases, there may be a scarcity of data for rare subtypes or conditions of B-NHL. AI 

models may struggle to provide reliable diagnoses in such scenarios. 
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CONCLUSIONS 
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AI has the potential to revolutionize the diagnosis and management of B-NHL in several 

perspectives.  

AI Algorithms can analyze vast amounts of patient data, including medical images, genomic 

data, and clinical records, with incredible precision. This is certainly a useful strategy for 

researchers to discover new insights into B-NHL biology and potential therapeutic strategies.  

Meanwhile, powered predictive models can identify patterns and risk factors associated with 

B-NHL. This could aid in the early detection of the disease, allowing for prompt intervention 

and potentially better treatment outcomes. Furthermore, this can speed up the diagnostic 

process and reduce the chances of human error.   

Not to mention, the ability to reduce large amounts of data to easily interpretable patterns 

enables the integration of data from multiple sources. This holistic view of patient data can 

provide a more complete understanding of the disease and its progression. Anyway, exploring 

the correlation of specific markers with prognosis, AI-driven monitoring systems can track 

patients' responses to treatment in real-time. 

Furthermore, unraveling the specific relationship between certain markers and precise 

diagnoses, AI could also help create personalized treatment plans based on a patient's specific 

subtype of B-NHL, genetic makeup, and response to therapy. This personalized approach has 

the potential to result in treatments that are both more efficient and associated with fewer side 

effects. Therefore, AI can accelerate drug discovery by identifying potential therapeutic 

targets and predicting the effectiveness of existing drugs for B-NHL treatment. This could 

lead to the development of new and more targeted therapies. 

Definitively, by streamlining diagnostic processes and reducing the need for extensive 

manual labor, AI has the potential to lower healthcare costs associated with B-NHL diagnosis 

and treatment. 

However, it's essential to consider the challenges of implementing AI in B-NHL diagnosis, 

such as data privacy, regulatory approvals, and the need for ongoing validation and training 

of AI models. Additionally, AI should complement rather than replace human expertise, with 

healthcare professionals playing a critical role in interpreting AI-generated insights and 

making clinical decisions. 
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