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Abstract
The paper analyzes the optimal lockdown policy using the SQAIRD model over a network
with three population groups (young, adult, and old). We show that different lockdown
policies may be justified by different socioeconomic structures (objective cost functions that
are either convex or concave). We also show that a lockdown policy is always better than
a laissez-faire policy, and a targeted policy specific to each group outperforms a uniform
policy. In our benchmark example, we consider the case of Italy. Our simulations show that:
(a) a lockdown policy is always better than the laissez-faire policy because it limits the costs
generated by the pandemic in an uncontrolled situation; (b) a group-specific targeted lockout
policy is more effective than a uniform policy to the extent that the groups differ. The latter
is a less expensive targeted policy (as it optimally minimizes direct, indirect, and vaccination
costs), and it is equally effective in controlling the pandemic. One finding of particular interest
is that the optimal lockdown rate should be higher for the young and elderly than for adults.
This is motivated by the fact that younger individuals are more likely to spread the virus in
question asymptomatically.
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1 Introduction

Since the emergence of the novel SARS-CoV-2 that causes the Coronavirus disease (COVID-
19), which turned out to be highly infectious and potentially lethal, the scientific community,
including epidemiologists, physicians, and social scientists, has devoted its efforts to mitigat-
ing the pandemic’s negative effects.1 The scientific community was largely united in the need
for strong action, but there was a wide variety of policies implemented by the government,
including extreme options (Calcagnini et al., 2023; Powell, 2022). During the first wave of
the pandemic, some governments, such as Sweden, preferred not to take any direct action
to limit the spread of the virus (Walker et al., 2020), while others elected to impose a full
lockdown even before having a first case recorded, for example, Finland (Moisio, 2020).

Social scientists, such as economists, tried to measure the empirical effects of these con-
finement policies on several health and socioeconomic indicators, helping to define optimal
measures with minimal economic and social costs. Many empirical studies concerning the
outbreak of the COVID-19 pandemic have tried to evaluate the various policies implemented
by governments to stem the infection rate. For instance, Zhixiam and Meissner (2020) found
that the policies most strongly and significantly associated with slowing the growth in cases
were public transport closures, enforced workplace closures, limited domestic travel, and
restrictions on international travel. School closures and limits on public events were not
found to have a statistically significant effect. For example, from a cross-country perspective,
the effectiveness of non-pharmaceutical policies was negatively correlated with per capita
GDP, population density, and surface area and positively correlated with health expenditure
(Bargain & Aminjonov, 2020; Castex et al., 2020).

There are abundant studies in the literature on the optimization and efficacy of non-
pharmaceutical measures against COVID-19. Several authors have used the SIR model
pioneered by Kermack and McKendrick (1927) in an optimal control framework with gov-
ernments seeking to minimize the economic losses resulting from the pandemic (see, for
instance, (Alvarez et al., 2021; Atkeson, 2020; Gallic et al., 2021; Gori et al., 2022, 2023;
Hritonenko et al., 2021; Caulkins et al., 2021)). Almost all contributions to the literature fail
to take into account the epidemiological evidence according to which the adverse effects
of COVID-19 vary greatly among different demographic groups, being more severe in the
elderly. Gallic et al. (2021) used a SIR-based model to compare two different policies with
respect to their economic costs, one aimed at reaching natural herd immunity as Sweden and
the Netherlands did during the pandemic’s first wave, and another opposing strategy aimed at
flattening the epidemic curve and avoiding congestion in intensive care units; their hypothesis
was that infection rates and the probability of needing intensive care did not differ between
age groups. Hritonenko et al. (2021) added a delay in the COVID-19 infection process in a

1 Scientists from medical disciplines studied the mode of transmission of the virus and its effects on different
population groups, defining non-pharmaceutical or ad hoc containment policies to limit the spread of the
infection. Physicians worked hard to develop effective treatments and vaccines in the shortest possible time.
Epidemiologists, among other things, studied the dynamics of the pandemic with the typical approach of
predicting the number of infected, dead, and recovered as functions of some exogenously chosen diffusion
parameter which was, in turn, the consequence of a given confinement measure (Ferguson et al., 2020).
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modified SIR model to improve the prediction of the waves of the pandemic and more accu-
rately assess the corresponding mitigation policies. Caulkins et al. (2021) used a baseline
SIR model to investigate the optimal lockdown intensity (the authors use the term “optimal
degree of lockdown”) as the infection rate evolved. Here again, an underlying hypothesis is
that the adverse effects of infection did not differ among demographic groups. Aspri et al.
(2021) engaged in a similar exercise by introducing restrictions to the functions accessible
to the social planner and, in particular, imposing the requirement that they remain constant
over some fixed period. Again, one of the limitations of the study was the assumption that
the effects of the virus are constant across the population.

To the best of our knowledge, there are very few studies that take into account this epidemi-
ological evidence when trying to determine the optimal lockdown policy. One is certainly
that of Gori et al. (2023), which extends the papers by Alvarez et al. (2021) and Acemoglu
et al. (2021), by considering one additional control (namely, the tax rate to finance vaccine
production), thus obtaining two optimal trajectories of social distancing (lockdown) and
cost of vaccination in different scenarios, which basically depend on the weight the social
planner gives to the direct epidemic costs compared to the indirect (economical) costs and
the characteristics of the vaccines. In their paper, they develop a two-stage optimal con-
trol problem, where in the first stage, the social planner uses the only available control (i.e.
social distancing), while in the second stage, vaccines become available and this control is
added to the model. A combination of the two policies, i.e. social distancing and vaccination,
outperforms the single social distancing policy, and the longer the vaccine-free period, the
worse the effectiveness of the cost-minimization policy. Another study aimed at determining
the optimal containment policies is that of Gori et al. (2022). The authors compared two
non-pharmaceutical policies, specifically, a generalized lockdown measure and a test and
trace isolation policy for limiting the adverse effect of COVID-19 with particular attention to
capital accumulation, using as a baseline a SIR model in which all individuals were assumed
to be identical in their health characteristics. Unlike these papers, we assume that the social
planner can implement specific policies based on the age of the population, thus exploiting the
different epidemiological impact that the COVID-19 pandemic has on various demographic
groups. This is the main advantage and innovation of our paper, which basically combines
lockdown and vaccination policies aimed at different demographic groups of the population.
We assume that vaccination is available from the first period, which makes our model better
fit a second wave of pandemic, while Gori et al. (2023), instead, assume that vaccines are
available after a certain time, so they fit the entire period of the pandemic.

Few scholars have supported the idea that specific age-based confinement policies could
be beneficial in saving lives and minimizing losses.2 Two contributions on this topic are the
following. Gollier (2020) assessed two different policies (referred to as “suppression” and
“flatten the curve” strategies that traded loss of life and GDP, respectively) on a uniform basis
with a heterogeneous population, finding that in France confining the elderly throughout the
pandemic would halve economic costs by a factor of two. In a similar exercise, Acemoglu
et al. (2021) came to similar conclusions. These contributions, like our own, support the
idea that age-targeted lockdown policies work better both in terms of loss of life and loss of
GDP using a SIR model as the underlying epidemiological transmission scheme. It is worth
emphasizing that the contribution by Acemoglu et al. (2021) integrates a SIR model in an
optimal control problem that minimizes a loss function and assumes that the population is

2 Some unpublished manuscripts are those by Favero et al. (2020) who compared different age-based policies
coming to the conclusion that confining the elderly for longer period could help reducing the economic losses
of the pandemic. Wilder et al. (2020) also support the dominance of the strategy to confine the elderly with
respect to a uniform confinement policy.
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divided into three groups (young, middle-aged, and old) with different levels and rates of
infection, hospitalization, and mortality. Their main result is that a policy with differentiated
lockdown intensities for different demographics outperforms a uniform lockdown policy,
allowing more effective minimization of the economic losses resulting from the contain-
ment policy. In their model, Acemoglu et al. (2021) assume that the detection and isolation
of an infected individual are imperfect and that once an individual recovers, they become
immune for the remainder of the period. An individual can only assume four different states:
susceptible, infected, recovered, or dead.

In the studies cited above, lockdownmeasures are studied until the vaccines were released.
After such a release, the authors assumed that the lockdowns were no longer needed. This
is a first point that distinguishes our research and represents an added value that our paper
offers. However, we must point out that our model is similar to that of Acemoglu et al.
(2021); Buratto et al. (2022), and Gori et al. (2023). The similarities with those papers are
that we consider a SIR-based epidemic model under the effect of socioeconomic costs and
and we build an optimal protection strategy using optimal control. However, our paper differs
from those contributions since it is a bit more sophisticated: first of all, we introduce different
demographic groups (young, adult, and old) and, secondly, we extend the classical SIRmodel
by adding Asymptomatic, Quarantined, and Dead subgroups.3 We also consider two types
of controls, that is, quarantine and vaccination, and compare their effectiveness in order to
minimize the social cost function. That is, we allow differentiation in the types of costs that an
economy faces, and in the vaccination strategy that is offered. We also work with a structured
but not randomly distributed population and as a result we use the SQAIRD model under the
network formulations. Therefore, the control strategies are different, as well as the technical
differences in the method to solve the optimal control problem. Hence, our dynamics of the
infection path are slightly different from those of Acemoglu et al. (2021) and Gori et al.
(2023). Crucially, in our model, vaccines are available and are used as an additional control
to minimize the social losses of the pandemic. Our model does not admit individual behavior:
both lockdown and vaccination, if prescribed by the government, are fully accepted by the
population.4 In other words, while the models assumed by Acemoglu et al. (2021), Gori et
al. (2023) and others apply to the pandemic’s first wave, our model is a better fit for the
longer term and accounts for subsequent waves in which vaccines are potentially available,
with their cost included as a positive component of total pandemic costs. The reason why

3 While there are already several papers allowing for pandemic dynamics that are richer than a SIR model.
Examples with populations of different age groups and also with dynamic modeling are Brotherhood et al.
(2020a, b); Brotherhood and Santos (2022) and Glover et al. (2022). Although they don’t study exactly a
SQAIRD model, they study the implications where lockdown policy is always better than no-policy and
targeted policies are also better than non-targeted. Brotherhood et al. (2020a, b) studied, from a cost-benefit
analysis, the implementation of two policies: shelter-at-home order, requiring that individual stay at home
at least 90% of their time, and test-and-quarantine policy, which imply an additional cost due to testing, but
only people who are found infected are isolated. The first policy is assumed to last 26 weeks and it cuts
dramatically the labor supply of the young, with a substantial decrease in GDP. The second policy, conversely,
requires infected agents to stay longer isolated, even if this is against their best interest, but has the advantage
of decreasing the number of unaware infected around with a smaller decrease of GDP.
4 Dahmouni and Kanani (2022) examined the dynamics of infection based on voluntary isolation of healthy
individuals to safeguard vulnerable individuals. Although this assumption may be unrealistic in many demo-
cratic countries, it simplifies the treatment of the problem and, in some time periods, may approximate fairly
reasonably the actual compliance of the population with government demands for vaccination. The less the
reluctant to vaccines, the longer is the good approximation of our model to reality. We refer the reader to
Huang and Zhu (2022) for a review regarding individual decision making in the context of a pandemic.
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we use vaccination5 as an additional control for the social planner is that since vaccines are
costly, and since some strata of the population may experience slight effects or very dramatic
consequences from the virus: total vaccination or no vaccination may not be optimal since
it does not minimize social costs, so a graduation of this policy may be preferable. In the
rest of this paper, we assume that vaccine production is private and that the social planner
assumes a fixed cost for each injected dose.

Our paper has two aims. First, it aims to explain the great variety of policies implemented
by similar countries in Europe and globally. One may wonder if there are reasons for these
differences in response that are not explained by culture or lifestyle differences; for example,
these differences are evident among rich and developed countries with similar cultural back-
grounds and geological and climate characteristics. As discussed below, extreme policies of
full lockdown or the total absence of any confinement measure can be justified by the concav-
ity of the social cost function of the country, which in turn implies non-decreasing returns to
scale. By contrast, when the social cost functions are convex, “intermediate” or “moderate”
policies become optimal and the optimal intensity of lockdown can be defined (or can specify
the appropriate groups for confinement), and the optimal level of vaccination s determined
to minimize economic losses.6 It is widely documented that China’s policy for limiting the
diffusion of the pandemic was a very strict lockdown in the cities and regions implicated,
even after the initial wave. This is consistent with the claim byRen and Jie (2019) that China’s
strategy for economic growth from 1993 to 2015 was to implement structural reforms on the
supply-side of the economy to decrease the share of sectors characterized by constant and/or
decreasing returns to scale and fostering and subsidizing sectors characterized by increasing
returns to scale. In Finland, Mukkala (2004) documented that regional concentration of eco-
nomic activities was prevalent in almost every industry for which the choice of location does
not depend on natural resources, thus showing the existence of agglomeration economies that
exploit the positive externalities due to specialization; similar conclusions can be drawn for
Sweden (Andersson et al., 2019). Assuming concavity of a country’s cost functions justifies
extreme confinement or vaccination policies, many scholars have studied the dynamics of
infection and its impacts on economies assuming convexity of costs.7

Our numerical simulations corroborate the results in terms of optimizing the lockdown
time policy and the socioeconomic costs while considering the heterogeneity of the economic
agents (elderly, adults, and young people). We also simulate the dynamic of the pandemic

5 In the remainder of the paper, we use the term “intensity” of vaccination in the sense that –given a vaccine
that is equal for everybody– the social planner decides how many people to inoculate. The more intense a
policy is, the more people are vaccinated. The term intensity, therefore, refers only to the number of people
inoculated.
6 In the empirical production analysis, the convexity of the cost function is a hypothesis that is often assumed,
either because of time divisibility, or simply for analytical convenience.Convexity of cost functions imply
decreasing returns to scale. In reality, as Eaton and Lipsey (1997) claim, the very existence of capital goods
with a lumpof embodied services (rather than disembodied service flows) points to fundamental nonconvexities
in production costs. Other causes of nonconvexity could be the presence of externalities (Romer, 1990) or
simply the aggregation of well-behaved distinct technologies that may give raise to some local non-convex
range in technologies (Hung et al., 2009).
7 Extreme vaccination policies, that is, total immediate vaccination and no vaccination at all, are not encoun-
tered in the empirical evidence and in the context of our paper are purely a theoretical exercise. Total immediate
vaccination may subject indeed to physical constraints that impede such policy, like limits to the production
capacity or to the physical health structures devoted to this activity, without considering the limits to the human
capital needed to implement such policy. No vaccination at all has not been observed as it is likely to be a
very unpopular measure. Despite these motivations can be an optimal reasons why we do not observe total
vaccination or no vaccination at all, in our model we assume that they are possible, but possibly not optimal
for minimization of the social cost function.
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with no policy implemented. Simulations highlighted the fact that: a) a policy of lockdown
is always better than the laissez faire policy, because it limits the costs that the pandemic
generates in an uncontrolled situation; b) a targeted policy by age of the individuals is better
than a uniform policy in terms of costs that it generates, being a targeted policy less costly
and equally effective in the control of the pandemic. In the numerical exercises, the param-
eters of the model were calibrated according to the empirical evidence taken from data of
the websites: https://www.worldometers.info/coronavirus/ and https://ourworldindata.org/
coronavirus. Our model can be applied to any country, but we decided to consider the case
of the spread of the virus in Italy during the second wave of Covid-19 (Bontempi, 2021),8 so
we select data on the recovered, infected and dead people by age group.

The reminder of the paper is organized as follows: Sect. 2 illustrates the epidemic process;
Sect. 3 presents the theoretical optimal control problem, and derives the conditions under
which extreme lockdown policies or moderate policies are optimal; Section 4 calibrates the
model under the hypothesis of a convex cost function, defines the functional form of the
objective and state equations and sets out the numerical results. It is important to point out
that calibration of the costs and parameters used in the model are based on data available for
Italy. Section5 concludes.

2 The epidemic process

We model virus spread in a population by extending a classical Susceptible-Infected-
Recovered-Dead (SIRD) model by Allan (2008), Altman et al. (2011); Gubar and Zhu
(2013), and Gubar et al. (2017). Within this model, we first divide the population into three
demographic groups, denoted by p = 1, 2, 3, representing youth (1), adults (2), and older
persons (3), respectively. Within each demographic group, the population is divided into
six subgroups: Susceptible (S), Quarantined or Isolated (Q), Asymptomatic (A), Infected
(I ), Recovered (R), or Dead (D). This division of the population, as previously mentioned,
extends the classical SIRD model by introducing two additional groups comprising individ-
uals who are quarantined and asymptomatic. The SIRD model thus becomes a “SQAIRD”
model, specifically:

• The Susceptible group, S, comprises those who are exposed to the virus and are, at the
beginning of the pandemic, the majority of the population.

• The Quarantined group, Q, includes individuals isolated at home, by law or voluntarily.
People are quarantined before contracting the disease, which makes sense when viewing
quarantine as a preventive measure (but also in this case where there could have been a
contact with an asymptomatic person) in line with the COVID experience (asymptomatic
patients are generally quarantined while infected patients are hospitalized).9

• The Asymptomatic group, A, comprises individuals who have the virus but did not
exhibit symptoms. These people can behave as if susceptible but they can also infect
other people. Once infected, a person in this group will either recover (then shift into the
group of recovered individuals, R) or develop symptoms, then shifting in the group I of

8 It is important to highlight that Italy was the first Country were COVID-19 started to spread in EU (in
February 2020), and one of the most severely affected member states, with France, Spain, and UK. On the
contrary, Germany was one of less affected member states during the first wave.
9 In response to the pandemic crisis, government policy makers have implemented measures that suppress
economic activities, in particular, the related containment and lockdown measures are likely to affect most
components of potential production and/or economic growth (see Bischi et al. (2022)).
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the infected with symptoms with probability αp ∈ (0, 1), for each demographic group
p = 1, 2, 3.

• Those belonging to the infected I group, on the other hand, can recover and go to the R
group or die going to the D group.10

At each time t and for each demographic group p,a fraction of the groups of susceptible,
quarantined, infected, recovered and dead individuals exist, and are denoted by Sp(t), Qp(t),
Ap(t), Ip(t), Rp(t) and Dp(t), respectively. By normalization:

3∑

p=1

Sp(t) +
3∑

p=1

Qp(t) +
3∑

p=1

Ap(t) +
3∑

p=1

Ip(t) +
3∑

p=1

Rp(t) +
3∑

p=1

Dp(t) = 1, (1)

The sum of the group shares is equal to one. The entire population is assumed to be constant
and equal to N = 1 throughout the period of analysis.11

At the beginning of the pandemic (t = 0), most people were members of the Susceptible
group, and a small fraction of people were infected (see, for example, Sahneh et al. (2013);
Mieghem et al. (2009)Taynitskiy et al., 2018). Hence, for each demographic group p, the
initial states are:

Sp(0) = S0p > 0,

Qp(0) = Q0
p ≥ 0,

Ap(0) = A0
p ≥ 0,

Ip(0) = I 0p > 0,

Rp(0) = R0
p ≥ 0,

Dp(0) = D0
p = Np − S0p − Q0

p − A0
p − I 0p − R0

p.

where
∑3

p=1 Np = 1 and Sp(t) + Qp(t) + Ap(t) + Ip(t) + Rp(t) + Dp(t) = Np . The
following Fig. 1 illustrates the pandemic process in this SQAIRD model. In such a scheme,
the arrows indicate the infection process among the groups, ending at the node of agents that
are either recovered or dead.

Figure 1 clearly depicts the pandemic process. Specifically, we provide as follows:

• A Susceptible individual would be infected and shift into the category of Asymptomatic
with probability βp = β, ∀p = 1, 2, 3. We assume that β is constant for all categories
of individuals (youth, adults and old people). A susceptible person can also shift into the
Quarantined group by their own freewill - they decide to isolate (that is, stay at home)with
probability γp to isolate himself (i.e. stay at home). Another reason why a susceptible
person can shift into the quarantined group is by law (the government implement a
lockdown policy) with probability up. These measures (irrespective of whether they are
defined by people’s will or by law) have the effect of reducing the number of susceptible

10 We assume that once a person switches to the R or D groups, they can no longer be infected, that is
we assume that a person who recovers develops immunity and cannot be infected again. This claim is now
dated and shown to be inaccurate: vaccinations and strategies to cope with the disease in an endemic stage
are becoming more and more predominant and permanent immunity after recovery from the COVID is not
consistent with recent evidence; that is, a SIRS model –susceptible, infected, recovered, susceptible– seems
to be preferable to a SIR model.
11 We consider that outbreaks caused by infectious disease typically last for several years (Spanish flu 1918-
19, Asian flu 1957-60, Hong Kong flu 1968-69, H1N1 pandemic 2009-10), therefore we can assume in our
model that the total population is fixed.
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Fig. 1 The scheme of epidemic process, index is p = 1, 2, 3. Nodes corresponds to the fraction of infected
people in the entire population

people that can be infected, so these measures are also able to reduce the speed of
circulation of the virus.12

• The δp parameter defines the probability of breaking the quarantine rules. So people can
recover naturally with probability (1 − αp)σp (where αp represents the probability of
developing symptoms once infected and σp is the natural rate of recovery) or develop
symptoms with probability αp .

• The parameter kp represents the “speed" at which an asymptomatic individual shifts into
the Infected group.13 Once infected, she/he can recover with a rate σp or die with a rate
μp .14 Notice that the probability to recover or to die differs between demographic groups,
contrary to the probability of catching the virus (i.e., transitioning to the asymptomatic
group).

• The parameter vp measures the intensity of vaccination in each group p = 1, 2, 3. That
is, the intensity of vaccination is different for each demographic group, but for example
at the end of the pandemic process it could be the same intensity of vaccine application
in each group.

Therefore, according to the virus propagation process that we have just described, we
formalize all this through the following differential equations:

dSp(t)

dt
= −βSp(t)A(t) − (u p(t) + γp)Sp(t) − vpSp(t), (2)

dQp(t)

dt
= (u p(t) + γp)Sp(t) − δpβQp(t)A(t), (3)

12 Both quarantine measures for the susceptible and medical treatment (irrespective of whether this takes the
form of hospitalization or isolation) for the infected have the effect of reducing the number of susceptible
individuals that are exposed to the infection and the number of infected that those who are susceptible may be
in contact with, so have the effect of slowing the spread of the virus. Asymptomatic persons are still able to
infect other susceptible individuals.
13 Assuming that all asymptomatic individuals who will develop symptoms remain symptom-free on average
for about 5 days before moving to the Infected group. According to the Report of the WHO-China Joint
Mission on Coronavirus Disease 2019 (COVID-19), available at https://www.who.int/docs/default-source/
coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf, symptoms are developed, on average,
5 days after infection. This value is embodied in the parameter kp .
14 Asymptomatic people recover naturally with a rate σp . We make moreover the assumption that all the
Infected people (that is to say, those who develop symptoms) are treated with medical procedures, that vary
according to the severity of the infection. Once infected and treated, an individual may recover with probability
σp or die with probability μp .

123

https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final- report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final- report.pdf


Annals of Operations Research (2024) 337:959–992 967

d Ap(t)

dt
= βSp(t)A(t) + δpβQp(t)A(t) − αpkp Ap(t) − (1 − αp)σp Ap(t), (4)

d Ip(t)

dt
= αpkp Ap(t) − (σp + μp)Ip(t), (5)

dRp(t)

dt
= σp Ip(t) + (1 − αp)σp Ap(t) + vpSp(t), (6)

dDp(t)

dt
= μp Ip(t). (7)

Where in Eqs. (2)–(7) the term A(t) = ∑3
p=1 Ap(t) indicates the number of asymptomatic

individuals in the society at time t . That is, specifically:

• Equation (2) describes the dynamics of the Susceptible group, Sp . During the pandemic
it is intended that this group will decrease as time passes. In fact, a fraction of those in the
Susceptible group are infected with probability β each time contact with an infected or
asymptomatic person occurs. In fact, the probability of becoming infected is proportional
to the stock of freely circulating infected people (essentially, the virus spreads by causing
infected people to become infected but only exhibit symptoms 1 to 5 days later) and is
equal to βA(t). Another reason why this group decreases is that people transfer to the
quarantine group because they self-isolate or because the government forces them to
stay home. This probability is given by by (u p(t) + γp). Then, the fraction of those in
the Susceptible group that to others (in particular, to the Asymptomatic or Quarantined
groups) is described by Eq.2.

• The group of quarantined – as we already mentioned – represents the share of susceptible
individuals subject to compulsory isolation (u p) or self-isolation (γp). The dynamics
denoting the behavior of group Qp is denoted by Equation (3).

• Equation (4) describes the dynamics of the Asymptomatic group (Ap). With the prob-
ability αp , an asymptomatic person can develop symptoms and become infected. This
happens at the rate kp , reflecting the fact that an asymptomatic person usually takes 5
days to develop symptoms. The asymptomatic person will recover from the virus without
developing any symptom with the probability (1 − αp)σp .

• Equation (5) describes the dynamics of the Infected group (Ip). There is a positive
contribution to this group from asymptomatic individuals who become infected (that is,
develop symptoms) at a rate of αpkp . This group decreases because some of the infected
recover and others die. These counterbalancing forces will produce an inverse U-shaped
curve describing the number of infected during the pandemic to be, with an increasing
trend in the early periods of the pandemic and a negative trend thereafter. As previously
mentioned, an infected individual would recover with probability σp and we assume
that an infected person is detected after 5 days of the first appearance of symptoms.15

Recovery happens, on average, after 30 to 40 days from infection (we assume 30 days for
the young, 40 days for adults and 60 days for the elderly). Infected individuals who do
not recover are assumed to die with probability μp . Therefore, while the Infected group
increases because those in the Susceptible group get sick with probability βA(t), this
group decreases because the infected can either recover or die with probability (σp+μp).

• Equation (6) describes the dynamics of the Recovered group (Rp), which increases
over time because some of those infected defeat the virus (this may be due to effective
treatment or without intervention), and this happens with probability σp . This probability

15 https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html, https://www.
healthdirect.gov.au/coronavirus-covid-19-symptom-faqs.
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determines the positive flow of individual coming from the Infected and Asymptomatic
groups. Equation6 formalises this dynamics.

• Equation (7) describes the dynamic of the Deaths group (Dp). During the pandemic,
it increases over time according to the proportion of those infected who are unable to
recover. Then, in each period, this group increases by a proportion of Ip(t) equal to μp .

We now proceed to develop the behavioral dynamics for the system of Eqs. (2)–(7) apply-
ing network theory to understand the pandemic process described above and schematically
represented in Fig. 1 above. An optimal control problem is then applied to minimize the
structure of cost functions that are generated in a pandemic as a result of lockdownmeasures.

2.1 The network epidemic model

Following Shane and Scoglio (2011); Sahneh et al. (2013) and Taynitskiy et al. (2017) we
proceed from the ordinary SQAIRD model (the system of equations (2) - (7)) to a General-
ized Epidemic Mean-Field (GEMF) model that represents a systematic procedure to design
different spreading mean-field models. This extension of the epidemic models allows us
to describe any propagation process, formulated in a population and taking into account a
contact network. The GEMFmodel requires the network structure, which defines social con-
tacts in human populations, the agents’ states in a population (susceptible, infected, etc.),
and the rules of transition between them. For any specific scenario, the Compartment set,
and corresponding influencer compartments should be identified, and transition rate graphs
determined.

Definition 1 Complex network is defined by graphs G(N , Y ), where N is the set of nodes
and Y is the set of edges, that represent the connections between nodes.

In our case the network consists of N = N1+N2+N3 interacting agents in the entire popu-
lation, each ofwhomcan be in one of the states (compartments). In the general casewe assume
that each agent can be in one of the states or compartmentsMp = {Sp, Qp, Ap, Ip, Rp, Dp}.
Such a network makes it possible to take into account various patterns of contacts between
the agents of the population. Interaction between agents is defined by an adjacency matrix
C = {ci j }. If an agent i contacts an agent j , then ci j = c ji = 1, otherwise ci j = 0. A general
rule for the revision of the population states can be represented as follows.

1. First, let agent i , which remains in state wia = a, move to state wib = b with probability
rab. This transition a → b occurs independently of the neighbors of agent i . For example,
the transition Ip → Rp in the SQAIRD network gives probability rIp Rp = σp .

2. Second, the stochastic transitions of an agent may depend not only on its own state, but
also on the states of other agents j ∈ {1, . . . , Mp} \ {i}, where ci j = c ji = 1. For
example, the transition Sp → Ap in such a network, where rSp Ap = βp.

We now present several definitions to define the transition between subpopulations in the
network formulation of the SQAIRD model

Definition 2 A nodal transition is a process that occurs independently of the states of other
agents (see Fig. 2. From the definition of 2 we can say that the agents of the infected subgroup
recover only according to the recovery factor σ and not by agents of other groups).

Definition 3 An edge-based transition is a process that occurs as the result of interaction
between a pair of agents an edge-based transition. Edge-based transitions are different from
nodal transitions because they depend on the states of other agents (see Fig. 3).
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Fig. 2 Nodal transition

σ

Fig. 3 Edge-based transition β

Definition 4 An influencer compartment q is any state in the network which impacts the
Edge-Based Transition.

Remark 1 A state q is defined as an influencer compartment if it causes the transition of
a given node i to the state j . For example, in the basic SIR model the state of Infected is
the influencer compartment for the contact network. In our extended model state, Ap is an
influencer compartment in a susceptible state in each demographic group. This causes the
transition from the susceptible to the asymptomatic state under the impact of the asymptomatic
agent.

Therefore, to consider the SQAIRD model mapped as a GEMF model, transitions from
infected to recovered subpopulations occur regardless of the status of neighbors, while tran-
sition from the susceptible subpopulation depends on asymptomatic individuals and can be
described by a different mechanism, that is, a graph Ĝ(N ,Y) describing nodal transitions.

• That is, we have an influencer compartment qp ∈ {1, . . . , Mp} and a graph Ĝ(M,Y),
which corresponds to the network G. Here M is a set of nodes. For the influencer com-
partment state, we define a population state qp that influences the edge-based transition.
The set Y is the set of edges that corresponds to connections between agents.

• It is supposed that if a transition i → j is the edge-base or nodal transition then it occurs
with a probability ri j .

• A graph Ĝ(M√,Y) can be represented by adjacency matrices of edge-based transition

rates X or a matrix of Kirchhoff K . Let i, j ∈ {1, . . . , M} then the components of the
matrix X are determined by the rule: if the edge-base transition i → j exists and its
probability ri j is defined, then ai j = ri j , and 0 otherwise.

Definition 5 The adjacency matrix of edge-based transition rates corresponding to graph
G(N , Y ) is denoted by X = [ai j ]. Its elements are defined by the rule

xi j =
{
ri j , for the edge-base transition i → j, i, j ∈ {1, M}
0, otherwise.

(8)
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Definition 6 Elements of the Kirchhoff’s matrix K = [qi j ] are defined in the following way:

ki j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0< j≤M
(i, j)∈Y

ωi j , if i = j;

−ωi j , if (i, j) ∈ Y;
0, otherwise.

(9)

Matrix K ξ , that corresponds to graph of nodal transitions, is defined analogously to K . A
graph Ĝξ (M,Y) describes nodal transitions.

2.1.1 Stochastic (Markov) network model

Next, we represent the extended SQAIRD model for different infected subpopulations,
belonging to precise demographic groups, as the N-interwined model (see Mieghem et al.
(2009)). As discussed above, each agent in each demographic subpopulation (elderly, adult,
and young) may be in the susceptible, asymptomatic, infected, recovered, or dead (compart-
ment) subgroups. Therefore, the number of compartments in this case is Mp = 6, while the
influencer compartments in this case are qp = Ap , p = 1, 3.

Definition 7 The vector Wi (t) = [wi,1(t), wi,2(t), . . . wi,M (t)] shows the states of a node i ,
where wi,k(t) is the probability that node i at time t is in state k, where the condition that
must be met is wi,1 + wi,2 + . . . + wi,M = 1.

Therefore the variables Sp(t), Qp(t), Ap(t), Ip(t), Rp(t), Dp(t), p = 1, 2, 3 that corre-
spond to the fractions of the relevant nodes (susceptible, quarantined, asymptomatic, infected,
recovered and dead), can be rewritten in terms of the vector Wi (t):

Sp(t) =

N∑
i=1

wi,Sp (t)

N
, Qp(t) =

N∑
i=1

wi,Qp (t)

N
, Ap(t) =

N∑
i=1

wi,Ap (t)

N
,

Ip(t) =

N∑
i=1

wi,Ip (t)

N
, Rp(t) =

N∑
i=1

wi,Rp (t)

N
, Dp(t) =

N∑
i=1

wi,Dp (t)

N
.

Based on the theory of Markovian processes, the vector state evolutions Wi for a node
i ∈ {1, . . . , N } of the generalized GEMF model (Sahneh et al., 2013) are defined as:

dWi (t)

dt
= −(K ξ )TWi −

N∑

j=1

ci jw j,Ap K
TWi ; (10)

for i ∈ {1, . . . , N }. Here K is the Kirchhoff’s matrix. Each equation in the system (10)
contains two terms, the first describes the evolution of the vector of states under the influence
of edge-based transitions. The second term defines the nodal transitions, corresponding to
matrix K ξ . Where the probabilities of being susceptible, infected, and recovered are denoted
by Wi,Sp , Wi,Ip , and Wi,Rp and the state vector is

Wi (t) = (
wi,Sp (t), wi,Qp (t), wi,Ap (t), wi,Ip (t), wi,Rp (t), wi,Dp (t)

)
, i = 1, . . . , N ,

N , is the set of nodes and p = 1, 2, 3 is the number of subgroups. The sum
∑N

j=1 ci jw j,Ap is
the value of the effect of influencer compartment j on the node i , where j ∈ {1, . . . , N }\{i},
for each ci j = c ji = 1.
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Fig. 4 Graph of transition
probabilities of SQAIRD model

Fig. 5 Graph of the nodal
probabilities

In this case the adjacency matrix of the edge-based transition rates on the subgroup p
is:

Ad jp =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 β 0 0 0
0 0 β 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
;

The corresponding Kirchhoff’s matrix of the group p can be calculated as:

Kp =

⎡

⎢⎢⎢⎢⎢⎢⎣

β 0 −β 0 0 0
β 0 −β 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Figure 4 represents the transition probabilities of the contact network, and Fig. 5 shows
the nodal transitions for the extended SQAIRD model.

Nodal transition In the current SQAIRD model, the nodal transition describes the pro-
cesses that appear in the system independently of the other states. It includes the application
of quarantine and vaccination measures to prevent the spread of the virus and transitions
(from the infected to the recovered or dead state). The adjacency matrix of nodal transition
rates is defined as follows:

Ad j ξp =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 γp + u p(t) 0 0 vp(t) 0
0 0 0 0 0 0
0 0 0 αpkp (1 − αp)σp 0
0 0 0 0 σp μp

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
;
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where Kirchhoff’s matrix is:

K ξ =

⎡

⎢⎢⎢⎢⎢⎢⎣

γp + u p(t) + vp(t) −γp − u p(t) 0 0 −vp(t) 0
0 0 0 0 0 0
0 0 αpkp + (1 − αp)σp −αpkp −(1 − αp)σp 0
0 0 0 σp + μp −σp −μp

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

System (11) describes the states (10) in terms of fractions Sp , Qp , Ap , Ip , Rp , and Dp

for each node i in the network.
⎡

⎢⎢⎢⎢⎢⎢⎣

Ṡp
Q̇ p

Ȧ p

İ p
Ṙp

Ḋp

⎤

⎥⎥⎥⎥⎥⎥⎦

i

= −K ξ
p

⎡

⎢⎢⎢⎢⎢⎢⎣

Sp
Qp

Ap

Ip
Rp

Dp

⎤

⎥⎥⎥⎥⎥⎥⎦

i

− ∑N
j=1 ci j ApK T

⎡

⎢⎢⎢⎢⎢⎢⎣

Sp
Qp

Ap

Ip
Rp

Dp

⎤

⎥⎥⎥⎥⎥⎥⎦

i

(11)

Thus, we rewrite system (2)–(7) using the Kirchhoff’s and adjacency matrices and obtain
System (11). We use such notations to make the transition from a randomly distributed popu-
lation to a population on a network. As a result, it will be possible to use our model to analyze
the propagation of the virus on the specific networks with different connectivity parameters.
Next, we formulate the optimal control problem for System (11) and analyze the situation
where the government implements amandatory lockdown policy for each demographic group
(young, adult, and old). Depending on the cost structures in the economy, various scenar-
ios may emerge that justify different policy approaches implemented by similar countries
(both in terms of infection level and other characteristics). In addition, it is possible to show,
with numerical simulations, that policies focused on the different demographic groups allow
reducing the economic losses of the confinement.

3 The optimal control problem

Estimates of the economic losses caused by the COVID-19 pandemic are highly relevant:
Harary and Keep (2021) estimated a loss in the UK’s annual GDP of approximately 9.7%
during 2020, with respect to the previous year and a loss of 25% in April 2020 with respect to
two months earlier. In the first quarter of 2020, Eurostat estimated that Italy’s GDP dropped
by 5.2%with respect to theGDP of the previous quarter. The picture formany other European
countries is no less dramatic. The reasons for this are that illness and lost lives have a huge
impact on the labor market due to the temporary and permanent loss of human capital. A
negative shock in the labor force negatively affects production, potentially resulting in an
impoverished population and a decrease in economic growth. The pandemic has also had a
strong negative effect on the health system, which has to bear the treatment costs of a great
number of infected, often without the necessary technical and human resources. Politically,
a pandemic that is not well managed may affect the political choices of the citizens and
jeopardize the government’s re-election. The correct management of a pandemic emergency
is of vital importance for any government. Therefore, there is a need to find an effective way
to control the impacts of pandemics, such as COVID-19, with minimal economic and social
disruptions.
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Optimal control theory, in this special case, may explain how to apply one or more time-
varying control policies to a nonlinear dynamic system to optimize a given objective function,
which, in this case, could be a cost and profit function (Kissler et al., 2020; Perkins &
España, 2020). Here, we apply optimal control theory to determine optimal strategies for
the implementation of lockdown policies to control a pandemic. As discussed below, an
optimal strategy (that is, a strategy that minimizes the costs of a lockdown) may depend on
the socioeconomic cost structure of the economy, in particular, on the concavity or convexity
of these functions.

We introduce the objective function to be optimized by the government, using as controls
the lockdown measures u p(t), p = 1, 2, 3 and vaccination vp(t), p = 1, 2, 3. This objective
function is determined by the sum of direct and indirect costs related to the management of
the pandemic, eventually summed to a “profit function” for those who re-enter the job market
after recovery. In otherwords, the government has to optimize the balance between profits and
costs through the application of a policy that requires a fraction of those who are susceptible
to stay isolated and avoid contact with other individuals. This policy is differentiated between
demographic groups; that is, the obligation for the young and susceptible individuals could be
different from that for adults or for old and susceptible individuals. We define the following:

– f p(Ip(t)) is a function measuring the direct costs of infection, with a non-decreasing,
twice differentiable function, such that f p(0) = 0, f p(Ip(t)) > 0 for Ip(t) > 0. These
costs can be interpreted as the price the government pays for the health system to treat
the infected and increase the probability of recovery for the treated individuals. Infected
individuals who are not detected because they are asymptomatic are not treated, and
therefore there are no direct costs for them.

– It is also costly to impose quarantine on those who are susceptible or for individuals
to self-isolate to avoid contact with infected people. While there are no direct costs of
medical treatment because they are not sick, these individuals stay away from the job
market, meaning that they stop producing for the whole period of isolation. Similarly,
for the infected, the interruption of production implies a loss (and this may require
corrective action in support of the necessary consumption of those heavily affected by
the lockdown) and a decrease in government revenue. We model such socioeconomic
costs by using functions hS1 (u1(t)), h

S
2 (u2(t)) and h

S
3 (u3(t)),that depend on the fraction

of isolated susceptible individuals belonging to the three groups: (1) young, (2) adults,
and (3) old. These functions hSp(u p(t)) are assumed to be increasing in the arguments

u p(t), and twice differentiable, such that hSp(0) = 0, hSp(u p(t)) > 0 when u p(t) > 0 for
each p = 1, 2, 3.

– Vaccination vp(t) generates costs for the health system and society; however, its socioe-
conomic cost is lower than the costs of having high levels of infections since the latter
requires the entire health system for the treatment of those infected. Let us denote by
hvac
p (vp(t)) the vaccination cost function.

– The treatment or medical cure of those infected produces direct costs for society, while
both isolation and hospitalization and death produce indirect costs because people are
prevented from working, or the market suffers a loss of human capital. The function
hI
p(Ip(t)) represents the indirect costs of treating the infected (by isolation and hospital-

ization) to keep them out of the labor market until recovery. The function hI
p(Ip(t)) is

increasing on the argument Ip(t), is twice differentiable, and is such that hI
p(Ip(0)) = 0.

– Furthermore, each life lost (death) produces a cost for society, that is, a loss of human
capital. This cost is assumed to be constant for each individual in a given demographic
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group (but varies between groups). We define these costs by means of the function
hD
p (Dp(t)).

Hence, the problem that a government must face is maximizing the difference between
benefits and costs, using as controls the lockdownmeasures, u p(t), and vaccination vp(t) for
each demographic group p = 1, 2, 3 and taking into account the dynamics of the pandemic
as represented by System (11) or the system of Equations (2)-(7). The cost-profit function is
mathematically represented by the following equation:

J (u1, u2, u3, v1, v2, v3) = J1(u1, v1) + J2(u2, v2) + J3(u3, v3) (12)

where

Jp(u p, vp) =
∫ T

0

[
f p(Ip(t)) + hI

p(Ip(t)) + hSp(u p(t)) + hvac
p (vp(t)) + hD

p (Dp(t))
]
dt,

p = 1, 2, 3. (13)

Therefore, the problem that the Government faces is optimizing the objective function (13),
subject to the SQAIRD dynamics represented by Equations (2)-(7).

Recall that we define the costs hSp(u p(t)) and hvac
p (vp(t)) p = 1, 2, 3 as twice differ-

entiable and increasing in their arguments, but we did not specify the sign of the second
derivative, which may imply convex or concave cost functions. This behavior dramatically
changes the optimal duration of a lockdown. Proposition 1 states our main theoretical result.

Proposition 1 If the cost functions hSp(·) or hvac
p (·), i = 1, 2, 3 are concave, that is, the

second derivative with respect to their arguments are negative or equal to zero, then there
exists an optimal t0 ∈ [0, T ] such that for any p = 1, 2, 3,

u∗
p(t) =

{
umax , for 0 ≤ t ≤ t0;
0, for t0 < t ≤ T .

This means that the solution is a corner solution, implying that there exists a threshold
period t0 such that below such a threshold, the optimal policy is to impose total lockdown
(umax = 1− γp), for the whole population and, above this threshold, the optimal policy is to
not impose any lockdown. The reason for this result is quite intuitive. As long as the period
of lockdown is short enough, the economic losses in terms of production are smaller relative
to the benefits due to infections avoided, the treatment for which is costly. If the period of
lockdown increases above the threshold, then it is preferable to bear the costs of infection
rather than the losses due to missed production.
If, instead, the costs hSp(·) or hvac

p (·), p = 1, 2, 3 are convex, that is to say, the second
derivative with respect to their arguments are greater or equal to zero, there exists two
time moments, which we denote by (t0, t1) ∈ [0, T ] such that, for any p = 1, 2, 3 and
ζ(t) ∈ (0, umax ),

u∗
p(t) =

⎧
⎨

⎩

umax , 0 ≤ t ≤ t0;
ζ(t), t0 < t ≤ t1;
0, t1 < t ≤ T .

Note that if the costs of quarantine are convex, then, in addition to the corner solutions
identified previously, there exists an interior solution identified by the fraction ζ(t) of the
isolated population if the period of lockdown lies between these two thresholds t0 and t1.

123



Annals of Operations Research (2024) 337:959–992 975

This optimal lockdownmodel can explain the dramatically different policies implemented
by several countries in Europe and elsewhere. For example, it is not surprising that countries
like Sweden decided not to force citizens into strict confinement, limiting themselves to
suggesting the well-known measures of social distancing, the use of masks, and attention to
personal hygiene. The opposite case could be Finland, which imposed a strict lockdown for
all productive activities (with very few exceptions) and a strict curfew for citizens even before
recording a single death from the virus. This difference can be attributed to the concavity
of the social cost function, which, in turn, depends on the structure of the economy. It
is documented in the economic literature that both Finland and Sweden’s economic and
productive organizations benefit from increasing returns to scale due to the agglomeration
of industries that can benefit from the positive externalities due to specialization (Mukkala,
2004; Andersson et al., 2019). China, which also implemented a very extreme confinement
policy for its citizens, had, during the years immediately before the beginning of the pandemic,
implemented important structural reforms aimed at promoting sectors exhibiting increasing
returns to scale (Ren & Jie, 2019).

Claim 1 Economies exhibiting increasing returns to scale have a concave cost structure with
respect to the duration of the confinement policy. The government will optimally decide either
to apply a full lockdown or no lockdown at all.

Claim 2 Economies that, on the contrary, exhibit non-increasing returns to scale, and are
characterized by convex cost structures, will choose an “intermediate” policy of lockdown
by selecting the optimal intensity during the duration of the pandemic.

In addition, we can state that an obvious consequence of the above analysis is that at
t0 ∈ (0, T ), an optimal strategy is for the government to introduce a policy of selective
confinement. This strategy has the objective of protecting the population from the spread of
the virus by selectively choosing the most vulnerable and/or least productive individuals for
confinement while allowing others to maintain their economic activity.

Remark 2 Our analysis indicates that from the initial moment t0 ∈ (0, T ), the fight against
COVID-19 requires flexibility in economic activities, but only if each of the following con-
ditions is strictly respected: there are rules to contain the virus combined with more selective
containment and lockdown measures and these are determined based on age groups.

Next, we provide the formal proof for the optimization of the Hamiltonian obtained from
Equation (13) considering the concave and convex cost function. The reasoning offered is
formally robust and intuitive, providing an understanding of how the optimization works in
the two different cases.

3.1 Hamiltonian and the adjoint system

Let us define the Hamiltonian and the adjoint system for the initial system (2)–(7) of differen-
tial equations that describes the propagation of the virus (see Altman et al. (2011); Gubar and
Zhu (2013)). By using Pontryagin’s maximum principle (see Pontryagin et al. (1962)), we
construct the optimal controls u(t) = (u1(t), u2(t), u3(t)) and v(t) = (v1(t), v2(t), v3(t))
to the problem described above in Sect. 2. To simplify the presentation, we use short-hand
notations S, I1, u1, etc. in place of S(t), I1(t), u1(t), etc. Define the associated Hamiltonian
H and adjoint functions λSp (t), λQp (t), λAp (t), λIp (t), λRp (t), and λDp (t), p = 1, 2, 3 as
follows:

H = H1 + H2 + H3, (14)
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where

Hp = f p(Ip) + hI
p(Ip) + hSp(u p) + hvac

p (vp) + hD(Dp) + (λAp − λSp )βSp
∑3

p=1 Ap+
(λQp − λSp )(u p + γp)Sp + (λIp − λAp )αpkp Ap + (λRp − λAp )(1 − αp)σp Ap+
(λRp − λIp )σp Ip + (λDp − λIp )μp Ip + (λRp − λSp )vpSp + (λQp − λAp )δpβQp

∑3
p=1 Ap.

(15)

The adjoint system is defined as follows:

λ̇Sp (t) = (λSp − λAp )β
∑3

p=1 Ap + (λSp − λQp )(u p + γp) + (λSp − λRp )vp;
λ̇Qp (t) = (λQp − λAp )δpβ

∑3
p=1 Ap;

λ̇Ap (t) = (λSp − λAp )βSp + (λAp − λIp )αpkp + (λAp − λRp )(1 − αp)σp + (λQp − λAp )δpβQp;
λ̇Ip (t) = − f p′ (Ip) − hI

p′ (Ip) + (λSp − λAp )βSp + (λIp − λRp )σp + (λIp − λDp )μp;
λ̇Rp (t) = 0;
λ̇Dp (t) = −hD

p′ (Dp),

(16)

with the transversality conditions given by

λSp (T ) = λQp (T ) = λAp (T ) = λIp (T ) = λRp (T ) = λDp (T ) = 0. (17)

According to Pontryagin’s maximum principle, there exist continuous and piece-wise
continuously differentiable co-state functions λr (t), r ∈ {Sp, Qp, Ap, Ip, Rp, Dp}, p =
1, 2, 3 that satisfy (16) and (17) for t ∈ [0, T ] together with continuous functions u∗

p(t) and
v∗
p(t):

(u∗
1, u

∗
2, u

∗
3, v

∗
1 , v

∗
2 , v

∗
3) ∈ arg min

u p∈[0,umax ],vp∈[0,vmax ]
H(λr , Sp, Qp, Ap, Ip, Rp, Dp, u p, vp).

(18)

Let us define the functions ϕp(t) and ψp(t) as follows:

ϕ1(t) = (λS1(t) − λQ1(t))S1(t), ψ1(t) = (λS1(t) − λR1(t))R1(t),
ϕ2(t) = (λS2(t) − λQ2(t))S2(t), ψ2(t) = (λS2(t) − λR2(t))R2(t),
ϕ3(t) = (λS3(t) − λQ3(t))S3(t), ψ3(t) = (λS3(t) − λR3(t))R3(t).

(19)

3.2 Functions hSp(·) or hvacp (·) are concave

Let hSp(·) or hvac
p (·) be concave functions (the second derivative is strictly less than zero),

then by (14), the Hamiltonian is a concave function of u p and vp, p = 1, 3. There are two
different options for u p ∈ [0, 1] and vp ∈ [0, 1] that minimize the Hamiltonian, that is if at
time t

hSp(0) − ϕp(t) · 0 < hSp(umax ) − ϕp(t)umax ,

hvac
p (0) − ψp(t) · 0 < hvac

p (vmax ) − ψp(t)vmax ,

or

hSp(umax ) > ϕp(t)umax ,

hvac
p (vmax ) > ψp(t)vmax ,

then optimal control is u p = 0 and vp = 0 (see Fig. 6 (left)); otherwise u p = umax and
vp = vmax (see Fig. 6 (right)).
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Fig. 6 Hamiltonian if functions hSi (·) are concave

For p = 1, 3, the optimal control parameters u p(t) and vp(t) are defined as follows:

u∗
p(t) =

{
0, for ϕp(t)umax < hSp(umax ),

umax , for ϕp(t)umax ≥ hSp(umax ).
(20)

v∗
p(t) =

{
0, for ψp(t)vmax < hvac

p (vmax ),

vmax , for ψp(t)vmax ≥ hvac
p (vmax ).

(21)

Concave cost functions indeed imply a concave Hamiltonian. The first order conditions
for minimization (i.e. the derivatives of the Hamiltonian with respect to the controls equal to
zero) are only a necessary - but not sufficient - condition for minimization, being the second
requirement a negative second derivative (concavity). If the second derivative is positive, like
in this case, it means that the point obtained is a maximum, not a minimum, therefore the
solutions offered by this problem is a "corner" solution, which in this case it means total
lockdown or no lockdown at all.

3.3 Functions hSp(·) or hvacp (·) are strictly convex

Let hSp(·) or hvac
p (·) be strictly convex functions (second derivative is greater than zero), then

Hamiltonian is a convex function. Consider the following derivatives:

∂

∂x
(hSp(x) − ϕpx) |x=xp= 0, (22)

∂

∂ y
(hvac

p (y) − ψp y) |y=yp= 0, (23)

where xp ∈ [0, umax ], u∗
p(t) = xp (yp ∈ [0, vmax ], v∗

p(t) = yp). There are three different
types of points at which the Hamiltonian reaches its minimum (Fig. 7). To find them, we
need to consider the derivatives of the Hamiltonian at u p = 0 and u p = umax (vp = 0
and vp = vmax ). If the derivatives (22) at u p = 0 are increasing (hS

′
p (0) − ϕp ≥ 0), then

the value of the control that minimizes the Hamiltonian is less than 0, and according to our
restrictions (u p ∈ [0, umax ]) optimal control will be equal to 0 (Fig. 7a). If the derivatives at
u p = umax are non-increasing (h′

p(umax ) − ϕp < 0), it means that the value of the control
that minimizes the Hamiltonian is greater than umax . Hence the optimal control will be umax

(Fig. 7c); otherwise, we can find such value u∗
p ∈ (0, umax ) (see Fig. 7b). The same argument

applies to the costs corresponding to the vaccination measures vp(t).
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Fig. 7 Hamiltonian when functions h p(·) are convex

For p = 1, 3, the optimal control parameters u p(t) and vp(t) are defined as follows:

u∗
p(t) =

⎧
⎪⎨

⎪⎩

0, for ϕp(t) ≤ hS
′
p (0);

hS
′−1

p (ϕp), for hS
′
p (0) < ϕp(t) ≤ hS

′
p (umax );

umax , for hS
′
p (umax ) < ϕp(t).

(24)

v∗
p(t) =

⎧
⎪⎨

⎪⎩

0, for ψp(t) ≤ hvac′
p (0);

hvac′−1

p (ψp), for hvac′
p (0) < ψp(t) ≤ hvac′

p (vmax );
vmax , for hvac′

p (vmax ) < ψp(t).

(25)

This means that if the economy’s socioeconomic costs curve is convex, that is strictly
increasing in its production levels and very damaging due to the duration of the lockdown, then
there are three possibilities for optimal lockdown time (t0 and t1, where 0 < t0 < t1 < T ): a
nullity or a unit level and the case in which the lockdown implies that the socioeconomic costs
have a value between 0 and umax, that is, depending on the different lockdown durations.

4 Numerical simulations

We corroborate our results by performing several numerical simulations. We used Matlab
software to program our model and conduct the experiments.16 In this section, we first
simulate the economic impact of the pandemicwithout any policy aimed at limiting this effect.
Wefirst simulate the economic impact of the pandemicwithout any policy aimed atmitigating
this effect. We then simulate the same impact but assume the existence of a lockdown policy
targeted to each demographic subpopulation (elderly, adult, and young). Finally, we simulate
the economic impact of the pandemic, assuming that there is no differentiation (untargeted)
between demographic groups; that is, the same policy is applied to the whole population
irrespective of the differentiated effects of the virus among individuals of different ages.
With respect to the theoretical model introduced in Sect. 3, to simplify and without loss of
generality, we simulate only the case of convex cost functions,17 and assume that the profits

16 We have more than 600 lines of Matlab code, but specifically the algorithm is as follows: Using Euler’s
method to describe the evolution of our model, we then rewrite the derivatives of the differential system (2)-(7)
by iteration steps from t to t + δt , taking δt as one day. At each step, we calculate the φ switching functions
and use them to construct the optimal control according to Pontryagin’s maximum principle. Using this data,
we build the necessary graphs. Matlab was chosen as the calculation software.
17 This assumption is based on the fact that in pandemic times, there are not properly economies of scale. For
example, Glover et al. (2022) build a model in which economic activity (losses) and disease progression are
jointly determined. Palomino et al. (2020) pointed out the high economic costs in the labor market during the
pandemic, they develop a LockdownWorking Ability index estimating the potential wage loss and finding that
there would be substantial and uneven wage losses across the board; inequality within countries will worsen,
as it will between countries. Adams-Prassl et al. (2020) using real-time survey evidence from the UK, US and
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Table 1 COVID-19 fatality rate
by age cohort

Age group Fatality rate

20–49 0.001

50–64 0.01

65+ 0.06

from recovery are zero; people obtain no benefit beyond the social standard they enjoyed
prior to contracting the virus (Acemoglu, 2021).

As a benchmark, we examine the case of Italy, which has a population of 49,581,000 over
the age of 20; the population is denoted as Z for the remainder of the study. The distribution
of the population is assumed to be as follows: 44.68% of the people are aged 20-49 (we label
this group the young), 27.22% of the population is aged between 50 and 64 (adults), and the
remaining 28,10% of the population are those aged over 65 (the old). As in Acemoglu et al.,
we consider a fatality rate by age group, as given by (Table 1).

Those in the susceptible group become infected according to infection rate β = 0.256
(Caccavo, 2020; Loli Piccolomini & Zama, 2020). Not all individuals in the infected group
develop symptoms: as in Verity et al. (2020), we assume that, on average, only two-thirds of
cases are sufficiently symptomatic to self-isolate, with a probability of developing symptoms
equal to α1 = 1/2 for the young, α2 = 2/3 for adults and, for the elderly, equal to α3 = 5/6.
In the following subsections, we introduce the methods for calibrating the costs and benefits
functions of our model.

4.1 Direct costs of infection.

The direct socioeconomic costs of the infection,18 as introduced in section 3, are represented
by the functions:

Z · f p(Ip(t)) = Z · E f
p Ip(t),

where E f
p denotes the daily cost of treatment for one infected person belonging to the

demographic group p. Let Ip(t) be the fraction of infected people in group p over the total
population, denoted by N . The total cost borne by the government for the infected individuals
in group p is, therefore, equal to 49,581,000 · E f

p Ip(t).When computing the cost of treatment

of the infected E f
p , we must take into account that some, but not all, individuals who are

hospitalized need intensive care. As in Ferguson et al. (2020), we assume a probability of
hospitalization of 2.8% for the young, 10% for adults, and 26% for the elderly; the proportion

Germany show that the labor market impacts of COVID-19 differ considerably across countries. Workers in
alternative work arrangements and in occupations in which only a small share of tasks can be done from home,
are more likely to have reduced their hours, lost their jobs and suffered falls in earnings. The OECD estimates
that repression policies (lockdowns) resulted in a 20-25 % reduction in GDP in several OECD countries in
2020, and furthermore that one out of five OECD/EU regions has at least the 30 % of its employment levels
potentially at risk in the short term as a result of containment measures or suppression policies (see OECD
(2020)). Empirical evidence also suggests that the global economic impacts of the Covid-19 pandemic crisis
have so far been very uneven across countries, with disproportionate negative effects. For example, evidence
indicates that global economic growth (GDP) is estimated to have contracted between 6 and 7 percent in 2020,
representing the largest economic crisis in a generation.
18 As in Acemoglu et al. (2021), we did not consider for the analysis of costs the strata of population aged
less than 20 years.
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of those hospitalized who require critical care is 5% for the young, 20% for the adult group
and 50% for older persons.

According to the most recent medical literature (Gaythorpe et al., 2020), the average
hospital stay is approximately 15 days: 5 days for the young (σ1 = 0.2), 15 days for adults
(σ2 = 0.066) and 25 days for the elderly (σ3 = 0.04), with a daily cost per patient of
e1,500.00 in critical care, and a cost of approximately e300.00 in ordinary care.19 After
discharge, we will assume that the patient is recovered.

We ensure our model is calibrated correctly by estimating the cost of treatment for each
age group by multiplying the probability of hospitalization by its cost. Since not all patients
hospitalized need critical care,we consider the cost of treatmentwith respect to the probability
of needing intensive care, which is five timesmore costly than ordinary care. This is expressed
as follows

E f
p = Prob. of hospitalization · (e1500 · prob. of critical care + e300 · (1 - prob. of critical

care)).

Therefore, for each age group, the daily cost of treatment is equal to:

– E f
1 = 0.028 ·(1500.00 · 0.005 + 300.00 · 0.995) = 8.57,

– E f
2 = 0.1 · (1,500.00 · 0.2 + 300.00 · 0.8) = 54.00,

– E f
3 = 0.26 · (1,500.00 · 0.5 + 300.00 ·0.5) = 234.00.

Obviously, the direct costs of infection are related only to individuals in the Infected group,
since those in the other groups are assumed not to have symptoms and, therefore, do not need
to be assisted or cured.

4.2 Indirect Costs of Infection

Indirect socioeconomic costs of infection here refer to the job opportunities (and thus GDP)
lost due to isolation, irrespective of whether this was a consequence of an infection, a lock-
down, or a death. These effects are group-specific, in the sense that they vary according to
age and whether the individual is infected, quarantined, asymptomatic (or has died).

We begin by illustrating the indirect socioeconomic costs for those in the Infected group.
An infected person must be isolated or treated during the course of illness and cannot work.
According to the Italian Bureau of Statistics (ISTAT) the average yearly nominal GDP per
worker in 2019 was e70,105.30, which leads to a daily income per worker (considering
365 working days in a year) of e192.07. Following Acemoglu et al. (2021), we assume that
the loss of productivity of young and adult individuals is the same in this model, while that
for the elderly is 26% of the young (or adults), reflecting the fact that those over 65 who
still work constitute only 20% of the total. The indirect socioeconomic costs for individuals
quarantined by law (that is, the fraction up of the susceptible) can be defined as:

Z · hI
p(Ip(t)) = Z · E I

p Ip(t), (26)

where E I
p is equal to:

– E I
1=192.07,

– E I
2= 192.07,

19 For an estimation of the costs of hospitalization in ordinary care for a COVID-19 patient in Italy see http://
www.sossanita.org/archives/9862, and in critical care see https://www.proiezionidiborsa.it/quanto-ci-costa-
un-malato-di-coronavirus/.
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– E I
3 = 192.07 · 0.26 = 49.94.

The indirect socioeconomic costs for the individuals quarantined by law (that is to say,
the fraction u p of the susceptible) can be defined as:

Z · hSp(u p(t)) = Z · ES
p(u p(t) + γp)

2. (27)

As previously noted, the government treats all infected individuals they are able to detect.
Treatment may consist of hospitalization, if the symptoms are severe, or isolation, if the
individual suffers only mild symptoms. The policy of lockdown is therefore directed to
the susceptible only, who, not being sick, may decide to act as freely as they did before
the pandemic. We assume that these costs grow exponentially with the number of infected
individuals because we assume diminishing returns to scale for labor (as the number of
infected individuals increases, the productivity of the non-isolated individuals decreases, up
to the point where additional increases in output are impossible).

Every individual that goes into isolation experiences a productivity loss. We previously
assumed that an infected individual, for each day they remain isolated or hospitalized, expe-
riences a productivity loss of 100% of their daily income. By comparison, a susceptible
individual that is auto-isolated or quarantined by law may maintain their ordinary activity
(whenever possible) from home, resulting in a lower productivity loss. Following Acemoglu
et al. (2021), the susceptible that are auto-isolated or quarantined have a productivity loss of
70%; ES

p is represented by the following values:

– ES
1 =192.07 · 0.7 = 134.45,

– ES
2 = 192.07 · 0.7 = 134.45,

– ES
3 = 49.94 · 0.7 = 34.96.

Finally, each death as a consequence of infection results in a loss for society that is difficult
to estimate. The function of indirect costs of death is expressed as follows:

Z · hD
p (Dp) = Z · ED

p Dp(t). (28)

We assume that the cost of a life is, for each of the three groups:

– ED
1 = 2,800,000.00,

– ED
2 = 2,000,000.00,

– ED
3 = 273,000.00.

Avaccination campaign can be limited by themaximumnumber of vaccine doses available
at time t, which we account for in the simulation model by the value vmax (t).20 The function
hvac
p (vp(t)) represents the cost of implementing the vaccination system at time t . Then,

Z · hvac
p (vp(t)) = Z · Evac

p v2p(t). (29)

That is, for each demographic group, vaccination costs are:

– Evac
1 = 10.00,

– Evac
2 = 10.00,

– Evac
3 = 10.00.

That is, once the vaccination campaign begins, the cost of implementation does not differ
between demographic groups; we have illustrated howwe calibrated the model for numerical
simulations.21 As already noted, our numerical simulations refer to the case where the cost
functions h p(·) are strictly convex, and there are no profits from recovery.

20 https://www.governo.it/it/cscovid19/report-vaccini/.
21 For everything is not explained or mentioned, the reader can refer to tables A.1 and A.2 in the appendix.
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Fig. 8 Experiment 1. Subpopulation behavior in uncontrolled case. Note: young (left), adult (center), and old
(right) subpopulations in the uncontrolled case

4.3 Numerical results

We use Euler’s method to describe the evolution of our model. We rewrite the derivatives
of the differential system (2)-(7) by step-wise iteration from t to t + �t , with �t of one
day. At each step, we calculate the switching functions’ φ and use these to construct the
optimal control according to Pontryagin’s maximum principle. Using this data, we construct
the necessary graphs. Matlab was chosen as the calculation software.

We perform two experiments. In the first, a policy determined by optimal control is com-
paredwith having no policy.An estimation of the dynamics of all groups is performed through
time. We also computed the costs associated with the two policies (an optimal rather than
a laissez-faire policy). The second experiment simulates an optimal uniform policy without
distinguishing between demographic groups. This experiment is important to estimate the
costs associated with the optimal policy and compare it with the optimal targeted policy in
Experiment 1. In numerical simulations, data from open-access web-sites are collected (see:
Website of Johns Hopkins University and “Our World In Data”).

Experiment 1Using data of column 1 in tableA.1 (seeAppendix), we estimated the behav-
ior over time of those in the Susceptible, Quarantined, Asymptomatic, Infected, Recovered,
and Dead groups for the three age demographics. Figures8 and 9 describe the behavior of
these groups without any policy aimed at limiting the spread of the virus, while Figs. 10 - 12
describe the same variables when this policy is introduced. For this and the next experiment,
we considered a population of 49,581,000 people, with the following demographic strata:
22,150,000 aged 20-49 (44.68%), 13,498,000 aged 50-64 (27.22%), and 13,933,000 aged
over 65 (28.10%). Notably, in the absence of a policy, the total number of infected increases
up to the peak of day 62 (about) and decreases thereafter. The maximum number of infected
(and asymptomatic) persons may reach about 12 million (24% of the whole population) if no
policy is implemented. Conversely, when a targeted policy (based on demographic groups) is
implemented to reduce the contagion, a different scenario results. In fact, the maximum num-
ber of infected is reduced bymore than half, from approximately 12million to approximately
5.7 million at the peak of the pandemic, while almost half of the population is in quarantine
(see Fig. 10); the peak of the pandemic occurs 58 to 62 days from the start, compared to 62
to 64 days in an uncontrolled case.

It is obvious that the most affected group in terms of number of deaths is the elderly.
Without any control, this group loses more than 5 million people (about 10%), against 2.7
million in the adult group (5.4%) and a negligible number among the young.Without control,
those who are quarantined are only a fraction of the group of older people that arbitrarily
decide to self-quarantine (about 14%).
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Fig. 9 Experiment 1, number of asymptomatic, infected, and dead in the uncontrolled case

Fig. 10 Experiment 1. Sum of
share of all groups in the
controlled case

Fig. 11 Experiment 1, the behavior of the system in young (left), adult (center), and old (right) subpopulations
in the controlled case

When a control policy is implemented globally, about half the population is quarantined.
Figure10 shows a total of 25 million people isolated (which amounts to roughly half, given
the experiment’s total population of 49.5 million).

Figure 11 displays the behavior of those in the Susceptible, Quarantined, Asymptomatic,
Infected, Recovered and Dead groups for the three age demographics. Intuitively, our simu-
lations show that about 7.5 million young people (corresponding to about 33% of the group)
are quarantined at the end of the pandemic, compared to 9 million adults (67% of the group)
and 11.3 million older people (81% of the group). Quarantined people include those who are
quarantined by law and those who voluntarily quarantined. The reason for this effect is that
a young person has a higher probability of being asymptomatic and infecting other people
belonging to the other two groups. Figure12 highlights this phenomenon.
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Fig. 12 Experiment 1, number of asymptomatic, infected, and dead in the controlled case

Fig. 13 Experiment 1, structure of the optimal controls. Note: Optimal controls for medical treatment (left)
and for vaccination (middle). Aggregated system costs are J = 115.63× 106 m.u. in the controlled case and
J = 227.58 × 106 m.u. in the uncontrolled case (right)

Since the virus transmission rate is the same among the three groups, it is clear that the
group at higher risk of being asymptomatic (and undetectable) has to be quarantined to avoid
deaths in the other two groups, despite the cost of a life lost being unbalanced or skewed
toward the young and adults.

An optimal control policy here assumes that at the beginning of the pandemics (at t = 0),
there was immediate isolation of 110000 young, 140000 adults, and 210000 old people. The
subsequent number of isolated people remains at this level for a period and then decreases
day by day. The left panel of 13 shows, for each day of the pandemic, the number of isolated
people in each demographic. The center panel of Figure 13 shows the recommended number
of people to be vaccinated daily to minimize the added costs in each subgroup. As can be
seen, after 200 days of intense vaccination for the elderly group, the socioeconomic costs
began to decrease, while for adults, the vaccination campaign has to last at least 250 days,
and for young people, the vaccination campaign should extend almost 300 days, after which
the socioeconomic costs decrease and are optimally minimized.

The right-hand panel of Fig. 13 shows that the aggregated costs of the no-intervention pol-
icy amount toe227.58·106, against a control policy which generates costs fore115.63×106.

Experiment 2 In this second experiment, we run the simulation using data from the first
experiment (and averaging when necessary) and considering the entire population as a single
group. This experiment was performed to compare the aggregated costs arising when the
policy implemented to limit the spread of the virus does not exploit demographic differences
and, therefore, does not account for differences in the health outcomes produced by the virus.

What is immediately noticeable is that, by the end of the pandemic, 33 million people
had been quarantined; 66.5% of the population compared to the 20% of an optimal targeted
policy. This has consequences for aggregated costs. The untargeted policy generates a cost
of 123.75 × 106 against a cost of 115.63 · 106 of a targeted policy (Figs. 13 and 15).

It is fairly evident that a selective, targeted policy outperforms a uniform policy in terms of
costs; a uniform policy generates at least 7% more costs than a targeted one. It is important,
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Fig. 14 Experiment 2, system behavior. Note: System behavior when population is a single group in controlled
case (left). Number of asymptomatic, infected, and dead in the controlled case (right)

Fig. 15 Experiment 2, structure of the optimal control. Note: For medical treatment (left) and for vaccination
(middle). Aggregated system costs are J = 123.75 × 106 m.u. in the controlled case and J = 322.8 × 106

m.u. in the uncontrolled case (right)

then, to calibrate the controls for the different demographic groups to exploit the differential
impact of the pandemic on those populations. Even though this does not allow for shortening
the lockdown, it allows themore productive andyoungpeople (therefore, thosewho suffer less
the consequences of the virus) to remain in the job market, thus limiting the costs associated
with the policy of lockdown.

5 Concluding remarks

In this paper, we modified a classic SIR model to develop an optimal control policy of
lockdown aimed at minimizing a cost-profit social function. This paper presents a model
that studies lockdown as an optimal policy to face the spread of COVID-19. It consists of a
generalization of the well-known SIRDmodel in which new groups of individuals, those that
are quarantined and asymptomatic, are introduced. Each group is further divided according
to age (young, adult, and old), with each subgroup having different risks of death and health
complications. With the objective of minimizing social cost, an optimal control problem
is formalized and solved; the government must decide how many people belonging to the
susceptible group should be isolated. We tackle the dynamic system of the SQAIRD model
as a Markovian process and show that different socioeconomic structures, such as convex or
concave cost functions, justify different lockdown policies.

Our main results are that different lockdown policies (total lockdown, laissez-faire, and
a mixed policy, that is to say, partial lockdown) may be explained by countries’ different
cost structures. If the two corner solutions, that is to say, total lockdown and no lockdown,

123



986 Annals of Operations Research (2024) 337:959–992

may arise in the presence of concave cost functions, under the hypothesis of convex cost
functions, an internal solution is optimal.

Under the hypothesis of a convex cost function, that is, when it is optimal to apply a
mixed strategy (a partial lockdown), we also showed that a targeted lockdown policy based
on age outperforms a uniform policy; according to our simulations, it allows a saving of
about 56% of the costs. From a political perspective, it is important for policymakers to
handle an emergency such as the recent COVID-19 pandemic in the best way. This requires
implementing an effective policy of lockdown (in the absence of any medical treatment like
a vaccine to develop immunity for the whole population) that produces minor social costs.

A lockdownhas a profound impact on the economies of families (especially of thosewhose
income is linked to activities that present a greater risk of contagion). However, catching the
virus may also be tragic because the long-run consequences may be serious and result in
income losses. Responsible management of such health emergencies is of crucial importance
for the well-being of society and limits subsequent hard economic policies aimed at restoring
the basic subsistence levels of the population.

Finally,wemust point out that our optimal policy does not consider additional prescriptions
like social distancing, mask-wearing, and the like. Our results may be extended by including
such additional policies (for those who are not impacted by any lockdown) that, according to
the medical literature, reduce the propagation rate of the virus. Moreover, we only consider
age as a policy discriminant. COVID-19 has proven to also have differentiated impacts on the
health of the individuals depending on existing comorbidities. Our results could be improved,
and better policies implemented if, instead of considering just three age-based groups, we
distinguished groups on the basis of regressed comorbidities and age. We decided, however,
to leave these experiments to future research.

No less important is to let the reader know that, despite our efforts to calibrate the model
in the most realistic way, there is considerable uncertainty about the parameters that govern
the dynamics of the infection. As a result, there is a potential bias in the determination of the
costs associated with the policies implemented, irrespective of the content of the policy.

Wewant to make our apologies to those who, on reading this paper, have been offended by
the aseptic presentation of the argument, which has been focused on the mere computation
of economic costs and profits of a policy intervention without regard for the psychological
impact on relatives and society of lost lives. We are aware that the pandemic has caused
such loss, and an argument focused exclusively on costs and profits could be hurtful. As
economists, we are trained to think in such terms; we have a “mental deviation” of sorts that
induces us to analyze strategic situations like this one in an impersonal, aseptic, and distant
way, on the basis of economic indicators only. In spite of everything, we believe that this kind
of presentation could be useful for policymakers who want to manage health emergencies in
an effective (and hopefully efficient) way.
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Appendix

Table 2 Parameters used for
simulations in the experiments

Parameters’ name Exp. 1 Exp. 2

Population 49,581,000 49,581,000

Fraction of 0.4446 0.9951

Susceptibles 0.2709

at time 0 (S0p) 0.2796

Fraction of 0 0

Quarantined 0

at time 0 (Q0
p) 0

Fraction of 0.0022 0.0049

Asymptomatic 0.0013

at time 0 (A0p) 0.0014

Fraction of 0 0

Infected 0

at time 0 (I 0p) 0

Fraction of 0 0

Recovered 0 0

at time 0 (R0
p) 0 0

Fraction of 0 0

Dead 0 0

at time 0 (D0
p) 0 0

Recovery rate (σp) 0.033 0.025

0.025

0.0167
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Table 2 continued Parameters’ name Exp. 1 Exp. 2

Transition rate 0 0.002

from Sp to Qp (γp) 0

0.01

Death rates (μp) 0.001 0.02

0.01

0.06

Infection rate 0.256 0.256

from Sp to Ip (β)

Asymptomatic to 0.1923 0.1923

Infected (kp)

Probability that 0.5 0.636

node will have 0.66

symptoms (αp) 0.83

Quarantine exit rate 0.05 0.033

(δp) 0.03

0.01

Cost of treatment E f
p 8.57 84.28

54.00

234.00

Coefficient evaluating the loss 192.07 152.13

of ability to work E I
p 192.07

49.94

Costs of quarantine ES
p 134.45 106.5

134.45

34.96

Costs of vaccination Evac
p 10.00 10

10.00

10.00

Cost of death ED
p 2800000 1872153

2000000

273000

Aggregated costs J 227.6 × 106 322.8 × 106

Uncontrolled case

Aggregated costs J 115.6 × 106 123.75 × 106

Controlled case
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Table 3 Maximum values
Max value of Ip 3467500 4049700

1695000

551940

Max value of Ap 1810500 2002500

687350

306200

Max value of Dp 267370 5345500

1258800

1843800

Max value of Ip 6352900 11520000

in uncontrolled case 4033800

1694600

Max value of Ap 3643800 6089200

in uncontrolled case 1794800

989730

Max value of Dp 443500 14063000

in uncontrolled case 2736200

5039900
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