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1. Introduction

Let (M, g) be a d-dimensional homogeneous Cartan-Hadamard Manifold with d ≥ 3. The aim of this 
paper is to study {

−Δgw + w = λα(σ)f(w) in M
w ∈ H1

g (M)
(Pλ)

where −Δg denotes the Laplace-Beltrami operator, α ∈ L1(M) ∩ L∞(M) \ {0} is nonnegative, f : R → R

is a continuous function and λ > 0 a real parameter.
The stationary nonlinear Schrödinger equation is undoubtedly one of the most attractive topics in nonlin-

ear analysis. In the last years many researchers studied these equations under various hypothesis on the non 
nonlinear term and in different setting. Among them, the study of the nonlinear Schrödinger equation on 
Riemannian manifold has received a particular attention recently. Faraci and Farkas in [6] using variational 
methods proved a characterization result for existence of solutions for the Schrödinger equation with a di-
vergent potential in a non-compact Riemannian manifold with asymptotically non-negative Ricci curvature. 
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In the same setting of this paper, Molica Bisci and Secchi in [20] proved some existence and non-existence 
results for a similar problem, while Appolloni et al. in [2] showed the existence of three critical points for 
the energy functional associated to a perturbed problem. Kristály in [13] proved a multiplicity result for the 
equation without a potential and with M = Sd. We also quote [21] where Molica Bisci and Vilasi obtained 
an existence result regarding positive solutions which are invariant under the action of a specific family 
of isometries and [22] where Molica Bisci and Repovš showed the existence of positive solutions when the 
nonlinear term is critical in the sense of Sobolev. It is also worth mentioning [4] where Cencelj et al. by 
applying the Palais principle of symmetric criticality and suitable group theoretical arguments are able to 
prove the existence of nontrivial weak solutions. Motivated by the great interest in this field, in this paper 
we are going to study the Schrödinger equation on a non compact homogeneous Cartan-Hadamard manifold 
with a non linear term f that oscillates near zero or at infinity. As regards oscillating nonlinearities there 
is a wide literature dealing with this kind of problems with numerous differential operator. To the best of 
our knowledge, one of the first contribution in this direction was given in [8] by Habets et al. where the 
authors exhibit the problem they are considering admits an unbounded sequence of solutions with d = 1
with a technique based on phase-plane analysis and time-mapping estimates. At a later time, Omari and 
Zanolin in [23] were able to show the existence of infinitely many solutions for a problem with a general 
operator in divergence form building a sequence of arbitrarily large negative lower solutions and a sequence 
of arbitrarily large positive upper solutions. More recently Anello and Cordaro in [1] proved the existence 
of a sequence of critical points converging to zero with respect the L∞ norm for a problem with a nonlinear 
oscillating term at zero. In the same spirit of the previous one, Molica Bisci and Pizzimenti obtained in [18]
similar results for the p-Kirchhoff problem analyzing also what happens in presence of oscillations at infinity. 
Finally, Molica Bisci and Rădulescu in [19] showed the existence of a sequence of invariant solutions tending 
to zero both in the Sobolev norm and in the L∞ norm on the Poincaré ball model. One of the main tasks we
have to face in order to study Problem (Pλ) is the loss of compactness of the embedding H1

g (M) ↪→ Lq(M)
due to the noncompactness of the manifold M. In order to overcome this difficulty, we will use an embedding 
result for a Sobolev space which is invariant under the action of a certain group proved by Skrzypczak and 
Tintarev in [25] generalizing the well known fact that the embedding H1

r (Rd) ↪→ Lq(Rd) is compact for all 
q ∈ (2, 2∗) for functions invariant under the group of the rotations. Coupling this fact with the principle 
of symmetric criticality proved by Palais in [24] and the continuity of the superposition operator, whose 
validity is established in [17] for the euclidean case and generalized to manifold in [11, Proposition 2.5], we 
will consider an auxiliary problem with a truncated nonlinearity and we will show the existence of infinitely 
many local minima. We emphasize that in dealing with the case of oscillations near zero we will assume no 
growth condition on the nonlinear term f . Our paper is organized as follows. At the end of this section we 
collect our main results. In section 2 we recall some basic concepts of Riemannian geometry and Sobolev 
spaces of manifold. In section 3 we prove Theorem 1.1 showing the existence of infinitely many critical 
points for the energy functional associated to (Pλ) and with both L∞ and Sobolev norm going to zero. In 
section 4 we address the problem of oscillations at infinity proving Theorem 1.2. More precisely, given a 
group G that acts on M we will denote with

FixM(G) := {σ ∈ M | ϕ(σ) = σ for all ϕ ∈ G} ,

the fixed points of G. The following hypothesis will be crucial in the sequel:

(Hσ0
G ) G is a compact, connected subgroup of the isometries Isomg(M) of (M, g) such that

FixM(G) = {σ0}

for some point σ0 ∈ M.
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The main results we are going to prove during the rest of the paper are the following.

Theorem 1.1. Assume that (Hσ0
G ) holds and let α ∈ L1(M) ∩L∞(M) \ {0} be a nonnegative map such that 

α(σ) = α(dg(σ0, σ)). Moreover, let f : R → R be a continuous function for which

(f0) there exist two sequences (tj)j and (t′j)j with lim
j→+∞

t′j = 0 and 0 ≤ tj < t′j such that

F (tj) = sup
t∈

[
tj ,t′j

]F (t),

where F (t) :=
t∫

0

f(τ) dτ ;

(f1) there exist a constant K1 > 0 and a sequence (ξj)j ⊂ (0, +∞) with lim
j→+∞

ξj = 0 such that

lim
j→+∞

F (ξj)
ξ2
j

= +∞,

and

inf
t∈[0,ξj ]

F (t) ≥ −K1F (ξj).

Then for every λ > 0 it is possible to find a sequence (wj)j ⊂ H1
G(M) of nonnegative and not identically 

zero solutions of (Pλ) such that

lim
j→+∞

‖wj‖ = lim
j→+∞

‖wj‖L∞(M) = 0.

Theorem 1.2. Assume that (Hσ0
G ) holds and let α ∈ L1(M) ∩L∞(M) \ {0} be a nonnegative map such that 

α(σ) = α(dg(σ0, σ)). Moreover, let f : R → R be a continuous function for which

(f ′
0) there are a constant K2 > 0 and q ∈ (2, 2∗ − 1) such that

|f(t)| ≤ K2(1 + |t|q);

(f ′
1) there are two sequences (tj)j and (t′j)j with lim

j→+∞
tj = +∞ and 0 ≤ tj < t′j such that

F (tj) = sup
t∈

[
tj ,t′j

]F (t);

(f ′
2) there is a constant K3 > 0 and a sequence (ξj)j ⊂ (0, +∞) with lim

j→+∞
ξj = ∞ such that

lim
j→+∞

F (ξj)
ξ2
j

= +∞,

and

inf F (t) ≥ −K3F (ξj).

t∈[0,ξj ]
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Then for every λ > 0 it is possible to find a sequence (wj)j ⊂ H1
G(M) of nonnegative and not identically 

zero weak solutions of (Pλ).

2. Abstract framework

This section is devoted to recall some basic concepts of Riemannian geometry and to fix the notation. 
Let (M, g) be a d-dimensional Riemannian manifold where g is a (2, 0) positive definite tensor and gij are 
its component. We will denote the tangent space of M at a point σ ∈ M with TσM. We recall that if 
f : M → N , where N is a d′–manifold the differential of Dfσ : TσM → TG(σ)N is defined as

Dfσ(v)(h) := v(h ◦ f)

for all h ∈ C∞(N ) and v ∈ TσM. From the notion of differential, if A is a covariant k-tensor field of M we 
can define a covariant k-tensor field G∗A on M defined as

(f∗A)σ(v1, ..., vk) = Af(σ)(Dfσ(v1), . . . , Dfσ(vk))

for v1, ..., vk ∈ TσM called the pullback of A by f . If N is endowed with a metric g̃ we will say that f is an 
isometry if f∗g̃ = g. If f is an isometry it is straightforward to show that it preserves the scalar product, 
i.e.

〈Dfσ(v1), Dfσ(v2)〉f(σ) = 〈v1, v2〉σ

for v1, v2 ∈ TσM where 〈·, ·〉σ = gσ(·, ·). In the following the group of all isometries ϕ : M → M will be 
denoted with Isomg(M). If S ⊂ M we can define

diam(S) := sup {dg(σ1, σ2) | σ1, σ2 ∈ S}

where dg is the geodesic distance on M. Here H1
g (M) denotes the usual Sobolev space defined as the closure 

of C∞(M) with respect to the norm

‖w‖ :=

⎛
⎝∫
M

|∇gw(σ)|2 dvg +
∫
M

|w(σ)|2 dvg

⎞
⎠

1
2

and ∇gw is the covariant derivative and

dvg :=
√

det(g)dx1 ∧ ... ∧ dxd

is the Riemannian volume form expressed in local coordinates. Once one has defined dvg it is possible to 
notice that it induces a measure on M. Namely, if S ⊂ M we have

Volg(S) :=
∫
S

dvg.

The Laplace-Beltrami operator is defined in local coordinates by

Δgh :=
∑
i,j

1√
det g

∂

∂xi

(
gij

√
det g ∂h

∂xj

)
.
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We point out that we have defined Δg with the “analyst’s sign convention”, so that −Δg coincides with −Δ
in Rd with its flat metric. The (1, 3) Riemann tensor is denoted with R and we also recall that the sectional 
curvature is defined as

Kσ(v1, v2) := 〈R(v1, v2)v1, v2〉σ
〈v1, v1〉σ〈v2, v2〉σ − 〈v1, v2〉2σ

for all v1, v2 ∈ TσM. A Cartan-Hadamard manifold is a Riemannian Manifold that is complete and simply 
connected and has everywhere non-positive sectional curvature. We also say that a Riemannian manifold 
M is homogeneous if for all σ1, σ2 ∈ M there is a isometry ϕ ∈ Isomg(M) such that ϕ(σ1) = σ2. We will 
assume throughout the paper that the reader is familiar with some basic results on Riemannian geometry 
and Sobolev spaces on manifolds and we remind to the classical [5,9–11] and [16] for a deeper insight on 
these topics.

Definition 2.1. A group G acting continuously on M is said to be coercive if for every t > 0 the set

{σ ∈ M | diamGσ ≤ t}

is bounded, where

Gσ := {ϕ · σ : ϕ ∈ G} .

As we will see later being coercive will play a determining role to have compact embedding for Sobolev 
spaces invariant under the action of a group G. Despite the coerciveness of a group G has a clear geometrical 
meaning, it is a property that in most cases turns out to be difficult to verify. In order to overcome this 
problem, we introduce a condition that is equivalent in a Cartan-Hadamard manifold.

As pointed out in [25, Proposition 3.1] in a simply-connected Riemannian manifold with non positive 
sectional curvature, a subgroup G of Isomg(M) satisfies (Hσ0

G ) if and only if it is coercive. For the sake of 
completeness we write down here the proposition omitting the proof.

Proposition 2.2. Let M be a simply connected complete Riemannian manifold, and assume that the sectional 
curvature is non-positive. Let G be a compact, connected subgroup of Isomg(M) that fixes some point σ0 ∈
M. Then G is coercive if and only if G has no other fixed point but σ0.

There are several example present in literature of homogeneous Cartan-Hadamard manifold with a group 
acting transitively on it fixing only one point. For instance Rd equipped with the euclidean metric and the 
special orthogonal group SO(d) or SO(d1) × ... × SO(dh) where 

∑dh

i=1 di = d. Another common example is 
the Poincaré model Hd :=

{
x ∈ Rd : |x| < 1

}
endowed with the metric

gij(x) := 4
(1 − |x|2)2 δij

with the same choices as above for the group. In addition to that, we can also consider the set P (d, R) of 
the symmetric positive definite matrices with determinant equal to one. It turns out that it has a structure 
of homogeneous Cartan-Hadamard manifold and that the special orthogonal group O(d) acts transitively 
on it fixing the identity matrix Id. For further detail we suggest the reader to consult [3, Chapter II.10], [7], 
[14] and [15, Chapter XXII].

Now we fix a point σ0 ∈ M and a group G satisfying (Hσ0
G ). We consider the Sobolev space

H1
G(M) =

{
w ∈ H1

g (M) | ϕ� w = w for all ϕ ∈ G
}
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where

ϕ� w := w(ϕ−1 · σ) for a.e. σ ∈ M.

In virtue of the previous remark we are able to state the following compactness result.

Lemma 2.3. If G satisfies (Hσ0
G ), then the embedding

H1
G(M) ↪→ Lν(M)

is compact for all ν ∈ (2, 2∗) where 2∗ := 2d/(d − 2).

Proof. According to [11, Lemma 8.1 and Theorem 8.3] or [12] the embedding H1
G(M) ↪→ Lν(M) is contin-

uous for all ν ∈ [2, 2∗] and cocompact for [26, Chapter 9]. At this point, taking into account Proposition 2.2
we can apply [25, Theorem 1.3] to complete the proof. �
3. Oscillation at the origin

In this section we investigate the existence of solutions for problem (Pλ)

{
−Δgw + w = λα(σ)f(w) in M
w ∈ H1

g (M)

where f represents a continuous function that oscillates near 0. More precisely, since now till the end of the 
section the function f satisfies hypothesis (f0) and (f1) of Theorem 1.1. As an immediate consequence of 
these hypotheses we have the following Lemma.

Lemma 3.1. If f : R → R is continuous and satisfies (f0) and (f1), then f(0) = 0.

Proof. We first notice that

f(tj) = lim
h→0+

tj+h∫
tj

f(τ) dτ

h
= lim

h→0+

F (tj + h) − F (tj)
h

≤ 0

by (f0). Thus, exploiting the continuity of f we have

f(0) = lim
j→+∞

f(tj) ≤ 0.

On the other hand, suppose by contradiction that f(0) < 0. Then, again the continuity of f implies that 
f(t) < 0 for all t ∈ [0, δ) for some δ > 0. Then, we would have

lim
j→+∞

F (ξj)
ξ2
j

≤ 0,

in contradiction with (f1). �
The relation α(σ) = α(dg(σ0, σ)) is a symmetry condition which replaces the radial symmetry of α is Rd.
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Proof of Theorem 1.1. Let λ > 0. Since tj → 0 and ξj → 0 as j → +∞, we may assume that 0 ≤ tj ≤ t0
and 0 ≤ ξj ≤ t0 for some t0 > 0 and for every j. Let κ = max {|f(t)| | t ∈ [0, t0]}. In view of Lemma 3.1, we 
define the continuous truncated function

h(t) :=

⎧⎪⎪⎨
⎪⎪⎩
f(t0) if t > t0

f(t) if 0 ≤ t ≤ t0

0 if t < 0

and we consider the auxiliary problem

{
−Δgw + w = λα(σ)h(w) in M
w ∈ H1

G(M)
(P0)

We also set the energy functional associated to Problem (P0)

JG,λ(w) := 1
2‖w‖

2 − λ

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

and we emphasize that JG,λ ∈ C1(H1
G(M), R) thanks to Lemma 2.3 and that is sequentially lower semi-

continuous. Now, for all j ∈ N we define the set

EG
j :=

{
w ∈ H1

G(M) | 0 ≤ w(σ) ≤ t′j a.e in M
}
.

We divide the remaining part of the proof in 6 steps.
Step 1: the functional JG,λ in bounded from below on EG

j and attains its infimum on EG
j at a function 

uG
j ∈ EG

j . Clearly for all w ∈ EG
j

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg ≤

∫
M

α(σ)

∣∣∣∣∣∣∣
w(σ)∫
0

h(τ) dτ

∣∣∣∣∣∣∣ dvg
≤ κ

∫
M

α(σ)w(σ) dvg ≤ κ‖α‖L1(M)t
′
j

and so

JG,λ(w) ≥ −κ‖α‖L1(M)t
′
j . (3.1)

At this point set

ιGj := inf
w∈EG

j

JG,λ(w).

From the definition of infimum, for all k ∈ N we can find wk ∈ EG
j such that

ιGj ≤ JG,λ(wk) ≤ ιGj + 1
k
.

From this it follows



8 L. Appolloni et al. / J. Math. Anal. Appl. 519 (2023) 126853
‖wk‖2 = JG,λ(wk) + λ

∫
M

α(σ)

⎛
⎜⎝

wk(σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

≤ κ‖α‖L1(M)t
′
j + ιGj + 1

which implies (wk)k must be bounded in H1
G(M). Then, up to a subsequence, we can assume wk ⇀ uG

j for 
some uG

j ∈ H1
G(M). In order to prove that uG

j ∈ EG
j is sufficient to notice that the set EG

j is closed and 
convex, thus weakly closed. Now, exploiting the sequentially lower semicontinuity of JG,λ we get

ιGj ≤ JG,λ(uG
j ) ≤ lim inf

k→∞
JG,λ(wk) ≤ ιGj

hence

ιGj = JG,λ(uG
j ).

Step 2: for all j ∈ N one has that 0 ≤ uG
j (σ) ≤ tj a.e. in M.

In order to show that, we set the Lipschitz continuous function �j : R → R

�j(t) :=

⎧⎪⎪⎨
⎪⎪⎩
tj if t > tj

t if 0 ≤ t ≤ tj

0 if t < 0

we can consider the superposition operator Tj : H1
g (M) → H1

g (M) defined as

Tjw(σ) := �j(w(σ)) a.e. in M.

From [11, Proposition 2.5] it follows that Tj is a continuous operator. Furthermore, if we restrict Tj to the 
G-invariant functions we have Tj : H1

G(M) → H1
G(M). In fact, one can readily see that

ϕ� Tjw(σ) = Tjw(ϕ−1 · σ) = (�j ◦ w)(ϕ−1 · σ)

= �j(w(ϕ−1 · σ)) = �j(w(σ)) = (�j ◦ w)(σ)

= Tjw(σ) a.e. in M

for all w ∈ H1
G(M) and ϕ ∈ G. Actually from its definition it is clear that Tjw ∈ EG

j for all j ∈ N. At this 
point we set v�G,j := Tju

G
j and

XG
j :=

{
σ ∈ M : tj < uG

j (σ) ≤ t′j
}
.

Observe that for all σ ∈ XG
j one has

v�G,j(σ) = Tju
G
j (σ) = tj .

Now, exploiting (f0) we get

uG
j (σ)∫

h(τ) dτ ≤ sup
t∈

[
tj ,t′

]
t∫
h(τ) dτ =

tj∫
h(τ) dτ =

v�
G,j(σ)∫

h(τ) dτ

0 j 0 0 0
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thus

v�
G,j(σ)∫

uG
j (σ)

h(τ) dτ ≥ 0 (3.2)

for all σ ∈ XG
j . Moreover, taking into account the fact that |∇gv

�
G,j(σ)| = 0 a.e. in XG

j , we obtain

‖v�G,j‖2 − ‖uG
j ‖2 =

∫
M

(
|∇gv

�
G,j(σ)|2 − |∇gu

G
j (σ)|2

)
dvg

+
∫
M

(
|v�G,j(σ)|2 − |uG

j (σ)|2
)
dvg

= −
∫

XG
j

|∇gu
G
j (σ)|2 dvg +

∫
XG

j

(
t2j − |uG

j (σ)|2
)
dvg (3.3)

≤ −
∫

XG
j

|∇gv
�
G,j(σ) −∇gu

G
j (σ)|2 dvg −

∫
XG

j

∣∣uG
j (σ) − tj

∣∣2 dvg

= −
∫
M

|∇gv
�
G,j(σ) −∇gu

G
j (σ)|2 dvg −

∫
M

∣∣uG
j (σ) − v�G,j(σ)

∣∣2 dvg

= −‖v�G,j − uG
j ‖2.

At this point, in virtue of (3.2) and (3.3), recalling v�G,j ∈ EG
j we have

0 ≤ JG,λ(v�G,j) − JG,λ(uG
j ) =

‖v�G,j‖2 − ‖uG
j ‖2

2 − λ

∫
M

α(σ)

⎛
⎜⎝

v�
G,j(σ)∫

uG
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg

≤ −1
2‖v

�
G,j − uG

j ‖2 − λ

∫
XG

j

α(σ)

⎛
⎜⎝

v�
G,j(σ)∫

uG
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg

≤ −1
2‖v

�
G,j − uG

j ‖2.

From this, we can deduce

‖v�G,j − uG
j ‖2 = 0.

Since v�G,j �= uG
j except on XG

j , we deduce that Volg(XG
j ) = 0 as desired.

Step 3: the function uG
j is a local minimum for JG,λ in the Sobolev space H1

G(M) for all j ∈ N.
In order to do that, we select w ∈ H1

G(M) and we set

ZG
j := {σ ∈ M : w(σ) /∈ [0, tj ]}

for every j ∈ N. Recalling the superposition operator defined in step 2 we set
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v�j (σ) := Tjw(σ) =

⎧⎪⎪⎨
⎪⎪⎩
tj if w(σ) > tj

w(σ) if 0 ≤ w(σ) ≤ tj

0 if w(σ) < 0

Now, on one hand one can easily see that

w(σ)∫
v�
j (σ)

h(τ) dτ = 0

for every σ ∈ M \ ZG
j . On the other hand, if σ ∈ ZG

j only three alternative can occur

1. If w(σ) ≤ 0 it is immediate to see

w(σ)∫
v�
j (σ)

h(τ) dτ =
w(σ)∫
0

h(τ) dτ = 0.

2. If tj < w(σ) ≤ t′j we have

w(σ)∫
v�
j (σ)

h(τ) dτ =
w(σ)∫
0

h(τ) dτ −
v�
j (σ)∫
0

h(τ) dτ

=
w(σ)∫
0

h(τ) dτ −
tj∫

0

h(τ) dτ

≤
w(σ)∫
0

h(τ) dτ − sup
t∈

[
tj ,t′j

]
t∫

0

h(τ) dτ ≤ 0.

3. If w(σ) > t′j we obtain

w(σ)∫
v�
j (σ)

h(τ) dτ =
w(σ)∫
tj

h(τ) dτ (3.4)

≤

∣∣∣∣∣∣∣
w(σ)∫
tj

h(τ) dτ

∣∣∣∣∣∣∣ ≤ κ(w(σ) − tj)

At this point set

C := κ‖α‖L∞(M) sup
t≥t′j

t− tj
(t− tj)ν

where ν ∈ (2, 2∗). From this and (3.4) we have
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∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg ≤ ‖α‖L∞(M)

∫
M

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg (3.5)

≤ C

∫
M

(w(σ) − tj)ν dvg.

Denote

γ := sup
w∈H1

G(M)\{0}

‖w‖Lν(M)

‖w‖

and observe that is finite for Lemma 2.3, from (3.5) we deduce

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg ≤ Cγν‖w − v�j ‖ν . (3.6)

Now, we compute

‖w‖2 − ‖v�j ‖2 =
∫
M

(
|∇gw(σ)|2 − |∇gv

�
j (σ)|2

)
dvg +

∫
M

(
|w(σ)|2 − |v�j |2

)
dvg

=
∫
ZG

j

|∇gw(σ)|2 dvg +
∫

ZG,−
j

|w(σ)|2 dvg +
∫

ZG,+
j

|w(σ) − tj |2 dvg

=
∫
ZG

j

|∇gw(σ) −∇gv
�
j (σ)|2 dvg +

∫
ZG,−

j

|w(σ) − v�j (σ)|2 dvg (3.7)

+
∫

ZG,+
j

|w(σ) − tj |2 dvg

= ‖w − v�j ‖2

where

ZG,+
j :=

{
σ ∈ ZG

j : w(σ) > 0
}

and ZG,−
j :=

{
σ ∈ ZG

j : w(σ) < 0
}

Coupling (3.6) and (3.7) we get

JG,λ(w) − JG,λ(v�j ) =
‖w‖2 − ‖v�j ‖2

2 − λ

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg

≥ 1
2‖w − v�j ‖2 − λCγν‖w − v�j ‖ν .

In view oh that, recalling JG,λ(v�j ) ≥ JG,λ(uG
j ) since v�j ∈ EG

j , we obtain

JG,λ(w) ≥ JG,λ(uG
j ) + ‖w − v�j ‖2

(
1 − λCγν‖w − v�j ‖ν−2

)
(3.8)
2
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At this point, we notice that

‖w − v�j ‖ ≤ ‖w − uG
j ‖ + ‖uG

j − v�j ‖ = ‖w − uG
j ‖ + ‖Tj(uG

j − w)‖

thus, exploiting the continuity of the superposition operator, it is possible to find a δ > 0 such that

‖w − v�j ‖ν−2 ≤ 1
4λCγν

if ‖w − uG
j ‖ ≤ δ. Hence, from (3.8) we get

JG,λ(w) ≥ JG,λ(uG
j )

that means uG
j is a local minimizer.

Step 4: If

ιGj := inf
w∈EG

j

JG,λ(w),

then

lim
j→∞

ιGj = lim
j→∞

‖uG
j ‖ = 0

Recalling that uG
j ∈ EG

j and that ιGj = JG,λ(uG
j ) we have

∫
M

|∇gu
G
j (σ)|2 dvg +

∫
M

|uG
j (σ)|2 dvg = JG,λ(uG

j ) + λ

∫
M

α(σ)

⎛
⎜⎝

uG
j (σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

= ιGj + λ

∫
M

α(σ)

⎛
⎜⎝

uG
j (σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg (3.9)

≤ ιGj + λκ‖α‖L1(M)t
′
j

At this point, we notice that the function w0 = 0 belongs to EG
j and so

ιGj = inf
w∈EG

j

JG,λ(w) ≤ 0.

From this and (3.9) we can deduce

lim
j→∞

‖uG
j ‖ = 0

since t′j → 0 as j → ∞. Furthermore, recalling (3.1) we obtain

−κ‖α‖L1(M)t
′
j ≤ ιGj ≤ 0

from which is clear that

lim ιGj = 0.

j→∞
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Step 5: for all j ∈ N we have

ιGj < 0.

In order to do that, we select j ∈ N and 0 < a < b such that

ess inf
σ∈Ab

a

α(σ) ≥ α0 > 0 (3.10)

where

Ab
a = Bσ0(a + b) \Bσ0(b− a)

and, after fixing ε ∈ (0, 1) we define the function

ϑε
a,b(σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if σ ∈ M \Ab
a

1 if σ ∈ Ab
εa

a− |dg(σ0, σ) − b|
(1 − ε)a if σ ∈ Ab

a \Ab
εa.

It is straightforward to verify that ϑε
a,b ∈ H1

G(M) since in each point its value depends only on the distance 
from σ0. Moreover, one can easily verify that supp(ϑε

a,b) ⊂ Ab
a and ‖ϑε

a,b‖L∞(M) ≤ 1. At this point we define 
the map μg : (0, 1) → R a where

μg(ε) = Volg(Ab
εa)

Volg(Ab
a \Ab

εa)

and we notice that

lim
ε→0+

μg(ε) = 0, lim
ε→1−

μg(ε) = +∞.

In view of that, it is possible to find ε0 ∈ (0, 1) such that

Volg(Ab
ε0a)

Volg(Ab
a \Ab

ε0a)
= K1 + 1

where K1 > 0 is the constant given in hypothesis (f1). From (f1) we also have the existence of an index k0, 
with ξk0 ≤ t′j such that for every k ≥ k0

ξk∫
0

h(τ) dτ

ξ2
k

>
1
2λ

(K + 1)‖ϑε0
a,b‖2

α0 Volg(Ab
ε0a)

.

From this, (f1) and (3.10) it follows

∫
Ab

a

α(σ)

⎛
⎜⎝

ξkϑ
ε0
a,b(σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

‖ξ ϑε0 ‖2 =

k a,b
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=

∫
Ab

ε0a

α(σ)

⎛
⎝ ξk∫

0

h(τ) dτ

⎞
⎠ dvg

ξ2
k‖ϑ

ε0
a,b‖2 +

∫
Ab

a\Ab
ε0a

α(σ)

⎛
⎜⎝

ξkϑ
ε0
a,b(σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

ξ2
k‖ϑ

ε0
a,b‖2

≥ α0

∫
Ab

ε0a

⎛
⎝ ξk∫

0

h(τ) dτ

⎞
⎠ dvg

ξ2
k‖ϑ

ε0
a,b‖2 + α0

∫
Ab

a\Ab
ε0a

⎛
⎝ inf

t∈[0,ξk]

t∫
0

h(τ) dτ

⎞
⎠ dvg

ξ2
k‖ϑ

ε0
a,b‖2

≥ α0

∫
Ab

ε0a

⎛
⎝ ξk∫

0

h(τ) dτ

⎞
⎠ dvg

ξ2
k‖ϑ

ε0
a,b‖2 −K1α0

∫
Ab

a\Ab
ε0a

⎛
⎝ ξk∫

0

h(τ) dτ

⎞
⎠ dvg

ξ2
k‖ϑ

ε0
a,b‖2

= α0
Volg(Ab

ε0a)
(K1 + 1)‖ϑε0

a,b‖2

ξk∫
0

h(τ) dτ

ξ2
k

>
1
2λ

for all k ≥ k0. Now, from the definition of ξkϑε
a,b it is clear that ξkϑε0

a,b ∈ EG
j . Hence JG,λ(ξkϑε0

a,b) < 0 and 
as a consequence of that ιGj < 0 as desired.

Step 6: the function uG
j is a local minimum for the functional JG,λ in the Sobolev space H1

g (M) for all 
j ∈ N.

Since ‖uG
j ‖L∞(M) → 0 as j → ∞, up to relabel the indexes we can assume the existence of a sequence 

(uG
j )j ⊂ H1

g (M) such that

‖uG
j ‖L∞(M) ≤ t0. (3.11)

At this point, in virtue of the Principle of Symmetric Criticality of Palais (see [24] for details), to conclude 
the proof it is sufficient to show that JG,λ is invariant under the action of G. Consider first ‖ · ‖. For all 
ϕ ∈ G and w ∈ H1

g (M) we have

‖ϕ� w‖2 =
∫
M

|∇g(ϕ� w)(σ)|2 dvg +
∫
M

|(ϕ� w)(σ)|2 dvg

=
∫
M

|∇g(w(ϕ−1 · σ))|2 dvg +
∫
M

|w(ϕ−1 · σ)|2 dvg

=
∫
M

〈Dϕϕ−1·σ∇gw(ϕ−1 · σ), Dϕϕ−1·σ∇gw(ϕ−1 · σ)〉ϕ−1·σ dvg

+
∫
M

|w(ϕ−1 · σ)|2 dvg

=
∫
M

〈∇gw(ϕ−1 · σ),∇gw(ϕ−1 · σ)〉ϕ−1·σ dvg +
∫
M

|w(ϕ−1 · σ)|2 dvg (3.12)

=
∫
〈∇gw(σ̃),∇gw(σ̃)〉σ̃ dv(ϕ−1)∗g +

∫
|w(σ̃)|2 dv(ϕ−1)∗g
M M
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=
∫
M

〈∇gw(σ̃),∇gw(σ̃)〉σ̃ dvg +
∫
M

|w(σ̃)|2 dvg = ‖w‖2

since ϕ is an isometry and preserves scalar products. Furthermore

α(ϕ−1 · σ) = α(dg(σ0, ϕ
−1σ)) = α(dg(ϕ−1 · σ0, ϕ

−1σ)) = α(dg(σ0, σ)) = α(σ)

which implies

∫
M

α(σ)

⎛
⎜⎝

w(ϕ−1·σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg =

∫
M

α(ϕ−1 · σ)

⎛
⎜⎝

w(ϕ−1·σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

=
∫
M

α(σ̃)

⎛
⎜⎝

w(σ̃)∫
0

h(τ) dτ

⎞
⎟⎠ dv(ϕ−1)∗g (3.13)

=
∫
M

α(σ̃)

⎛
⎜⎝

w(σ̃)∫
0

h(τ) dτ

⎞
⎟⎠ dvg.

Putting together (3.12) and (3.13) we obtain

JG,λ(ϕ� w) = JG,λ(w)

hence, applying the Principle of Symmetric Criticality of Palais we have that each element of the sequence 
uG
j is a critical point of the functional JG,λ and a weak solution of (P0). Furthermore, recalling Step 2 and 

(3.11) we also have that uG
j is a solution of our original problem (Pλ). �

Example 3.2. Let f : R → R be defined by

f(t) :=

⎧⎪⎨
⎪⎩

9
√
t sin

(
1
3
√
t

)
− 2 6

√
t cos

(
1
3
√
t

)
if t ≥ 0

0 if t < 0,

whose primitive is

F (t) =
t∫

0

f(s) ds =

⎧⎪⎨
⎪⎩

6t3/2 sin
(

1
3
√
t

)
if t ≥ 0

0 if t < 0.

As in [1] one can check that conditions (f0) and (f1) are satisfied.

4. Oscillations at infinity

In this section we investigate the solutions of problem (Pλ)

{
−Δgw + w = λα(σ)f(w) in M
w ∈ H1(M)
g
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where f : R → R is a continuous nonnegative function that oscillates at infinity. Preferring a variational 
approach, we define the energy functional Jλ : H1

g (M) → R associated to problem (Pλ) where

Jλ(w) := 1
2‖w‖

2 − λ

∫
M

α(σ)F (w(σ)) dvg,

and F (t) :=
t∫

0

f(τ) dτ . As regard the right hand side of (Pλ), we make on the nonlinear term f the 

hypothesis (f ′
0) and (f ′

2) of Theorem 1.2 till the end of the section. As we already did in the previous section 
we will fist look for solutions for a truncated problem and then we will show that they also solve (Pλ). In 
order to do that, we start defining the function

h(t) :=
{
f(t) if t ≥ 0
f(0) if t < 0

and considering the auxiliary problem

{
−Δgw + w = λα(σ)h(w) in M
w ∈ H1

G(M).
(P∞)

We associate to problem (P∞) the functional

JG,λ(w) := 1
2‖w‖

2 − λ

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
0

h(τ) dτ

⎞
⎟⎠ dvg

and we point out that JG,λ ∈ C1(H1
G(M), R) and again thanks to Lemma 2.3 that is sequentially lower 

semicontinuous. We emphasize that nonnegative critical points of JG,λ(w) are also critical point for the 
functional Jλ.

Proof of Theorem 1.2. Since some arguments of the proof are very similar the ones described in Theorem 1.1
we will omit them. Fix λ > 0. We start for every j ∈ N setting

EG
j :=

{
w ∈ H1

G(M) : 0 ≤ w(σ) ≤ t′j a.e in M
}
.

Step 1: the functional JG,λ in bounded from below on EG
j and attains its infimum on EG

j at a function 
wG

j ∈ EG
j .

From hypothesis (f ′
0) we obtain

w(σ)∫
0

h(τ) dτ ≤ K2

(
t′j +

(
t′j
)q+1

q + 1

)

As a consequence of that

JG,λ(w) ≥ −λK2‖α‖L1(M)

(
t′j +

(
t′j
)q+1

q + 1

)
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which imply that JG,λ is bounded from below on EG
j for every j ∈ N. At this point, follows the line of Step 

1 in Theorem 1.1 we can find uG
j such that

ιGj := inf
w∈EG

j

JG,λ(w) = JG,λ(uG
j ).

Step 2: for all j ∈ N one has that 0 ≤ uG
j (σ) ≤ tj a.e. in M.

The statement follows following closely the line of the proof of Step 2 on Theorem 1.1.
Step 3: the function uG

j is a local minimum for JG,λ in the Sobolev space H1
G(M) for all j ∈ N

In order to show that, we choose w ∈ H1
G(M) and we set

ZG
j := {σ ∈ M : w(σ) /∈ [0, tj ]}

for every j ∈ N. Recalling the superposition operator defined in step 2 of Theorem 1.1 we set

v�j (σ) := Tjw(σ) =

⎧⎪⎪⎨
⎪⎪⎩
tj if w(σ) > tj

w(σ) if 0 ≤ w(σ) ≤ tj

0 if w(σ) < 0.

Now, on one hand one can easily see that

w(σ)∫
v�
j (σ)

h(τ) dτ = 0

for every σ ∈ M \ZG
j . On the other hand, if σ ∈ ZG

j we analyze the situation according to the three different 
possible alternatives.

1. If w(σ) ≤ 0 it is immediate to see

w(σ)∫
v�
j (σ)

h(τ) dτ =
w(σ)∫
0

f(0) dτ ≤ 0.

2. If tj < w(σ) ≤ t′j we can show

w(σ)∫
v�
j (σ)

h(τ) dτ ≤ 0,

arguing similarly to Step 3 in Theorem 1.1.
3. If w(σ) > t′j we obtain

w(σ)∫
v�
j (σ)

h(τ) dτ =
w(σ)∫
tj

h(τ) dτ (4.1)

≤

∣∣∣∣∣∣∣
w(σ)∫
tj

h(τ) dτ

∣∣∣∣∣∣∣ ≤ K2

[
(w(σ) − tj) + 1

q + 1(w(σ)q+1 − tq+1
j )

]
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At this point set

C̃ := K2‖α‖L∞(M) sup
t≥t′j

(q + 1)(t− tj) + (tq+1 − tq+1
j )

(t− tj)q+1 .

From this and (4.1) we have

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg ≤ ‖α‖L∞(M)

∫
M

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg (4.2)

≤ C̃

∫
M

(w(σ) − tj)q+1 dvg.

Denote

γ̃ := sup
w∈H1

G(M)\{0}

‖w‖Lq+1(M)

‖w‖

and observe that is finite for Lemma 2.3. From (4.2) we deduce

∫
M

α(σ)

⎛
⎜⎝

w(σ)∫
v�
j (σ)

h(τ) dτ

⎞
⎟⎠ dvg ≤ C̃γ̃q+1‖w − v�j ‖q+1. (4.3)

At this point the conclusion is achieved as in Step 3 of Theorem 1.1.
Step 4 We have that

lim inf
j→∞

ιGj = −∞

Replacing (f1) with (f ′
2) and repeating the calculations done in Step 5 of Theorem 1.1 we can find a constant 

κ̃ > 0 and a divergent sequence (ξk)k such that

JG,λ(ξkϑε0
a,b) < −κ̃‖ξkϑε0

a,b‖2

for k ≥ k0 (see the proof of Theorem 1.1 for the definition of ϑε
a,b). At this point, we notice that we can find 

a subsequence (tj′k)k so that tj′k ≥ ξk and ξkϑ
ε0
a,b ∈ EG

jk
. Then

lim
k→∞

ιGjk ≤ lim
k→∞

JG,λ(ξkϑε0
a,b) < − lim

k→∞
κ̃‖ξkϑε0

a,b‖2 = −∞.

From this, we can conclude using the definition of inferior limit getting

lim inf
j→∞

ιGj = −∞

In order to conclude the proof is sufficient to argue as in Step 6 of Theorem 1.1 proving that JG,λ is invariant 
under the action of the group G and applying the Principle of Symmetric Criticality of Palais. �

To conclude we exhibit an example of a nonlinearity that satisfies hypothesis (f ′
0)-(f ′

2).
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Example 4.1. Consider the function

f(t) :=

⎧⎨
⎩

2(d− 1)
d− 2 t

d
d−2 sin

(
3
√
t
)

+ 1
3 t

2(2d−1)
3(d−2) cos

(
3
√
t
)

if t ≥ 0

0 if t < 0

whose primitive is

F (t) =
{
t2

d−1
d−2 sin

(
3
√
t
)

t ≥ 0
0 t < 0.

Hypothesis (f ′
0) is trivially satisfied since the trigonometric functions are bounded and

d

d− 2 < 2∗ − 1 and 2(2d− 1)
3(d− 2) < 2∗ − 1.

In order to see the validity of (f ′
1) one can choose for instance

tj :=
[π
2 (1 + 4j)

]3
and t′j :=

[π
2 (3 + 4j)

]3
.

It is easy to check that F is decreasing in the interval [tj , t′j ], hence

F (tj) = sup
t∈[tj ,t′j ]

F (t).

To prove that f satisfies (f ′
2), we choose ξj = tj → +∞, so that

lim
j→+∞

F (ξj)
ξ2
j

= lim
j→+∞

ξ
2 d−1

d−2
j

ξ2
j

= lim
j→+∞

ξ
2

d−2
j = +∞.

Moreover,

inf
t∈[0,ξj ]

F (t) = F
(
t′j−1

)
= −

(
t′j−1

)2 d−1
d−2 ≥ − (ξj)2

d−1
d−2 = −F (ξj),

which shows that (f ′
2) is verified with K3 = 1.
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