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A B S T R A C T

Drug delivery systems efficiently and safely administer therapeutic agents to specific body sites. Liposomes, 
spherical vesicles made of phospholipid bilayers, have become a powerful tool in this field, especially with the 
rise of microfluidic manufacturing during the COVID-19 pandemic. Despite its efficiency, microfluidic liposomal 
production poses challenges, often requiring laborious, optimization on a case-by-case basis. This is due to a lack 
of comprehensive understanding and robust methodologies, compounded by limited data on microfluidic pro-
duction with varying lipids. Artificial intelligence offers promise in predicting lipid behaviour during micro-
fluidic production, with the still unexploited potential of streamlining development. Herein we employ machine 
learning to predict critical quality attributes and process parameters for microfluidic-based liposome production. 
Validated models predict liposome formation, size, and production parameters, significantly advancing our 
understanding of lipid behaviour. Extensive model analysis enhanced interpretability and investigated under-
lying mechanisms, supporting the transition to microfluidic production. Unlocking the potential of machine 
learning in drug development can accelerate pharmaceutical innovation, making drug delivery systems more 
adaptable and accessible.

1. Introduction

Liposomes, have revolutionized the field of drug delivery (Fig. 1a). 
[1] Due to their versatile applications and the pandemic-driven push to 
standardize lipid-based delivery methods, these vesicles have garnered 
increasing attention. [2] However, while their potential is vast, chal-
lenges such as scalability, and cost-effectiveness still need to be 
addressed to fully realize their widespread application in clinical set-
tings. [3] Nevertheless, over the last three decades, more than 14 
liposome-based drug products have been approved, with applications 
ranging from cancer treatments to vaccines. [2] Liposomal carriers can 
encapsulate both hydrophilic and hydrophobic drugs, offering a pro-
tective environment and enhancing their solubility, stability, and 
bioavailability. [1,4] Further, the liposomal surface can be engineered to 
circulate longer in the bloodstream, improving the pharmacokinetics 
and biodistribution. [5,6]

Systemic drug delivery is profoundly impacted by liposome size, 
affecting physiological processes such as hepatic uptake, tissue 

diffusion, extravasation, and renal clearance. [7–9] The size range of 50- 
200 nm is considered optimal for drug nanocarriers in systemic paren-
teral administration, balancing tissue and capillary pore size limitations. 
[7,10,11] Additionally, smaller liposomes (<150 nm) demonstrate 
enhanced lymphatic uptake and transport, crucial for effective drug 
delivery. [10,12] Further, larger liposomes might escape clearance and 
act as long-acting depot systems. [13,14] Liposomes mainly consist of 
phosphatidylcholine (PC) lipids, essential for drug delivery due to their 
biocompatibility and ability to form stable bilayers. [15]

Traditional methods of liposome production, such as thin-film hy-
dration and ethanol injection, present challenges in scalability, repro-
ducibility, and control over liposome size and polydispersity (Fig. 1b). 
[16,17] In contrast, microfluidic technology offers a promising alter-
native by enabling precise control over the production process. With the 
increasing accessibility of microfluidic devices for lipid nanoparticle 
(LNP) production, this technology is becoming a reality for small and 
medium enterprises (SMEs), encouraging formulation scientists to 
explore more liposome-based drug delivery systems. [16–20] This 
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technology involves manipulating fluids within microchannels, allowing 
for controlled mixing and assembly of liposomal components (Fig. 1b). 
Microfluidic production enhances reproducibility and scalability, 
generating liposomes with uniform size distributions and tailored 
properties, fundamental for consistent therapeutic performance. 
[7,16,18,21] Additionally, microfluidic production is more sustainable 
because it does not rely on the use of chlorinated solvents like chloro-
form compared to conventional methods such as the thin film hydration, 
resulting in less toxic waste and ultimately contributing to a reduced 
environmental footprint. [16] Further, this production offers fine con-
trol over critical process parameters (CPPs) such as flow rates, pressure, 
and temperature, which are crucial for optimizing liposome size, 
lamellarity, encapsulation efficiency, and stability. [22–24] Despite 
these benefits, however, several challenges hinder clinical and industrial 
applications. The primary obstacle is translating bench-scale liposomal 
production to larger scales, as traditional methods often do not scale up 
seamlessly. [24] That said, transitioning to more scalable microfluidic 
production is not trivial as different liposomal formulations respond 
uniquely to microfluidic conditions, requiring extensive optimization on 
a case-by-case basis. [24] Variations in microfluidic chip design further 
complicate standardization. Advances in 3D printing could help by 
enabling robust, standardized chip fabrication (Fig. 1c). [25,26] While 
extrusion can control liposome size, achieving this precision in micro-
fluidics is more complex due to the interplay of various factors, often 
requiring extensive experimentation to adjust the flow rate ratio (FRR; 
aqueous: organic flow rate) at a sufficient total flow rate. [21,24,27]

Mathematical models like Design of Experiments (DoE) have guided 
the development of microfluidic liposome production processes, eluci-
dating the relationships between process parameters and the resulting 
liposome characteristics. [23,25,28] However, their applicability is 
often limited to low-dimensional design spaces, and their scalability and 
generalization are restricted. In recent years, the application of machine 
learning (ML) and artificial intelligence (AI) in pharmaceutical sciences 
has gained traction due to their ability to model multi-dimensional 
problems. [22,23,29–32] ML is valuable throughout the entire drug 
discovery and development pipeline, [22,33] from exploring chemical 

space to identify new hit compounds [33–37], to predicting synthetic 
pathways, [38–40] Absorption-Distribution-Metabolism-Excretion 
Toxicity (ADMET) properties [41,42] and target activity. [43] In com-
plex processes influenced by multiple factors, conventional mathemat-
ical models may struggle to capture underlying patterns, whereas AI can 
effectively reveal and support these mechanisms. [44] However, many 
methods rely on external datasets often lacking quality. [45,46] Liter-
ature [47–51] and previous work using in-house data have demon-
strated that ML can accurately learn and predict experimental outcomes 
with clean data, even with smaller datasets. [52] However, ML itself can 
generally not overcome the data sparsity problems which are primary 
limitations for most applications so far as comprehensive and high- 
quality data are often lacking. However, this does not apply to micro-
fluidic liposome production, as a fair amount of in-house data can 
readily be produced. Therefore, ML holds significant promise for pre-
dicting lipid behaviour during microfluidic production with high accu-
racy. [23,31,32,53,54]

Despite their ability to model complex multi-dimensional data, 
though, ML models often lack explainability, making them less suitable 
for gaining deeper insights. [55] Explainable AI (XAI) techniques, allow 
researchers to extract information from black-box models and provide 
more transparency to the predictions. [55] Combined, ML and XAI can 
potentially reduce reliance on empirical methods and provide increased 
transparency, accelerating the optimization of the liposomal production 
process. [31,32,53,54,56]

Herein we report on training ML models, with an in-house generated 
data set to accurately predict critical quality attributes (CQAs), 
including the formation and size of liposomes, as well as process pa-
rameters for their microfluidic production. We applied the principles of 
XAI and gained deeper insights into the complex interactions between 
formulation- and process-parameters, improving the prediction of lipid 
behaviour during microfluidic production. By training these models, we 
aim to establish a reliable framework that enables transitioning from 
traditional liposome production methods to microfluidic techniques 
(Fig. 1d). This capability can streamline the development of liposomal 
drug delivery systems, reducing reliance on empirical methods and 

Fig. 1. Schematic demonstration of traditional and data-driven formulation development for liposomal drug delivery systems. a) Liposomes serve as effective drug 
delivery systems, enhancing drug stability, enabling parenteral administration for systemic effects, and offering controlled drug release. PEGylation and precise size 
adjustments help reducing clearance and increase the retention of drug carriers in the body. Additionally, liposome size influences physiological processes such as 
hepatic uptake and tissue diffusion. b) Traditional extrusion-based versus microfluidic production method of liposomes. c) 3D printing of microfluidic chips with 
specific channel geometries. d) Machine learning (ML) model development, testing model selection based on model interpretation and validation in the wet lab.
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accelerating the optimization process. [31,32,53,54] Our ultimate goal 
is to develop a robust, scalable, and standardized process widely 
adoptable in the pharmaceutical sciences, to accelerate the delivery of 
therapeutic agents to clinics and patients.

2. Results and discussion

2.1. Liposomal formulation screening

A comprehensive range of lipid-based formulations has been 
screened following multiple full factorial DoEs and using a microfluidic 
process, varying CPPs to optimize liposome characteristics. The primary 
CQA obtained in response to these variations was liposome size, a key 
determinant of their therapeutic efficacy and stability. [7] The full 
factorial design allowed us to screen a vast portion of the experimental 
space, distributing the experimental points among the investigated 
CPPS’ s range. The lipid excipients selected for this study include 
dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine 
(DOPC), hydrogenated soy phosphatidylcholine (HSPC), dipalmitoyl-
phosphatidylcholine (DPPC), and palmitoyloleoylphosphatidylcholine 
(POPC). This selection covers a broad spectrum of lipids commonly used 
in the development of liposomal drug delivery systems, providing a 
diverse basis for the analysis. [15] The chosen lipids are pivotal for 
subcutaneous (s.c.) and parenteral drug delivery, given their distinct 
biophysical properties and interactions within liposomal structures. 
[15] Cholesterol is included as a crucial component due to its role in 

enhancing membrane stability and reducing permeability, thus 
improving drug retention. [15] Additionally, PEGylated lipids are 
incorporated to prolong circulation time by providing a steric barrier 
against opsonization and subsequent clearance by the mononuclear 
phagocyte system. [15] Further it assures stability of the liposomes by 
avoiding the coalescence and fusion of the vesicles. [57]

Liposomes were manufactured following a microfluidic technology 
as outlined in Fig. 1b. Chips with different channel geometry were 3D 
printed and utilized in the production offering flexibility and indepen-
dence at low cost (Fig. S1). [25] Immediately following liposome pro-
duction, the sample underwent analysis via dynamic light scattering 
(DLS) and the hydrodynamic diameter and the polydispersity index 
(PDI) of the liposomes were chosen as the primary response for opti-
mization in this study. [7]

The data set obtained from the lipid screening was analyzed using 
the Tree map (TMAP) dimensionality reduction method (Fig. 2a-c) and 
an alluvial diagram (Fig. 2d). There are currently limited algorithms to 
visualize multi-dimensional data sets containing chemical structures 
and associated properties while preserving both global and local fea-
tures with a sufficient level of detail to allow for human inspection and 
interpretation. [58] TMAPs offer a solution to this problem with a new 
data visualization method, capable of representing data sets of arbitrary 
multidimensionality as a two-dimensional tree. [58] Hence, TMAPs are 
a tool to inspect multi-dimensional datasets in 2-dimensional space 
while preserving nearest neighbour relationships. [58] Visualizations 
based on TMAP are better suited than t-SNE or PCA for the exploration 

Fig. 2. Visualization of liposome data set. a-c) TMAP visualization of the data set for three responses: formation of liposomes (a), size (b), and (c) flow rate ratio 
(FRR). The features include formulation parameters such as PEGylated lipids (PEG %), cholesterol (Chol %), and simplified lipid descriptors, and chip geometry 
(Chip) as well as flow rate ratio (FRR). d) Alluvial plot depicting trends and patterns in the formation of liposomes based on formulation and production parameters. 
The width of the flows corresponds to the proportion of liposomes in the data set, illustrating the distribution and significance of different parameters.
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and interpretation of large data sets due to their tree-like nature, 
increased local and global neighborhood and structure preservation, and 
the transparency of the methods the algorithm is based on, as reported 
elsewhere. [58] TMAPs avoid overlaps of data and use the entire space 
which makes visualization and interpretation easier. Lastly the maps are 
interactable allowing close interpretation of each data point (Supporting 
Information). A direct comparison with PCA and tSNE can be seen in 
Fig. S2. Each point in the TMAP plot corresponds to an instance in the 
dataset where its location is determined by the underlying formulation 
parameters such as PEGylated lipids (PEG), cholesterol (Chol), simpli-
fied lipid descriptors, and chip geometry (Chip). Further, the colour of 
each point represents the response value (e.g. Size) of the according data 
instance. Visualizing this multi-dimensional data using TMAP analysis 
reveals clear clusters corresponding to liposome formation, size, and 
FRR, indicating that certain combinations of CPPs and lipid formulations 
consistently produce optimal characteristics. A closer inspection of the 
clusters reveals that saturated lipids are less likely to form liposomes and 
if they do tend to form larger particles. This may be due to the fact that 
lipids with saturated fatty acid chains tend to form rigid bilayers with 
high phase transition temperatures (Tm), making them less likely to form 
stable liposomes. [59] Additionally, their rigidity presents challenges in 
achieving the narrow curvature required, which could explain the ten-
dency to form larger particles. [60] Efficient clustering indicates that the 
combination and interplay of underlying descriptors can effectively 
differentiate the data and group it accordingly. This capability serves as 
a strong foundation for subsequent modelling efforts. However, it must 
be understood that this alone does not justify a machine-learning 
approach.

The alluvial plot effectively illustrates the influence of specific CPPs 
and lipid formulations on liposome formation (Fig. 2d and Fig. S3). By 
depicting data flows that represent the number of formed liposomes 
across different categories, it visually demonstrates the interactions 
between various variables. For instance, cholesterol content noticeably 
affects liposome formation, as evidenced by the varying diameters of 
flows between lipid types and cholesterol percentages. Particularly, li-
posomes based on HSPC and DPPC appear to be significantly impacted 
by the absence of cholesterol. This can be attributed to the structural 
characteristics of the lipid chains. HSPC and DPPC, which both contain 
two saturated fatty acid chains, typically form rigid bilayers with high 
Tm, making them less prone to forming stable liposomes, supporting the 
previous observations in TMAPs. [59] The addition of cholesterol dis-
rupts this tight packing and introduces disorder into the bilayer, facili-
tating the curvature required to form closed vesicles, especially in a 
microfluidic environment. [60]

In contrast, liposomes based on lipids with unsaturated fatty acid 
chains, such as DOPC and POPC, form consistently across all cholesterol 
ranges. These lipids have lower Tm and inherently higher fluidity, 
allowing for liposome formation without the need for added cholesterol. 
A similar trend is observed with the addition of PEG % (Fig. S2). The 
presence of PEG in liposomes prevents surface interactions and stabilizes 
the formed liposomes. [61,62] Interestingly, the presence of both 
cholesterol and PEG % appears to slightly influence each other symbi-
otically, with their combination being the most favorable for liposome 
formation. This can be explained by the combinational effect of steric 
repulsion and introduction of additional asymmetry and space into the 
bilayer, which facilitates liposome formation. [60]

Lastly, the relationship between Chip and FRR (Flow Rate Ratio) 
shows that the data flows between different chips are of similar size, 
indicating similar behaviour across chips. However, liposome formation 
is more prevalent at lower FRR, which favors the aqueous phase. This is 
likely due to the high presence of ethanol at higher FRR, making it 
thermodynamically less favorable for lipids to form vesicles. [63]

However, the plot illustrates the dataset’s complexity, making direct 
extrapolation impractical and suggesting the use of an ML approach, 
which can handle large amounts of multi-dimensional data and identify 
patterns not easily seen by traditional methods (Table S1).

2.2. Feature selection

A first task in ML is feature selection, which involves identifying and 
using the most relevant variables (features) in a dataset, associated with 
microfluidic liposome production. This process reduces overfitting, 
avoids correlated features that confound the model and improves 
generalization. The alluvial plot in Fig. 2d supports initial feature se-
lection for further analysis. The selected features include formulation 
parameters, such as lipid molecular descriptors, cholesterol content, and 
PEG content, as well as production parameters like chip geometry and 
FRR. These variables have relevant influences on the process and 
uniquely contribute to the formation and characteristics of liposomes. 
[23,25,64,65] Lipid molecular descriptors provide insights into the 
physicochemical properties of the lipids, influencing their behaviour in 
the microfluidic process. While formulation parameters have a direct 
impact on circulation and drug retention, chip geometry affects the 
mixing and assembly of lipids, influencing liposome size and uniformity. 
[25] The FRR determines the relative velocities of the aqueous and lipid 
phases, impacting liposome size and encapsulation efficiency. [23,25] 
Previous experiments have shown that total flow rate (TFR) becomes 
less important above a certain high turbulent flow, [28] where its in-
fluence on liposome formation is minimal which is supported by simu-
lations elsewhere. [28,64] Therefore, the TFR was excluded from the 
initial feature vector after ensuring to be above the threshold of the used 
chips (>8 mL/min). A well-constructed feature vector (Fig. 3a) avoids 
confounding and overfitting, while improving generalization and 
thereby promises to model the complex underlying data, providing 
predictive insights and optimizing the microfluidic production process.

The Spearman correlation matrix provides insights into the correla-
tion between different features in the dataset, independent of the pre-
dictive modelling process (Fig. 3b). Each cell in the matrix represents the 
Spearman correlation coefficient, indicating the strength and direction 
of the relationship between two features. Positive correlation co-
efficients indicate a positive linear relationship between features, while 
negative coefficients signify a negative linear relationship. For example, 
enhanced correlation coefficients between pairs of features, such as 
between the lipid descriptors, may indicate multicollinearity, where one 
feature can be linearly predicted from another which potentially leads to 
overfitting. However, in our study, we included these correlated lipid 
features because, despite their correlation, as literature suggests that 
multiple lipid characteristics, as captured in our features, are crucial for 
capturing the underlying microfluidic process. [66] Additionally, tree- 
based models are considered favorable because they are less sensitive 
to multicollinearity, as they do not assume that predictor variables are 
independent. [67] Tree-based ensemble methods automatically identify 
and prioritize the most important features in a dataset during the model 
training process. [68] Unlike some other machine learning algorithms 
tree-based models naturally evaluate each feature’s importance by how 
effectively it splits the data to reduce impurity. Features that provide the 
most significant reduction in impurity are used at the higher levels of the 
tree, while less important features may not be used at all or only in the 
deeper parts of the tree. This further reduces the risk of including mul-
ticorrelated features as this “autonomous feature selection” itself helps 
in selecting relevant features requiring less manual preprocessing, 
which can simplify the model-building process and often leads to robust 
models that generalize well to unseen data. [68] However, while tree 
based models are less affected by multicollinearity, they can still impact 
the interpretability and importance scores of features. Hence, Lasso 
Regularization techniques should be employed within the models to 
mitigate any potential issues with multicollinearity, ensuring that the 
model remains robust and interpretable.

Lastly, besides lipid descriptors, the correlations between other fea-
tures are low, indicating their independence, avoiding overfitting. For 
example, if two features in the production process model, such as FRR 
and CHIP, have low correlations it means that changes in CHIP is most 
likely not affecting the FRR. Yet, this interpretation needs to be taken 
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Fig. 3. Feature selection and predicting liposome formation: a) Schematic presentation of features used for modelling, including Cholesterol (CHOL), DSPE-PEG 
percentage (PEG%), Chip geometry, Flow rate ratio (FRR), Length of lipid chains 1 and 2 (LC1/2), and Saturation of lipid chains 1 and 2 (UsC1/2) indicated in 
blue and magenta respectively. b) Correlation heatmap of all input features. A magenta colour indicates an absolute correlation (=1) and a blue colour indicates a 
negative correlation. c) accuracy, and d) Area under the Curve (AUC) of different models for predicting liposome formation, averaged over 5 repeated tests with 
different data splits (5-fold cross-validation). e) Receiver operator curve (ROC) of 5-fold cross-validation for the XGB model predicting the formation of liposomes. f) 
SHAP analysis for the 8-feature XGB model illustrating the impact of each feature on the model’s output “liposome formation”, using a swarm plot of SHAP values. 
The dot colour represents the feature value (magenta for high, blue for low), while horizontal positioning shows the positive or negative contribution of each feature 
in each prediction instance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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with caution as Spearman’s correlation quantifies monotone de-
pendences between two features. However, the independence allows the 
model to understand and predict the effects FRR and Chip have on the 
outcome without interference. It ensures that each feature contributes 
uniquely to the model, leading to more reliable and interpretable pre-
dictions. In brief, a feature vector of 8 process and formulation param-
eters, relevant to microfluidic liposome production, was chosen for 
further modelling (Fig. 3a).

2.3. Predicting formation and size of liposomes

2.3.1. Formation of liposomes
The formation of liposomes during microfluidic production is not 

always a guaranteed outcome. [69] It hinges on a complex interplay of 
formulation and process parameters. [69] Accurately predicting 
whether liposomes will form under specific conditions is therefore 
critical to enriching the pool of successful formulations. To address this 
challenge, six predictive models based on different underlaying archi-
tectures were trained on our dataset generated in-house. The model 
selection consisted of tree-based models such as decision trees (DT), 
random forest (RF), and extreme gradient boosting (XGB). Further, 
models based on support vector classifier (SVC), logistic regression 
classifier (Logit), and k-nearest neighbour (KNN) were trained. Investi-
gating different models allows for a thorough evaluation of their per-
formance and generalization capabilities, facilitating the selection of the 
most suitable model. [29,30] In the training process, the feature’s 
impact on model accuracy, and Area Under the Curve (AUC) of the 
Receiver Operating Characteristic (ROC) curves were evaluated as seen 
in Fig. 3c-d. ROC curves are graphical representations that show the 
performance of a classification model, plotting the true positive rate of a 
test data set against the false positive rate. [70] For example, if a model 
is predicting the formations of liposomes correctly, the false positive rate 
is low while the true positive rate approaches 1, leading to an AUC of 1, 
as seen in Fig. 3e. In short, the AUC measures how well a classifier 
distinguishes between classes, with higher values indicating better 
performance. [70]

Features were added incrementally (Fig. 3a) in the training process 
and for each addition, a 5-fold cross-validation was performed. The 
order of the feature addition was based on reported, 
[23,25,28,32,53,65] and experimentally observed influences of certain 
features during microfluidic production. In short, the feature vector was 
constructed of formulation features, followed by process features, and 
finalized with lipid descriptors.

Among the models tested, the XGB model, trained on all 8 features, 
consistently exhibited the highest accuracy, and AUC (Fig. 3e), along 
with minimal variation between cross-validation sets (Fig. 3c-d). 
Although the simpler DT model showed only slightly lower perfor-
mance, the XGB model was deemed better suited for addressing subse-
quent regression problems, ensuring consistency in the modelling 
architecture throughout the study. This made XGB the preferred model 
architecture for the subsequent tasks. Furthermore, tree-based models as 
XGB are very amenable to model analysis due to their speed which 
makes XGB an attractive choice for XAI. [30]

The detailed ROC plot for the XGB model, shown in Fig. 3e, illus-
trates the model’s ability to predict liposome formation with high 
discrimination power. This is further evidenced by the high AUC scores 
(Fig. 3e, blue line) consistently achieved by the XGB model across all 5 
cross validations. However, as class imbalances in the data set could bias 
the predictions, the target data was scrambled, and the model reassessed 
on the scrambled data. Fig. S4 shows a pure random model indicating 
that class imbalances have not biased the original model.

While a functional model is fundamental, it is crucial to learn from 
the model and derive the findings on the development process. 
[55,71,72] For example, it can be evaluated what formulation and 
process features were key contributing factors to the outcome of the 
model. [71,72] Such an approach can justify the use of a reduced 

experimental design and therefore resulting in significant savings in 
time and cost. [49]

Tree-based models clearly describe the decision-making process, 
however direct tree interpretation is challenging. In practice, trees can 
reach enormous depth and size, and as a result, the collection of rules is 
vast and complicated (see Supplementary Material). [73] The impor-
tance of input features in predicting liposome formation was therefore 
determined using Shapley additive explanations (SHAP) [56,74] anal-
ysis for the 8-feature XGB model. SHAP analysis provides a visual 
interpretation to gain insights into feature importance and their influ-
ence on the model output.

The plot highlights the influence of various input features on the 
model’s predictions and, consequently, potential correlations of these 
features on liposome formation. For each feature, datapoints are plotted 
in a dot plot based on their impact on the model prediction (SHAP value) 
and coloured by their feature value. The plot illustrates the relationship 
between each feature’s value and its contribution to the model’s pre-
diction, allowing us to understand how changes in the feature value 
affect the model output and identify patterns such as whether higher or 
lower values of the feature increase or decrease the prediction. For 
instance, a high FRR results in a negative contribution to liposome for-
mation, while high PEG content has a positive contribution. Hereby, the 
SHAP analysis offers insights into potential key drivers influencing 
liposome formation, such as the degree of unsaturation in the second 
lipid chain, PEGylation content, and cholesterol content. The degree of 
unsaturation in the second lipid chain, for example, is highlighted as a 
key driver of liposome formation. This can be explained as lipids with 
higher degrees of unsaturation are more likely to introduce fluidity into 
the bilayer, facilitating the formation of stable liposomes. [59] The 
analysis further revealed that a high FRR tends to negatively impact 
liposome formation. This is likely due to the enhanced amount of 
ethanol in the mixture which will prevent the liposomes from forming 
since it is not necessarily thermodynamically favorable. [63] This is well 
in line with the recent observations that unilamellar vesicles change 
their bilayer composition within milliseconds when exposed to certain 
ethanol concentrations. [63] However, it appears that lipids with high 
Tm are more likely affected. [63] Further, a high PEG content shows a 
positive contribution to liposome formation. PEGylation is known to 
enhance the stability of liposomes by providing steric protection, 
reducing aggregation, and improving circulation time in biological 
systems. [6] Cholesterol content, another important factor, plays a dual 
role by modulating membrane fluidity and stability, though its impact 
can vary depending on concentration. [60] On the other hand, certain 
factors negatively impact liposome formation. Saturated lipid chains 
tend to form more rigid bilayers, which can hinder the formation of 
stable liposomes, especially when combined with lower PEG content or 
reduced cholesterol levels. [59] The chip geometry, as often reported in 
the literature, seems to have a minimal effect on liposome formation. 
This could be due to the fact that we have operated with total flow rates 
that ensure consistent mixing. [28,64]

Hence, SHAP was used to identify and rank features impacting 
microfluidic liposome production which can each be explained by 
literature. It should be noted however, that the SHAP analysis shows the 
effect of each individual feature on model predictions independently, 
without considering potential synergies or interactions between input 
features.

In this section, we validated the XGB model as a robust tool for 
predicting liposome formation using our in-house dataset. The XGB 
model exhibited high discriminative power, achieving a mean AUC of 
0.98 ± 0.01 across 5-fold cross-validations. Furthermore, the XGB 
model was suitable for SHAP analysis, an XAI technique that facilitates 
the analysis of feature importance and their impacts on model pre-
dictions. Our analysis highlighted significant influences on the model 
predictions from factors such as unsaturation of the second lipid chain, 
PEGylation content, and cholesterol content. These findings suggest that 
these parameters may play critical roles in liposome formation.
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2.3.2. Predicting size
Having established a reliable model for predicting the formation of 

liposomes, the next step is to predict their size, a parameter of para-
mount importance in parenteral drug delivery. [7]

Given the significance of size in determining the therapeutic appli-
cation, efficacy, and safety of liposomes, developing a model to predict 
liposome size during microfluidic production is essential. ML can be a 
powerful tool to predict CQAs such as size in therapeutic nanoparticle 
production. [50] Accurate size prediction facilitates the production of 
liposomes with tailored properties, enhancing their performance in 
clinical applications. [7,10,75]

To this end, the previously validated XGB model’s architecture was 
adapted to a regression model to predict the size of liposomes. By 
incorporating key formulation and process parameters identified during 
the formation prediction, the model can be trained to predict liposome 
size. The selected parameters include lipid structure descriptors, Chol 
content, PEG content, Chip, and FRR.

To ensure a robust performance assessment, the model was evaluated 
in a 10-fold cross-validation. In this process, the dataset is split into ten 
equal parts (folds), with the model iteratively trained on nine folds and 
tested on the remaining fold. Following cross-validation, the coefficient 
of determination (R2 value) was calculated to quantify the goodness of 
fit between the predicted and actual particle sizes. An R2 value of 0.74 ±

0.08 indicates that approximately 75 % of the variance in the particle 
sizes can be explained by the model. This level of performance can be 
considered quite reliable in predictive modelling contexts, as it suggests 
that the model captures a substantial portion of the variability in the 
target variable. This evaluation framework offers valuable insights into 
the model’s accuracy, robustness, and generalization ability, supporting 
informed decision-making in particle size prediction tasks.

Further, the relationship between experimentally measured particle 
size and predicted values is visualized through a scatter plot with a 
linear regression curve in Fig. 4a. This plot provides insights into the 
model’s strong predictive capability, with most points clustering around 
the regression line. Some deviations and outliers, particularly at higher 
sizes, highlight areas of lesser accuracy. However, these areas are 
outside the typical size range for therapeutic applications, which is 
generally between 30 and 120 nm. In this range, predictive capability 
was found to be higher (R2: 0.78). Also, residual plots for the regression 
tasks, as shown in Fig. S7, provide valuable insights into model perfor-
mance. In Fig. S7a, residuals for predictions within the typical liposome 
size range (30-180 nm) are closely clustered around the zero line, 
indicating strong predictive accuracy. However, predictions for sizes 
above 180 nm show greater deviations, likely due to limited data for 
larger liposomes. Additionally, there is a tendency for the model to 
overestimate outliers in the lower size range.

Fig. 4. Prediction of the liposome’s size and the flow rate ratio (FRR). Model performance depicted as relationship between the experimental a) particle size, or d) 
FRR, and predicted values. R2 value over 10-fold cross-validation quantifies the goodness of fit between the predicted and actual particle sizes or FRR respectively. 
SHAP analysis for the 8-feature XGB regression model illustrates the impact of each feature on the model’s output b) “liposome size” or e) “FRR”, using a swarm plot 
of SHAP values. Dot colour represents the feature value (magenta for high, blue for low), while horizontal positioning shows the positive or negative contribution of 
each feature in each prediction instance. Two-dimensional visualization of the SHAP values calculated for the input features of the XGB model for particle c) size or f) 
FRR. The SHAP values for the 8 input features were condensed into two principal components using principal component analysis (PCA) and then grouped together 
using t-distributed Stochastic Neighbour Embedding (t-SNE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

R. Eugster et al.                                                                                                                                                                                                                                 Journal of Controlled Release 376 (2024) 1025–1038 

1031 



The importance of each input feature for liposome size prediction 
was investigated via SHAP analysis and visualized in a beeswarm plot 
(Fig. 4b) which shows the relationship between individual feature 
values, SHAP values (a measure of feature impact), and predicted sizes. 
Each point represents an instance in the dataset, with the x-axis dis-
playing the SHAP value for the predicted size. The features are arranged 
from top to bottom in order of their decreasing impact on the model’s 
output. This plot reveals how changes in feature values affect pre-
dictions, highlighting the importance and influence of different features. 
Features with a larger spread over the x-axis, such as Saturation of lipid 
chain 2 (UsC2), Flow rate ratio (FRR), DSPE-PEG percentage (PEG%), 
Length of lipid chain 1 (LC1), and Cholesterol content (CHOL%), may 
have a more significant impact on the model’s predictions. These are 
potential key formulation and production factors that determine the size 
of a liposome. For instance, a high (magenta) degree of unsaturation in 
the lipid chain 2 and a high PEG content seem to have a negative 
contribution to the size output. This suggests that lipids with a higher 
degree of unsaturation and higher PEG content may lead to the forma-
tion of smaller liposomes. The unsaturated chains likely introduce more 
fluidity and flexibility into the lipid bilayer, facilitating more narrow 
bilayer curvatures and hence the formation of smaller, more compact 
liposomal structures. [76] Similarly, PEGylation is known to influence 
liposome size by sterically stabilizing the liposomes and potentially 
limiting their growth during the production process. [77] This trend 
might change with PEG >8 % where its composition switches from 
mushroom to brush. [77] Hence, the presented model is likely suited to 
predict liposomes containing PEG <5 %. Conversely, factors such as a 
high flow rate ratio (FRR), the length of the first lipid chain, and 
cholesterol content appear to contribute positively to liposome size. A 
high FRR might promote larger liposome formation by reducing polarity 
and thereby the thermodynamic pressure encouraging the aggregation 
of lipids into larger vesicles. [63] The length of the first lipid chain could 
influence the overall membrane structure, with longer chains possibly 
leading to larger liposomes due to increased hydrophobic interactions 
within the bilayer. [63] Cholesterol, a well-known modulator of mem-
brane fluidity and stability, might also contribute to larger liposome 
sizes by ordering the lipid bilayer and reducing membrane curvature, 
which could promote the formation of larger vesicles. [60,63]

The presence of clusters or patterns in the SHAP plot, particularly 
those related to UsC2 and PEG%, indicates that the model has identified 
groups of instances where these features consistently influence liposome 
size in a similar manner. These clusters suggest that the model not only 
recognizes individual feature contributions but also discerns underlying 
patterns and relationships between features that are critical for accurate 
size prediction.

This analysis underscores the complex and multifactorial nature of 
liposome size determination. While certain formulation and process 
parameters, such as lipid chain saturation, PEG content, FRR, and 
cholesterol, play significant roles in determining liposome size, it is the 
interaction between these factors that ultimately dictates the outcome. 
The observed patterns align with existing literature, which consistently 
highlights the interdependent nature of these variables in liposome 
formation and size regulation. [17,23,24] The insights provided by the 
SHAP analysis emphasize the importance of considering both individual 
and combined effects of formulation and production parameters to fully 
understand and predict liposome size in microfluidic production 
systems.

For enhanced interpretability, SHAP values of all 8 input features 
were reduced using Principal Component Analysis (PCA) followed by t- 
distributed Stochastic Neighbour Embedding (t-SNE) which is an 
approach in cases where the data is initially multi-dimensional. PCA 
serves to denoise and compress the data to 5 dimensions, making the t- 
SNE step more computationally efficient and effective at revealing 
meaningful structures in the data. This approach allows us to understand 
how different features contribute to the model’s predictions, revealing 
patterns that might not be visible with simpler visualizations as shown in 

Fig. 4c. The SHAP values for the 8 input features are condensed into two 
principal components and visualized in a scatter plot. Each point rep-
resents an instance in the dataset, positioned by the t-SNE algorithm, 
and coloured according to the predicted size. Clusters of nearby points 
indicate instances with similar feature contributions, revealing patterns 
within the data. The Colour coding highlights regions with similar 
predicted sizes, providing further insights into prediction patterns. Iso-
lated or distant points may indicate anomalies or unique feature con-
tributions. Larger sizes (magenta) are clearly clustered, indicating that 
the model effectively distinguishes between particle sizes. To ensure that 
the projection was faithful to the structure of the original data we have 
calculated the Kullback-Leibler (KL) divergence value. The low KL 
divergence value (0.16) that the dimensionality reduction technique 
embedding is a good representation of the original data, meaning that 
the clusters or patterns observed in Fig. 4c are likely reflective of true 
structures in the multi-dimensional space.

Overall, we demonstrate a robust model predicting liposome size 
with high predictive capability (R2: 0.78). SHAP analysis yields practical 
insights, such as identifying influential formulation and process features 
that clarify the model’s decision-making process and key factors driving 
predicted sizes. Evaluating prediction variations across segments vali-
dates the model’s performance and its ability to capture underlying data 
patterns.

2.3.3. Models to predict microfluidic process parameters
Translating liposome production from the laboratory to clinical and 

industrial applications poses significant challenges. [18,78,79] Scaling 
up production while maintaining consistency and reproducibility is a 
primary concern. [18] With traditional liposome production methods 
often failing to scale effectively, prompting a shift towards microfluidic 
techniques due to their sustainability and applicability in industry. [16] 
However, this transition is not straightforward. Each liposomal formu-
lation can respond differently to microfluidic processes, necessitating 
extensive trial and error and laborious optimization on a case-to-case 
basis. [16] Furthermore, variations in microfluidic chip design compli-
cate the standardization of production processes. [64] Robustly 3D- 
printing these chips might offer a pathway to standardization, facili-
tating broader application in pharmaceutical manufacturing. [25] 
Additionally, microfluidic production depends on many controllable 
parameters (Formulation, Chip, FRR, etc.), but this makes the design 
space multi-dimensional and impractical to empirical testing. ML can 
help to efficiently navigate the multi-dimensional design space and help 
us find the correct parameters to produce liposomes with desired 
properties in a microfluidics production. Predicting CPPs and under-
standing their influence on CQAs are of profound interest in different 
branches of pharmaceutical sciences. [49,51] A predictive model that 
takes formulation parameters and chip geometry into account to 
determine the optimal FRR for microfluidic production, targeting 
desired CQA like size, can significantly ease the transition to micro-
fluidics and scale-up. By accurately predicting FRR, such a model can 
streamline development, reducing the need for extensive empirical 
optimization. Building on previous analyses, key features influencing 
liposome formation and size have been identified. Namely, formulation 
parameters such as unsaturation and length of the lipid chains, choles-
terol and PEGylation content along with the liposome’s desired size and 
the used chip geometry. These features serve as the foundation for 
developing an XGB model to predict the most critical process parameter, 
FRR, ensuring comprehensive optimization of the microfluidic process. 
However, it is important to note that FRR is, by the nature of the process, 
an independent variable typically used as a predictor rather than a 
target. To predict process parameters such as FRR, an inverse prediction 
approach is required, where the independent variable is treated as the 
target. Inverse prediction is an emerging field in the prediction of pro-
cess parameters within engineering and pharmaceutical sciences. 
[80,81] It has for example been demonstrated by Rouco et al. that AI can 
be leveraged as a powerful tool in performing inverse prediction of CPPs 

R. Eugster et al.                                                                                                                                                                                                                                 Journal of Controlled Release 376 (2024) 1025–1038 

1032 



for the production of lipid nanocarriers produced by shear homogeni-
zation. [81]

The relationship between the experimental and predicted FRR values 
for a given liposome batch is visualized in a scatter plot (Fig. 4d), 
showing a linear trend, implying that the predicted FRR for a certain 
liposome batch is in accordance with the experimental. The model’s 
performance is further evaluated using 10-fold cross-validation, 
involving 10 repeated tests with different data splits. Following cross- 
validation, the R2 value of 0.74 ± 0.06 indicates that the model ex-
plains approximately 75 % of the variance in FRR, demonstrating reli-
able performance in predicting the FRR. A beeswarm plot (Fig. 4e) of 
calculated SHAP values reveals the impact of the feature “liposome size” 
as the main driver for FRR prediction before the unsaturation of lipid 
chain 2 (UsC2). It is evident that larger liposomes, high UsC2, and PEG% 
along with a low Chol % have a positive contribution to the model’s 

output. This might imply that both, chemical formulation and 
morphological factors play a major role in selecting a FRR to obtain a 
desired liposome in a microfluidic process. Further, multi-dimensional 
SHAP values are reduced using PCA and t-SNE (Fig. 4f) and visualized 
to reveal data patterns and segments. It is visible that clear gradients of 
FRR ratio span through the clusters, implying the model’s ability to 
making decision and thereby further justifies the feature vector.

This promising predictive model for FRR has the potential to ease the 
transition to microfluidic production of liposomes, ensuring consistent 
and scalable manufacturing processes. By predicting FRR, this model 
reduces dependency on empirical optimization, accelerating the tran-
sition from bench-scale experiments to industrial production. However, 
it needs to be pointed out that an inverse prediction needs wet lab 
validation to ensure its robustness. Nevertheless, this advancement 
holds immense potential to streamline the development of liposomal 

Fig. 5. Transition workflow for validation experiments. a) The desired liposome and lab setup were fed to model to predict process parameters which were fed to 
consecutive models to predict CQAs such as the formation and size of liposomes that were compared to liposomes from microfluidic production. b) Wet lab validation 
for 10 liposome formulations with desired input composition and size, predicted size, and size produced during the validation are plotted against the desired 
input size.
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drug delivery systems, facilitating their journey from the laboratory to 
clinical and industrial settings. It represents a significant step forward in 
optimizing these systems, promising improved therapeutic outcomes 
and broader accessibility.

2.3.4. Wet lab validation
The last step involved validating our XGB models by assessing how 

effectively they can support the transition of liposome production from 
traditional production methods to microfluidics. Hence, to validate the 
models, a transition workflow from traditional to microfluidic liposome 
production was executed in the wet lab, employing the predictive 
models through a series of experiments as illustrated in Fig. 5a. The 
validation process involved randomly selecting 10 distinct liposome 
formulations, each assigned a specific desired size. Additionally, a chip 
geometry (i.e. ZZ or SR) [25] was chosen, and printed in an independent 
laboratory. This further allowed to account for potential variability due 
to 3D printing.

The workflow begins with a model that predicts the FRR required for 
each formulation, based on the input data (Table S2). Following this, a 
second model evaluates whether liposomes will form under the specified 
process conditions for the given lipid formulation. Finally, a third model 
predicts the resulting liposome size. Once the predictive accuracy of the 
model was confirmed - illustrated in Fig. 5b (magenta) as the relation-
ship between desired and predicted sizes resulting in a good fit - the 
liposomes were produced using the predicted process parameters 
(Table S2). The actual sizes of the produced liposomes were measured 
using DLS and compared to both the predicted and desired sizes. The 
results in Fig. 5b (blue) show the relationship between the obtained sizes 
from the wet lab and the desired sizes, demonstrating that the pre-
dictions and validations closely align with the desired sizes, with de-
viations of only a few nanometres (Table S2). This indicates that the 
model’s predictive power is strong. Hence, this validation process un-
derscores the model’s robustness in predicting critical parameters for 
liposome formation and size, ensuring a seamless transition from 
traditional to microfluidic production methods. Furthermore, the model 
proves highly valuable in adapting existing liposomal formulations to 
microfluidic processes, significantly streamlining the development of 
advanced liposomal drug delivery systems.

3. Conclusion

In this study, we demonstrated that the integration of predictive 
modelling with wet lab validation underscores the potential of ML for 
precise and efficient optimization of microfluidic liposome production, 
capable of enhancing the development effort, scalability and tran-
sitioning to microfluidic technology in pharmaceutical sciences. This 
approach not only streamlines the production process but also paves the 
way for similar models in drug encapsulation within liposomes and the 
expansion to commercial microfluidic chips. Future research could 
explore the application of such models in also optimizing drug release 
profiles, ensuring that liposomal formulations deliver therapeutic agents 
effectively and consistently. The advancements in ML-driven micro-
fluidic production hold promise to accelerate the development of drug 
delivery systems, making them more accessible and adaptable to a wide 
range of pharmaceutical applications.

4. Materials and methods

4.1. Materials

The phospholipids DMPC (1,2-dimyristoyl-sn-glycero-3-phosphati-
dylcholine), DOPC (1,2-dioleoylglycerol-3-phosphorylcholine), DPPC 
(1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine), HSPC (hydroge-
nated soy phosphatidylcholine), DSPE-PEG2000 (1,2-distearoyl-sn- 
glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol) 
monosodium salt), POPC (1-palmitoyl-2-oleoyl-glycero-3- 

phosphocholine) were purchased from Lipoid, Germany. Cholesterol 
was purchased from Sigma Aldrich, USA. Purified water was obtained 
using a Barnstead Smart2Pure system from Thermo Fisher Scientific 
Inc., Germany. PBS (phosphate buffered saline, pH 7.4) was obtained 
using KCl (potassium chloride), KH2PO4 (Potassium Dihydrogen Phos-
phate), NaCl (sodium chloride), NaH2PO4 (Sodium Phosphate Mono-
basic), Na2HPO4 (Sodium Phosphate Dibasic), NaOH (sodium 
hydroxide) from Carl Roth LLC, Germany. NaOH (sodium hydroxide in 
pellet form) from Haenseler, Switzerland. Absolute Ethanol (EtOH) was 
purchased from VWR International SAS, France. Ethanol denatured with 
ketone (EtOH 94 %) was purchased from Dr. Grogg Chemie AG, 
Switzerland. Methanol (MeOH) was purchased from Fisher Chemical, 
Belgium.

4.2. Methods

4.2.1. Data collection
For the liposome screening, formulations were collected following a 

Design of Experiment (DoE) ensuring evenly distributed data points. A 
multi-level full factorial design plan was created on Minitab 2018 
(Minitab Inc., USA) for each considered lipid (DMPC, DOPC, DPPC, 
HSPC, POPC). The design is characterized by a categorical factor, the 
chip design coded as ZZ (zigzag bas-relief) or SR (split and recombine 
channels), and by four numerical factors, FRR, TFR, cholesterol and PEG 
content as illustrated in Table 1. A second dataset was created to cover a 
broader FRR spectrum holding the TFR constant at 12 mL/min, ensuring 
constant mixing, and varying the FRR over 20 levels. Every point within 
the design space was characterized by one measurement.

For the screening, lipid masses were calculated, weighed, and dis-
solved in ethanol (≥99.8 % v/v) at a total lipid concentration of 5 mg/ 
mL. The aqueous buffer used was PBS with a pH of 7.4. For the prepa-
ration of liposomes via microfluidics, the chip, positioned in a 55 ◦C 
water bath, was connected to two syringes, which were mounted on two 
NE-1010 Higher Pressure Syringe Pump, KF TECHNOLOGY SRL, Italy. 
The connection was established through polyethylene tubing. A specific 
amount of lipid was delivered against PBS at controlled flow rates. 
Various amounts of DSPE-PEG 2000, ranging from 0 % to 5 %, and 
Cholesterol, ranging from 0 %-40 %, were added to the lipids and were 
included in the screening. The two syringes containing the respective 
phases were preheated to a temperature of 62 ◦C to remain above the 
phase transition temperature. The microfluidic chips from the Univer-
sity of Urbino, Italy, were manufactured using ultrafuse polypropylene 
(PP) with an Ultimaker 3D printer from Ultimaker, The Netherlands 
(Fig. S1). After discarding the initial 1 mL from the outlet of the chip, the 
resulting samples were collected.

The chip cleaning process involved sequential flushing steps, each 
carried out consecutively (10 mL of NaOH 1 M, 10 mL of NaOH 0.1 M, 
20 mL of MQ Water, 10 mL of EtOH 94 %). Upon the conclusion of the 
procedure, the chip was dried and flushed using 6 mL of methanol. 1 mL 
of methanol was collected and analyzed via HPLC CAD [82] to validate 
the process and confirm the chip’s cleanliness with an UltiMate 3000 
HPLC from Thermo Fisher Scientific Inc., Germany (Fig. S4). To 
conclude the cleaning process, the chip was washed with 10 mL of EtOH 
94 % and dried.

Immediately following liposome production, the sample underwent 

Table 1 
Factor levels for DoE used to ensure balanced data collection. *Used for sec-
ondary screening to give more emphasis to FRR.

CHIP FRR TFR [mL/ 
min]

Col n 
%

PEG n 
%

Levels N/A 0.2, 0.33, 0.5 (0.14- 
0.5, in 0.02 steps)*

8, 10, 12 
(12)*

0, 20, 
40

0, 5

Categorical 
levels

ZZ, 
SR

N/A N/A N/A N/A
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analysis via Dynamic Light Scattering (DLS). DLS was utilized to eval-
uate the population, size, and polydispersity index (PDI) of liposomes 
using the Litesizer 500 (Anton Paar GmbH, Austria) with a 173◦ back-
scatter angle and a 633 nm helium–neon-laser. Particle size measure-
ments were performed in PBS (Refractive index: 1.335) at a pH of 7.4 
and a temperature of 25 ◦C. The measurements were corrected to the 
viscosity of the according sample. After equilibrating the sample, the 
measurement (10 runs × 10 s) was performed. If the intensity size dis-
tribution of the liposome was unimodal, the autocorrelation function 
was analyzed according to the cumulant method by the Kalliope™- 
software. For our model we considered samples below 500 nm and a 
monodisperse size distribution as forming liposomes.

4.2.2. Data curation
In an initial screening, 811 data points were collected, additional 571 

data points were collected to give more emphasis on the variation of FRR 
in order to create more meaningful predictions which were then used for 
modelling. Each record is characterized by at least eight features. The 
features include both categorical variables (e.g. CHIP), continuous 
variables (e.g. CHOL %, PEG %, FRR %) and simple molecular lipid 
descriptors (e.g. lipid chain length). Target variable in the classification 
task was Population, representing the formation of uniform liposomes. 
Target variable in the regression task was Size, representing the 
measured size of liposomes in nanometres. Further, FRR was used as 
target variable for an inverse prediction, representing the process 
parameter flow rate ratio.

The data is organized into a structured format, with each row rep-
resenting an individual sample (i.e., a single experimental run or 
observation), and each column representing a specific feature or the 
target variable. The categorical feature ‘CHIP’ indicates the type of chip 
used in the experiment, which was one-hot encoded during pre-
processing to ensure compatibility with the machine learning models.

The dataset used for ML model development underwent a pre-
processing step to ensure data quality and consistency. Initially, any 
observations with the ‘Size’ variable exceeding 500 nm were filtered out 
to focus the analysis on liposomes within a specific size range. Also, 
samples with PDIs above 0.3 were considered as “no formation“as the 
consensus in parenteral drug delivery. The remaining data was then 
prepared for model training and evaluation. Additionally, observations 
associated with a multidisperse size distribution (Population > 1) were 
excluded from the dataset for size and FRR modelling (pre- 
screening:575 and FRR Data:357). Potential class imbalances were 
addressed by scrambling the target variable for all data points and 
retraining the classification problem as indicated in Fig. S4.

4.2.3. TMAP
For each data point, the approximate nearest neighbours in the 

feature space, consisting of eight features (i.e. Cholesterol amount 
(CHOL), DSPE-PEG amount (PEG%), Chip geometry, Flow rate ratio 
(FRR), Length of lipid chains 1 and 2 (LC1/2), and Saturation of lipid 
chains 1 and 2 (UsC1/2)) were extracted and used to calculate the TMAP 
layout. The feature FRR was excluded for the response of FRR and 
replaced by the feature Size. The Dataset used consisted of 571 unique 
data points. The resulting layout was displayed in a TMAP using the 
open-source Faerun package (http://tmap.gdb.tools). [58] Thorough 
documentation and Validation of the TMAP method using benchmark 
data sets can be found elsewhere. [58]

4.2.4. ML model development, evaluation and interpretation
The ML models were given the input features comprising of ‘CHOL 

%’, ‘DSPE-PEG %’, ‘FRR’, and parameters related to chain length and 
unsaturation. The predictive process initiates with the transformation 
and standardization of feature data, ensuring its readiness for modelling. 
Categorical variables, such as the ‘CHIP’ parameter, were one-hot 
encoded to convert them into a suitable format for model training. For 
the models trained to predict the FRR the feature ‘FRR’ was replaced by 

‘Size’. Python module scikit-learn and xgboost were mainly used for 
modelling. L1 Regularization (Lasso Regularization) technique was used 
for XGB models helping to mitigate collinearity. L1 regularization adds a 
penalty equal to the absolute value of the magnitude of the coefficients. 
It can reduce some coefficients to zero, effectively selecting a subset of 
features and thus handling multicollinearity. Alpha was set to 0.1 after 
preliminary tests. This was chosen to prevent overfitting by penalizing 
large weights, promoting sparsity in the model. The epochs for boosting 
were set to 100.

The performance of the developed machine learning (ML) models 
was assessed using a stratified K-fold cross-validation approach imple-
mented through the scikit-learn library in Python. This approach was 
employed differently for classification and regression models, based on 
the nature and size of the respective datasets.

For the classification task, we trained six models simultaneously on a 
larger dataset while incrementally adding features. Hence, we opted for 
a 5-fold cross-validation strategy. This choice allowed to perform fewer 
iterations, thus reducing computational time while accepting a slightly 
higher bias in exchange for lower variance. The performance of each 
model was evaluated using metrics such as accuracy, precision, and the 
area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve for each fold.

In contrast, the regression task involved a smaller dataset, as it was 
limited to liposomes that successfully formed, whereas the classifier 
utilized data from both forming and non-forming liposomes. To better 
estimate the model’s performance with reduced bias, we employed a 10- 
fold cross-validation approach. This method allowed the regression 
models to train on a larger portion of the data in each fold (90 % for 
training, 10 % for testing), which is particularly beneficial for smaller 
datasets. The performance of the regression models was evaluated pri-
marily through their R-squared (R2) values.

Additionally, SHAP [56] (SHapley Additive exPlanations) analysis 
was conducted to interpret the model’s predictions and understand the 
relative importance of each input feature. SHAP values were computed 
to quantify the contribution of each feature to the predicted output. 
Visualization techniques, including SHAP summary plots and scatter 
plots, were employed to visualize the relationships between predicted 
and actual liposome sizes, providing insights into the model’s perfor-
mance and feature importance. Furthermore, Spearman’s correlation 
heatmap were generated to explore the correlation between input fea-
tures and liposome size.

4.2.5. Simple supervised clustering
Simple supervised clustering was done using the SHAP toolbox for 

clustering (https://shap.readthedocs.io/). In brief, SHAP values of all 
features in the model were computed to provide a comprehensive view 
of feature importance across all inputs. Principal Component Analysis 
(PCA) was used to reduce the dimensionality of all input feature’s SHAP 
values to 5 components. PCA was chosen because it effectively reduces 
noise and compresses the data while preserving as much variance as 
possible. Following PCA, t-SNE was applied to further reduce the data to 
2 dimensions. t-SNE was chosen because it is particularly effective at 
preserving local structure and revealing clusters in the data. Even 
though PCA had already reduced the dimensionality, t-SNE helps to 
refine this reduction by focusing on the relationships between nearby 
points, which can uncover meaningful clusters that PCA might not fully 
reveal. Kullback-Leibler divergence was determined to ensure a faithful 
projection.

4.2.6. Validation
The validation process involved selecting ten distinct liposome for-

mulations, each assigned a specific desired size all within the ranges 
specified in Table 2. These ranges were chosen based on typical excip-
ient use for parenteral liposomes. Although the compositions were 
generally randomized, factors such as lipid types, CHOL %, and PEG % 
were strategically varied to ensure diversity in the validation test set. 
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The size range was limited to 200 nm, aligning with the typical size 
range for parenteral liposomes. [83]

Each formulation was also assigned a specific chip geometry (i.e., SR 
or ZZ), which was then 3D printed. The microfluidic chips were pro-
duced in a separate and independent lab using a Stratasys Eden260VS 
3D printer (Stratasys, Germany) and the photopolymer IORA Model 
White (iSquared2, Switzerland). Predictive models were employed to 
forecast the FRR, assess the likelihood of liposome formation, and pre-
dict the resulting liposome size. Liposomes were subsequently produced 
using these predicted process parameters. The size of the produced li-
posomes was measured via DLS, as previously described, and compared 
to both the predicted and desired sizes. Linear regression was used to 
quantify the fit of the relationship between predicted, actual and desired 
size using GraphPad Prism 10.3.1 (GraphPad Software, USA).

5. Statistics and reproducibility

All statistical analyses performed are available for each experiment 
in the results & discussion section of the manuscript. No data were 
excluded from the analysis. GraphPad Prism 10.2.3 (GraphPad Soft-
ware, USA) and R 4.4.0 (The R Foundation, Germany) were used for 
statistical analysis.
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The source codes that support the findings of this study are publicly 
available on GitHub (https://github.com/Luciani-Group/micro_fluidic 
_Liposome). Code was written and executed in Python 3.11.9 in an 
Anaconda 24.3.0 environment. Python packages and libraries used are 
disclosed on GitHub.
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