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Background: Metabolomics, the study of substrates and products of cellular metabolism, offers valuable insights 
into an organism’s state under specific conditions and has the potential to revolutionise preventive healthcare and 
pharmaceutical research. However, analysing large metabolomics datasets remains challenging, with available 
methods relying on limited and incompletely annotated metabolic pathways.

Methods: This study, inspired by well-established methods in drug discovery, employs machine learning on 
metabolite fingerprints to explore the relationship of their structure with responses in experimental conditions 
beyond known pathways, shedding light on metabolic processes. It evaluates fingerprinting effectiveness 
in representing metabolites, addressing challenges like class imbalance, data sparsity, high dimensionality, 
duplicate structural encoding, and interpretable features. Feature importance analysis is then applied to reveal 
key chemical configurations affecting classification, identifying related metabolite groups.

Results: The approach is tested on two datasets: one on Ataxia Telangiectasia and another on endothelial cells 
under low oxygen. Machine learning on molecular fingerprints predicts metabolite responses effectively, and 
feature importance analysis aligns with known metabolic pathways, unveiling new affected metabolite groups 
for further study.

Conclusion: In conclusion, the presented approach leverages the strengths of drug discovery to address critical 
issues in metabolomics research and aims to bridge the gap between these two disciplines. This work lays the 
foundation for future research in this direction, possibly exploring alternative structural encodings and machine 
learning models.
1. Introduction

Metabolomics is the study of small molecule substrates and prod-

ucts of cellular metabolism and provides valuable insights into the state 
of an organism under specific conditions [1]. Metabolomic profiling of 
diseased and healthy tissues is instrumental in discovering distinctive 
metabolic signatures and biomarkers, thereby aiding the development 
of screening tests and identification of potential drug targets [2]. Addi-

tionally, metabolomics can help to assess the effects of candidate treat-

ments, evaluating the response at the metabolic level [3]. Therefore, 
metabolomics serves as an indispensable tool in preventive healthcare 
as well as pharmaceutical research and development, with the potential 
to enable timely disease detection and facilitate drug testing [4].

* Corresponding author.

E-mail address: c.sirocchi2@campus.uniurb.it (C. Sirocchi).

Beyond its clinical applications, metabolomics shows significant po-

tential in basic research for unravelling the mechanisms of action be-

hind diseases and treatments. In this context, one of the prominent 
methods for analysing metabolomic data is pathway enrichment anal-

ysis, which identifies metabolic pathways with a higher-than-expected 
abundance of affected metabolites, offering insights into disrupted cel-

lular processes. However, this method presents several challenges, as 
it heavily relies on existing knowledge of metabolic pathways. Such 
knowledge is neither comprehensive nor consistently annotated, and it 
can vary across different metabolomic databases [5]. By focusing on 
metabolites mapped onto known metabolic pathways, which represent 
only a fraction of all annotated metabolites, this approach overlooks a 
substantial portion of metabolomic data.
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Recognising the pressing need for novel methods in metabolomic 
data analysis, that extend beyond the boundaries of known metabolic 
pathways by exploiting all detected metabolites, this study explores 
an approach leveraging Machine Learning (ML) to get insights into 
the interplay between the chemical structure of metabolites and their 
involvement in a perturbed state under study. Drawing inspiration 
from the well-established practices in drug discovery and drug design, 
this study employs molecular fingerprinting to encode chemical struc-

tures and ML models trained on such fingerprints to predict functional 
properties from structural characteristics, extending this paradigm to 
metabolomics [6]. The analysis uncovers enriched chemical config-

urations within the perturbed sample, thereby identifying groups of 
affected metabolites sharing structural similarities. Considering that 
chemically similar compounds are generally found in metabolic prox-

imity, the identification of structurally related affected metabolites can 
provide valuable insights into the underlying biological processes and 
assist researchers in formulating hypotheses [7].

Initially, the study undertakes a comparative analysis of molecu-

lar fingerprinting techniques to evaluate their suitability for metabo-

lite representation, shedding light on their limitations and providing 
recommendations for improving fingerprint resolution. Additionally, it 
explores challenges associated with training ML models on molecular 
fingerprints of cellular metabolites, addressing issues such as dataset 
imbalance and high dimensionality. Subsequently, a variety of ML clas-

sifiers are trained on molecular fingerprints to predict perturbations in 
metabolite levels under experimental conditions. Finally, feature im-

portance is analysed to identify the chemical configurations most in-

fluential in the classification process. The above described pipeline is 
exemplified and tested on metabolomics datasets acquired through two 
case studies: (i) an investigation into a cellular model for Ataxia Telang-

iectasia (AT), a rare neurodegenerative disorder caused by mutations in 
the Ataxia Telangiectasia Mutated (ATM) gene, disrupting numerous 
metabolic pathways [8]; (ii) a study on the effects of redox regulation 
on endothelial cells exposed to low oxygen levels, simulating conditions 
in the bone marrow niche, with implications for hematopoietic stem cell 
maintenance [9].

In both case studies, the satisfactory performance of the trained ML 
models suggests that the structural properties of metabolites hold pre-

dictive value over their response to a particular condition and confirms 
that ML can be effectively applied to predict function from structure 
in the realm of cell metabolism. Remarkably, feature importance com-

puted on the best-performing models identifies metabolites known to 
participate in affected pathways, thereby validating existing knowl-

edge, as well as groups of metabolites not previously associated with 
the conditions under study, opening up novel opportunities for further 
investigation.

The proposed approach leverages the strengths of drug discovery 
to address critical issues in metabolomics research, aiming to bridge 
the gap between these two disciplines and lay the foundations for fu-

ture research. Moreover, the integrated approach adopted in this paper 
provides a comprehensive data analysis methodology along with an 
open-access tool, which can be readily utilised for further research en-

deavours.

2. Background

2.1. Metabolomics in healthcare and drug discovery

Metabolomics occupies a unique position in the omics landscape for 
its close relationship with phenotype. The metabolome, representing 
the final product of genomic, transcriptomic, and proteomic processes, 
serves as a direct readout of the physiological state of an organism. 
The inherent sensitivity of metabolomics allows for the detection of 
subtle alterations in biological pathways, shedding light on the un-
2

derlying mechanisms governing various physiological conditions and 
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the complex interplay between genetics, environmental factors, and the 
physiological state of the organism [10].

In healthcare, metabolomics has played a crucial role in the dis-

covery of biomarkers and the understanding of diseases. Its impact en-

compasses early disease diagnosis, disease monitoring, and personalised 
treatment strategies. In clinical laboratories worldwide, metabolomics 
accounts for over 95% of the workload. Notably, certain targeted 
metabolic profiles are now routinely employed in newborn and ge-

netic screenings [11]. Metabolomics also finds application in the field 
of personalised medicine, which considers individual genomic varia-

tions, biochemical profiles, environmental factors, and lifestyles. Iden-

tifying metabolic biomarkers is central to this paradigm shift in health-

care [12].

Furthermore, metabolomics plays a pivotal role in drug discov-

ery. By deciphering the metabolic changes associated with diseases, 
it guides the identification of novel drug targets and informs the de-

sign of drugs that specifically target these pathways. Metabolomics also 
assesses the safety and efficacy of pharmaceutical compounds, stream-

lining the drug development pipeline from early pre-clinical studies to 
clinical trials [13].

As advances in chemoinformatics and bioinformatics empower 
metabolomics, the field has transitioned from merely identifying 
metabolites as biomarkers to investigating their role in metabolic net-

works and effect on phenotypic outcomes [10]. In the future, the 
evolution of existing statistical methods is expected to provide even 
deeper insights into metabolic processes from the larger perspective of 
systems biology [14].

2.2. Traditional methods in metabolomics

The potential of metabolomics lies in characterising and quantify-

ing all the metabolites present in a particular biological system using a 
combination of analytical tools [4]. Central to this endeavour is the re-

markable advancements in mass spectrometry, which has emerged as a 
preeminent analytical platform for metabolomic analysis due to its high 
sensitivity, specificity, reproducibility and versatility [15].

The study of metabolome encompasses two fundamental approaches. 
Untargeted metabolomics aims to comprehensively measure a wide 
spectrum of metabolites without prior knowledge of the metabolome, 
while targeted metabolomics concentrates on specific metabolites and 
pathways guided by prior information. The latter offers higher sensitiv-

ity and selectivity and plays a crucial role in validating and extending 
results from untargeted analysis [10].

In practice, metabolomics experiments often involve selecting 
metabolites based on statistical significance and fold change. Typically, 
comparative analyses employ statistical tests such as ANOVA and t-

tests to compare different conditions. Metabolites exhibiting statistical 
significance, usually defined as having a p-value below 0.05, and fold 
changes greater than two, are considered for further investigation [16].

Metabolomics studies typically compare samples from a normal 
state to those from a perturbed state, induced by genetic modifications 
or treatment administration [15]. Pathway enrichment analysis is the 
prevalent method for comparing such samples, as it identifies metabolic 
pathways that exhibit a higher degree of overlap with significantly un-

der or over-expressed metabolites than would be expected by chance. 
However, this approach has its shortcomings, as it relies on existing 
knowledge of biological pathways, which can be incomplete and not 
fully annotated, and is sensitive to the pathway definitions used by dif-

ferent metabolomic databases [5].

2.3. Machine learning in metabolomics

Metabolomics is a challenging field due to the complex nature of 
metabolite interactions and the rapid and dynamic nature of metabo-

lite changes in response to the (patho) physiological context. Metabo-
lites partake in multiple pathways, acting as the product or substrate 
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of biological processes shared among several competing biochemical 
reactions, so pinpointing their flux direction can be difficult [17]. 
Metabolomic studies are relatively fewer compared to other omics, do-

main knowledge is more scattered, and analytical methods tailored 
to metabolic data are limited [18]. Consequently, metabolomics has 
turned to ML to navigate the complexities of its domain, although its 
use is still in its early stages and limited to certain applications [19].

The use of ML is fairly established at the level of data pre-processing, 
in tasks such as baseline correction, noise filtering, peak detection and 
alignment, data normalisation and scaling, retention time prediction, 
and handling of missing data [18]. The use of ML has recently gained 
attention in clinical metabolomics for patient classification based on 
metabolic profiles. This application proves valuable in predicting clin-

ical outcomes, assisting disease diagnosis, prognosis, and risk assess-

ment, as well as guiding personalised treatment interventions. It is also 
instrumental in identifying biomarkers associated with specific condi-

tions, streamlining the development of screening tests [14].

Despite the contributions of ML to metabolomic data analysis, it is 
crucial to acknowledge that the biological insights derived from these 
studies are limited. As of our current knowledge, there are no stud-

ies applying ML to metabolite chemical structures to offer insights 
into affected cellular processes. Such applications require representing 
metabolite structures in a machine-readable format, a process that can 
draw upon methodologies from drug discovery, where the encoding of 
structures for ML training is well established.

2.4. The problem of molecular representation

ML has attained a level of maturity in the field of drug discov-

ery, with optimised ML pipelines tailored to predict functional at-

tributes from the structural features of vast and diverse biochemical 
libraries [20]. In this context, ML has not only demonstrated impressive 
predictive capabilities but has also contributed to a deeper understand-

ing of the mechanisms of target interaction [21]. In conjunction with 
molecular fingerprinting, which provides a concise representation of 
chemical structures, ML has revolutionised drug discovery and design 
by enabling the prediction of drug activity and crucial drug properties 
such as bioavailability, solubility, and toxicity [22]. Additionally, the 
precise prediction of interactions between a potential drug and its des-

ignated target enables investigating the mechanism by which a drug 
operates, providing valuable insights into the underlying pathological 
processes [23].

Despite the continuous development of increasingly sophisticated 
ML models for drug discovery, representing molecular chemical data 
in a concise and machine-readable manner to effectively train these 
models is not a trivial task and remains one of the main challenges 
in ML-powered drug discovery. Frequent issues are non-canonical en-

coding, where multiple different representations may describe the same 
molecule, non-unique or clashing encoding, where different molecules 
are encoded into the same representation, erroneous assumptions about 
the number of implicit hydrogen atoms, or the failure to adequately 
capture tautomerism [24].

There exist four primary approaches to rendering molecules in a 
machine-readable format: as a text string, using a connection table, as 
a set of features - such as fingerprints or a series of physical descriptors 
-, and most recently, harnessing a ML-learned molecular representa-

tion. The choice among these methods depends on various considera-

tions, such as the need for human readability, compatibility with other 
software or algorithms, space limitations, and more [24]. Numerous 
molecular representations have been developed and refined within the 
domain of drug discovery to effectively portray extensive libraries of 
prospective pharmaceutical compounds. However, the extent to which 
these representations can be seamlessly extended to other fields, such 
as the study of functional properties of metabolites, remains an open 
3

question.
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3. Materials and methods

This section elaborates on the methodologies utilised in the pro-

posed approach, which leverages a diverse array of data pre-processing 
techniques and ML algorithms to investigate the relationship between 
chemical structure and metabolic response. Fig. 1 illustrates the phases 
of this analysis. This section details how structural encoding and data 
pre-processing techniques are used to tackle challenges like class im-

balance, high dimensionality, and duplicate encoding. It also outlines 
the ML models adopted, discusses the process of hyperparameter fine-

tuning, introduces evaluation metrics for assessing model performance, 
and illustrates feature importance analysis.

3.1. Sample preparation

3.1.1. Hypoxia case study

Human umbilical endothelial cells (HUVEC) from Lonza (Switzer-

land) were cultured in endothelial growth medium 2 (EGM-2™) supple-

mented with EGM-2 BulletKit™ (Lonza). The experiment involved two 
groups: normoxia (21% O2), hypoxia (3%O2). Untreated cells were set 
in the Hypoxia Chamber (StemCell Technologies) and flushed with 3% 
O2, 92% N2, and 5%CO2 gas mixture for 15 min before being placed 
in a humidified incubator (37_C, 5% CO2) for 1, 6, and 24 h. HUVEC 
were seeded at 5 × 106 cells per T75 flask in technical duplicate for 
each condition: normoxia, hypoxia. After 6 and 24 hours, cells were 
washed with ice-cold PBS and harvested in cold 80/10/10 LC/MS-grade 
methanol/acetonitrile/water (Carl Roth, Germany). Insoluble material 
was pelleted by centrifugation at 20,000 g for 20 minutes. Extrac-

tion buffers followed established protocols to preserve redox-sensitive 
metabolites. The resulting supernatants were evaporated, and pellets 
were dissolved in 350 μL of 50/30/20 LC/MS-grade methanol/acetoni-

trile/water containing 0.1% formic acid. For more detail on sample 
preparation refer to the original manuscript [9].

3.1.2. Ataxia case study

Fibroblasts WT AG09429 (Atm+/+) and AT GM00648 (Atm-/-) 
sourced from the Coriell Institute (Camden, NJ, USA) were utilized as 
the cellular model for metabolomics analysis, following the approach 
established in previous studies on AT [25–28] The cells were cultured 
in MEM (Eagle formulation) supplemented with 10 mM glucose, 2 
mM l-glutamine, 100 U/mL penicillin, 0.1 mg/mL streptomycin (Sigma 
Aldrich), and 10% fetal bovine serum (Thermo Fisher Scientific). A to-

tal of 2𝑥105 WT AG09429 (Atm+/+) and AT GM00648 (Atm-/-) cells 
were seeded into ten 90 mm Petri dishes (Thermo Fisher Scientific), five 
dishes for each cell type. Cell growth was monitored until reaching 70-

80% confluence. Upon confluence, the growth medium was aspirated, 
and the cells were washed twice with pre-chilled PBS. Subsequently, 
the cells were quenched with 200 μL of pre-chilled (-80 ◦C) extraction 
Buffer (per dish), composed of a CH3OH/CAN/H2O solution 2 (78:20:2, 
v/v/v). To preserve the integrity of redox metabolites, H2O solution 2 
containing 250 mM ammonium acetate and 2.5 mM sodium ascorbate 
was used [29]. The obtained cell pellets were vortexed for 35 minutes 
and kept at -80 ◦C for 1 hour for complete cell lysis. Following this, 
cells were stored at -20 ◦C overnight to facilitate protein precipitation. 
The resulting cell extracts were centrifuged at 16,000 x g for 20 min at 
4 ◦C, and the supernatants were collected and dried using a SpeedVac 
centrifuge for 10 hours (Savant-SPD121P). The dried metabolite pellets 
were then resuspended in 350 μL of pre-chilled CH3OH/H2O (50:50, 
v/v) containing 0.1% formic acid and transferred to LC-vials for injec-

tion into the LC-MS/MS system. Quality Control samples were prepared 
by mixing an equal volume (100 μL) of each sample to assess the repro-

ducibility and reliability of the LC-MS/MS system.

3.2. Data acquisition

In both experiments, supernatants were analysed using a Van-
quish ultra-high-performance liquid chromatography (UHPLC) system 
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Fig. 1. Key phases of the conducted analysis.
(Thermo Fisher Scientific), coupled with high-resolution mass spec-

trometry (Exploris 240, Thermo Fisher Scientific). Chromatographic 
separations were performed using a reversed-phase C18 Hypersyl GOLD 
column (150 × 2.1 mm, 1.9 μm, Thermo Fisher Scientific) maintained at 
40 ◦C. The mobile phase consisted of water (Solvent A) and acetonitrile 
(Solvent B), both containing 0.1% formic acid, delivered at a flow rate 
of 0.3 mL/min. Compounds were also resolved using an AccucoreTM-

150-amide-HILIC column (100 × 2.1 mm, 2.6 μm, Thermo Fisher Scien-

tific) maintained at 60 ◦C with a flow rate of 0.5 mL/min. The mobile 
phase for HILIC chromatography consisted of water (Solvent A) and 
acetonitrile (Solvent B), both with 10 mM ammonium formate and 
0.1% formic acid. Acquisitions were performed in positive and nega-

tive ion polarity modes. Calibration was conducted before each analysis 
sequence, and internal calibrants were used in each run. The untar-

geted metabolomics acquisition workflow was conducted in positive 
and negative ion polarity modes using the deep scan AcquireX soft-

ware (Xcalibur 4.2, Thermo Fisher Scientific), with 5 ID (Identification 
Only), 5 QC (Quality Control for system normalisation), and 3 replicates 
of each sample for statistical analysis. Raw data were processed using 
Compound Discoverer software Version 3.3 (Thermo Fisher Scientific).

Raw data files were imported into Compound Discoverer 3.3 and 
processed using a customised workflow within the software. This work-

flow encompassed peak alignment, peak detection, feature filtering, and 
metabolite putative annotation. Peak alignment parameters, primarily 
retention time (RT) and mass tolerances were set at 0.5 min and 5 ppm, 
respectively; normalisation was based on quality control (QC). The in-

terference from the chemical background was eliminated by employing 
a procedural blank sample composed exclusively of extraction solvent. 
Metabolites were putatively annotated by comparing theoretical and 
detected MS data with the ChemSpider database and by matching MS2 
spectra with reference spectra from the mzCloud database2 (Thermo 
Fisher Scientific). Additionally, MS2 spectra were also compared using 
m/zVault search on a customised fragmentation library in Compound 
Discoverer 3.3. Statistical analysis was conducted using Compound Dis-

coverer 3.3 by a one-way ANOVA model with Tukey as post-hoc test 
and p-values adjusted by the Benjamini-Hochberg algorithm, as speci-

fied in the Compound Discoverer 3.3 Manual.3

Compounds for which a full match could not be obtained with spec-

tra in ChemSpider, mzCloud, or mzVault (where a full match indicates 
that the current formula and structure annotations match the best avail-

able item from the particular source) and for which the fragmentation 
spectra MS2 were not detected were excluded from the analysis. To 
further improve the precision of metabolite annotation, each detected 
molecule’s mass was compared to the corresponding mass in the Chem-

Spider database and metabolites with a mass difference exceeding 5 
ppm were excluded. Duplicates within the dataset were addressed by 
retaining only the instances of each metabolite with the highest peak 
intensity. In the Ataxia experiment, this process yielded a final set 
of 3999 putatively annotated metabolites. Among these metabolites, 
only 840 were successfully assigned a KEGG ID, enabling enrichment 
analysis. The target for classification was defined as metabolites sig-

nificantly reduced in the diseased sample. Thus, the target takes the 

2 http://www .mzcloud .org.
3 https://assets .thermofisher .com /TFS -Assets /CMD /manuals /XCALI -98478 -
4

Compound -Discoverer -User -Guide -LC -Studies -XCALI98478 -en .pdf.
value 1 if the adjusted p-value is less than 0.05 and the ratio of dis-

eased to healthy quantities is less than 1, and zero otherwise. The focus 
on down-regulation stems from the disease’s known tendency to inhibit 
cellular activities [27]. In the Hypoxia experiment, 1331 metabolites 
were annotated, of which 340 were assigned a KEGG ID. The target 
for classification reflects metabolites significantly increased after 6 h in 
hypoxic conditions. Thus, the target takes the value 1 if the adjusted p-

value is less than 0.05, and the ratio of hypoxic to healthy quantities is 
greater than 1, and zero otherwise. Here, the focus on up-regulation re-

flects the primary interest of the study to identify metabolites activated 
by hypoxia [9].

3.3. Structural encoding

The chemical structure of metabolites was encoded using hashed 
and pattern-matching fingerprinting techniques. This section provides 
a detailed account of the fingerprint generation process.

3.3.1. Hashed fingerprints

Hashed fingerprints include Morgan, Topological Torsion, Atom 
Pair, and Daylight fingerprints. The Morgan fingerprint, also known as 
the extended-connectivity fingerprint, captures the molecular structure 
by considering substructures within a predefined radius surrounding 
each atom. This versatile method proves suitable for extracting both 
local and global structural features [30]. The Topological Torsion fin-

gerprint quantifies topological torsion angles between pairs of atoms, 
effectively revealing subtle structural nuances influencing molecular 
properties [31]. The Atom Pair fingerprint quantifies the occurrences 
of atoms within a molecule, commonly employed in tasks like simi-

larity searching and virtual screening [32]. The Daylight fingerprint 
represents specific molecular fragments and finds common usage in vir-

tual screening [33]. All fingerprints were generated using the RDKit 
library [34], encoded into a varying number of bits (from 256 to 4096) 
and accounting for chirality when applicable. The Morgan fingerprint 
was generated with both radii 2 and 3. For each hashed fingerprint, 
count-based fingerprints are generated in addition to the standard bi-

nary form, allowing not only to detect the presence of substructures but 
also to quantify their occurrences. Count fingerprints were normalised 
to the interval [0,1].

3.3.2. Pattern-matching fingerprints

Pattern-matching fingerprints involve the matching of substructures 
within a molecule to reference structural patterns. This category in-

cludes the widely used MACCS keys, along with two additional custom-

designed fingerprints within this study. The MACCS fingerprint en-

codes the presence of 166 predefined chemical substructures within 
molecules, making it a popular choice for pattern recognition and 
substructure-based similarity assessments [35]. MACCS keys were gen-

erated using the RDKit library [34]. Out of the 166 keys, 152 are used 
to determine the presence of specific substructures, while the remain-

ing 14 keys indicate whether a particular substructure appears at least 
a specified number of times. Therefore, distinct binary and count forms 
cannot be defined for this fingerprint. A custom-designed fingerprint, 
referred to as the fragment fingerprint, was constructed using the 85 
molecular fragments defined in the rdkit.Chem.Fragments module of 

the RDKit library. A second custom-designed fingerprint, here termed 

http://www.mzcloud.org
https://assets.thermofisher.com/TFS-Assets/CMD/manuals/XCALI-98478-Compound-Discoverer-User-Guide-LC-Studies-XCALI98478-en.pdf
https://assets.thermofisher.com/TFS-Assets/CMD/manuals/XCALI-98478-Compound-Discoverer-User-Guide-LC-Studies-XCALI98478-en.pdf
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functional fingerprints, was constructed based on 195 functional groups 
listed in the Daylight manual.4 These two custom-designed fingerprints 
are generated in binary and count form, akin to hashed fingerprints, 
with count fingerprints normalised to the interval [0,1].

3.4. Data pre-processing

Both datasets exhibit class imbalance, with the positive class ac-

counting for 15% of the data in the Ataxia dataset and 6% in the Hy-

poxia dataset. Balanced training datasets were obtained either by under-

sampling the majority class or by oversampling the under-represented 
class, using the RandomUnderSampler and RandomOverSampler func-

tions provided by the imbalance-learn Python library [36]. The gen-

eration of synthetic data, as accomplished through techniques such 
as SMOTE [37] and ADASYN [38], is not applicable, as none of the 
available variations of these algorithms can effectively handle datasets 
exclusively composed of categorical features.

The datasets generated using hashed fingerprints display high di-

mensionality, comprising 1024 features for 1-4000 samples, alongside 
data sparsity, as only 3% of the data contains non-zero values. To pre-

serve feature interpretability while reducing dimensionality, univariate 
feature selection techniques are applied. Three distinct statistical tests, 
namely Chi-squared (𝜒2) test, mutual information, and ANOVA are em-

ployed to identify the most promising subset of 𝑛 features, with 𝑛 values 
ranging from 100 to 300. The first two tests are known to be particu-

larly effective with sparse data.

3.5. Model training

The models adopted to classify affected metabolites include Deci-

sion Tree (DT), known for its interpretability and suitability for binary 
datasets [39]; Bernoulli Naive Bayes (BNB), recognised for its efficiency 
and compatibility with high-dimensional data [40]; Logistic Regres-

sion (LR), providing interpretability and insights into feature impor-

tance [41]; Random Forest (RF), an ensemble method robust to outliers 
and noise [42]; XGBoost (XGB), offering high predictive accuracy and 
robustness in handling imbalanced datasets [43]; and MultiLayer Per-

ceptron (MLP), capable of capturing complex feature interactions [44]. 
All experiments were conducted using the scikit-learn5 and PyTorch6

Python libraries.

The chosen metrics for evaluating the models prioritise the accu-

rate classification of instances belonging to the minority class, which 
in the problem at hand often represent affected metabolites, of greater 
interest. Metrics such as accuracy, which tend to favour the majority 
class and can yield artificially high scores even if the model performs 
poorly on the minority class, were not utilised. The selected metrics in-

clude F1-score (F1), recall for the positive class (R), specificity (SP), and 
the area under the curve of the receiver operating characteristic (ROC 
AUC). Each metric serves a distinct purpose in evaluating the model’s 
performance. ROC AUC evaluates the model’s ability to distinguish be-

tween the positive and negative classes, the F1-score balances precision 
and recall, while recall and specificity focus on correctly identifying the 
positive and negative classes, respectively.

For each model, a range of hyper-parameters was defined based 
on prior knowledge and model-specific considerations. Grid-search was 
utilised to explore various combinations of hyper-parameters and 5-

fold cross-validation was used to assess the model’s generalisation. The 
hyperparameter combination that yielded the highest recall score was 
selected as the optimal configuration. For each dataset, models were 
trained and evaluated on 20 distinct random splits of the data, consist-

ing of an 80% training set and a 20% testing set, with different models 

4 https://www .daylight .com /dayhtml _tutorials /languages /smarts /smarts _
examples .html.

5 https://scikit -learn .org/.
5

6 https://pytorch .org/.
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trained on the same 20 splits for consistency. Class imbalance was ad-

dressed by implementing a stratified data split, which preserves the 
percentage of positive class samples in each split, and by assigning class 
weights depending on the class size during model training.

3.6. Model interpretation

The influence of each feature on predictive outcomes was estimated 
by calculating feature importance, employing distinctive methodologies 
contingent on the classifier category and using specific methods avail-

able in the scikit-learn library. For DT, the method employed for feature 
importance estimation is the mean decrease in impurity which quanti-

fies how much each feature contributes to reducing the impurity (i.e., 
uncertainty) of the target variable within the tree nodes. For ensembles 
of trees, as in RF and XGB, variants of mean decrease in impurity are 
used. In the case of BNB, feature importance is determined through the 
analysis of model log probabilities. LR and MLP models rely on model 
coefficients, which indicate the magnitude and direction of the influ-

ence that each feature has on the model’s predictions. In addition, SHAP 
(SHapley Additive exPlanations) values are computed for each sample 
within the test dataset and then averaged across all samples [45], shed-

ding light on the collective impact of features on model predictions.

Feature importance analysis was primarily conducted to verify 
whether the substructures corresponding to important features align 
with prior knowledge on the experimental condition under study 
(namely, ATM mutation and hypoxia), and to provide novel insight for 
further exploration. In an additional experiment, feature importance 
scores were also utilised to select the top features, offering an alterna-

tive method to statistical tests like 𝜒2.

The entire pipeline for computing molecular fingerprints, training 
ML models and computing feature importance with SHAP values is 
available on Github https://github .com /ChristelSirocchi /metabo -ML

4. Results

4.1. Resolution power of fingerprints

To evaluate the ability of the selected fingerprints to distinguish be-

tween the diverse structures found in the two datasets under study, 
the fraction of metabolites that are not assigned a unique fingerprint 
is counted. Since all metabolites in the dataset have distinct structural 
configurations, designated by a unique SMILE, a suitable representation 
should also be unique. The effect of size on the fingerprint resolution is 
evaluated by varying the bit number between 256 and 4096, and com-

puting the percentage of non-unique encodings, illustrated in Table 1

for the two datasets under study. As the number of bits increases, the 
molecules with non-unique encoding decrease. However, for most fin-

gerprints, the value stabilises after 2048, indicating that it is not able to 
discriminate certain configurations independently from the number of 
bits it hashed into. The fraction of encodings that are resolved passing 
from 516 to 1024 bits is in some cases substantial (as in the Daylight 
fingerprint), while that from 1024 to 2048 bits is always very small if 
not null. Consequently, this standard fingerprint size of 1024 bits is re-

tained for all subsequent experiments, achieving a compromise between 
resolution and dimensionality.

The groups of molecules sharing identical encodings range from 2 
to 25 molecules, with frequency decreasing exponentially with size. 
For Morgan fingerprints with radii 2 and 3, unresolved metabolite 
groups differ in the length of one or more hydrocarbon chains, exem-

plified in Fig. 2 (a). Daylight fingerprint exhibits a similar resolution 
pattern, as it is unable to resolve metabolites with varying hydrocar-

bon chain lengths. In the case of the Topological Torsion fingerprint, 
the largest group of metabolites sharing the same encoding, contain-

ing 25 molecules, predominantly comprises small halogen-containing 
metabolites, such as phosphates, sulphates, and chloric acids. Similar to 

Morgan and Daylight fingerprints, the remaining groups differ in their 

https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
https://scikit-learn.org/
https://pytorch.org/
https://github.com/ChristelSirocchi/metabo-ML
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Table 1

Percentage of metabolites with non-unique encodings in the Ataxia and Hypoxia datasets for various fingerprints (fp). Hashed finger-

prints, including Morgan of radius 2 (MG2) and 3 (MG3), Atom Pair (AP), Topological Torsion (TT), and Daylight (DL), are compared. 
The analysis includes binary chiral fingerprints of standard size 1024 (highlighted in bold), binary chiral fingerprints of various sizes 
(from 256 to 4096), as well as non-chiral binary and chiral count fingerprints of size 1024. For pattern-matching fingerprints, including 
MACCS and custom fingerprints based on functional groups (FUNC) and molecular fragments (FRAG), binary and count fingerprints are 
compared.

Ataxia dataset - % non-unique encodings Hypoxia dataset - % non-unique encodings

Hashed fingerprints

config. binary binary count binary binary count

chirality chiral non-chiral chiral chiral non-chiral chiral

fp size 256 512 1024 2048 4096 1024 1024 256 512 1024 2048 4096 1024 1024

MG2 8.0 7.0 7.0 7.0 7.0 10.7 0.0 8.9 8.3 8.2 8.2 8.2 13.2 0.0

MG3 5.1 5.0 5.0 5.0 5.0 8.5 0.0 6.8 6.5 6.5 6.4 6.4 11.6 0.0

AP 1.6 1.1 0.9 0.8 0.8 4.1 0.6 1.7 1.1 0.9 0.9 0.8 5.9 0.8

TT 7.8 7.0 6.8 6.7 6.7 10.2 1.1 8.8 7.9 7.7 7.7 7.7 13.0 1.3

DL 24.8 12.7 11.9 11.8 11.8 11.9 4.0 24.3 16.0 14.9 14.9 14.9 14.9 5.9

Pattern-matching fingerprints

config. binary count binary count

FUNC 31.5 3.9 29.8 5.5

FRAG 53.4 18.8 51.0 18.0

MACCS 17.3 - 21.3 -
Fig. 2. Groups of metabolites sharing identical encodings in hashed molecular 
fingerprints. (a) Topological Torsion, Daylight, and Morgan fingerprints are un-

able to differentiate metabolites with varying hydrocarbon chain lengths. Atom 
Pair fingerprints cannot resolve (b) certain chiral structures and (c) oxygen and 
nitrogen-containing groups losing or gaining an hydrogen atom.

ability to distinguish hydrocarbon chain lengths. Atom Pair fingerprint 
can resolve hydrocarbon chain lengths, and for this reason, holds the 
highest resolution power among all considered fingerprints, but fails 
to resolve some chiral structures, as shown in Fig. 2 (b), which are in-

stead effectively distinguished by Morgan and Topological Torsion. Fur-

thermore, it struggles to differentiate oxygen and nitrogen-containing 
groups that have either lost or gained a hydrogen atom, seen in Fig. 2

(c), a distinction handled effectively by Morgan fingerprints.

The influence of chirality on fingerprint resolution is also explored. 
All hashed fingerprints, except Daylight, incorporate a parameter to 
consider molecular chirality. Fig. 2 (b) exemplifies two metabolites 
that are assigned unique Morgan fingerprints with a radius of 3 when 
chirality is factored into the analysis. Results in Table 1 show that a 
considerable fraction of metabolites becomes resolved when account-

ing for chirality, indicating the presence of a substantial proportion of 
chiral molecules within the datasets.

Additionally, the resolution power of fingerprints that count the oc-

currences of each substructure rather than only detecting its presence 
is explored. In this regard, all hashed fingerprints have a corresponding 
count version. As presented in Table 1, the count Both Morgan finger-

prints of radii 2 and 3 successfully assign a unique representation to all 
6

the detected metabolites. While the resolution is notably enhanced for 
the other fingerprints, there are still instances where different molecules 
share identical encodings.

The number of metabolites having non-unique encodings for one 
or more fingerprints is illustrated in Fig. 3 for each analysed dataset. 
Numbers at the intersections between fingerprints indicate metabolites 
that cannot be resolved by either. The intersection of all fingerprints is 
empty for both analysed datasets, indicating that for each metabolite, 
there is at least one fingerprint that generates a unique vector. There-

fore, even though no fingerprint has maximum resolution power, it is 
possible to engineer such a fingerprint by combining existing ones.

The fraction of metabolites with non-unique representations ob-

tained from any of the pattern-matching fingerprints exceeds that of 
any hashed fingerprint, often by multiple folds, as evident from Table 1. 
Among the pattern-matching fingerprints, MACCS exhibits the highest 
resolution power by assigning unique encoding to approximately 80% 
of metabolites, due to some keys that detect the presence of up to 3 repe-

titions of a given functional group. Conversely, functional and fragment 
fingerprints in their binary form demonstrate relatively lower resolu-

tion, providing unique encoding to about 70% and 50% of metabolites, 
respectively. All pattern-matching fingerprints prove ineffective in dis-

tinguishing metabolites differing in hydrocarbon chain length, the num-

ber of carbon double bonds, or molecule chirality, as visually depicted 
in Fig. 4 (a) and (b). These fingerprints also fail to discriminate metabo-

lites differing in the number and arrangement of functional groups 
within the molecule. Furthermore, the fragment-based fingerprint can-

not adequately detect the presence of rings, for instance, failing to dif-

ferentiate between the linear and ring forms of the glucose molecule, or 
the presence of phosphate or sulfur-containing groups, as demonstrated 
in Fig. 4 (c). In their count form, both the functional and fragment fin-

gerprints provide unique encoding to a greater fraction of metabolites 
as they can discriminate in the length of hydrocarbon chains. However, 
both of these fingerprints still remain ineffective in discriminating chi-

ral molecules. Moreover, the count-based fragment fingerprint struggles 
to differentiate molecules that differ in phosphate or sulfur-containing 
groups.

4.2. Predictive power of fingerprints

The performance of ML models trained on binary fingerprints in 
their original form (Binary FP), after oversampling the positive class 
(Binary Oversampled), undersampling the negative class (Binary Under-

sampled), and performing feature selection (Binary Selected), as well as 
their count form (Count FP) is evaluated across all defined fingerprints 
(5 hashed, 3 pattern-matching) for the two considered datasets. The av-
erage performance values over 20 random splits of the datasets for mod-
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Fig. 3. Number of metabolites with non-unique encoding in one or more hashed fingerprints, including Morgan of radius 3 (MG3), Atom Pair (AP), Topological 
Torsion (TT), and Daylight (DL), in the Ataxia and Hypoxia datasets. The intersections between fingerprints display the number of metabolites that cannot be 
distinguished by either fingerprint.

Fig. 4. Groups of metabolites sharing identical encodings in pattern-matching molecular fingerprints. All pattern-matching fingerprints are ineffective in distinguish-

ing metabolites that differ in (a) the number of carbon double bond, (b) chirality, as well as the number and arrangement of functional groups within the molecule. 
s an
(c) The fragment-based fingerprint also fails to discriminate the presence of ring

els trained on Ataxia and Hypoxia datasets are presented in Tables 2

and 3, respectively. In these tables, indicate that the model trained 
on a specific variation of the binary fingerprint (oversampled, under-

sampled, selected, and count) significantly outperformed the model 
trained on the original binary fingerprint, based on a t-test. On the 
other hand, italicised and underlined values denote that the model 
7

significantly outperformed all others regarding a given performance 
d phosphate/sulfur-containing groups.

metric, within a specific fingerprint and across all fingerprints, respec-

tively.

Across both datasets, it is consistently observed that models trained 
on count fingerprints do not outperform their binary counterparts. 
Specifically, in the Hypoxia dataset, improvements are only seen in 
terms of specificity for two models across all metrics and fingerprinting 

methods. In the Ataxia dataset, a few performance enhancements are 
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noted across various metrics, particularly for Atom Pair and Topologi-

cal Torsion, but never for the Morgan fingerprints. Overall, it appears 
that the count representation fails to provide a significant performance 
boost. Additional tests conducted on a transformed count fingerprint, 
which accounts for multiple occurrences of the same substructure while 
reducing the contribution of highly frequent substructures, yield similar 
results: there is no consistent improvement, with some metrics show-

ing improvement while others degrade. These findings suggest that, 
although the count-based fingerprints have greater resolution and can 
provide a unique representation for metabolites, such representation 
does not necessarily enhance the ability of ML classifiers to predict 
the metabolite response. It underscores the notion that the presence 
of specific functional groups within the molecule holds greater rele-

vance than their number and that a unique encoding is indeed crucial 
but not sufficient to ensure the comprehensive representation of struc-

tural characteristics. Being the binary representation the standard in 
cheminformatics, all subsequent experiments are conducted using bi-

nary fingerprints.

Strategies to address class imbalance were systematically evalu-

ated across both datasets, revealing discernible patterns. Models trained 
on oversampled data often exhibit an improvement in their ability 
to correctly identify the negative class, as evidenced by a significant 
increase in specificity. This trend is particularly pronounced for pattern-

matching fingerprints, observed in an average of four out of five models. 
However, this increase in specificity is seldom accompanied by an im-

provement in overall performance metrics, suggesting a trade-off with 
recall. There are isolated instances (not consistently observed across 
models or fingerprints) where an improvement in F1 score is also noted. 
Models trained on undersampled data demonstrate an opposite trend. 
They frequently demonstrate an improvement in their ability to cor-

rectly identify the positive class, marked by a significant increase in 
recall. However, this improvement is rarely associated with an increase 
in overall metrics (except twice as an increase in ROC), indicating that 
an increase in recall comes at the expense of specificity. Therefore, 
while these techniques do not unequivocally enhance the overall qual-

ity of the models, they may offer better performance in certain metrics, 
which could prove useful in specific applications. Subsequent experi-

ments were conducted without employing any sampling techniques.

In addressing high dimensionality, the effect of feature selection 
on model performance presents a more nuanced pattern. In hashed 
fingerprints, models were trained with varying numbers of features se-

lected via the 𝜒2 test, ranging from 100 to 300. The results showed 
that performance tends to decline when the feature count falls below 
200 and does not improve above 200. Thus, 200 emerges as the mini-

mum number of features that avoids a drop in performance for hashed 
fingerprints, effectively encoding the structural properties of a diverse 
range of metabolites. Additionally, the selection of the top 200 features 
in hashed fingerprints was carried out using various statistical tests, 
including 𝜒2, mutual information, and ANOVA F-value. Among these 
tests, the 𝜒2 test emerged as the most effective in selecting features 
for training better-performing models. Additionally, feature importance 
analysis was conducted on each model to identify the top 200 features 
for that model, but it did not yield a better feature set compared to that 
identified by the 𝜒2 test. Models trained on hashed fingerprints with se-

lected features demonstrated improved performance in terms of recall, 
often accompanied by increased ROC and occasionally by enhanced F1 
scores. This improvement was particularly noticeable in Morgan fin-

gerprints and for models like Naive Bayes and Logistic Regression, but 
it was less pronounced in other tree-based models, which can inher-

ently identify relevant features. The consistent improvement of a global 
metric alongside recalls underscores the ability of feature selection to 
improve the overall quality of the model, particularly for those mod-

els lacking internal mechanisms to balance feature contributions. In an 
attempt to enhance models trained on pattern-matching fingerprints, 
the top 100 features of MACCS and functional fingerprints were se-
8

lected using the 𝜒2 test, and models were retrained on the reduced 
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dataset. However, feature selection methods did not yield noticeable 
improvements in model performance. Specifically, no improvement was 
observed in the Ataxia dataset, and only twice in the Hypoxia dataset 
was there an improvement in terms of recall, without a correspond-

ing enhancement in global metrics. It seems that for pattern-matching 
fingerprints, which are less affected by high dimensionality, further 
reducing the number of features does not confer any advantage. There-

fore, while feature importance can be effective for high-dimensional 
hashed fingerprints, particularly on non-tree-based models, it does not 
present obvious advantages for pattern-matching fingerprints.

Across both datasets, comparing model performances on a given 
variation of a fingerprint (where fingerprint variations are denoted in 
the tables are binary, binary oversampled, binary undersampled, binary se-
lected, and count) reveals that certain models significantly outperform 
others in terms of a particular metric. However, such occurrences are 
rare, and it is uncommon for a model to significantly outperform all 
others across multiple metrics, suggesting that superiority is limited to 
one aspect of the model. Furthermore, across all experiments, no single 
model type consistently and significantly outperforms all others. Al-

though Naive Bayes and Logistic regression consistently exhibit higher 
metrics, these differences are seldom statistically significant, suggesting 
that no model can be conclusively preferred. Interestingly, there is no 
discernible correlation between the complexity of the model and its per-

formance. In fact, the neural network model generally exhibits poorer 
performance compared to the simpler linear logistic model, underscor-

ing the effectiveness of simple, interpretable models. When comparing 
model performances across fingerprints (a specific variation across all 
fingerprints), similar results are observed. While Morgan-based finger-

prints typically yield models with higher metrics, these differences are 
rarely significant, and a model that significantly outperforms all oth-

ers across fingerprints never does so across more than one metric. Once 
again, no fingerprint emerges as conclusively superior.

4.3. Explaining predictions

After exhaustively exploring various pre-processing techniques and 
learning strategies, no model emerges as decisively superior to all oth-

ers. However, both BNB and LR consistently exhibit strong performance, 
often yielding the highest recall and ROC metrics, especially when fea-

ture selection is applied. While the performance differences between 
BNB and LR are frequently not statistically significant, both models 
consistently outperform others, achieving satisfactory ROC scores ex-

ceeding 0.65 in the Ataxia dataset and 0.70 in the Hypoxia dataset. 
Among these two models, LR stands out as a simpler and more inter-

pretable option due to its linear nature. LR’s coefficients directly reveal 
the influence of each feature on the classification process, enhancing 
interpretability. Consequently, LR was chosen for its satisfactory per-

formance and interpretability as the model for further investigation 
into feature contributions to the classification output. Model coefficients 
were used to evaluate feature importance and identify the most relevant 
corresponding substructures.

Feature importance in LR was also evaluated using SHAP values, 
computed for each test sample and averaged for each feature. This anal-

ysis revealed that features with the highest SHAP values identified most 
of the same chemical configurations as model coefficients, but SHAP 
value calculation is computationally more intensive. Moreover, while 
SHAP values provide a more detailed explanation of individual feature 
contributions to model predictions, they are generally less interpretable 
than model coefficients. While SHAP values remain an available option 
for estimating the relevance of features, in this context, the use of model 
coefficients was preferred.

4.3.1. Relevant substructures in AT

For the Ataxia dataset, feature importance analysis was conducted 
on binary Morgan of radius 2 and binary functional fingerprints, to ex-
emplify feature importance analysis on hashed and pattern-matching 
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Table 2

Ataxia experiment: performance analysis of Decision Tree (DT), Bernoulli Naive Bayes (BNB), Logistic Regression (LR), Random Forest (RF), XGBoost (XGB), and 
MultiLayer Perceptron (MLP) trained on fingerprints. Performance metrics include area under the curve of the receiver operating characteristic (ROC), F1-score (F1), 
recall (R), and specificity (SP). Bold values indicate that the model trained on a specific variation of the binary fingerprint (oversampled, undersampled, top features 
selected by 𝜒2 , and count) significantly outperformed the model trained on the original binary fingerprint, based on a t-test. Italicised and underlined values denote 
that the model significantly outperformed all others regarding a given performance metric, within a specific fingerprint and across all fingerprints, respectively.

Binary FP Binary Oversampled Binary Undersampled Binary Selected Count FP

ROC F1 R SP ROC F1 R SP ROC F1 R SP ROC F1 R SP ROC F1 R SP

Morgan radius 2

BNB 0.624 0.576 0.504 0.744 0.623 0.585 0.474 0.773 0.615 0.551 0.544 0.686 0.657 0.609 0.535 0.778 0.624 0.576 0.504 0.744

LR 0.636 0.584 0.526 0.746 0.553 0.538 0.324 0.783 0.631 0.568 0.555 0.707 0.652 0.590 0.569 0.735 0.631 0.585 0.502 0.759

DT 0.611 0.597 0.385 0.837 0.592 0.568 0.392 0.791 0.596 0.556 0.451 0.742 0.608 0.592 0.387 0.829 0.592 0.566 0.397 0.786

RF 0.639 0.623 0.429 0.850 0.623 0.625 0.350 0.895 0.631 0.574 0.539 0.724 0.644 0.626 0.437 0.850 0.644 0.625 0.445 0.844

XGB 0.639 0.610 0.465 0.813 0.619 0.609 0.384 0.855 0.606 0.535 0.559 0.654 0.650 0.611 0.508 0.793 0.636 0.607 0.461 0.812

MLP 0.560 0.565 0.216 0.904 0.561 0.562 0.247 0.876 0.565 0.461 0.607 0.523 0.589 0.587 0.308 0.870 0.575 0.578 0.259 0.890

Morgan radius 3

BNB 0.633 0.574 0.544 0.722 0.633 0.577 0.537 0.729 0.620 0.546 0.574 0.665 0.669 0.597 0.612 0.726 0.633 0.574 0.544 0.722

LR 0.638 0.585 0.529 0.746 0.550 0.536 0.317 0.783 0.634 0.573 0.549 0.719 0.659 0.590 0.597 0.722 0.632 0.584 0.509 0.754

DT 0.599 0.583 0.374 0.824 0.585 0.549 0.425 0.744 0.591 0.556 0.432 0.750 0.610 0.595 0.384 0.836 0.593 0.575 0.370 0.816

RF 0.647 0.628 0.447 0.846 0.617 0.621 0.333 0.900 0.633 0.565 0.567 0.698 0.647 0.628 0.447 0.847 0.647 0.624 0.460 0.835

XGB 0.630 0.599 0.459 0.801 0.608 0.605 0.344 0.872 0.605 0.527 0.580 0.630 0.658 0.609 0.540 0.776 0.628 0.600 0.449 0.808

MLP 0.555 0.561 0.190 0.921 0.562 0.559 0.258 0.865 0.572 0.475 0.614 0.531 0.593 0.590 0.316 0.870 0.565 0.570 0.218 0.911

TopologicalTorsion

BNB 0.614 0.545 0.560 0.669 0.616 0.550 0.550 0.682 0.601 0.518 0.589 0.613 0.632 0.560 0.582 0.683 0.611 0.563 0.490 0.731

LR 0.624 0.566 0.532 0.715 0.576 0.547 0.400 0.753 0.609 0.540 0.553 0.665 0.632 0.571 0.550 0.714 0.629 0.582 0.504 0.754

DT 0.573 0.534 0.412 0.733 0.566 0.544 0.361 0.771 0.563 0.478 0.554 0.572 0.576 0.537 0.427 0.725 0.587 0.571 0.353 0.821

RF 0.614 0.592 0.410 0.817 0.602 0.605 0.315 0.890 0.604 0.528 0.571 0.636 0.623 0.590 0.458 0.788 0.622 0.616 0.372 0.872

XGB 0.614 0.578 0.456 0.772 0.609 0.598 0.370 0.848 0.595 0.511 0.589 0.601 0.614 0.566 0.495 0.733 0.621 0.583 0.471 0.771

MLP 0.576 0.581 0.256 0.896 0.577 0.580 0.262 0.892 0.576 0.495 0.568 0.584 0.569 0.568 0.274 0.865 0.583 0.579 0.305 0.861

AtomPair

BNB 0.577 0.444 0.705 0.448 0.575 0.444 0.699 0.452 0.577 0.441 0.712 0.442 0.588 0.443 0.739 0.436 0.611 0.495 0.687 0.536

LR 0.650 0.584 0.579 0.722 0.543 0.528 0.315 0.771 0.632 0.556 0.592 0.672 0.645 0.579 0.575 0.715 0.657 0.597 0.569 0.745

DT 0.600 0.547 0.499 0.702 0.561 0.559 0.266 0.856 0.580 0.506 0.547 0.612 0.599 0.547 0.495 0.704 0.602 0.557 0.472 0.732

RF 0.650 0.618 0.486 0.813 0.577 0.593 0.196 0.958 0.633 0.561 0.580 0.686 0.647 0.610 0.497 0.797 0.640 0.609 0.469 0.811

XGB 0.629 0.616 0.400 0.857 0.593 0.606 0.259 0.928 0.619 0.541 0.589 0.649 0.638 0.612 0.453 0.822 0.640 0.617 0.448 0.833

MLP 0.568 0.574 0.224 0.912 0.572 0.573 0.258 0.886 0.596 0.508 0.600 0.592 0.579 0.578 0.279 0.879 0.567 0.571 0.241 0.894

Daylight

BNB 0.598 0.548 0.491 0.705 0.592 0.542 0.486 0.698 0.567 0.499 0.526 0.608 0.624 0.576 0.507 0.742 0.598 0.548 0.491 0.705

LR 0.637 0.587 0.524 0.751 0.555 0.537 0.333 0.776 0.615 0.544 0.563 0.666 0.639 0.582 0.544 0.734 0.635 0.575 0.550 0.721

DT 0.585 0.544 0.448 0.721 0.573 0.567 0.302 0.844 0.566 0.492 0.542 0.591 0.586 0.538 0.472 0.701 0.597 0.541 0.506 0.688

RF 0.629 0.620 0.390 0.867 0.579 0.589 0.234 0.924 0.620 0.557 0.544 0.696 0.632 0.621 0.401 0.863 0.643 0.621 0.448 0.837

XGB 0.621 0.614 0.374 0.868 0.584 0.592 0.258 0.910 0.595 0.520 0.563 0.628 0.624 0.610 0.400 0.848 0.628 0.617 0.399 0.858

MLP 0.570 0.567 0.278 0.862 0.565 0.517 0.457 0.672 0.560 0.480 0.524 0.595 0.567 0.565 0.276 0.859 0.586 0.579 0.315 0.856

Functional

BNB 0.616 0.549 0.555 0.677 0.615 0.549 0.551 0.679 0.610 0.540 0.561 0.660 0.617 0.551 0.553 0.682 0.616 0.548 0.554 0.677

LR 0.625 0.563 0.545 0.705 0.617 0.556 0.536 0.698 0.617 0.546 0.566 0.667 0.628 0.566 0.548 0.708 0.639 0.581 0.549 0.729

DT 0.616 0.572 0.484 0.747 0.571 0.557 0.334 0.808 0.604 0.555 0.484 0.723 0.609 0.565 0.477 0.740 0.604 0.555 0.487 0.720

RF 0.626 0.613 0.401 0.851 0.589 0.589 0.302 0.877 0.623 0.575 0.500 0.745 0.624 0.611 0.396 0.852 0.645 0.615 0.474 0.815

XGB 0.628 0.598 0.456 0.801 0.618 0.594 0.423 0.812 0.608 0.541 0.547 0.669 0.626 0.593 0.463 0.789 0.637 0.602 0.479 0.795

MLP 0.575 0.566 0.314 0.836 0.591 0.543 0.478 0.705 0.575 0.491 0.566 0.585 0.587 0.576 0.340 0.834 0.581 0.579 0.289 0.872

Fragments

BNB 0.608 0.531 0.575 0.640 0.601 0.528 0.561 0.641 0.601 0.521 0.582 0.620 0.608 0.531 0.575 0.640

LR 0.623 0.549 0.577 0.668 0.614 0.540 0.574 0.654 0.611 0.530 0.590 0.632 0.619 0.559 0.537 0.701

DT 0.593 0.558 0.437 0.750 0.598 0.559 0.450 0.745 0.595 0.530 0.528 0.662 0.600 0.556 0.468 0.731

RF 0.625 0.601 0.430 0.820 0.608 0.586 0.405 0.811 0.619 0.555 0.546 0.691 0.634 0.606 0.456 0.812

XGB 0.621 0.574 0.501 0.742 0.618 0.578 0.477 0.760 0.613 0.532 0.594 0.632 0.625 0.584 0.482 0.768

MLP 0.602 0.573 0.421 0.782 0.601 0.555 0.479 0.724 0.590 0.505 0.589 0.591 0.587 0.576 0.340 0.835

MACCS

BNB 0.618 0.546 0.572 0.664 0.618 0.545 0.570 0.665 0.610 0.535 0.576 0.645 0.623 0.549 0.581 0.665

LR 0.623 0.553 0.567 0.678 0.614 0.545 0.558 0.670 0.617 0.537 0.595 0.640 0.622 0.550 0.570 0.673

DT 0.595 0.540 0.502 0.688 0.579 0.572 0.313 0.844 0.599 0.524 0.564 0.634 0.602 0.540 0.529 0.675

RF 0.644 0.612 0.479 0.810 0.598 0.606 0.283 0.913 0.630 0.566 0.558 0.703 0.645 0.614 0.478 0.812

XGB 0.634 0.599 0.473 0.794 0.612 0.602 0.372 0.851 0.623 0.544 0.594 0.651 0.638 0.599 0.490 0.786

MLP 0.582 0.582 0.291 0.873 0.593 0.571 0.387 0.799 0.593 0.516 0.571 0.616 0.583 0.581 0.299 0.868
fingerprints. Fig. 5 (a) presents the feature importance, computed as 
model coefficients, for the top 25 bits of the Morgan binary fingerprint 
of radius 2 and illustrates the chemical configuration corresponding to 
each bit. Structures enclosed in rectangles represent instances of fin-

gerprint clashing, i.e. distinct configurations mapped onto the same 
bit. The analysis of the most influential bits reveals chemical config-

urations that are most associated with the disease and point to spe-

cific classes of biochemical compounds. Bit 192, the most predictive, 
along with bits 486 and 814, identifies phosphate groups, while bits 
9

692, 295, 795, and the second most frequent configuration of bit 573 
correspond to phosphate group is involved in one or two phosphodi-

ester bonds. These bits isolate a variety of phosphorylated compounds 
affected in the disease, including sugar phosphates found in the pen-

tose phosphate metabolic pathway and glycolysis, nucleotides and their 
derivatives, as well as phospholipids. Bit 640 identifies a pentose sugar, 
while the most common configuration of bit 363 represents a phos-

phate group bound to a pentose, pointing to metabolites of the pentose 
phosphate pathway, as well as phosphorylated nucleosides, known to 
be affected in AT [46]. The second most prevalent configuration of 

bit 786 identifies adenine-containing nucleotides, encompassing criti-
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Table 3

Hypoxia experiment - performance analysis of machine learning models trained on fingerprints as described in Table 2.

Binary FP Binary Oversampled Binary Undersampled Binary Selected Count FP

ROC F1 R SP ROC F1 R SP ROC F1 R SP ROC F1 R SP ROC F1 R SP

Morgan radius 2

BNB 0.532 0.487 0.288 0.776 0.518 0.517 0.100 0.935 0.528 0.396 0.532 0.524 0.721 0.591 0.621 0.821 0.532 0.487 0.288 0.776

LR 0.538 0.482 0.318 0.759 0.519 0.516 0.124 0.915 0.544 0.392 0.585 0.504 0.683 0.522 0.656 0.709 0.541 0.468 0.376 0.705

DT 0.563 0.461 0.453 0.673 0.527 0.503 0.215 0.840 0.540 0.408 0.518 0.563 0.587 0.447 0.538 0.635 0.541 0.441 0.421 0.661

RF 0.535 0.540 0.106 0.965 0.547 0.554 0.126 0.968 0.563 0.417 0.576 0.550 0.573 0.567 0.218 0.929 0.540 0.546 0.112 0.967

XGB 0.573 0.554 0.238 0.907 0.552 0.555 0.153 0.952 0.566 0.421 0.576 0.555 0.599 0.569 0.306 0.892 0.570 0.556 0.224 0.917

MLP 0.519 0.521 0.088 0.949 0.525 0.527 0.097 0.953 0.550 0.433 0.503 0.596 0.551 0.555 0.144 0.959 0.522 0.526 0.091 0.953

Morgan radius 3

BNB 0.507 0.484 0.209 0.805 0.511 0.510 0.094 0.928 0.504 0.410 0.409 0.600 0.752 0.612 0.671 0.833 0.507 0.484 0.209 0.805

LR 0.532 0.471 0.326 0.737 0.540 0.537 0.144 0.935 0.524 0.379 0.562 0.487 0.708 0.551 0.665 0.752 0.531 0.508 0.212 0.851

DT 0.546 0.486 0.329 0.762 0.549 0.521 0.244 0.855 0.525 0.408 0.488 0.562 0.561 0.499 0.341 0.781 0.549 0.498 0.306 0.792

RF 0.530 0.534 0.094 0.967 0.552 0.563 0.132 0.972 0.537 0.415 0.512 0.562 0.565 0.562 0.191 0.939 0.531 0.536 0.091 0.972

XGB 0.560 0.547 0.200 0.920 0.550 0.554 0.141 0.958 0.551 0.426 0.524 0.579 0.588 0.578 0.250 0.925 0.552 0.548 0.168 0.936

MLP 0.527 0.533 0.091 0.963 0.533 0.538 0.106 0.961 0.518 0.418 0.453 0.582 0.582 0.585 0.209 0.955 0.524 0.528 0.088 0.960

TopologicalTorsion

BNB 0.533 0.483 0.309 0.757 0.531 0.501 0.235 0.826 0.515 0.369 0.547 0.483 0.680 0.558 0.565 0.794 0.524 0.492 0.238 0.810

LR 0.529 0.510 0.197 0.860 0.528 0.519 0.156 0.900 0.512 0.380 0.532 0.491 0.648 0.525 0.550 0.745 0.559 0.522 0.279 0.838

DT 0.516 0.444 0.326 0.705 0.522 0.509 0.165 0.880 0.515 0.407 0.462 0.568 0.518 0.444 0.329 0.706 0.511 0.494 0.165 0.857

RF 0.523 0.523 0.082 0.964 0.539 0.549 0.103 0.976 0.513 0.402 0.482 0.543 0.547 0.543 0.147 0.947 0.511 0.508 0.035 0.986

XGB 0.536 0.535 0.144 0.929 0.542 0.546 0.126 0.957 0.513 0.402 0.485 0.540 0.565 0.546 0.229 0.901 0.539 0.535 0.144 0.934

MLP 0.524 0.526 0.088 0.960 0.529 0.517 0.138 0.919 0.526 0.417 0.479 0.573 0.563 0.555 0.197 0.928 0.532 0.535 0.112 0.953

AtomPair

BNB 0.529 0.403 0.506 0.551 0.517 0.418 0.450 0.585 0.520 0.358 0.565 0.476 0.637 0.425 0.750 0.524 0.561 0.450 0.488 0.634

LR 0.553 0.504 0.312 0.795 0.533 0.527 0.138 0.927 0.552 0.397 0.594 0.510 0.664 0.509 0.629 0.698 0.587 0.518 0.391 0.784

DT 0.540 0.478 0.335 0.744 0.502 0.501 0.085 0.918 0.554 0.426 0.532 0.576 0.561 0.499 0.347 0.775 0.545 0.497 0.297 0.792

RF 0.525 0.528 0.082 0.967 0.504 0.497 0.021 0.987 0.564 0.436 0.532 0.595 0.577 0.561 0.241 0.913 0.523 0.526 0.079 0.966

XGB 0.514 0.515 0.059 0.970 0.506 0.504 0.035 0.978 0.558 0.425 0.547 0.570 0.576 0.568 0.212 0.939 0.517 0.517 0.071 0.963

MLP 0.511 0.508 0.047 0.974 0.506 0.503 0.038 0.975 0.556 0.435 0.515 0.597 0.541 0.547 0.115 0.967 0.515 0.517 0.062 0.968

Daylight

BNB 0.553 0.396 0.603 0.503 0.555 0.400 0.600 0.511 0.546 0.342 0.691 0.401 0.596 0.404 0.694 0.498 0.553 0.396 0.603 0.503

LR 0.539 0.490 0.300 0.778 0.535 0.525 0.162 0.907 0.535 0.414 0.503 0.566 0.632 0.515 0.526 0.738 0.556 0.505 0.312 0.801

DT 0.530 0.483 0.285 0.775 0.524 0.520 0.129 0.918 0.505 0.396 0.474 0.536 0.543 0.478 0.335 0.751 0.516 0.462 0.300 0.731

RF 0.549 0.553 0.132 0.965 0.544 0.550 0.124 0.964 0.537 0.415 0.518 0.557 0.562 0.545 0.221 0.903 0.551 0.553 0.153 0.949

XGB 0.553 0.554 0.159 0.948 0.540 0.543 0.124 0.956 0.522 0.412 0.482 0.561 0.563 0.553 0.200 0.925 0.542 0.545 0.132 0.952

MLP 0.542 0.539 0.138 0.946 0.549 0.547 0.159 0.940 0.541 0.426 0.497 0.584 0.538 0.534 0.147 0.929 0.533 0.533 0.115 0.952

Functional

BNB 0.508 0.434 0.338 0.678 0.514 0.433 0.403 0.625 0.515 0.398 0.447 0.583 0.553 0.422 0.538 0.567 0.508 0.434 0.338 0.677

LR 0.550 0.475 0.385 0.714 0.556 0.487 0.371 0.741 0.537 0.378 0.597 0.476 0.536 0.413 0.506 0.567 0.548 0.463 0.415 0.682

DT 0.547 0.444 0.441 0.652 0.551 0.532 0.215 0.888 0.539 0.398 0.556 0.522 0.529 0.453 0.368 0.691 0.536 0.472 0.341 0.731

RF 0.552 0.541 0.188 0.915 0.554 0.552 0.168 0.941 0.564 0.404 0.612 0.516 0.530 0.501 0.238 0.822 0.533 0.512 0.206 0.860

XGB 0.570 0.531 0.291 0.849 0.554 0.539 0.206 0.903 0.576 0.420 0.606 0.547 0.553 0.500 0.321 0.785 0.520 0.513 0.135 0.905

MLP 0.550 0.539 0.182 0.917 0.537 0.526 0.168 0.907 0.568 0.438 0.541 0.595 0.549 0.535 0.194 0.903 0.555 0.552 0.174 0.936

Fragments

BNB 0.525 0.393 0.526 0.524 0.533 0.402 0.538 0.528 0.524 0.371 0.553 0.495 0.525 0.393 0.526 0.524

LR 0.509 0.427 0.403 0.615 0.525 0.446 0.397 0.653 0.508 0.381 0.521 0.496 0.528 0.441 0.421 0.636

DT 0.570 0.477 0.432 0.708 0.582 0.537 0.312 0.851 0.534 0.397 0.547 0.521 0.530 0.419 0.444 0.616

RF 0.567 0.558 0.218 0.917 0.598 0.568 0.297 0.900 0.567 0.412 0.600 0.533 0.528 0.525 0.121 0.935

XGB 0.584 0.528 0.344 0.823 0.596 0.554 0.321 0.872 0.591 0.431 0.621 0.562 0.531 0.511 0.203 0.860

MLP 0.587 0.558 0.279 0.894 0.582 0.549 0.285 0.880 0.568 0.431 0.559 0.577 0.545 0.536 0.174 0.917

MACCS

BNB 0.530 0.405 0.512 0.549 0.543 0.412 0.538 0.547 0.526 0.371 0.576 0.475 0.558 0.405 0.594 0.522

LR 0.562 0.477 0.415 0.709 0.574 0.508 0.368 0.780 0.528 0.388 0.553 0.502 0.585 0.467 0.512 0.658

DT 0.575 0.504 0.379 0.770 0.546 0.541 0.171 0.922 0.553 0.406 0.576 0.530 0.552 0.483 0.359 0.745

RF 0.538 0.530 0.165 0.912 0.539 0.542 0.124 0.954 0.569 0.422 0.582 0.556 0.536 0.510 0.229 0.842

XGB 0.579 0.558 0.253 0.905 0.550 0.548 0.162 0.938 0.573 0.424 0.588 0.558 0.571 0.539 0.268 0.874

MLP 0.536 0.534 0.135 0.936 0.542 0.534 0.162 0.922 0.569 0.435 0.550 0.587 0.542 0.533 0.159 0.925
cal molecules such as adenosine triphosphate (ATP) and cofactors like 
flavin adenine dinucleotide (FAD), Coenzyme A, nicotinamide adenine 
dinucleotide (NAD), and nicotinamide adenine dinucleotide phosphate 
(NADP). Research has revealed that cells lacking ATM exhibit a com-

promised ability to replenish ATP in response to increased energy de-

mands, leading to chronic ATP insufficiency [47]. Moreover, perturba-

tions in the levels of pyridine nucleotides, - small molecules comprised 
of adenosine monophosphate and nicotinamide mononucleotide - have 
been observed in AT cells, marked by a significant reduction in both 
the reduced and oxidized forms of NAD [48]. Further investigations 
have unveiled the role of ATM in stimulating NADPH production by in-

ducing the activity of glucose-6-phosphate dehydrogenase, the limiting 
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enzyme of the pentose phosphate pathway responsible for the produc-
tion of NADPH. ATM-mediated response to reactive oxygen species also 
promotes nucleotide synthesis, facilitating the repair of double-strand 
breaks [46]. Consequently, the suppression of ATM has been associated 
with diminished levels of nucleotides and their derivatives on multiple 
occasions. Bit 820, the second most predictive bit, identifies carboxylic 
acids and is found in two primary groups of affected metabolites. 
The first comprises standard and modified (often acetylated) amino 
acids and dipeptides, while the second includes phosphatidylserines. 
Bit 389 also identifies carboxylic groups found in (modified) amino 
acids and small peptides. One notable example is the tripeptide glu-

tathione, known for its crucial role in preventing damage to important 
cellular components caused by reactive oxygen species and free radi-
cals. While the impairment of glutathione levels in AT cells has been 
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Fig. 5. Feature importance analysis of logistic regression models trained on the Ataxia dataset. (a) Top 25 bits of the Morgan binary fingerprint of radius 2, with 
visual representations of the most frequent substructures associated with each bit. Structures enclosed in rectangles represent instances of fingerprint clashing, i.e. 
distinct configurations mapped onto the same bit. (b) Top 15 features of the functional binary fingerprint.
characterised [49], the involvement of other peptides remains unclear. 
Bits 147, 981, and 786 identify primary amines in various configura-

tions, which are also found in (modified) amino acids and dipeptides, as 
well as in phosphatidylserines. Bit 981, in particular, identifies primary 
amines at the end of a carbon chain, also present in several affected 
polyamines such as putrescine, spermine, and spermidine. This bit also 
identifies several affected phosphoethanolamines. Phosphatidylserines 
and phosphoethanolamines identified by several important bits, con-

stitute integral components of cell membranes, with roles in apoptosis 
and cell signalling. Their metabolic pathways are intricately linked, and 
their synthesis predominantly occurs within mitochondria-associated 
membranes [50]. ATM loss in AT has been linked to mitochondrial ab-

normalities, including elevated reactive oxygen species, increased aber-

rant mitochondria, high cellular respiratory capacity, and decreased 
mitophagy [51] and could be responsible for the lower level of phos-

pholipids synthesised within this organelle. Bits 736 and 117 iden-

tify secondary amines found in amino acids, small peptides and their 
derivatives, often as part of the peptide bond. These bits also identify 
ceramides and sphingolipids, which serve as secondary messengers in 
activating the apoptotic cascade [52]. The second most common con-

figuration in bit 363 is a secondary amine in a configuration found in 
pantothenic acid, which is essential for the synthesis of Coenzyme A. 
While several groups of affected metabolites belong to pathways with 
well-established roles in the disease, other groups, such as peptides and 
polyamines, offer opportunities for further investigation, as their exact 
impact on the disease remains unclear.

A parallel analysis was conducted on the binary functional finger-

print. Fig. 5 (a) illustrates the top 15 features with the highest model 
coefficients. Notably, the most predictive configuration within the func-

tional fingerprint corresponds to Acid, also detected by Morgan bit 
820, primarily associated with affected amino acids, dipeptides, their 
derivatives, and pentose phosphates. Patterns such as Phosphoric acids, 
Phosphoric acid groups, Phosphoric ester groups, and Hydroxyl in H-O-

P identify the same groups of affected phosphorylated compounds as 
detected by Morgan bits, i.e. phospho-sugars from the pentose phos-

phate pathway, early glycolytic intermediates, nucleotides, derivatives 
thereof, and phospholipids. Several patterns associated with amino 
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acids are highly predictive, including Amino acid, Other aa, 18 stan-
dard aa side chain, N in any standard aa, Dipeptide group. In this finger-

print, amino acid and dipeptide configurations are distinctly identified 
as predictive, while in the Morgan fingerprint, the predictive configu-

rations identifying amino acids and dipeptides are amines and acids. 
Primary amine identifies the same metabolites as its counterpart Mor-

gan bits, encompassing amino acids, dipeptides, phosphatidylserines, 
and adenine-containing nucleotides. Finally, Lysine side chain and Two 
primary or secondary amines identify affected polyamine.

4.3.2. Relevant substructures in hypoxia

Feature importance analysis of the logistic regression model, trained 
on the top 200 bits of Morgan fingerprints of radius 3 selected via the 𝜒2

test, uncovers patterns consistent with documented shifts in metabolic 
pathways induced by hypoxia. The fingerprint bits with higher model 
coefficients are depicted in Fig. 6 (a). Notably, bit 509, linked to dipep-

tides containing aromatic amino acids, aligns with known alterations 
in amino acid pathways during hypoxia. While pathways like alanine-

aspartate-glutamate and arginine synthesis are well-documented in hy-

poxic conditions, the synthesis of aromatic amino acids remains under-

explored, presenting an avenue for further investigation. Bits 273 and 
873 represent the guanine nitrogen base, aligning observed alterations 
in purine metabolism under hypoxia. Previous studies have noted an in-

crease in guanine-containing nucleotides like GDP and GTP, alongside 
nucleotide depletion and precursor accumulation during hypoxia [53]. 
The most frequent configuration in bit 953 highlights sulfur bonds 
in cysteine derivatives, reflecting disruptions in cysteine-methionine 
metabolism and changes in levels of cysteine-derived antioxidants such 
as glutathione and taurine [54]. Conversely, the second most frequent 
configuration indicates a peptide bond, further emphasising the role of 
amino acid metabolism. Bits 674 and 547 identify polyamines such as 
spermine, putrescine, and acetylated spermine, whose role in endothe-

lial cell survival during hypoxia has been previously studied [55]. Bit 
482 is found in sugars of the pentose phosphate pathway and sphingo-

sine, including sphingosine-1-phosphate, known for its protective role 
in response to hypoxia [56]. Bit 730 identifies a benzene group found 
in aromatic amino acids, overlapping with the metabolites identified 

by bit 509. Similarly, bit 752, representing a primary amine, identifies 
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Fig. 6. Feature importance analysis of logistic regression models trained on the Hypoxia dataset. (a) Top 12 bits of the Morgan binary fingerprint of radius 3 with 
feature selection, where the top 200 features were selected using the 𝜒2 test, with visual representations of the most frequent substructures associated with each 
bit. Structures enclosed in rectangles represent fingerprint clashing, i.e. distinct configurations mapped onto the same bit. (b) Top 12 features of the undersampled 
functional binary fingerprint.
metabolite groups previously detected by other bits such as polyamines, 
sphingosine, and derivatives of amino acids and peptides.

The key structures identified in the undersampled binary functional 
fingerprint, shown in Fig. 6 (b), align with observations from the Mor-

gan fingerprint of radius 3. For instance, both Tyrosine side chain and 
Tryptophan side chain were associated with peptides containing aromatic 
amino acids, mirroring the findings from the Morgan fingerprint. Sim-

ilarly, the presence of Unfused benzene ring indicates the same metabo-

lites in both fingerprints. Additionally, the presence of 18 standard aa 
side chain further underscores the significance of peptides in the dataset. 
Finally, the detection of Long chains points to various groups of already 
detected metabolites, including polyamines, sphingosine, and certain 
amino acids/peptides.

5. Discussion

This study explores a novel approach integrating molecular fin-

gerprinting and ML to analyse metabolic data and offer insights into 
affected pathways, drawing inspiration from well-established practices 
in drug discovery. Introducing this approach to a new context requires 
careful consideration. The study aims to unveil both the challenges and 
opportunities inherent in deploying this method, thereby laying the 
groundwork for future research. Specifically, the investigation focuses 
on four key areas: encoding structural information, data pre-processing, 
model training, and model interpretation.

1) Structural encoding. The analysis comprehensively investigates 
seven fingerprints, five widely adopted in cheminformatics and drug 
discovery (Morgan, Atom Pair, Topological Torsion, Daylight, and 
MACCS), and two introduced within this study (named fragment and 
functional). The examination delves deeply into the merits and limi-

tations of these diverse fingerprints, with a specific emphasis on their 
resolution power.

Hashed fingerprints offer flexible and effective methods for map-

ping a wide range of substructures without requiring prior knowledge 
of the structures under study. This approach grants flexibility through 
user-defined size and radius parameters which determine the quality 
of the structural representation, and consequently, the interpretabil-

ity of the model. A larger radius enables the identification of more 
complex configurations, providing more detailed and potentially more 
useful insights. Nevertheless, it also results in a greater number of po-

tential configurations. Without an increase in bit number, this can lead 
to multiple substructures being mapped to the same bit, diminishing the 
interpretability of that bit and the structural uniformity of molecules as-

sociated with it. However, increasing the bit number increases data di-
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mensionality, potentially impacting the performance of models trained 
on such data. Additionally, as dimensionality increases, also increases 
the number of bits identifying distinct but very similar configurations 
and providing overlapping information. To mitigate this, evaluating 
mutual information for each pair of bits can help filter out bits that 
do not improve resolution, reducing dimensionality and potentially en-

hancing model performance. The resolution analysis reveals that none 
of the hashed fingerprints in their binary form assigns a unique struc-

tural encoding to each metabolite. While the resolution power generally 
increases with the radius, it stabilises between 1024 and 2048, indi-

cating that the inability to discriminate molecules is not attributed to 
the hashing process but to inherent limitations in the structural encod-

ing. Resolution varies considerably among the selected hashed finger-

prints, from Daylight, failing to resolve 12-15% of the metabolites, to 
Atom Pair, effectively encoding over 99% of metabolites. For almost 
all hashed and pattern-matching fingerprints, molecules sharing iden-

tical fingerprints are often metabolites that differ in the length of one 
or more hydrocarbon chains. This aspect does not pose significant chal-

lenges during the screening of compound libraries for drug discovery, 
as molecules with extended hydrocarbon chains are typically deemed 
unsuitable for drug candidates and rarely found in such libraries. How-

ever, it becomes a more serious concern in metabolomics, where many 
such molecules are found. Exploring alternative fingerprints or mod-

ifying existing ones to address the issue might be necessary for an 
accurate fingerprint-based encoding of the metabolome. The perfor-

mance of models trained on different fingerprints indicates that there is 
no discernible correlation between resolution power and model perfor-

mance. The comparable performance observed between models trained 
on the two Morgan fingerprints, with differences generally lacking sta-

tistical significance, along with the higher resolution capability of the 
Morgan fingerprint with a radius of 3, suggests that the more complex 
configurations identified by Morgan of radius 3 are not inherently more 
predictive than the simpler structures captured by bits in Morgan of 
radius 2. Similarly, the higher resolution of count fingerprints over bi-

nary counterparts (which in the case of Morgan offer a unique encoding 
for each metabolite) does not consistently yield significant performance 
improvements.

Pattern-matching fingerprints efficiently capture predefined chem-

ical structures while maintaining a reasonable dimensionality. These 
fingerprints offer a high degree of flexibility, enabling researchers to 
focus on specific structures of interest to suit the unique research ques-

tions and datasets at hand. Moreover, these fingerprints are not affected 
by substructure clashes; the substructures corresponding to individual 
bits consistently identify the same chemical structures and offer read-

ily interpretable insights. Nonetheless, pattern-matching fingerprints 
inherently encompass a finite set of substructures, which do not compre-
hensively represent the full spectrum of possible variations in chemical 
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structures. They require prior knowledge of discriminating substruc-

tures, which can be limited, particularly in the study of less known 
biological systems. Comparatively, the pattern-matching fingerprints 
exhibit lower resolution power compared to their hashed counterparts. 
Nevertheless, in some cases, models trained on pattern-matching fin-

gerprints demonstrated comparable performance levels and identified 
similar predictive substructures.

In light of the distinctive advantages and limitations of both fin-

gerprint types, there exists a promising opportunity to design novel 
fingerprints precisely tailored to the demands of metabolomics. Such 
fingerprints may potentially merge the strengths of pattern-matching 
and hashed approaches.

2) Data pre-processing. The datasets present several challenges, encom-

passing high dimensionality, sparsity, class imbalance, and the binary 
nature of features. Class imbalance, a common challenge in metabolic 
datasets where only a small portion of metabolites is generally affected, 
cannot be handled with data augmentation techniques like SMOTE and 
ADASYN due to the absence of continuous variables. Instead, random 
undersampling and oversampling methods are employed. Generally, 
oversampling the positive class consistently enhances specificity, while 
undersampling the negative class improves recall across all fingerprints 
and models, except for MLP, where in some cases both sampling tech-

niques enhanced recall. Therefore, either technique could be employed 
to improve the desired performance metric.

The problem of dimensionality, determined by both the feature 
number and sample number, is most relevant in pattern-matching fin-

gerprints and smaller metabolomics datasets (which can range from 
tens of thousands of metabolites to just a few hundred in untargeted 
metabolomics studies). To address high dimensionality while retaining 
feature interpretability, conventional techniques like principal com-

ponent analysis are not suitable. Instead, feature selection methods 
guided by statistical tests such as 𝜒2, ANOVA, and mutual informa-

tion are often employed. In the Ataxia dataset, which comprises 3999 
samples and 1024 features, models trained on the top 200 features 
did not consistently enhance performance across all fingerprints, Im-

provements in model performance, in terms of both recall and ROC, 
were predominantly observed in the two Morgan fingerprints. Con-

versely, the Hypoxia dataset, with a third of the metabolites compared 
to the Ataxia dataset, exhibits a more pronounced dimensionality is-
sue. Here, enhancements in recall and ROC were noticeable across all 
hashed fingerprints, particularly in logistic regression and Naive Bayes 
models. In both datasets, while feature selection doesn’t definitively en-

hance performance, it also does not degrade it, and the performance 
remains comparable to models trained on the original data. This indi-

cates that some features contain redundant or overlapping information, 
and their removal does not impact the predictive power of the model. In 
both datasets, no performance improvements were observed in pattern-

matching fingerprints with feature selection, except for two instances, 
indicating that the majority of features hold predictive value for the 
target variable, ruling out concerns of over-fitting.

3) Model performance. The obtained results, while not outstanding, are 
in line with expectations established by other omics studies. Consider-

ing the intrinsic complexity of the metabolomics domain, achieving a 
ROC above 0.65 with recall above 0.60 represents a respectable pre-

dictive value, especially for noisy and unbalanced datasets. Among the 
various models explored, logistic regression emerges as the most consis-

tent performer across all fingerprints, striking a good balance between 
recall and sensitivity. Surprisingly, extensive experimentation with di-

verse ML models, including linear, non-linear, probabilistic, tree-based 
models, and neural networks, coupled with thorough parameter optimi-

sations, did not yield any substantial performance gains. This suggests 
that the core limitations may not be primarily rooted in the model 
choices. One avenue for potential improvement lies in the exploration 
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of novel data representations, such as graph-based models like graph 
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neural networks. However, initial experiments in this direction failed 
to deliver the anticipated performance boosts, reaffirming Morgan as 
the most effective structure encoding strategy.

To achieve better predictive modelling in the context of metabolo-

mics, it is imperative to address data quality. Metabolites annotated 
by software like Compound Discoverer often come with varying de-

grees of confidence. These tools seek a match between the detected 
spectrum and that of molecules catalogued in databases such as Chem-

Spider. However, this matching process is far from flawless. The dataset 
of known structures is continually expanding but remains incomplete, 
and the software is more prone to making incorrect matches when the 
number of spectra available is limited. In this regard, besides enriching 
available datasets, effort should be devoted to evaluating the matching 
accuracy and filtering out molecules that are not assigned structures 
with sufficient confidence. The consequent improvement in data qual-

ity could be instrumental in enhancing the performance of ML models 
in metabolomics. An alternative strategy bypasses the conventional pro-

cess of mapping molecules to known metabolites by training ML models 
directly on spectral data and extracting valuable features directly from 
these spectra. This approach offers the advantage of leveraging the en-

tirety of available spectra, even those lacking direct matches to known 
structures. Furthermore, it holds the potential to aid the annotation of 
previously unknown metabolites if the informative features extracted 
from the spectra can be mapped onto specific chemical configurations.

To enhance model performance, integration of multiple data sources 
and domain knowledge could also be considered. While traditional 
metabolomics methods rely on established knowledge and only ac-

count for known metabolites, the approach undertaken in this study 
is purely data-driven, avoiding potential biases stemming from incom-

plete or inaccurate metabolic pathway annotations. A promising path 
forward is to explore the integration of these two approaches, lever-

aging established knowledge while harnessing the insights provided by 
data-driven techniques. Additionally, integrating diverse data sources, 
encompassing various omics data types, can offer a more comprehen-

sive and detailed snapshot of the condition under study and potentially 
improve the predictive power of ML models.

4) Model interpretation. Feature importance plays a pivotal role in 
quantifying the contribution of each feature to the model prediction. 
This study demonstrates its application to both hashed and pattern-

matching fingerprints. For hashed fingerprints, this was exemplified 
on Morgan, but the approach can be readily extended to all analysed 
fingerprints by tracking the bonds and atoms involved in setting each 
fingerprint bit. For pattern-matching fingerprints, the process was illus-

trated for the functional fingerprint, although a similar approach can be 
applied to any pattern-matching fingerprint.

Hashed fingerprints present a distinct advantage in representing a 
wide range of structures. However, not all configurations within these 
fingerprints contribute equally informative details. For instance, some 
configurations, such as those capturing a peptide bond, can precisely 
identify specific groups of metabolites and their associated cellular pro-

cesses. In contrast, configurations like the presence of a chiral carbon 
atom may be too generic to provide actionable insights. Screening fin-

gerprint bits before model training, retaining only those that can be 
effectively interpreted, might prove beneficial. Pattern-matching fin-

gerprints, on the other hand, offer inherent interpretability as they 
are explicitly designed to identify predefined patterns but often have 
limited resolution. Additionally, the output of such an investigation 
is inevitably biased towards detecting groups of metabolites better 
characterised by the fingerprint. For example, the functional finger-

print was designed to include many substructures mapped in amino 
acids but lacks substructures tailored to nucleotides. Consequently, in 
both case studies, while Morgan successfully identified both nucleotide 
and amino acid groups as affected, the functional fingerprint only de-

tected the latter. Overall, in the examined case studies, Morgan pro-
vided a more varied set of relevant substructures and richer insights. 
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Remarkably, the substructures found important for pattern-matching 
fingerprints correspond to chemical configurations also found impor-

tant in hashed fingerprints, confirming partial alignment in these two 
outputs. To strike a balance between dimensionality, resolution, and in-

terpretability, a hybrid approach might prove effective. This approach 
combines the utilisation of hashed fingerprints for a comprehensive 
exploration of substructures within the fingerprint, followed by the cre-

ation of custom pattern-matching fingerprints composed of informative 
and interpretable features, so to minimise feature count while maximis-

ing resolution power.

Metabolites sharing common bits in their structural representation 
identify groups of molecules characterised by particular substructures, 
potentially indicating functional relationships and insights into cellular 
processes. Bits most relevant for the classification process detect groups 
of structurally related metabolites affected in the condition under study. 
These groups of affected metabolites can then be presented to domain 
experts for in-depth examination and hypothesis formulation. For in-

stance, the interpretation of a substructure enriched among affected 
metabolites, such as the peptide bond, may lead to the hypothesis of 
perturbations in amino acid metabolism. Subsequently, these hypothe-

ses can be rigorously tested using established methodologies.

6. Conclusion

This research introduces an approach combining molecular finger-

printing and ML to analyse metabolic data and gain insights into af-

fected pathways. Inspired by established practices in drug discovery, 
these techniques are adapted to the field of metabolomics. The study 
operates on the premise that structurally similar molecules, often found 
in close metabolic proximity, share similar metabolic responses. The 
investigation aims to determine if ML models trained on structural 
features can predict metabolic functions from structure. Feature im-

portance is used to identify key features influencing predictions and 
to reveal clusters of structurally related metabolites associated with 
specific diseases. Key areas of focus include structural encoding, data 
pre-processing, model training, and model interpretation. The explo-

ration of structural encoding assesses the advantages and limitations 
of various fingerprinting techniques. Pattern-matching and hashed fin-

gerprints are both examined, with a suggestion that a hybrid approach 
combining their strengths may be promising. Data pre-processing ad-

dresses challenges such as high dimensionality, sparsity, and class im-

balance, with a focus on feature selection. While substantial perfor-

mance improvements were not achieved, further exploration is recom-

mended for optimal pre-processing techniques. Model training results 
are consistent with the complexity of metabolomics studies, with room 
for improvement through alternative data representations. Data qual-

ity and integration of multiple data sources and domain knowledge 
are also recommended to enhance model performance. Model inter-

pretation is facilitated through feature importance analysis in both 
hashed and pattern-matching fingerprints, providing insights into struc-

tural configurations and affected metabolite groups. This approach lays 
the foundation for future research, offering the potential to advance 
metabolomics through ML.
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