
Journal of Philosophical Logic
https://doi.org/10.1007/s10992-022-09697-x

A Logical Modeling of Severe Ignorance

S. Bonzio1 ·V. Fano2 ·P. Graziani2 ·M. Pra Baldi3

Received: 8 January 2021 / Accepted: 21 December 2022
© The Author(s) 2023

Abstract
In the logical context, ignorance is traditionally defined recurring to epistemic
logic. In particular, ignorance is essentially interpreted as “lack of knowledge”. This
received view has - as we point out - some problems, in particular we will highlight
how it does not allow to express a type of content-theoretic ignorance, i.e. an igno-
rance of ϕ that stems from an unfamiliarity with its meaning. Contrarily to this trend,
in this paper, we introduce and investigate a modal logic having a primitive epis-
temic operator I, modeling ignorance. Our modal logic is essentially constructed on
the modal logics based on weak Kleene three-valued logic introduced by Segerberg
(Theoria, 33(1):53–71, 1997). Such non-classical propositional basis allows to define
a Kripke-style semantics with the following, very intuitive, interpretation: a formula
ϕ is ignored by an agent if ϕ is neither true nor false in every world accessible to the
agent. As a consequence of this choice, we obtain a type of content-theoretic notion
of ignorance, which is essentially different from the traditional approach. We dub it
severe ignorance. We axiomatize, prove completeness and decidability for the logic
of reflexive (three-valued) Kripke frames, which we find the most suitable candidate
for our novel proposal and, finally, compare our approach with the most traditional
one.
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1 Introduction

The study of ignorance is certainly as old as the study of knowledge; however the
formal study of the logic of ignorance is still a young area of research. In the episte-
mological studies of ignorance the standard view is to define it as lack of knowledge
(see for example the debate in [29–32]). In logic, it is not easy to reconstruct this tra-
dition (see [14, 17] and [23]). However, in our view an important step in the history is
Hintikka’s seminal work [26], where he distinguishes two notions of lack of knowl-
edge relative to an agent, namely “a (an agent) does not know that ϕ” (ϕ∧¬Kaϕ) and
“a does not know whether ϕ” (¬Kaϕ ∧ ¬Ka¬ϕ). Such regimentations have become
standard in the logical literature on ignorance [14, 17, 23]. Throughout this article,
we will refer to the standard view by the expression “ignorance as lack/absence of
knowledge”. In particular, we will use the expression “whether view” to address the
second notion of lack of knowledge, i.e. “a does not know whether ϕ”. From psy-
chology to education studies, passing through philosophy and many other disciplines,
a plenitude of deep analyses of knowledge and ignorance have been put forward [2,
17, 25, 33, 34] and the standard view in the literature describes ignorance in terms
of lack, or absence, of knowledge. Therefore, it is not surprising that this is also the
standard view in the logical treatment of ignorance. However, in more recent times,
van der Hoek and Lomuscio [44] introduced a modal logic (Ig) where ignorance is
modeled by a primitive modal operator, unrelated to (lack of) knowledge. The spirit
behind Ig is expressing “ignorance as a first class citizen” [44, p.3]. However, despite
their intention, their solution does not seem too far from “not knowing whether”.
Indeed, in their semantics for the operator I – for ignorance – an agent ignores ϕ if
s/he has access to two (different) worlds, where ϕ is evaluated differently (true in one
and false in the other). In their own words (again): “[the] formula Iϕ is to be read
as �the agent is ignorant about ϕ, i.e. s/he is not aware of whether or not ϕ is true�”.
The semantics of I reflects that of absence of knowledge, with the only difference
that Ig “can not speak” about knowledge.

Similarly, the Logic of Unknown Truths (LUT) and the subsequent logics of igno-
rance proposed by Steinsvold [40] subordinate the concept of ignorance to that of
knowledge. In these logics the black box (�) in fact stands for ϕ ∧ ¬Kϕ; if the lat-
ter formula is true, and ϕ → ¬K¬ϕ holds, then also ¬Kϕ ∧ ¬K¬ϕ holds, which is
again the “whether view” of ignorance.

Following the research trend opened in Fano and Graziani [15] (see also [1]), this
article intends to discuss the fact that lack of knowledge is just one way to look at
ignorance and, taking up van der Hoek and Lomuscio’s challenge, to introduce a logic
which addresses the purpose of defining “ignorance as a first class citizen”. In this
paper, after discussing the consequences of defining ignorance as lack of knowledge
(in the epistemic logic S4), we introduce and investigate a modal logic having a prim-
itive epistemic operator I, modeling ignorance. In particular, the idea we have in mind
is that of modelling a type of content-theoretic ignorance, so to say an ignorance of
something that stems from an unfamiliarity with its meaning, i.e. a severe notion of
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ignorance that implies a lack of awareness1 with respect to a subject-matter. In our
view, this type of ignorance constantly affects the practice of science. For instance,
consider the following situation: Max Planck, in approaching the black body radia-
tion problem, knew that, in the theoretical predictions of the black body, there was
a divergence for high frequencies, in contrast with experimental data. However, he
did not simply ignore which physical phenomena constituted the cause, but, more
importantly, he did not have any idea (was ignorant) of what could be a bundle of
causes. In logical terms, it is not merely the case that Planck does not know the truth
value of a physical statement (that could be the cause), but he does not know which
kind of event could be a cause. In other terms, when thinking about severe ignorance,
we have in mind situations where scientists are ignorant of the bundle of causes that
might be at the root of a phenomenon. Contrarily, the “whether view” of ignorance
appears related to the lack of knowledge of single agents, such as, for instance, a
physical statement that is, perhaps, known in the community of trained physicists
but, possibly, ignored by a non-physicist or a first-year student. To achieve the goal
of modeling severe ignorance, we base the semantics of our (modal) logic on the
presence of a third truth-value, whose behaviour is infectious, as severe ignorance
ultimately is. Returning to the example about Planck’s ignorance, the infectivity of
his ignorance depends on the fact that every scientific issue whose content is theoret-
ically connected to the explanation of the black body is ignored severely at the same
way that the explanation is. The most natural examples of infectious logics are the
so-called weak Kleene logics, which can be intuitively introduced via a matrix where
truth-values {0, 1} are joined by a third truth-value 1/2 whose behaviour is infectious
in the sense that a complex formula ϕ is evaluated to the third value 1/2 whenever
any of its atomic formulas is evaluated to 1/2 (independently of the structure of ϕ).
Our modal logic will be essentially constructed following the ideas of the modal log-
ics based on (one of the) weak Kleene logics introduced by Prior [36] and Segerberg
[39]. Our philosophical approach keeps fixed the classical account that ignorance,
as well as knowledge, is an epistemic notion and, for this reason, the logical mod-
eling we primarily purse is an epistemic (modal) logic, whose privileged semantics
is a relational one (Kripke-style). As a byproduct of our analysis, we discover that
the non-classical propositional basis chosen (Bochvar external logic) indeed already
incorporates (some) connectives that can be interpreted as modalities, to be used
(also) for the formal representation of severe ignorance. Therefore, we will highlight
the coincidence between the Kripke-style interpretation of the modality for ignorance
and that of one connective in the enriched language of Bochvar logic.

1In this article, we will not address a comparison of our logical model of severe ignorance with the logical
foundations of theories of unawareness. We will reserve this comparison for a separate article. We wish to
thank Valentin Goranko for focusing our attention on this comparison.
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The paper is organized into four parts: in Section 2, we introduce the standard
(logical) approach to ignorance as “lack of knowledge”. In Section 3, we outline
the key features Bochvar external logic which we will use in order to give a modal
approach to severe ignorance. In Section 4, it is introduced the logic SI of severe
ignorance; an axiomatization with relative completeness is proved in Section 4.2. We
conclude the paper with Section 5 where we make some remarks on the validity of
certain formulas relevant to capture a severe notion of ignorance, and compare the
differences between the standard view and the proposed logic for severe ignorance.

2 Ignorance as Lack of Knowledge

As mentioned, the traditional logical approach to ignorance is based on the idea
of defining ignorance as “lack of knowledge” (see [17] and [12]). This translates
ignorance into a modal operator in the epistemic logic S4 defined as follows:

Iϕ := ¬Kϕ ∧ ¬K¬ϕ, (1)

where K stands for the knowledge operator. It follows from Eq. 1 that, in the stan-
dard Kripke-style semantics for S4, the formula Iϕ is true in a world w (under a
certain evaluation v, in symbols v(w, Iϕ) = 1) if and only if there exist two worlds
w′, w′′ related to w, such that ϕ is true (false, respectively) in w′ (under v) and ϕ

is false (true, resp.) in w′′ (under v). In words, an agent ignores a formula ϕ, in a
world w, if (and only if) s/he has access to two worlds each of which assigns a dif-
ferent truth value to ϕ. Roughly speaking, “do not knowing whether ϕ′′ – ignoring ϕ

according to the “whether view” – means seeing (at least two different) worlds where
ϕ is assigned with different truth-values. We might say that this view models igno-
rance as a truth-theoretic notion: “ignoring whether ϕ” is translated as “being unsure”
about the truth value of ϕ, due to the existing conflict of evaluation in the related
worlds.

It is useful to underline that the semantics for the ignorance modality I is the
same, as above, also in the logic Ig, introduced by Van der Hoek and Lomuscio (see
[44, Definition 2.1]) with the aim of treating ignorance as a primitive notion, not
subordinated to knowledge. Indeed, the main difference, with respect to the “whether
view” approach, is that, in Ig, ignorance is not defined as “lack of knowledge” as Ig
does not contain any primitive knowledge operator: it is modeled via the primitive
operator I.

We wonder whether modeling ignorance as lack of knowledge (or via I in Ig) is
the only way to logically address the notion of ignorance. Far from saying that it is
not the correct way to analyze the concept, we simply claim that “lack of knowledge”
is only one way to approach ignorance, whose features are exemplified by the logical
laws in which I actually occurs. We recap the logical laws and the notable failures
involving I in the following remarks.
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Remark 1 It is immediate to check that the following formulas are logical truths in
S4 – where I is defined according to Eq. 1:

(1) |=S4 Iϕ ↔ I¬ϕ;
(2) |=S4 I(ϕ ∨ ψ) → Iϕ ∨ Iψ ;
(3) |=S4 I(ϕ ∧ ψ) → Iϕ ∨ Iψ ;
(4) |=S4 IIϕ → Iϕ.

Remark 2 The following formulas do not hold, in general, in S4 – where I is defined
according to Eq. 1:

a) �|=S4 Iϕ ∧ Iψ → I(ϕ ∧ ψ);
b) �|=S4 I(ϕ ∧ ψ) → Iϕ ∧ Iψ ;
c) �|=S4 Iϕ ∨ Iψ → I(ϕ ∨ ψ);
d) �|=S4 I(ϕ → ψ) → (Iϕ → Iψ);
e) �|=S4 Iϕ → IIϕ;
f) �|=S4 Iϕ → I(ϕ ∨ ¬ϕ);
g) �|=S4 Iϕ → I(ϕ ∧ ¬ϕ);
h) �|=S4 Iϕ → ϕ.

We just show a simple counterexample for a). Consider a Kripke model M =
〈W, R, v〉 with W = {w, s}, R = {(w, w), (s, s), (w, s)},

s

w

where evaluation v is defined as follows: p ∈ w, p �∈ s and q �∈ w, q ∈ s. It
then follows that v(w, Ip) = 1, v(w, Iq) = 1. On the other hand, v(w, p ∧ q) =
v(s, p ∧ q) = 0, thus v(w, I(p ∧ q)) = 0.

Intuitively, to falsify a) it is sufficient to consider a model with two different
related worlds, each of which makes one formula true and the other false, respec-
tively. In this way, each formula is ignored but the conjunction is not, since is false in
every world.

We are convinced that the set of formulas listed in Remarks 1 and 2 – although
they might not constitute an exhaustive list – tells something relevant about the
notion of ignorance that the supporters of the “whether view” had in mind (more
detailed comments on this can be found in Section 5). Let us analyze, through some
examples, the applicability (as well as limits of applicability) of this interpretation
of ignorance.

Suppose that Magnus and Jan2 are about to play a single chess match. It is plau-
sible to think that a rational agent ignores (does not know) whether Magnus is going

2Names refer to real professional players: the (current) world-number one Magnus Carlsen and our
colleague (and Grandmaster) Jan Michael Sprenger.

https://ratings.fide.com/profile/1503014
https://ratings.fide.com/profile/4646258
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to win (although it is very unlikely to happen, he might lose or the match could end
in a draw); similarly, s/he ignores whether Jan is going to win. On the other hand,
our rational agent does not ignore whether Magnus and Jan is going to win, as s/he
knows that the same chess match can not have two different winners. This shows a
case in which the ignorance of two conjuncts does not translate in the ignorance of
their conjunction, as it happens to be the case in S4 (see Remark 2-a).

Observe, however, that ignorance as lack of knowledge behaves according to the
principle that ignoring a conjunction implies ignoring both the conjuncts and the
disjuncts (Remark 1), which shades some confusion between “and” and “or” when
referring to notions that are ignored.

Nevertheless, we believe that, sometimes, lack of knowledge is understood in a
way which is not exemplified by the behaviour of I in S4 (and Ig). We try to clarify
what we mean, giving some examples relative to the behaviour of I with respect to
the conjunction.

Suppose that one of the authors of this paper has just concluded to examine a stu-
dent, who aimed to pass his/her exam in modal logic. During the exam, s/he was
asked to answer some questions (obviously, in a finite number!), each of which with
the precise goal to verify whether s/he is ignorant – hopefully, is not ignorant – of
the main topics which, together, form the program of the entire course. Unfortu-
nately, due to her deficient answers, the examiner has collected enough evidence to
conclude that s/he is ignorant of all the main topics, say ϕ1, . . . , ϕn, characterizing
the course. The rational examiner is so brought to conclude that the student is igno-
rant of the whole subject of the exam, which can be exemplified as the conjunction
ϕ1 ∧ · · · ∧ ϕn, and thus can not pass the exam. In other words, s/he is ignorant of the
program ϕ1 ∧ · · ·∧ϕn of the exam. It seems reasonable to think that the above exem-
plified notion of ignorance is indeed lack of knowledge (the examiner is ultimately
testing if the student “knows ϕ1, . . . , ϕn”) and it seems reasonable also to think that
the ignorance of each of the statements ϕ1, . . . , ϕn implies the ignorance of the con-
junction ϕ1 ∧ · · ·∧ϕn (how could this not be the case?!). However, ignorance as lack
of knowledge, modeled in S4, and closure with respect to conjunction can not stand
together.
Another weakness regarding the standard view (as discussed in recent literature, see
[22, 28]) is that the so called Factivity Principle (usually intended relative to knowl-
edge as Kφ → φ), does not work in the standard view framework, i.e. it does not
hold that if an agent ignores φ then φ is true. This fact is also highlighted in our
Remark 2, where we prove that factivity of ignorance does not hold in S4 (in contrast
with the factivity of knowledge which clearly holds).

It is also possible to design other examples allowing us to stress that there are
cases where ignorance is severe and does not coincide with lack of knowledge. Let
us consider the discovery, happened at the beginning of November 2021, of the new
Omicron variant of Coronavirus. The group of South-African scientists who isolated
the variant communicated immediately their discovery, however it is reasonable to
think that the sentence “Omicron is a variant of concern” was ignored by everyone at
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the time (and perhaps in the following days). This kind of ignorance is severe (in our
sense), since it is natural that it spreads over sentences containing the previous. For
instance, also any implication of the form “if the Omicron variant is of concern then
there will be more deaths due to it” is genuinely to be ignored. This example seems to
be convincing on the infectiousness of severe ignorance. More precisely, the lesson
to learn from the above discussion is that the notion of ignorance is more subtle and
problematic than it might appear at first look. Modeling it as “lack of knowledge” is
surely a possibility, which has both qualities and flaws, depending on the context of
applicability.

The aim of the present work is to propose a logical modeling of severe ignorance,
a notion that differs from standard lack of knowledge (“whether view”). This change
of perspective significantly impacts on the formulas holding/not holding in this new
logic with respect to S4 (see Section 5 for a comparison and further discussion).
Indeed, when ignorance is conceived as severe, then the failure of certain formulas,
such as (2) and (4) in Remark 1, comes with no surprise; similarly, it is not surprising
that a formula like a) in Remark 2 holds in this new system. Intuitively, one could
think that a way to address a severe ignorance is possible also in S4, by recurring
to the so-called “second-order ignorance” [17], rendered by applying I twice to a
formula. However, applying II does not validate the fact that ignoring two formulas
implies ignoring their conjunction, as witnessed by the following.

Remark 3 The following formulas are not logical truths of S4:

(1) �|=S4 IIϕ ∧ IIψ → II(ϕ ∧ ψ);
(2) �|=S4 II(ϕ ∧ ψ) → IIϕ ∧ IIψ .

The same counterexample introduced in Remark 2 serves also for (1). Indeed,
observe that v(w, Ip) = v(w, Iq) = 1 and v(s, Ip) = v(s, Iq) = 0, thus
v(w, IIp) = v(w, IIq) = 1, hence v(w, IIp ∧ IIq) = 1. However, since v(w, I(p ∧
q)) = v(s, I(p ∧ q)) = 0 and there exists no world x ∈ W such that wRx and
v(x, I(p ∧ q)) = 1, then v(w, II(p ∧ q)) = 0.
A simple counterexample to (2) is given by the following. Consider a Kripke
model M = 〈W, R, v〉 with W = {w, r, s, t}, R = {(w, w), (r, r), (s, s), (t, t),

(w, s), (s, r), (w, r), (w, t)}
r

t s

w

Evaluation is defined as follows: p, q ∈ {w, t, r} and q ∈ s, p �∈ s. It follows that
v(s, I(p ∧ q)) = 1 and v(t, I(p ∧ q)) = 0, thus v(w, II(p ∧ q)) = 1. However,
v(x, Iq) = 0, for every x ∈ W , thus v(w, IIq) = 0.
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The possibility of nesting the modality I (i.e. having formulas such as IIϕ, IIIϕ,
etc.), which is allowed in S4, as we just saw, presents also a remarkable disadvan-
tage. Although Iϕ → IIϕ is not a theorem of S4, it is not difficult to check that the
formula IIϕ → IIIϕ is a theorem. More in general, abbreviating with In the n-times
application of the modality I, in S4 the formula Inϕ → In+1ϕ holds, for n ≥ 2. This
quite problematic phenomenon is usually referred to as the black hole of ignorance
(see [17]).

3 Bochvar External Logic Be

Given a similarity type ν, the absolutely free algebra Fm of type ν over a count-
ably infinite set X of generators will be called the formula algebra of type ν; its
members will be called formulas. Members of X will be called (propositional) vari-
ables and referred to by the symbols p, q, . . . . We denote algebras by A,B,C . . .

and the respective universes by A, B, C . . . We understand a logic (of type ν) as
a pair L = 〈Fm, �L〉, where Fm is the formula algebra (of type ν), and �L is a
substitution-invariant consequence relation over Fm (� ⊆ P(Fm) × Fm).

Kleene’s three-valued logics – introduced by Kleene in his Introduction to Meta-
mathematics [27] – are traditionally divided into two families, depending on the
meaning given to the connectives: strong Kleene logics – counting strong Kleene and
the logic of paradox [35] – and weak Kleene logics, namely Bochvar logic [4] and
paraconsistent weak Kleene – PWK in brief (sometimes referred to as Hallden’s logic
[24]).

Kleene logics are traditionally defined in the algebraic language LK : ¬, ∨ of
type (1, 2); ϕ ∧ ψ , ϕ → ψ and ϕ ↔ ψ are abbreviations for ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ

and (ϕ → ψ) ∧ (ψ → ϕ), respectively. The language LK is usually referred
to as the internal language (and ¬, ∨ as the internal connectives). Enlarging LK

with a new unary connective (and the constants 0,1), one obtains LKe : ¬, ∧, J2 , 0, 1
(of type (1, 2, 1, 0, 0)). Let us denote, with an abuse of notation (that hopefully
does not create confusion) by Fm the formula algebra over the algebraic language
LKe .

Semantics of the language LKe is given by the three-elements algebra WKe =
〈{0, 1, 1/2}, ¬, ∧, J2, 0, 1〉 displayed in Fig. 1 (semantics of ∨ and → is recalled in
Fig. 2).

Fig. 1 The algebra WKe
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Fig. 2 Semantics of ∨ and → in the algebra WKe

Despite recent attempts (see [3, 5, 13, 41]) to provide an epistemic reading to the
truth-value 1/2, its most common interpretation is as “meaningless” (see e.g. [16]
and [42]).

The language LKe is significantly richer than LK and allows to define the so-
called external formulas.3 Intuitively, a formula α is external when it is evaluated to
{0, 1} (which is the universe of a Boolean subalgebra of WKe) from any homomor-
phism h : Fm → WKe. In other words, an external formula is one such that can not
be evaluated to 1/2 (see [18, p. 208]).

Via J2 , it is possible to define more connectives (which will be very useful for
our analysis): J3ϕ := ¬J2¬ϕ → J2ϕ, J1ϕ := ¬J3ϕ and J0ϕ := ¬(J1ϕ ∨ J2ϕ)

interpreted (in WKe) as follows.

ϕ J3ϕ

1 1
1/2 0
0 1

ϕ J1ϕ

1 0
1/2 1
0 0

ϕ J0ϕ

1 0
1/2 0
0 1

Intuitively, connectives J0 , J1, J2 , J3 allow to speak not only about a statement ϕ

but also about its truthfulness, falseness and more.
Bochvar (external) logic Be is the logic induced by the matrix 〈WKe, {1}〉, i.e.

� |=Be ϕ if and only if, for every homomorphism h : Fm → WKe,

if h[�] ⊆ {1} then h(ϕ) = 1.

In words, Be is the logic preserving only the truth-value 1 (“true”).4

Definition 4 A variable p is open in a formula ϕ when there is at least one occurrence
of it which does not fall under the scope of J

i
, with i ∈ {0, 1, 2, 3}. It is covered if it

is not open, namely it occurs in ϕ and all occurrences fall under the scope of J
i
, for

some i ∈ {0, 1, 2, 3}.

The intuition behind external formulas is made precise by the following.

3The idea of considering the external language is originally due to Bochvar [4], who wanted to move non-
classical to get rid of set-theoretic and semantic paradoxes (by interpreting them to 1/2) but without losing
the expressiveness of classical logic. Unfortunately, it can be shown that paradoxes resurfaces (see [43]).
4The different choice (on the same formula algebra) of the truth set {1, 1/2} defines the logic H0 studied
by Segerberg [38].
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Definition 5 A formula ϕ ∈ Fm is called external if all the variables occurring in ϕ

are covered.

Examples of external formulas are: J1p ∨ J2q, J1(p ∨ q), etc.
A Hilbert-style axiomatization of Be has been introduced by Finn and Grigolia

[18, p. 236]. In order to present it, let

ϕ ≡ ψ :=
2∧

i=0

Jiϕ ↔ J
i
ψ,

and α, β, γ denote external formulas.
Axioms

(A1) (ϕ ∨ ϕ) ≡ ϕ;
(A2) (ϕ ∨ ψ) ≡ (ψ ∨ ϕ);
(A3) ((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ));
(A4) (ϕ ∧ (ψ ∨ χ) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ));
(A5) ¬(¬ϕ) ≡ ϕ;
(A6) ¬1 ≡ 0;
(A7) ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ);
(A8) 0 ∨ ϕ ≡ ϕ;
(A9) J2α ≡ α;

(A10) J0α ≡ ¬α;
(A11) J1α ≡ 0;
(A12) J

i
¬ϕ ≡ J2−iϕ, for any i ∈ {0, 1, 2};

(A13) J
i
ϕ ≡ ¬(J

j
ϕ ∨ J

k
ϕ), with i �= j �= k �= i;

(A14) (J
i
ϕ ∨ ¬J

i
ϕ) ≡ 1, with i ∈ {0, 1, 2};

(A15) ((J
i
ϕ ∨ J

k
ψ) ∧ J

i
ϕ) ≡ J

i
ϕ, with i, k ∈ {0, 1, 2};

(A16) (ϕ ∨ J
i
ϕ) ≡ ϕ, with i ∈ {1, 2};

(A17) J0(ϕ ∨ ψ) ≡ J0ϕ ∧ J0ψ ;
(A18) J2(ϕ ∨ ψ) ≡ (J2ϕ ∧ J2ψ) ∨ (J2ϕ ∧ J2¬ψ) ∨ (J2¬ϕ ∧ J2ψ);
(A19) α → (β → α);
(A20) (α → (β → γ )) → ((α → β) → (α → γ ));
(A21) α ∧ β → α;
(A22) α ∧ β → β;
(A23) (α → β) → ((α → γ ) → (α → β ∧ γ ));
(A24) α → α ∨ β;
(A25) β → α ∨ β;
(A26) (α → γ ) → ((β → γ ) → (α ∨ β → γ ));
(A27) (α → β) → ((α → ¬β) → ¬α);
(A28) α → (¬α → β);
(A29) ¬¬α → α.

Deductive rule

[MP]
ϕ ϕ → ψ

ψ
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Observe that the axiomatization contains a set of axioms (A19-A29), which,
together with the rule ofmodus ponens, yields a complete axiomatization for classical
logic (relative to external formulas). Upon defining the notion of derivation (�Be ϕ)
in the usual way, Finn and Grigolia proved weak completeness for Be.

Theorem 6 [18, Theorem 3.4] �Be ϕ if and only if |=Be ϕ.

It is natural to wonder whether Be can be provided with a more synthetic Hilbert-
style axiomatization and/or with a different style axiomatization (natural deduction,
Gentzen-style, etc.). Actually a stronger version of Theorem 6 can be proved (the
details of the proof are displayed in the Appendix, where we also show that Be is
algebraizable).

Theorem 7 � �Be ϕ if and only if � |=Be ϕ.

Theorem 8 (Deduction Theorem) � �Be ϕ if and only if there exist formulas
γ1, . . . , γn ∈ � such that �Be J2γ1 ∧ · · · ∧ J2γn → J2ϕ.

Proof (⇒) By induction on the length of the derivation of ϕ (from �).
(⇐) We reason by contraposition and suppose that � �Be ϕ, thus � �|=Be ϕ (by

Theorem 7), i.e. there is a homomorphism h : Fm → WKe such that h(γ ) = 1, for
every γ ∈ � and h(ϕ) �= 1. Then, for every subset of formulas {γ1, . . . , γn} ⊆ �,
h(J2γi) = 1, for every i ∈ {1, . . . , n} and h(J2ϕ) = 0, hence h(J2γ1 ∧ · · · ∧ J2γn →
J2ϕ) = 0, i.e. �|=Be J2γ1 ∧ · · · ∧ J2γn → J2ϕ, thus �Be J2γ1 ∧ · · · ∧ J2γn → J2ϕ (by
Theorem 6).

4 The Logic SI of Severe Ignorance

The logic of (severe) ignorance we are going to introduce consists of a modal logic,
whose propositional basis is Be.

Let FmI be the formula algebra constructed over a numerable infinite set
of propositional variables V ar in the language LI : ¬, ∨, J2, I, 0, 1, 1/2 of type
〈1, 2, 1, 1, 0, 0, 0〉.

In the expanded language LI, we generalize the definition of covered variable (see
Definition 4) as follows: a variable p is covered in a formula ϕ if it occurs in ϕ and
all occurrences fall under the scope of J

i
, for some i ∈ {0, 1, 2, 3}, or under the scope

of I. In other words, we are stipulating that formulas like Iϕ, Iψ , ... are external (for
any ϕ, ψ ∈ FmI), in the sense of Definition 5.

We introduce the logic �SI as the one induced by the Hilbert-style axiomatization
given by the following.

Axioms

• the axioms of Be;
(1/2) J11/2;
(IJ1) Iϕ → J1ϕ.
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Deduction rules

• The rule [MP].
• The rule [I]: J1ϕ �SI Iϕ.

The intuition behind the axiomatization is that ignoring ϕ implies that J1ϕ is true,
i.e. ϕ takes the third value. Moreover, the rule [I] states that the formula Iϕ is derived
from J1ϕ: intuitively, the ignorance of ϕ can be inferred from the assumption that J1ϕ

is the case (i.e. semantically, J1 takes the third value). Observe that this is different
with respect to the rule of necessitation for standard modal logic (where �ϕ can be
inferred from any theorem ϕ).

By �SI we intend the derivability relation of the deductive system defined by
the above axioms and inference rules. We now introduce the intended Kripke-style
semantics for the logic �SI .

4.1 Semantics

The semantics of the logic of ignorance consists of a relational (Kripke-style) struc-
ture where formulas, in each world, are evaluated into WKe. We introduce these
structures according to the current terminology adopted in many-valued modal logics
(see, for instance, [11, 19, 20]).

Definition 9 A weak three-valued Kripke modelM is a structure 〈W, R, v〉 such that:
(1) W is a non-empty set (of possible worlds);
(2) R is a binary relation over W (R ⊆ W × W );
(3) v is a map, called valuation, assigning to each world and each variable, an

element inWKe (v : W × FmI → WKe).

Non-modal formulas will be interpreted as in Be, i.e. we assume that v is a homo-
morphism, in its second component, with respect to ¬, ∨, J2, 1, 0, 1/2. The reduct
F = 〈W, R〉 of a model M is called frame.
Notation: for ordered pairs of related elements, we equivalently write (w, s) ∈ R or
wRs.

The semantical interpretation of the epistemic modality I in a weak three-valued
Kripke model is given in the following.

Definition 10 Let 〈W, R, v〉 be a weak three-valued Kripke model, and w ∈ W .
Then

(1) v(w, Iϕ) = 1 if v(s, ϕ) = 1/2 for every s ∈ W such that wRs.
(2) v(w, Iϕ) = 0 otherwise, i.e. there exists s ∈ W such that wRs and v(s, ϕ) �=

1/2.

The interpretation of the operator I is defined according to our intuition behind
the notion of severe ignorance: a formula ϕ is ignored (in a world) when it is
indeterminate (i.e. evaluated to 1/2) in all the related worlds.
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Observe that, in accordance with the syntactic stipulations, we are establishing that
is an external formula (in the sense that it can assume classical truth-value only). In
other words, the recurse to the third truth-value is used only at the propositional level
and does not affect modal formulas. Moreover, there is no special assumption behind
the accessibility relation R in weak three-valued Kripke structures: it is simply inter-
preted as an epistemic accessibility relation. Accordingly, the rationale behind the
interpretation of I is that a formula is being ignored in case it is neither true nor false
– it is indeterminate – in every world s an agent has epistemic access to from w.
Recall that the notion of ignorance we aim at modeling with this semantics is severe.
To further clarify our goal imagine, for instance, the following situation. Charles Dar-
win was aware, in 1859, of the existence of a form of hereditariness; however he did
not know exactly the functioning mechanism of such process. Moreover, in every
scenario accessible to his mind in that period, the cause of hereditariness was not
determined. So, if we think a formula ϕ exemplifying the mechanism of hereditari-
ness, then, in 1859, it held that Darwin was (severely) ignorant of ϕ, because ϕ was
indeterminated in every possibile scenario. Other mechanisms, although not entirely
known, were not (severely) ignored by Darwin himself at that time. For instance, we
can not say that he was ignorant of the so called “missing links”. Although he could
not find them, he had an idea of how to search them, thanks to the analysis of fossils.

Accordingly, it is false that a formula ϕ is being ignored (in a world w) when there
is a (related) world where ϕ is either true or false.

We say that a formula ϕ is valid in a model M = 〈W, R, v〉 – we will write
M |= ϕ – if, for every w ∈ W , v(w, ϕ) = 1.

A comment on this choice is in order. The introduced semantics of I relies on
the presence of the third truth-value 1/2 to be read as “indeterminate”. In partic-
ular, severe ignorance, thought as a content-theoretic notion (in contrast with the
truth-theoretic notion modeled by the standard view in S4), is rendered thanks to the
infectious behaviour of 1/2. For this reason, it is natural to take 1/2 as not designated,
since the evaluation of a formula to 1/2 (in every related world) is a good reason for
its ignorance.

We say that a formula ϕ is valid in a frame F = 〈W, R〉 (and write F |= ϕ) if it
is valid in every model having F as frame. A frame (accordingly, a model) will be
called reflexive if its accessibility relation is reflexive. From now on, we will write
Kripke model instead of weak three-valued Kripke model. We define |=SI as the
global modal logic on the class of all reflexive Kripke frames (see e.g. [11]), i.e.

• � |=SI ϕ iff, for every reflexive Kripke model M,

if M |= γ , for every γ ∈ �, then M |= ϕ.

Remark 11 Notice that, given a model M = 〈W, R, v〉 and a world w ∈ W , the
truth of the formula Iϕ at the world w (v(w, Iϕ) = 1) is equivalent to the fact that,
for every world s related to w, there exists a propositional variable p occurring open
in ϕ such that v(s, p) = 1/2.
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The above consideration is due to the peculiar behavior of the truth-value 1/2 in
weak Kleene and gives already a gist of the severity of ignorance obtained via the
introduced semantics of I. Indeed a (complex) formula ϕ is being ignored when a
part of it (occurring open) is actually being ignored (as evaluated to 1/2 in every
related world), independently of the logical form of ϕ (exceptions hold for external
formulas).

The choice of defining the logic |=SI as that of all reflexive frames is mainly moti-
vated by the fact that accessibility is interpreted in epistemic sense, thus is natural to
think that every world is (epistemically) accessible to itself.

The following provides the behaviour of the epistemic modality I in |=SI .

Proposition 12 The following formulas are valid in |=SI :

(1) |=SI Iϕ ↔ I¬ϕ;
(2) |=SI Iϕ ∧ Iψ → I(ϕ ∧ ψ);
(3) |=SI I(ϕ ∧ ψ) → Iϕ ∨ Iψ ;
(4) |=SI Iϕ ∨ Iψ ↔ I(ϕ ∨ ψ);
(5) |=SI Iϕ → I(ϕ ∨ ¬ϕ);
(6) |=SI Iϕ → I(ϕ ∧ ¬ϕ);
(7) |=SI Iϕ → J1ϕ;
(8) |=SI IIϕ → Iϕ;
(9) |=SI IIϕ → Inϕ, for n ≥ 2.

Proof We just show the validity of some of the listed formulas.

(1) We verify only one direction (as the other is analog). Let M = 〈W, R, v〉 be
a model such that v(w, Iϕ) = 1, for some w ∈ W ; then v(s, ϕ) = 1/2, for every
s ∈ W such that wRs, hence v(s, ¬ϕ) = 1/2, i.e. v(s, I¬ϕ) = 1.

(3) Let M = 〈W, R, v〉 be a model such that v(w, I(ϕ ∧ ψ)) = 1, for some
w ∈ W . Then v(s, ϕ ∧ ψ) = 1/2, for every s ∈ W such that wRs, which implies
that v(s, ϕ) = 1/2 or v(s, ψ) = 1/2, whence v(w, Iϕ) = 1 or v(w, Iψ) = 1.

(7) Suppose that M = 〈W, R, v〉 be a model such that v(w, Iϕ) = 1 for some
w ∈ W and, in view of a contradiction, that v(w, J1ϕ) = 0, i.e. v(w, ϕ) �= 1/2.
Then v(s, ϕ) = 1/2, for every s ∈ W such that wRs and, since R is reflexive,
v(w, ϕ) = 1/2, a contradiction.

Observe that the validity Iϕ → J1ϕ is strictly related with the reflexivity of the
models. It is immediate to check that the formula is not valid in non-reflexive models
(think, for instance, to a model with only one world with the empty relation). Indeed
the formula characterizes the class of reflexive frames.

Proposition 13 Let F = 〈W, R〉 be a frame. Then F |= Iϕ → J1ϕ if and only if R

is reflexive.

Proof (⇒). Let F |= Iϕ → J1ϕ. Let w ∈ W and consider the set X = {x ∈
W | (w, x) ∈ R}. We have to show that w ∈ X. Consider the valuation v(s, p) = 1/2
if and only if s ∈ X (for every propositional variable p). Then, by Definition 10,



A Logical Modeling of Severe Ignorance

v(w, Ip) = 1. By assumption, the model M = 〈W, R, v〉 validates Iϕ → J1ϕ, thus
v(w, J1p) = 1, whence v(w, p) = 1/2, therefore w ∈ X.
(2) ⇒ (1) follows from Proposition 12.

As noticed in [44], the essential feature of any notion of ignorance is captured
by formulas (1) and (3) in Proposition 12. It is indeed very reasonable to think that
an agent is ignorant about a formula if and only if is about its negation. Moreover,
ignorance transfers from a conjunction to at least one constitutive part of it. Severe
ignorance meets the minimal desiderata.

As a remarkable difference with S4 (and Ig), in this new semantics for I, being
ignorant of two (or more) formulas implies being ignorant also of their conjunction.

Not surprisingly, the converse (which holds in S4) does not characterize severe
ignorance (see Remark 14). It is indeed reasonable to think that being ignorant of
a book (a conjunction of statements), does not mean to be ignorant of any single
statements in the book, but, perhaps, some relevant parts of it. Moreover, (4) holds in
virtue of the infectivity of the third truth-value.

We will discuss the significance of all the mentioned logical laws in Section 5.
Some notable failures are collected in the following.

Remark 14 The following formulas are not valid in |=SI :

(1) �|=SI I(ϕ ∧ ψ) → Iϕ ∧ Iψ ;
(2) �|=SI I(ϕ → ψ) → (Iϕ → Iψ);
(3) �|=SI (Iϕ → Iψ) → I(ϕ → ψ);
(4) �|=SI Iϕ → IIϕ;
(5) �|=SI Iϕ → ϕ;
(6) �|=SI J1ϕ → Iϕ.

In Section 5, we will argue that it is not a problem for the severe notion of
ignorance not to have distribution of I over conjunction and implication (formu-
las (2) and (3)). On the other hand, since severe ignorance is here conceived as a
content-theoretic notion, it is obvious to expect the failure of the factivity (5).

4.2 Completeness and Decidability

When no danger of confusion is occurring we will drop the subscripts SI and Be to �.
The following result, whose form resembles a weakened version of the (classical)

deduction theorem, can be proven for �SI .

Lemma 15 (1) Let � �SI ϕ, with ϕ deductively equivalent to no formula Iψ (i.e.
ϕ � Iψ or Iψ � ϕ), for every ψ ∈ FmI . Then there exist γ1, . . . , γn ∈ � (or the
formula 1 if � = ∅) such that �SI J2γ1 ∧ · · · ∧ J2γn → J2ϕ (or �SI 1 → J2ϕ

if � = ∅);
(2) If �SI γ1 ∧ · · · ∧ γn → ϕ, for any γ1, . . . , γn, ϕ ∈ FmI then γ1, . . . , γn �SI ϕ.

Proof (1). By induction on the length n of the derivation of ϕ from �.
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Basis. n = 1, i.e. ϕ is (the instance of) an axiom. Thus ϕ is an external formula,
therefore � 1 ↔ ϕ ↔ J2ϕ, from which � 1 → J2ϕ.
Inductive step. For n > 1, ϕ can be obtained only by applying [MP] as last rule
(since by assumption ϕ �= Iψ , for every ψ ∈ FmI), therefore ϕ is derived from two
premisses of the form ψ , ψ → ϕ, for some ψ ∈ FmI . By inductive hypothesis, there
exist formulas γ1, . . . , γn, δ1, . . . , δm ∈ � such that � J2γ1 ∧ · · · ∧ J2γn → J2ψ and
� J2δ1∧· · ·∧J2δm → J2(ψ → ϕ), whence � J2γ1∧· · ·∧J2γn∧J2δ1∧· · ·∧J2δm →
J2ψ ∧ J2(ψ → ϕ), thus � J2γ1 ∧ · · · ∧ J2γn ∧ J2δ1 ∧ · · · ∧ J2δm → J2ϕ (since
� J2ψ ∧ J2(ψ → ϕ) → J2ϕ).
(2) Immediate.

Our proof of completeness consists in an adaptation of the strategy, devised by
Segerberg in [39], for modal logics based on the external version of Paraconsistent
Weak Kleene (H0).

Definition 16 A set of formulas � ⊂ FmI is maximal iff for all formulas ϕ ∈ FmI,
either ϕ ∈ �, or ¬ϕ ∈ �, or J1ϕ ∈ �.

Recall that a set of formulas � is inconsistent in case � � ϕ, for every ϕ ∈ FmI.
� is consistent if it is not inconsistent.

Remark 17 A useful operative notion of consistency (for sets of formulas) is given
by the following: a set of formulas � ⊂ FmI is consistent iff there is no formula
ϕ ∈ FmI such that � � J

i
ϕ and � � ¬J

i
ϕ, for any i ∈ {0, 1, 2} (it is immediate to

check that this corresponds to the above notion of consistency).

We denote by X the set of all maximal and consistent sets of formulas, whose
basic properties are recalled in the following.

Lemma 18 For every X ∈ X , the following hold:

(1) If ϕ → ψ ∈ X and ϕ ∈ X then ψ ∈ X;
(2) ϕ ∧ ψ ∈ X if and only if ϕ, ψ ∈ X;
(3) ϕ ∈ X if and only if J2ϕ ∈ X;
(4) J2ϕ ∈ X if and only if ¬J2ϕ �∈ X.

Proof Immediate.

Lemma 19 Let � be a consistent set of formulas. � ∪ {ϕ} is inconsistent if and only
if � � ¬ϕ or � � J1ϕ.

Proof (⇒) Let�∪{ϕ} be inconsistent and that� �� ¬ϕ. By assumption,�∪{ϕ} � 0.
By Lemma 15-(1), there exist formulas γ1, . . . , γn ∈ � such that � J2γ1 ∧ · · · ∧
J2γn ∧ J2ϕ → J20, hence � J2γ1 ∧ · · · ∧ J2γn → ¬J2ϕ, thus � � ¬J2ϕ. Since�Be

¬J2ϕ ↔ J1ϕ ∨ J0ϕ, � � J1ϕ ∨ J0ϕ. By assumption, � �� ¬ϕ which implies
� �� J0ϕ, hence � � J1ϕ.
(⇐) Let � � ¬ϕ or � � J1ϕ. Suppose � � ¬ϕ is the case, hence � � J0ϕ (since
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¬ϕ �Be
J0ϕ). On the other hand, � ∪ {ϕ} � J2ϕ, hence � ∪ {ϕ} � J0ϕ ∧ J2ϕ, and

it is immediate to check that � J0ϕ ∧ J2ϕ → 0, thus it is inconsistent. The proof is
analog in case � � J1ϕ.

Remark 20 Observe that the content of Lemma 19 can not be simplified by deleting
the second disjunct (as in [39, Lemma 4.9]) as, for instance, {J1ϕ, ϕ} is inconsistent
but J1ϕ �� ¬ϕ.

Lemma 21 Let � be a consistent set of formulas. The following are equivalent:

(1) � � ϕ;
(2) for every X ∈ X such that � ⊆ X, ¬ϕ �∈ X and J1ϕ �∈ X.

Proof (1) ⇒ (2). Suppose � � ϕ. Let X ∈ X such that � ⊆ X and, by contradic-
tion, that ¬ϕ ∈ X or J1ϕ ∈ X. Observe that X � ϕ, so X � J2ϕ (since ϕ �Be

J2ϕ).
Suppose ¬ϕ ∈ X is the case. Then X � ¬J2ϕ (since ¬ϕ �Be

¬J2ϕ), in contradic-
tion with the fact that X is consistent (see Remark 17). Differently, J1ϕ ∈ X is the
case. Thus X � J1ϕ ∧ J2ϕ, again in contradiction with the consistency of X (since
� J2ϕ ∧ J1ϕ → 0).
(2) ⇒ (1). We reason by contraposition and suppose that � �� ϕ. Consider an
enumeration ψ1, ψ2, ψ3, . . . of the formulas in FmI . Define:

�0 =
{

� ∪ {¬ϕ} if consistent,
� ∪ {J1ϕ} otherwise.

�i+1 =

⎧
⎪⎨

⎪⎩

�i ∪ {ψi} if consistent, else
�i ∪ {¬ψi} if consistent, else
�i ∪ {J1ψi}.

�∗ =
⋃

i∈N
�i .

Observe that �∗ is maximal, by construction. We want to show that �∗ is also con-
sistent. We first claim that �0 is consistent. If �0 = � ∪ {¬ϕ} then it is consistent
by construction. Differently, �0 = � ∪ {J1ϕ}, which means that � ∪ {¬ϕ} is incon-
sistent. Hence, by Lemma 19, � � ¬¬ϕ or � � J1¬ϕ. However, � �� ¬¬ϕ (since,
by assumption, � �� ϕ), so � � J1¬ϕ, which implies � � J1ϕ. By Lemma 19,
�0 = � ∪ {J1ϕ} is consistent if and only if � �� ¬J1ϕ and � �� J1J1ϕ. Now,
since � is consistent and � � J1ϕ, then � �� ¬J1ϕ. Moreover, since � is consistent
� �� J1J1ϕ (as � J1J1ϕ ↔ 0). This shows that �0 is consistent.
We claim that �i+1 is consistent, given that �i is. So, suppose that �i ∪ {ϕ} and
�i ∪ {¬ϕ} are inconsistent. Then, by Lemma 19, �i � ¬ϕ or �i � J1ϕ, and,
�i � ¬¬ϕ or �i � J1¬ϕ. By consistency of �i , the only possible case is that
�i � J1ϕ and �i � J1¬ϕ, from which follows the consistency of � ∪{J1ϕ} (indeed,
if it is not consistent then, by Lemma 19, �i � ¬J1ϕ, in contradiction with the con-
sistency of �i). This shows that �∗ is maximal and consistent (�∗ ∈ X ) and, by
construction, ¬ϕ ∈ �∗ or J1ϕ ∈ �∗.
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We now define the accessibility relation between elements in X .

Definition 22 Let X, Y ∈ X . We define a relation R as follows:

XRY if and only if for every formula ϕ ∈ FmI , if Iϕ ∈ X then J1ϕ ∈ Y .

Lemma 23 Let X ∈ X . Then, for every formula ϕ ∈ FmI, Iϕ ∈ X if and only if
J1ϕ ∈ Y , for every Y ∈ X such that XRY .

Proof The left to right direction is obvious. For the other, assume that J1ϕ ∈ Y , for
every Y ∈ X such that XRY . Consider the set � = {J1ψ | Iψ ∈ X}. Observe
that � �= ∅, since I1/2∈ X; we claim that � � J1ϕ. To this end, let � ⊆ Z,
for some Z ∈ X and observe that this implies that J1ϕ ∈ Z. Indeed, for Iψ ∈ X

then J1ψ ∈ �, thus J1ψ ∈ Z; so XRZ (by Definition 22), whence, by hypothesis,
J1ϕ ∈ Z. Now, since Z is consistent, ¬J1ϕ �∈ Z and J1J1ϕ �∈ Z then, by Lemma 21
lemma: Lemma 6 (4.10 di Segerberg), we have � � J1ϕ. By Lemma 15-(1), there
exist formulas J1ψ1, . . . , J1ψn ∈ � such that � J2J1ψ1∧· · ·∧J2J1ψn → J2J1ϕ, i.e.� J1ψ1∧· · ·∧J1ψn → J1ϕ (as � J2α ↔ α, for every external formula α). By axiom
(IJ1 ), we have� Iψ1∧· · ·∧Iψn → J1ψ1∧· · ·∧J1ψn hence� Iψ1∧· · ·∧Iψn → J1ϕ,
and by Lemma 15-(2), Iψ1 . . . , Iψn � J1ϕ, thus X � J1ϕ, and applying the rule [I]

5,
X � Iϕ. Since X is maximal and consistent, we conclude Iϕ ∈ X.

We are ready to define the concept of canonical model (keeping the usual
nomenclature in modal logic).

Definition 24 A canonical model is a weak three-valued Kripke model M =
〈Y,R, v〉 such that Y ⊆ X (Y �= ∅), R is as in Definition 22, and v is defined as
follows:

• v(X, p) = 1 if and only if p ∈ X;
• v(X, p) = 0 if and only if ¬p ∈ X;
• v(X, p) = 1/2 if and only if J1p ∈ X,

for every X ∈ Y .

Remark 25 Observe that any canonical model M = 〈Y,R, v〉 is reflexive. Indeed,
let X ∈ Y such that Iϕ ∈ X (for some ϕ), then, by Axiom (IJ1 ), Iϕ → J1ϕ ∈ X,
thus J1ϕ ∈ X, which implies that XRX.

The following result extends the construction of canonical models to all reflexive
frames.

5We are strongly relying on the fact that the rule [I] is essentially different from the necessitation rule.
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Lemma 26 Let M = 〈Y,R, v〉 be a canonical model. Then, for every formula
ϕ ∈ FmI and every X ∈ Y , the following hold:
(1) v(X, ϕ) = 1 if and only if ϕ ∈ X;
(2) v(X, ϕ) = 0 if and only if ¬ϕ ∈ X;
(3) v(X, ϕ) = 1/2 if and only if J1ϕ ∈ X.

Proof The claim is proved by induction on the complexity of ϕ. The basis follows
from Definition 24. As for the inductive step, we show only the cases of ϕ = J2ψ

and ϕ = Iψ , for some ψ ∈ FmI (the others are routine). As regards the former,
suppose that ϕ = J2ψ , for some ψ ∈ FmI . For any valuation v (and any X ∈ Y),
v(X, J2ψ) �= 1/2 (in accordance with the fact that J1J2ϕ �∈ X), thus we only have
to consider two cases:
(a) v(X, J2ψ) = 1 iff v(X, ψ) = 1, thus, by induction hypothesis, ψ ∈ X and, by
Lemma 18, J2ψ ∈ X. (b) v(X, J2ψ) = 0 iff either v(X, ψ) = 0 or v(X, ψ) = 1/2.
Consider, first, the case v(X, ψ) = 0; by induction hypothesis, ¬ψ ∈ X and, since
X is consistent, J2ψ �∈ X, thus by Lemma 18, ¬J2ψ ∈ X. In the second (sub)case,
v(X, ψ) = 1/2, thus, by induction hypothesis, J1ψ ∈ X. Since X is maximal (and
consistent) then ψ �∈ X, thus, by Lemma 18, J2ψ �∈ X, whence ¬J2ψ ∈ X. Consider
now the case of ϕ = Iψ , for some ψ ∈ FmI. We only have to consider the following
two cases.
(i) v(X, Iψ) = 1 if and only if v(Y, ψ) = 1/2, for every Y ∈ Y such that XRY . By
induction hypothesis, J1ψ ∈ Y thus, by Lemma 23, Iψ ∈ X.

(ii) v(X, Iψ) = 0 if and only if v(Y, ψ) �= 1/2, for some Y ∈ Y such that
XRY . By induction hypothesis, J1ψ �∈ Y , hence, by Lemma 23, Iψ �∈ X, hence
¬Iψ ∈ X or J1Iψ ∈ X. But the latter is never the case, since X is consistent, whence
¬Iψ ∈ X.

We are now ready to prove (strong) completeness, i.e. that �SI and |=SI are the
same logic.

Theorem 27 (Completeness) �SI= |=SI .

Proof (⇒) It is immediate to check that all axioms and rules are sound. We just
exemplify the case of [I]. So, let M = 〈W, R, v〉 be a (reflexive) model such that
M |= J1ϕ, i.e. v(w, ϕ) = 1/2, for every w ∈ W ; then v(w, Iϕ) �= 0, hence M |=
Iϕ.

(⇐) We reason by contraposition and suppose that � ��SI ϕ; this implies that � is
consistent. Let X � ⊆ X the set of maximal and consistent sets extending � (� ⊆ Y ,
for every Y ∈ X �); observe that, by Lemma 21, X � �= ∅; in particular, there exists
X ∈ X such that � ⊆ X and ¬ϕ ∈ X or J1ϕ ∈ X. Consider now the canonical model
M = 〈X �,R, v〉. By Lemma 26, M |= γ , for every γ ∈ �. On the other hand,
since ¬ϕ ∈ X or J1ϕ ∈ X, then v(X, ϕ) �= 1, i.e.M �|= γ , hence � �|=SI ϕ.

From now on, we will write SI to indicate both �SI and |=SI (since they are
equal). The completeness strategy applied insofar allows to prove decidability for SI
(Theorem 30).
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Definition 28 Let ϕ ∈ FmI. The set Sub(ϕ) of subformulas of ϕ is the smallest set
of formulas such that:

(1) ϕ ∈ Sub(ϕ);
(2) if ϕ = ¬ψ , or ϕ = J2ψ , or ϕ = Iψ (for some ψ ∈ FmI) then ψ ∈ Sub(ϕ);
(3) if ϕ = ψ ∨ χ ∈ Sub(ϕ), then ψ, χ ∈ Sub(ϕ).

Let M = 〈W, R, v〉 be a model. We say that a model has cardinality n (with
n ∈ N), if W has cardinality n (| W |= n).

Lemma 29 Let ϕ a formula such that | Sub(ϕ) |= n. The following are equivalent:

(1) �SI ϕ;
(2) M |=SI ϕ for all models with cardinality 2n.

Proof (i) ⇒ (ii) is obvious.
(ii) ⇒ (i). We reason by contraposition and suppose that ��SI ϕ. Define the following
relation on the set X : X ≡ Y if and only if, for all ψ ∈ Sub(ϕ), ψ ∈ X iff ψ ∈ Y . It
is immediate to check that ≡ is an equivalence relation on X . Since ϕ ∈ Sub(ϕ), then
clearly | X/≡ |≤ 2n. Define the binary relation ρ on the set X/≡ (whose elements are
denoted by [X], [Y ], [Z], . . . ) as follows:
[X]ρ[Y ] if and only if, for all ψ such that Iψ ∈ Sub(ϕ), if Iψ ∈ X, then J1ψ ∈ Y .

Consider the structure N = 〈X/≡, ρ, w〉, where w is defined as follows:

• w([X], p) = 1 if and only if p ∈ Sub(ϕ) and p ∈ [X];
• w([X], p) = 0 if and only if p ∈ Sub(ϕ) and ¬p ∈ [X];
• w([X], p) = 1/2 if and only if p ∈ Sub(ϕ) and J1p ∈ [X],
for every [X] ∈ X/≡. It is immediate to check that N is a model of SI. Moreover,
let M = 〈X ,R, v〉 be a canonical model: it is not difficult to prove that v(X, ψ) =
w([X], ψ), for every X ∈ X and for every formula ψ ∈ Sub(ϕ) (the proof of this
claim runs by induction on the length of the formula ψ). Since ��SI ϕ, then there
exists X ∈ X and some v (in the canonical model M) such that v(X, ϕ) �= 1 (this
follows from the proof of Theorem 27). Then, by the previous claim, w([X], ϕ) �= 1
and the cardinality of the model N is at most 2n.

As a direct consequence of Lemma 29 one gets:

Theorem 30 The logic SI is decidable.

5 Conclusion and Comparison with Other Approaches

We have introduced severe ignorance as a content-theoretic notion. In particular, we
have focused on the logical modeling of such notion, assumed as primitive (“as a first
class citizen”), i.e. disconnected from knowledge, via a modal logic based on a three-
valued propositional logic. The intuition behind our proposal is that being ignorant
of ϕ means that ϕ is indeterminate (is assigned with the third value 1/2) in all the
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Fig. 3 A comparison of the
logical truths in the logics SI
and the standard view of I S4
(see Definition Eq. 1)

  n.d. stands for not defined

worlds accessible to an agent. To the best of our knowledge, the unique existing
system considering I as a primitive modality is the logic Ig, by Van der Hoek and
Lomuscio [44]. However, as discussed in Section 2, in Ig the semantics of I coincides
with the interpretation of ignorance as “lack of knowledge” in S4, although no (term-
definable) modality expressing knowledge can be defined in Ig. Being conscious of
this relevant difference between Ig and the standard view in S4, we will identify
them with respect to the behaviour of the modality for ignorance I in the following
discussion.

We make a comparison, in Fig. 3, between SI and S4 (and thus also Ig) in
terms of logical truths explicitly involving I (all the listed formulas have been men-
tioned in the previous sections). The aim is to show the existing difference between
approaching ignorance as lack of knowledge (standard view in S4) and the type
of content-theoretic ignorance analyzed here, according to the three-valued modal
logic SI.

As already discussed in Section 2, SI and S4 present remarkable differences, with
respect to the behaviour of the modality I. Regarding, for instance, conjunctive state-
ments, in our proposal, an agent who is ignorant of all the chapters of a book then
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is ignorant of the whole book (formula 2), which does not happen to be the case in
S4. In the latter, perhaps, it does not make sense to express sentences like “ignoring
a book”. Indeed, one could say that “an agent does not know the content of a book”,
and not that “an agent does not know whether the content of a book”. The converse
implication (3) does not hold neither in S4 nor in SI.

A remarkable difference distinguishes S4 and SI relatively to the behaviour of I
with respect to disjunctive statements, too. Severe ignorance is characterized by the
principle that a disjunction is ignored if and only if one of the two disjuncts are
ignored. This shall not appear strange in scientific contexts that inspire our notion
of severe ignorance. Indeed, to make an example, Kepler, before investigating the
astronomical data collected by Tycho Brahe, was ignorant of (as anyone else) the
laws that today go under his name. After he discovers the first law, we might think
that he still was ignorant of the others, and we might say that he also was ignorant of
the disjunction (of the three laws), because such disjunction contains scientific terms
(the second and third law) which Kepler could not imagine nor understand.

This does not happen to be the case in S4, because lack of knowledge is different
from severe ignorance. In a toy example: suppose that I do not know whether my aunt
yesterday went to the cinema but I know that s/he went out for dinner. Thus, I do not
know whether s/he went our for dinner (only) or also to the cinema (maybe before or
after cinema), but surely I do not ignore that s/he went out to dinner or to the cinema.

The distribution of I over implication (6) fails in both SI and S4. Remarkably,
this gives the occasion, once more, to illustrate the sense of severe ignorance (in the
scientific context). To exemplify the failure of (6), we might reasonably think that in
1914, Einstein was ignorant of the fact that the curvature of space-time is the cause of
the anomaly affecting the perihelion shift of Mercury. At the time, the implication is
scientifically ignored, however scientists were conscious of the anomaly inMercury’s
perihelion. This is a good reason why I should not distribute over implication, in case
it models severe ignorance.

Formulas 7 and 8 witness that the two logics have the same behaviour with respect
to the relationship between first-order (Iϕ) and second-order ignorance (IIϕ). Not
surprisingly, the latter implies the former but not the other way round.

Formula 9 is also in common between S4 and SI. As we already commented in
Section 4, it expresses the very intuitive principle that being ignorant of a conjunc-
tion implies being ignorant of at least one of the conjuncts, a principle that must be
common (together with 1) to any possible notion of ignorance.

Formulas 10-12 witness the main difference due to the choice of different propo-
sitional basis. Indeed ϕ ∨ ¬ϕ (ϕ ∧ ¬ϕ, respectively) is true in every world, of every
model of S4 (false, respectively), hence can not be ignored. On the contrary, in a
three-valued setting, those formulas can be indeterminate (when ϕ is indeterminate)
and, consequently ignored. The validity of this formula tells us that the agent who
is ignorant of ϕ is ignorant also that ϕ ∨ ¬ϕ coincides with the truth (something
that is possible only in non-classical cases). This confirms that the notion of severe
ignorance in SI stands quite far from lack of knowledge.

Formula 12 (which is not expressible in the language of S4) states that ignoring a
formula implies that the formula takes the value 1/2 and this characterizes the class
of reflexive models (see Proposition 13).



A Logical Modeling of Severe Ignorance

Formula 13 expresses the “factivity of ignorance” (the analog of the usual notion
of factivity for the modality K for knowledge). The importance of this property for
the notion of ignorance has been recently discussed in literature, where some authors
look for logics of ignorance where it holds (see [28] and [22]). In the context of
severe ignorance, as a content-theoretic notion, we are not surprised that the formula
does not hold. However, we highlight that a modal approach, based on a three-valued
logic, can be adopted also for logics of ignorance admitting the factivity, by choosing
a different set of designated values ({1,1/2}).

Finally, both logics suffer the phenomenon that Fine [17] calls the “black hole of
ignorance”. In his paper, Fine shows that second-order ignorance and higher-orders of
ignorance are tightly tied together: once second-order ignorance is present, an agent
is doomed to the black hole of higher-order levels of ignorance. This is captured by
formula 14.

We are conscious that much logical and epistemological work remains to be done
and that also the choice of SI to model severe ignorance presents some difficulties.
For instance, it could be argued that it is quite odd that being ignorant of a formula
ϕ implies being ignorant of also ϕ ∧ ψ , when ϕ and ψ are totally unrelated formulas
(this happens to be the case in SI). Nevertheless, the present exploration highlights
that interesting aspects of ignoring are not successfully captured by the standard log-
ical approach to ignorance, based on lack of knowledge. Interestingly, disconnecting
ignorance from knowledge allows for the logical modelling of severe ignorance, a
notion which is common in the everyday practice of science. We have decided to
introduce a modal logic grounded on a peculiar non-classical propositional basis. A
choice essentially motivated by the willingness of modeling a severe notion of igno-
rance. Clearly, many other options are available, in the realm of non-classical logics:
a possibility that we leave for further research.

Appendix

In this Appendix we provide the details of the proof of strong completeness for
Bochvar (external) logic Be (Theorem 7). Moreover, we also show that Be is
algebraizable. We start with a preliminary lemma.

Lemma 31 The following elementary facts holds in Be:

(1) �Be J0(ϕ ∨ ψ) ↔ J0ϕ ∧0 ψ ;
(2) �Be J1(ϕ ∨ ψ) ↔ J1ϕ ∨ J1ψ ;
(3) �Be J2(ϕ ∨ ψ) ↔ (J2ϕ ∧ J2ψ) ∨ (J2ϕ ∧ J2¬ψ) ∨ (J2¬ϕ ∧ J2ψ);
(4) if α is an external formula, then �Be α ↔ J2α;
(5) �Be ¬J2ψ ↔ (J0ψ ∨ J1ψ).

Proof Immediate by using Theorem 6.

Lemma 32 Let � ∪ {ϕ} �Be ψ . Then � �Be J2ϕ → J2ψ .
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Proof By induction on the length of the derivation of ψ (from �).

The class of Bochvar algebras is introduced by Finn and Grigolia [18, pp. 233-
234] as algebraic semantics for Be.

Definition 33 A Bochvar algebra A = 〈A, ∨, ∧, ¬, J0, J1, J2 , 0, 1〉 is an algebra of
type 〈2, 2, 1, 1, 1, 1, 0, 0〉 satisfying the following identities and quasi-identities:
(1) x ∨ x ≈ x;
(2) x ∨ y ≈ y ∨ x;
(3) (x ∨ y) ∨ z ≈ x ∨ (y ∨ z);
(4) (x ∧ (y ∨ z) ≈ ((x ∧ y) ∨ (x ∧ z));
(5) ¬(¬x) ≈ x;
(6) ¬1 ≈ 0;
(7) ¬(x ∨ y) ≈ ¬x ∧ ¬y;
(8) 0 ∨ x ≈ x;
(9) J2Ji

x ≈ J
i
x, for every i ∈ {0, 1, 2};

(10) J0Ji
x ≈ ¬J

i
x, for every i ∈ {0, 1, 2};

(11) J1Ji
x ≈ 0, for every i ∈ {0, 1, 2};

(12) J
i
(¬x) ≈ J2−ix, for every i ∈ {0, 1, 2};

(13) J
i
x ≈ ¬(J

j
x ∨ J

k
x), for i �= j �= k �= i;

(14) J
i
x ∨ ¬J

i
x ≈ 1, for every i ∈ {0, 1, 2};

(15) ((J
i
x ∨ J

k
x) ∧ J

i
x) ≈ J

i
x, for i, k ∈ {0, 1, 2};

(16) x ∨ J
i
x ≈ x, for i ∈ {1, 2};

(17) J0(x ∨ y) ≈ J0x ∧ J0y;
(18) J2(x ∨ y) ≈ (J2x ∧ J2y) ∨ (J2x ∧ J2¬y) ∨ (J2¬x ∧ J2y);
(19) J0x ≈ J0y & J1x ≈ J1y & J2x ≈ J2y ⇒ x ≈ y.

We denote by BA3 the class of Bochvar algebras. BA3 forms a quasi-variety
which is not a variety [18]. Recall that a class K of algebras is an algebraic seman-
tics for a logic L provided that: � �L ϕ iff {τ(γ ) : γ ∈ �} |=Eq(K) τ (ϕ), where
τ = {ϕi(p) ≈ ψi(p)} is a formula-equation transformer and Eq(K) denotes the
usual equational consequence relation relative to the class K.

Theorem 34 BA3 is an algebraic semantics for Be. In particular, � �Be ϕ iff {γ ≈
1 : γ ∈ �} |=Eq(BA3) ϕ ≈ 1.

Proof (⇒) By induction on the length of the derivation of ϕ (from �), by checking
that axioms (A1)-(A29) are evaluated to 1 in every Bochvar algebra A and that the
rule (MP) preserves this property.

(⇐) We reason by contraposition. Suppose � �Be ϕ and provide a counterexam-
ple to such inference by constructing the Lindenbaum-Tarski algebra. Let � be the
smallest set of formulas including � and closed under �Be (from now on we will
simply write � instead of �Be ). For any pair of formulas, define

ϕ ∼ ψ if and only if ϕ ≡ ψ ∈ �.
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We claim that:

(1) ∼ is a congruence on Fm;
(2) [1]∼ = �;
(3) The quotient algebra Fm/∼ is a Bochvar algebra.

(1) It is easy to check that ∼ is an equivalence relation. To show that it is a con-
gruence, we check the compatibility of ∼ with the operations in the type of
LKe .

[¬] Suppose ϕ ∼ ψ , then ϕ ≡ ψ ∈ �, i.e.
2∧

i=0

J
i
ϕ ↔ J

i
ψ ∈ �, which is

equivalent to
2∧

i=0

J2−i
ϕ ↔ J2−i

ψ ∈ �. Hence, in virtue of (A12),
2∧

i=0

J
i
(¬ϕ) ↔

J
i
(¬ψ) ∈ �, i.e. ¬ϕ ≡ ¬ψ ∈ �, showing that ¬ϕ ∼ ¬ψ .

[J2 ] Suppose ϕ ∼ ψ , thus ϕ ≡ ψ ∈ �, i.e.
2∧

i=0

J
i
ϕ ↔ J

i
ψ ∈ �. In

particular � � J2ϕ ↔ J2ψ . In virtue of (A9), we have � J2ϕ ↔ J2J2ϕ and
� J2ψ ↔ J2J2ψ , from which � � J2J2ϕ ↔ J2J2ψ , i.e. J2J2ϕ ↔ J2J2ψ ∈ �

(as � is closed under consequences of �). Analog reasoning, using (A10) and
(A11), shows that J0J2ϕ ↔ J0J2ψ ∈ � and J1J2ϕ ↔ J1J2ψ ∈ �, from which
J2ϕ ∼ J2ψ .

[∨] Suppose ϕ1 ∼ ψ1 and ϕ2 ∼ ψ2. Then � � J0ϕ1 ↔ J0ψ1 and � �
J0ϕ2 ↔ J0ψ2, hence � � (J0ϕ1 ∧ J0ϕ2) ↔ (J0ψ1 ∧ J0ψ2). Applying Lemma
31-(1), we have � � J0(ϕ1 ∨ ϕ2) ↔ J0(ψ1 ∨ ψ2), from which J0(ϕ1 ∨ ϕ2) ↔
J0(ψ1∨ψ2) ∈ �. Analog reasoning (using Lemma 31-(2,3)) allows to conclude
ϕ1 ∨ ϕ2 ∼ ψ1 ∨ ψ2.

(2) [⊆] Let ψ ∈ [1]∼. Then ψ ≡ 1 ∈ �, i.e.
2∧

i=0

J
i
ψ ↔ J

i
1 ∈ �. In particular,

J2ψ ∈ � (since � J21) and J1ψ ↔ 0 ∈ � (as � J11 ↔ 0), from which we
deduce that ψ is an external formula, so, by Lemma 31-(4), ψ ∈ �.

[⊇] Let ψ ∈ �. Observe that 1 ∈ � (since � 1), hence, by Lemma 32,
� � J2ψ ↔ J21, thus J2ψ ↔ J21 ∈ �. Moreover, � � ¬J2ψ ↔ 0 and,
by Lemma 31, � ¬J2ψ ↔ (J0ψ ∨ J1ψ), so � � (J0ψ ∨ J1ψ) ↔ 0, from
which � � J0ψ ↔ 0 and � � J1ψ ↔ 0; therefore � � J0ψ ↔ J01 and
� � J1ψ ↔ J11 (as � J01 ↔ 0 and � J11 ↔ 0). This shows that ψ ≡ 1 ∈ �,
i.e. ψ ∈ [1]∼.

(3) It is routine to check that Fm/∼ is indeed a Bochvar algebra.
To provide a counterexample to the inference � �Be ϕ, consider the Bochvar

algebra A = Fm/∼ and the homomorphism h : Fm → A, h(ϕ) = [ϕ]∼. Since
� ⊆ � and � = [1]∼, then h(γ ) = 1A, for each γ ∈ �, but h(ϕ) �= 1A (since
ϕ �∈ �).
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Theorem 7 follows from Theorem 34 by observing that BA3 is the quasi-variety
generated byWKe ([18, Theorem 3.3]).

It is natural to wonder whether the quasi-variety of Bochvar algebras is simply an
algebraic semantics for Be. Actually the relationship between Be and the class BA3 is
tighter. Recall that a logic � is algebraizable withK as equivalent algebraic semantics
(where K is a class of algebras of the same language as the logic �) if there exists
a map τ from formulas to sets of equations, and a map ρ from equations to sets of
formulas such that the following conditions hold, for any pair of formulas ϕ, ψ and
set of equations E.

(ALG1) � � ϕ iff τ [�] |=Eq(K) τ (ϕ);
(ALG2) E |=Eq(K) ϕ ≈ ψ iff ρ(E) |=Eq(K) ρ(ϕ, ψ);
(ALG3) ϕ �� ρ(τ(ϕ));
(ALG4) ϕ ≈ ψ =||=Eq(K) τ (ρ(ϕ, ψ)).

Examples of algebraizable logics include, among many others, classical, intuition-
istic logic, all substructural logics and global modal logics. Not all logics though
are algebraizable: examples of non-algebraizable logics can be found in the realm of
Kleene logics, such as the Logic of Paradox (see [37]), Paraconsistent weak Kleene
(see [6]) and Bochvar internal logic (see [7–9]). The above definition of algebraiz-
able logic can be drastically simplified: � is algebraizable with equivalent algebraic
semantics K if and only if it satisfies either ALG1 and ALG4 (or, else ALG2 and
ALG3).6

Theorem 35 The logic Be is algebraizable with BA3 as equivalent algebraic
semantics.

Proof Consider τ = {ϕ ≈ 1} and ρ = {ϕ ≡ ψ}.
The usefulness of the above result will be explored in a fore-coming paper, focused

on a deeper understanding of the properties of Bochvar algebras [10].
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