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ABSTRACT
A major issue in aging research is how cellular phenomena affect aging at 

the systemic level. Emerging evidence suggests that DNA damage response (DDR) 
signaling is a key mechanism linking DNA damage accumulation, cell senescence, 
and organism aging. DDR activation in senescent cells promotes acquisition of a 
proinflammatory secretory phenotype (SASP), which in turn elicits DDR and SASP 
activation in neighboring cells, thereby creating a proinflammatory environment 
extending at the local and eventually the systemic level. DDR activation is triggered by 
genomic lesions as well as emerging bacterial and viral metagenomes. Therefore, the 
buildup of cells with an activated DDR probably fuels inflamm-aging and predisposes 
to the development of the major age-related diseases (ARDs). Micro (mi)-RNAs - 
non-coding RNAs involved in gene expression modulation - are released locally and 
systemically by a variety of shuttles (exosomes, lipoproteins, proteins) that likely 
affect the efficiency of their biological effects. Here we suggest that some miRNAs, 
previously found to be associated with inflammation and senescence - miR-146, miR-
155, and miR-21 - play a central role in the interplay among DDR, cell senescence and 
inflamm-aging. The identification of the functions of shuttled senescence-associated 
miRNAs is expected to shed light on the aging process and on how to delay ARD 
development.

INTRODUCTION

The DNA damage response (DDR) is an 
evolutionarily conserved signaling cascade, activated 
by DNA damage, which directs cell fate toward DNA 
repair, senescence, or apoptosis [1]. In higher organisms 
the DDR is thought to prevent neoplastic transformation 
in a cell-autonomous manner, by ensuring removal of 
severely damaged cells [2]. However, emerging data 
suggest that DDR signaling can also work through a 
paracrine/systemic mechanism, shaping the systemic 
environment through regulation of tissue repair and 
immune responses. Persistent DNA damage signaling (i.e. 

telomere attrition) may result in the DDR sending “early” 
and “late” extracellular signals, and in the induction of a 
senescence-associated secretory phenotype (SASP) [1, 2, 
3]. DDR/SASP signaling involves a variety of biologically 
active proinflammatory mediators, including interleukins, 
chemokines, growth factors, matrix-degrading enzymes, 
and reactive oxygen species (ROS) [4]. Its role in the 
inflammatory response to tissue damage is epitomized 
by the observation that the major factors involved the 
setting up of the secretome are the proinflammatory 
transcription nuclear factor (NF)-kappaB (NF-kB) and 
the inflammasome [5, 6, 7]. NF-kB transcriptionally 
induces a variety of inflammatory SASP components 
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(e.g. interleukin [IL]-6, IL-1 and tumor necrosis factor 
[TNF-α]), which are essential cell-autonomous regulators 
of senescence [3, 8, 9, 10, 11]. The SASP components, 
under the control of the inflammasome, are also able to 
propagate paracrine senescence to neighboring cells, 
which become capable of acquiring the SASP phenotype 
[7]. Senescence can thus spread “senescent cell” by 
“senescent cell”, at the tissue and the systemic level 
[12]. The identification and characterization of all DDR/
SASP secretome components is thus expected to provide 
valuable information on the aging process and on how to 
delay the development of age-related diseases (ARDs). It 
is reasonable to hypothesize that the age-related increase 
in the burden of cells with DDR/SASP activation links 
cell senescence and inflamm-aging, and that non-coding 
RNA, mainly microRNAs (miRNAs), play a key role in 
the diffusion of DDR/SASP signaling to surrounding non-
damaged cells during human aging, suggesting that the 
identification of new DDR/SASP signaling components 
may lead to develop novel therapeutic interventions 
against ARDs.

Systemic spread of genomic damage: inflamm-
aging

Senescence is a distinctive phenotype of eukaryotic 
cells involving the loss of replication ability and the 
acquisition of characteristic features - such as flattening 
and increased β-galactosidase (SA-β-gal) and p16INK 
expression - in response to a variety of stimuli that induce 
DNA damage, including extensive in vitro replication 
[13]. Senescence per se has long been known to be a 
mechanism halting the replication of cells that have 
acquired potentially hazardous genetic mutations [2, 14]. 
The finding that late-life clearance of senescent cells in 
a progeroid mouse model attenuates the progression of 
already established ARDs lends support to the notion 
that cell senescence is crucially involved in aging [15]. 
Notably, the same result has been achieved using a 
combination of molecules (e.g. quercetin and tyrosine 
kinase inhibitors), confirming the feasibility of selective 
senescent cell ablation and the effectiveness of senolytic 
drugs in alleviating symptoms of frailty and in extending 
health-span [16]. Even though the buildup in normal 
aged tissues of overtly senescent cells has proved 
difficult to demonstrate, it appears to have recently been 
documented in animal models and human tissues. Indeed, 
an accumulation of SA-β-gal/p16INK-positive cells has 
been described in atherosclerotic plaques, peritumor 
stroma, endothelia exposed to shear stress, in wounds in 
non-physiological and pathological conditions [17], in 
astrocytes of patients with Alzheimer’s disease [18], and 
in kidney [19], and skin of old individuals [20]. Notably, 
the recent, seminal demonstration that DNA damage alone 
can induce distinct aging phenotypes in mouse liver has 

provided new insights into the causative role of DDR as a 
driver of aging [21].

The finding that the DDR is associated with 
SASP acquisition has further documented the complex 
relationship among DDR, cellular senescence, aging 
and ARD development [22, 23]. Even though “atypical” 
senescent states may arise independent of DDR activation 
[24], a wealth of evidence demonstrates that SASP is under 
the control of the DDR machinery [13, 25]. Conceivably, 
the physiological role of SASP is to act as an alarm 
system triggering the recruitment of immune cells (i.e. 
NK cells), to clear senescent/damaged cells from tissues 
[26]. Indeed, the SASP is viewed as an evolutionarily 
conserved, molecular tissue homeostasis program [27] 
that exerts beneficial early in life [28]. In adulthood it is 
held to modulate the remodeling and repair of damaged 
tissues and to promote the clearance of damaged/senescent 
cells through activation of innate immune cells [29] 
Notably, the spread of senescence among ”bystander 
cells” requires DDR activation [30], suggesting that the 
DDR and the ensuing inflammatory response are crucially 
involved in the propagation of aging phenotypes at the 
tissue and systemic levels. The notion is reminiscent of 
the so called “radiation-induced” bystander effect, where 
soluble factors from cells exposed to ionizing radiation 
(IR) or radioactive particles have been seen to activate the 
DDR machinery in non-exposed cells [31, 32]. A variety 
of mediators, including inflammatory factors, and NF-kB 
activation have been implicated in the phenomenon [33, 
34]. Recently, it has been suggested that the diffusion 
of the radiation-induced bystander effect mimics that of 
radiation-induced senescence [35]. Consequently, DDR 
activation in a small subset of cells, including stem 
cells, may be sufficient for local and systemic SASP 
propagation, fuelling of inflamm-aging, and facilitation of 
chronic ARD development [36]. 

Metagenomic tailoring of inflamm-aging

DDR activation is critical for the replication of 
cytomegalovirus [37]. Herpes-viruses have long been 
implicated in a variety of ARDs and associated with 
mortality in elderly cohorts [38]. Indeed, a broad range 
of human DNA viruses, including papilloma-viruses, 
polyoma-viruses, and herpes-viruses, exploit DDR 
activation for their own replication [37, 39, 40]; given 
their high prevalence in adulthood, it is reasonable to 
argue that most aging individuals are exposed to these 
exogenous DDR inducers in the course of their life. Recent 
data obtained by high-throughput metagenomics indicate 
that hundreds of DNA viruses dwell in biological fluids 
from healthy individuals, suggesting that an extraordinary 
amount of potential DDR-inducing agents may accrue 
with aging [41]. Notably, bacteriophages hosted by the 
local bacterial flora and non human-tropic viruses take 
part to viral communities isolated from different tissues 
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and body compartments [42-44]. Consequently, each 
individual’s metagenomic fingerprint is likely determined 
by the surrounding environment and ecosystem [41]. This 
may also include the “atypical” large DNA viruses that 
infect unicellular eukaryotes (i.e. amebae) [45]. At least 
in principle, most components of this emerging human 
virome are not frankly pathogenic, except in extreme 
conditions, such as immunodepression [46-48]; indeed, 
some may have evolved to exert protective/symbiotic 
functions, acting as a sort of virobiota capable of shaping 
and stimulating the immune system [49, 50]. Interestingly, 
the immune response and its activation under impaired 
immune conditions have been proposed as immune 
senescence mechanisms [51]. The above considerations 
suggest that virome-driven DDR activation may provide 
a significant contribution to the buildup of senescent cells, 
shaping each individual’s inflamm-aging trajectory. 

MiR-146, miR-21, and miR-155: three key players 
in the inflamm-aging scenario

A large number of miRNAs modulate DDR 
activation and can promote or inhibit senescence and 
SASP in physiological and pathological conditions 
[52]. However, evidence regarding miRNA release 
in connection with DDR activation and/or of SASP 
acquisition and, especially, information regarding specific 

SASP-related secreted miRNAs, is quite limited. It is 
nonetheless reasonable that DDR/SASP-related miRNAs 
would share some common features such as: i) differential 
expression in senescent and young cells, making them 
senescence-associated (SA)-miRNAs; ii) the ability to 
modulate inflammatory pathways, primarily the NF-kB 
pathway, making them inflamma-miRNAs; iii) differential 
expression in total plasma/serum or in microparticles/
exosomes of patients with the major ARDs; and iv) 
significant modulation induced by bacterial and viral 
infections. In this regard, virus-synthesized miRNAs can 
themselves target NF-kB, suggesting that metagenome- 
and genome-driven mechanisms both converge on the 
host inflammatory response [53]. At least three miRNAs 
- miR-146a, miR-155 and miR-21 - are consistent with 
this scenario and may constitute an SA/inflamma-miRNA 
system that can affect the systemic proinflammatory status 
and exert adverse effects on the pathways and mechanisms 
involved in organismal homeostasis [54-57]. 
miR-146

MiRNAs of the 146 family, including miR-146a 
and miR-146b, share all the above features. MiR-146a 
is one of the major miRNAs involved in orchestrating 
immune and inflammatory signaling via modulation of 
NF-kB activation and targeting of IL-1 receptor associated 
kinase (IRAK1 and 2) and TNF receptor-associated factor 
6 (TRAF6) [58]. Intriguingly, miR-146a is an NF-kB-

Figure 1: MiRNAs released by cells that activate the DDR/SASP may be involved in signaling to non-senescent cells, 
thus spreading inflamm-aging. 



Oncotarget35512www.impactjournals.com/oncotarget

responsive miRNA [59] modulated by NF-kB through 
binding to different domains in the gene promoter region 
[60]. Therefore, miR-146a is a well-established SASP-
modulating miRNA [61]; it is also a key player in a 
negative feedback loop directed at restraining excessive 
synthesis and secretion of proinflammatory molecules, 
i.e. cytokines, chemokines, and other proinflammatory 
molecules, ensuring a balanced NF-kB expression in cells 
under different conditions [62]. Notably, its involvement 
in the control of macrophage activation and polarization, 
both in human and in animal models reinforces the notion 
that it is one of the master modulators of the systemic 
inflammatory status [63]. MiR-146a is an SA-miRNA: 
during cell senescence its intracellular expression 
significantly increases in endothelial cells [64], trabecular 
meshwork cells (HTM) [65], smooth muscle cells [66], 
and fibroblasts [67]. It is upregulated in macrophages from 
aged rats, resulting in an age-associated cell dysfunction 
[68], and has been shown to be significantly modulated in 
senescent human kidney epithelial cells as well as T cells 
[69]. 

It has been reported that cells undergoing senescence 
but not exhibiting a robust SASP did not show miR-146a/b 
upregulation, and that IL-1-α neutralizing antibodies 
abolished both miR-146a/b expression and IL-6 secretion 
[70]. It is not surprising that plasma miR-146a levels are 
modulated in patients with a number of ARDs, such as 
type 2 diabetes [71, 72], rheumatoid arthritis [73], some 
cancers [74], and Alzheimer’s disease [75]. Despite these 
considerations, the association between miR-146a and 
human diseases is extremely complex. Since miR-146a 
participates in a negative feedback loop mainly aimed to 
curb inflammation, dynamic changes in its expression are 
expected in tissues with different degrees of inflammation. 
A strong confirmation that miR-146a is involved in the 
modulation of inflamm-aging and ARD development has 
come from animal models: knockout of the miR-146a 
gene in mice leads to malignancies [76], and miR-146a-
deficient mice develop low-grade, chronic, systemic 
inflammation [77]. 

The role of miR-146a has also been investigated 
in relation to the modulation of the immune response to 
bacteria and viruses. MiR-146, as well as miR-155 and 
miR-21, are commonly affected during bacterial infection, 
like Mycobacterium tuberculosis infection, and contribute 
to the immune response [78, 79]. Notably, miR-146 and 
miR-155 are co-induced in many cell types in response 
to microbial lipopolysaccharides (LPSs) to feedback-
repress LPS signaling through Toll-like receptor (TLR) 
4 [80]. MiR-146a expression is also modulated during 
viral infections. Elevated miR-146a expression impairs 
the expression pattern of interferon (IFN)-β by targeting 
TRAF6 in human monocytes infected with Dengue 
virus [81]. Similarly, vesicular stomatitis virus (VSV) 
has been found to modulate miR-146a expression and 
to impair IFN production, inhibiting the innate antiviral 

immune response [82]. The exploitation of cellular miR-
146a by Chikungunya virus (CHIKV) is involved in the 
modulation of the host antiviral immune response [83]. In 
addition, it has been reported that miR-146a upregulation 
by Japanese encephalitis virus (JEV) leads to suppression 
of NF-kB activity and disruption of antiviral Jak-STAT 
signaling, which helps the virus evade the cellular immune 
response [84]. Hepatitis B virus (HBV) promotes miR-
146a expression through the NF-kB signaling pathway, 
and miR-146a upregulation reduces the expression of an 
important negative regulator of the complement alternative 
pathway, promoting liver inflammation [85]. 

All these data suggest that chronic miR-146a 
overexpression could curb inflammation in aseptic 
conditions, as in accumulation of senescent cells in 
tissues, whereas in presence of bacterial or viral infection 
its upregulation may favor pathogen survival, contributing 
to the immunodeficiency (immunosenescence) associated 
with aging. 
miR-155

MiR-155 also shares the features of DDR/
SASP-related miRNAs. Its expression in macrophages 
increases in response to LPS, TNF-α, and IFN-β [86]. 
Its serum levels have a diagnostic role in patients with 
a variety of carcinomas [87]. MiR-155 upregulation has 
been described in bone marrow-derived dendritic cells 
(BMDCs) under activating conditions [88]. Moreover, 
in human endothelial cells (HUVECs) it regulates the 
expression of several inflammatory molecules, attenuating 
the adhesion of Jurkat T cells to activated HUVECs and 
reducing HUVEC migration [89]. In addition, miR-
155 can inhibit IR-induced senescence both by acting 
downstream of the p53 and p38 mitogen-activated protein 
kinase (MAPK) pathways and by regulating tumor protein 
53-induced nuclear protein 1 (TP53INP1) expression [90]. 

Notably, the recent report of a role for it as a key 
regulator of telomere stability has led to its inclusion 
among “telo-miRNAs” [91]. Surprisingly, miR-155 
upregulation antagonizes telomere integrity and increases 
genomic instability. This finding suggests that miRNAs 
may have opposite effects on senescence, promoting or 
protecting from cell senescence based on the differential 
expression of their target in receiving cells: in cells 
involved in the inflammatory response miR-155 seems 
to have beneficial effects by targeting pathways that 
participate in the modulation of inflammation, whereas in 
those not directly involved in inflammation it may promote 
genomic instability and cell senescence, thus contributing 
to accelerating aging and ARD development. 

Furthermore, miR-155 modulates the response to a 
number of bacterial infections. Following mycobacterium 
tuberculosis infection, miR-155-deficient mice died 
significantly earlier than wild-type mice [92]. MiR-
155, miR-146b, and their predicted target gene IL-
6, are upregulated in Helicobacter pylori-positive 
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gastroduodenal ulcer [93]. MiR-155 also modulates viral 
infections, such as HBV replication [94]. Notably, some 
viral miRNAs share seed sequence homology with human 
miR-155 [95, 96]. Both miR-155 and virus-encoded 
miR-155 orthologs regulate the expression of TLR3, a 
TLR family member that recognizes double-stranded 
RNA carried by some viruses such as retroviruses. Upon 
recognition, TLR3 induces INF production, which signals 
other cells to increase their antiviral defenses [97]. 

Unexpectedly, miR-155-deficient mice are resistant 
to autoimmune diseases [98, 99]. Upon stimulation 
with ATP, miR-155-/- dendritic cells showed limited Th2 
priming capacity and reduced chemotaxis and IL-1 β 
secretion [100]. 

Notably, increased miR-155 expression levels 
have recently been detected in human adipocytes and 
macrophages and in their supernatants under LPS 
stimulation, providing one of the first demonstrations that 
miR-155 is a component of the secretome involved in the 
modulation of inflammation [101]. 

On the whole, these data show a complex interplay 
between miR-155 and immunity, suggesting that this 
miRNA may have different functions in innate and 
adaptive immune responses and that the systemic diffusion 
of this DDR/SASP-related miRNA may have both adverse 
and beneficial effects, depending on overall senescence/
immunological host condition.
MiR-21

MiR-21 is another DDR/SASP-related miRNA 
candidate. Its function is especially complex, since 
demonstration of its aberrant expression in numerous 
cancers has led to its designation as an ‘onco-miR’; 
nonetheless it has also been shown as a key modulator 
in many inflammatory pathways [102, 103]. MiR-
21 targets two important factors in the TLR signaling 
pathway, myeloid differentiation factor 88 (MyD88) and 
interleukin-1 receptor-associated kinase 1 (IRAK1). Its 
upregulation reduces replicative lifespan, while stable 
knock-down extends the replicative life span of normal 
endothelial cells [104]. A mathematical model integrating 
miR-21 and miR-146 expression into a signaling pathway 
in an in silico inflammation model has shown that the 
negative feedback provided by miR-21 stimulates the 
propensity of oscillations in NF-κB and IL-6 activity, 
whereas the negative feedback provided by miR-146a 
dampens them [105]. This process is fairly sensitive to the 
inputs of miR-21 and miR-146, suggesting that variations 
in the relative strength of the two feedbacks may provide 
for altered response dynamics to the same stimulus. 
The model may be applied to other inflamma-miR 
combinations. As expected for a putative DDR/SASP-
related miRNA, miR-21 is upregulated during hepatitis C 
virus infection and negatively regulates IFN-α signaling 
through MyD88 and IRAK1; it may thus be a potential 
therapeutic target for antiviral intervention [106, 107]. 

Systemic miRNAs: a word about their shuttles

MiRNAs are released into the bloodstream inside 
vesicles, such as exosomes, microparticles and apoptotic 
bodies [108, 109], bound to HDL/LDL [110] or to RNA-
binding proteins such as Argonaute 2 (Ago2) [111, 112]. 

Interestingly, views on the main miRNA shuttle 
strategies are discordant [113, 114]. Moreover, no data 
have been reported on the age-related prevalence of 
specific miRNAs and their shuttles. All miRNA transport 
strategies described to date allow communication 
between cells found in different organs. Exosomes may 
be the simplest and most robust way to realize a systemic 
miRNA-based signal network [115]. However, little is 
known of how miRNA species are sorted into exosomes 
and what miRNA binding proteins are involved. 

Exosomes and microparticles released by irradiated 
cells have been demonstrated to reproduce the IR 
bystander effect [116], suggesting that DDR activation 
is capable of local and systemic signal diffusion and 
that miRNAs and their carriers may play a crucial role 
in it. An increased release of exosome-like microvesicles 
has been detected in normal human fibroblasts during 
replicative senescence or premature senescence [117]. 
Consistent with this finding, ceramide triggers exosome 
secretion, and endogenous ceramide levels increase with 
senescence onset [118, 119]. Moreover, treatment of 
young human endothelial cells with exogenous ceramide 
induces a senescent phenotype characterized by inhibition 
of cell proliferation and by a concomitant rise of SA-β-
gal activity [120]. The increased ceramide biosynthesis 
seen during cellular senescence could thus contribute to 
increased exosome release demonstrated in senescent 
cells. 

HDL is another well-established circulating miR 
carrier, shuttling the potent gene regulators to distant 
tissues. The report that miRNAs carried by HDL may 
be altered in disease states had further broadened our 
understanding of the complex effects that the lipoprotein 
can exert on target cells and tissues [121]. The delivery of 
lipid-associated miRNAs to recipient cells is achieved by 
various routes, including endocytotic uptake, membrane 
fusion, and scavenger receptors [122, 123]. 

It is reasonable to assume that a subset of miRNAs, 
released by senescent cells, infected cells or directly by 
pathogens (like viruses and bacteria) into the tissues and/
or in the circulation inside exosomes or associated with 
HDL or binding proteins, may contribute to the systemic 
spread of DDR/SASP during aging modulating in turn 
both immunosenescence and inflamm-aging (Figure 1). 

miRNAs and their shuttles: servants of two 
masters

As noted above, bacterial and viral infections alter 
the endogenous miRNome and try to harness it to facilitate 
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virus survival and replication in the host [124, 125]. A core 
temporal response to infection, shared across bacteria, has 
recently been described; it comprises a set of miRNAs, 
including miR-155, that may play an essential role in 
the regulation of basic cellular responses to stress [126]. 
Notably, DNA viruses encode viral miRNA, which can 
interfere with many cellular activities [127, 128, 129]. 
A relevant example is miR-155-like encoded by Kaposi 
sarcoma (KS) virus [95]. Moreover, viruses exploit 
exosomes to silence viral genes in latently infected cells, 
suggesting that the virus has evolved mechanisms that 
curtail rather than foster the spread of infection under 
certain conditions [128]. However, in some conditions 
exosomes released by infected cells may propagate the 
infection by evading the immune surveillance, primarily 
NK activation [127, 129]. Intriguingly, virus-promoted 
exosome biogenesis can also stimulate the immune 
system, eventually resulting in chronic stimulation 
promoting inflamm-aging- [130]. Notably, miR-21 and 
miR-146a seemed to be preferentially incorporated into 
exosomes and were virtually undetectable as free miRNAs 
in the supernatant of cells infected with Kaposi sarcoma-
associated herpesvirus (KSHV) [131]. Transfer of the 

oncogenic exosomes to immortalized endothelial cells 
enhanced cell migration and IL-6 secretion, suggesting 
that KS-derived exosomes may be part of the paracrine 
signaling mechanism that mediates KSHV pathogenesis 
[131]. 
Emerging role of miRNAs and their shuttles in ARDs

MiR-21, miR-146a, and miR-155 are among the 
miRNAs being reported as biomarkers for a number of 
distinct human diseases, suggesting that they are involved 
in the modulation of non-specific pathogenic mechanisms 
[132]. The expression levels of these miRNAs are 
significantly modulated in senescent cells compared 
with younger ones as well as in plasma/serum of aged 
healthy subjects compared with patients with the most 
common ARDs [133-139]. SA-miRs and inflamma-
miRs are modulated during normal aging, both in cells 
and biological fluids, and show differential expression 
in a number of ARDs, such as cardiovascular diseases, 
T2DM, autoimmune diseases, and cancers [140]. These 
findings support the emerging concept that senescent cells 
and their secretome have a broad biological significance 
in human physiological aging and in ARDs [141]. Indeed, 
specific targeting of senescent cells in different tissues has 

Figure 2: MiR-146, miR-155, and miR-21, three examples of circulating miRNAs released by different tissues in 
pathological conditions such as age-related diseases.
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been demonstrated to delay ARD development, reducing 
chronic inflammation through SASP modulation and 
probably enhancing the appropriate immunomediated 
responses to pathogens [142]. Since an increasing number 
of studies have identified miRNAs associated with cellular 
aging and tissue degeneration [143-147], the miRNAs 
involved in inflammatory process and senescence control 
seem to be those best matching the “identikit” of DDR/
SASP-related miRNAs that contribute to inflamm-aging 
(Figure 2). 

CONCLUSIONS

We have discussed the hypothesis that some 
miRNAs play a central role in DNA damage-related 
cell senescence and inflammaging. It is conceivable that 
miRNAs released by DDR/SASP-activating cells also 
signal to non-senescent cells, spreading and increasing 
inflamm-aging. A number of studies show that both 
senescent and infected cells can enact miRNA-based 
strategies to curb their own proinflammatory status. 
However, the contribution of senescent cells to release 
of the miRNAs involved in the modulation of systemic 
inflammation is not well explored; in particular, it 
is unclear whether changes in intracellular miRNA 
expression patterns during senescence are paralleled by 
changes in the patterns of released miRNAs. Nevertheless, 
it is conceivable that when senescent cells with an 
activated DDR/SASP exceed a given threshold, changes 
in the network of shuttle-associated miRNAs released 
in the bloodstream do ensue. Current evidence suggests 
that miRNAs may exert opposite effects, both promoting 
and protecting from cell senescence. The paradox may 
only be apparent, because miRNAs released by senescent 
cells may protect them from inflammation, but promote 
senescence in younger cells by targeting different mRNAs 
from those belonging to the inflammatory pathway. 

Since miRNAs released in exosomes seem to be 
those with the greatest ability to interconnect cells in an 
endocrine manner, it can be hypothesized that miRNAs 
contained in exosomes are subject to senescence-
associated modulation.

Identification of the profile of DDR/SASP-related 
miRNAs and their shuttles is expected to help clarify the 
intricate relationship between inflammation and immune 
surveillance in aging, and to lead to new therapeutic 
strategies that can reduce the risk of ARDs and delay their 
onset.
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