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INTRODUCTION 

INTRODUCTION 

 

Neuroplasticity is a term that includes all the functional and structural changes 

within a neural circuit in response to external or internal events, changes at synaptic 

level, in the morphology, or in the number of cells. These changes are related with 

functional modifications and have great relevance under physiological conditions and 

in neuropathology. 

The malleability of the nervous system has a central role in shaping the brain 

during the prenatal and early postnatal development, in the childhood, but also in the 

adulthood, supporting vital functions, such as learning and memory. Therefore, the first 

aim of my PhD itinerary was focused on the expansion of the knowledge about the 

mechanism of physiological plasticity in the hippocampus in relation with network 

activation induced by common every-day experiences, such as physical activity. 

Hippocampus, indeed, attracts great attention in the neuroscience research field because 

it takes part to certain types of learning and memory but also because of its 

extraordinary degree of neuronal plasticity. In this structure, much of the attention is 

mainly focused on neuronal plasticity phenomena, such as synaptic Long Term 

Potentiation (LTP) and adult neurogenesis: this last phenomenon represents a fascinating 

example of plasticity occurring in a specific hippocampal area called Dentate Gyrus 

(DG). Here, new granule cells are daily generated and incorporated in the existing 

network. In the hippocampus, stem/progenitor cell proliferation and newly-generated 

granule cell integration are affected by numerous stimulus both physiological and 

pathological. In keeping with this statement, physical exercise represents a pro-

neurogenic activity. Our previous findings highlighted that a brief physical activity, and 

in particular voluntary running, produces short-term [1] effects in very immature 

newborn granule cells of adult DG. The attention is therefore shifted in the research for 

possible long-lasting effects of the voluntary running on newly-generated granule cells, 

evaluating morphological and possible functional implications related with this activity, 

with the purpose of removing part of the shadows upon the possible mechanism of 

cognitive enhancement widely reported in association with physical exercise. 

Additionally, since abnormal plastic adaptation underlies many neural diseases, a 

second aim of my PhD project has considered two pathologies, depression and epilepsy, 

in order to uncover and highlight possible treatments able to influence, or prevent, the 

aberrant plastic support to these neuropathologies. 

Depression, a chronic and recurrent disease linked to significant dysfunction of 

neural plasticity has been studied in collaboration with Prof. Kjell Fuxe’s group of the 

Karolinska Institutet in Stockholm. In particular, this project placed the focus on the 

study of Fibroblast Growth Factor Receptor 1 – 5-hydroxytryptamine 1A (FGFR1-

5HT1A) heteroreceptor complex role in depression, which is a receptor-receptor (R-R) 

interaction of extreme interest since it represents the meeting point between two 

theories of depression, the serotoninergic and the neurotrophic factor hypotheses. The 
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FGFR1-5HT1A heteroreceptor complex is reported to exist in hippocampus [2] and 

midbrain raphe [3]. In addition, combined agonist treatment influences cellular 

throphism and morphology, suggesting that activation of FGFR1-5HT1A heteroreceptor 

complex might be related with antidepressant effect of serotonin in the brain and, 

combined activation of both receptors might result in more rapid and stronger 

antidepressant action than found with Selective Serotonin Reuptake Inhibitors (SSRIs). 

Indeed, an important clinical pursuit in the depression field is the research for fast-acting 

treatments or molecules able to speed up the effects of the canonical anti-depressive 

drugs, since commonly available treatments exert their therapeutic action after a delay 

that last from weeks to months [4]. Thus, this part of the PhD project has been focused 

on a first evaluation about the therapeutic potential of combined FGFR1 and 5HT1A 

agonists treatment, which has been firstly tested on Sprague Dawley (SD) rats, using 

electrophysiological, molecular and behavioural approaches. Afterward, to evaluate if 

disturbances of the FGFR1-5HT1A heteroreceptor complex might exist in depression and 

if the combined treatment with the agonists of the FRGR1 and 5-HT1A could exert 

antidepressant effects, the attention was moved on Flinders Sensitive Line Rats (FSL), a 

well-known model of depression [5]. Actually, the potential existence of disturbances 

in depression at FGFR1-5HT1A heteroreceptor complex level could represent an exciting 

finding since it might confirm these complexes as valid targets for future therapeutic 

treatments with possible fast-acting properties. 

The other pathology concerning the second aim pursued in my PhD project is 

the mesial temporal lobe epilepsy (MTLE), the most common form of localization-

related epilepsy, which is characterised by progressive plastic rearrangements that lead 

to the chronicization of the disease and the aberrant remodelling of the hippocampal 

network. Treatment able to counteract the chronicization of epilepsy represents an 

unmet clinical need. Previous findings from our laboratory of physiology suggested a 

potential and promising role of Vitamin E (as -tocopherol) as antiepileptogenic 

treatment [6, 7], which might act through different mechanisms than anti-oxidant one. 

To validate this assumption, using the kainate rat model of epilepsy, the excitability of 

hippocampus circuitry, the neuroinflammation markers, neuron cell death and 

microRNA (miRNAs) expression, have been investigated in adult rat after 15-days of -

tocopherol treatment. 
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PLASTICITY OF THE CENTRAL NERVOUS SYSTEM 

 

Plasticity is a term that has been adopted in neuroscience for over a century 

referring to the malleability of the nervous system, namely the capability to adapt 

through functional and structural modifications in response to events that organisms 

face during their life and to injury of its own integrity. Besides, it is firmly believed that 

plasticity is the substrate for learning and memory. 

The term plasticity has been addressed for the first time by William James in his 

Principles of Psychology (1890) referring to possibility of changes in behavioural habits 

through modifications, after repeated use, in specific brain path [8]. He wrote: “Organic 

matter, especially nervous tissue, seems endowed with a very ordinary degree of 

plasticity […]: so that we may without hesitation lay down as our first proposition the 

following, that the phenomena of habit in living beings are due to the plasticity of the 

organic materials of which their bodies are composed.”[9]. Nevertheless, the first 

hypothesis that connect associative memories and practice-dependent motor skills with 

a localised facilitation of synaptic plasticity transmission was introduced by Eugenio 

Tanzi in 1893, and expanded by Ernesto Lugaro few years later through the relation of 

this plastic changes with the intuition about the chemical nature of synaptic transmission 

in the central nervous system (CNS) [8]. Concurrently, Ramón y Cajal completed Tanzi’s 

hypothesis with his own hypothesis of plasticity as the result of the formation of new 

connections between cortical neurons [10]. Indeed, an important contribution of Cajal, 

little known within the scientific community, is his application of the Neuron Doctrine 

to explain the relationship between brain plasticity and mental processes from a 

structural point of view, and his theories regarding the influence of the environment on 

brain development and function. Therefore, through Cajal's own work and his astute 

interpretation of the studies of others, the architecture of the cerebral cortex began to 

be considered as plastic and connections in this structure susceptible to change either in 

response to normal neuronal activity or to injury [10].  

After the initial enthusiasm however, plasticity and the synaptic theory of learning came 

quickly under attack and some of the proposed connections between mental factors and 

neuronal activities were strongly criticized [8]. This trend was inverted in 1948 when 

Konorski attributed two fundamental properties to the central nervous system: 

reactivity and plasticity [11]. A year later, in 1949, Hebb published The Organization of 

Behaviour and the synaptic plasticity theory of learning was finally rehabilitated. He 

introduced the so called Hebbian plasticity, a form of synaptic plasticity that describes 

the increased synaptic strength that occurs if the presynaptic and postsynaptic element 

spike in a brief interval of time.  In his words: “When an axon of cell A is near enough 

to excite a cell B and repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells such that A’s efficiency, as 

one of the cells firing B, is increased” [12]. Hebb’s work returned to the topic of plasticity 

frequently during his carrier and researchers often refers to modifiable neuronal circuits 
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as “Hebbian” in honour of his theoretical contribute; moreover, synapses that change 

as a consequence of simultaneous firing are often referred to as “Hebbian Synapses” [8]. 

Nowadays the topic of plasticity is highly thriving and great interest is directed in the 

study of plasticity in healthy brain and, considering the impact of this topic on human 

health, in disease. 

 

Mechanisms supporting brain plasticity 

 

The mechanism behind neuronal plasticity could involve changes in synaptic 

strength, in the number of synapses or even in the number of neurons within circuits as 

pointed out by the more recent findings (1960s) about neurogenesis in the adult brain. 

Neuronal changes of plasticity are usually referred to as functional, as opposed to 

structural. It is nowadays clear that the dichotomy between functional and structural 

plasticity is arbitrary, as many of the changes that was previously been considered 

functional are accompanied by changes in number or shape of dendritic spines, or by 

the formation or apoptotic removal of neurons. 

 

Long Term Potentiation (LTP) and Long Term Depression (LTD) 

One of the most attractive cellular mechanisms sub-serving plasticity is synaptic 

plasticity, because it endows each neuron with the capacity to adapt dynamically the 

functional weight of specific inputs that it integrates. Long term changes in synaptic 

strength, such as LTP or LTD are believed to critical underline experience-induced neural 

adaptations in the brain [13]. These form of synaptic plasticity typically occur in the time 

scale of hours and can be expressed postsynaptically as a change in postsynaptic receptor 

number or function, or presynaptically as a change in neurotransmitter release.  

Long term changes in synaptic strength was first discovered in the mammalian CNS by 

Bliss and Lømo in 1973, studying excitatory synapses response in hippocampal dentate 

gyrus after the application of a brief, 1-second bursts of high frequency stimulation 

(100Hz, called “tetanic”) [14]. Using this protocol, they were able to elicit a long-lasting 

increase in the strength of these synapses that could persist for many days. They also 

discovered an increased probability of the postsynaptic neurons to fire an action 

potential (AP) in response to a constant level of presynaptic stimulation. Taken together, 

they named this phenomenon LTP and Hebbian plasticity was documented to exist in 

the mammalian CNS. As a matter of facts, LTP undergoes the definition of Hebbian 

plasticity because it has the properties of “cooperativity” and “associativity”: a weak 

input, where only few excitatory synapses are tetanized, failed to induce LTP whereas 

a strong input able to activate many synapses, induces the potentiation (cooperativity); 

in addition, the simultaneous activation of two separate inputs, one of which is weak 

and fails to undergo LTP on its own, exhibits a robust LTP when tetanized together with 
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a strong input (associativity). It is nonetheless true that non-Hebbian LTP are 

documented to exist [15]. 

The complementary process of LTP is referred to as long-term depression and 

consist in a reduction of the efficacy of synaptic transmission. LTD was first discovered 

few years after LTP by Ito and Kano studying rabbit cerebellum and applying a low 

frequency stimulation of 4Hz for 30-120 seconds [16]. LTD is often observed after the 

induction of LTP, in which case has been referred to as “depotentiation”; in some cases 

however, LTD can be observed from baseline conditions and this has been termed “de 

novo LTD” [17]. 

To date, several forms of long-lasting synaptic plasticity have been observed in the 

mammalian central nervous system. Many, but not all, forms of LTP and LTD are 

dependent on the activation of glutamate receptors that characterise most excitatory 

synapses in the mammalian brain. In particular, glutamate activates the ionotropic -

amino-3-hydroxy-5-methyl-4-isoxazole receptors (AMPARs) whose number could 

determine the efficiency of synaptic transmission. Although there is still debate over the 

mechanism involved in synaptic plasticity, one of the most common forms of LTP 

depends on postsynaptic activation of ionotropic N-methyl-D-aspartate receptors 

(NMDARs). NMDA receptors are tetramers of various subunits (GluN subunits) and are 

cationic channels (allowing the passage of Na
+
, K

+
 and Ca

2+
) that open when their 

blockage by Mg
2+

 ions is removed by depolarization of the postsynaptic cell as that 

obtained after a strong activation of AMPARs. Calcium entering the postsynaptic neuron 

is a crucial signal triggering LTP or LTD. Indeed, LTP seems triggered by a fast and large 

increase in postsynaptic Ca
2+

, whereas LTD results from a slow, and less intense, influx 

[18, 19]; besides, it should be considered that another source of Ca
2+

 necessary to trigger 

LTP or LTD is via voltage-gated Ca
2+

 channels (VGCCs). A great flux of this second 

messenger through NMDARs can activate kinases such as calcium/calmodulin-dependent 

protein kinase II (CaMKII), protein kinase C (PKC) and protein kinase A (PKA). These 

kinases then lead to LTP either by trafficking new AMPARs to activated synapses or by 

acting on the biophysical properties of postsynaptic membrane-localised AMPARs, via 

post-translational modifications. On the contrary, a smaller Ca
2+

 influx through 

NMDARs triggered by weak synaptic activation will recruit phosphatases, as 

Phosphatase 2B (PP2B) and Protein Phosphatase 1 (PP1), that can lead to LTD via the 

opposite mechanism. Additional studies demonstrated that norepinephrine, dopamine, 

and acetylcholine-mimicking compounds, as well as the Brain Derived Neurotrophic 

Factor (BDNF), can all modulate the likelihood of induction of LTP at various central 

synapses, merging Hebbian plasticity with neuromodulation [20]. Considering synaptic 

potentiation more in detail, contemporary mechanistic models divide this phenomenon 

in short-term potentiation (STP) and long-term potentiation, divided again into at least 

two phases, “early” and “late”, based on additional studies probing the biochemistry of 

LTP. STP consist in the initially large potentiation of the evoked response after tetanic 

stimulation, fading after about 10 minutes in a more relaxed response that defines early 

LTP [21]. Such STD is synapse-specific and is largely dependent on NMDARs. The 
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mechanism of STP is not completely understood but considering that can develop within 

seconds after stimulation [22], it would seem likely that this potentiation might be 

produced by phosphorylation of AMPA receptors already held in the cellular 

membrane. Early LTP (E-LTP) is subserved by persistently activated protein kinases 

activated by Ca
2+

 entry through NMDARs, starts at around 30 minutes or less post-

tetanus, and is over after about 2-3 hours [20]. The potentiation observed in this phase 

is mainly due to the increased number of AMPARs within the synapse. Induction of late 

LTP (L-LTP) is dependent on changes in gene expression driven by mitogen-activated 

protein kinases (MAPKs) and lasts many hours. L-LTP is mechanistically different from E-

LTP, and involves enlargement of the synapse itself [23], explaining the protein synthesis 

requirement for late LTP. During L-LTP not only post-synaptic density enlarges but also 

presynaptic bouton also enlarges [23]. Importantly, L-LTP it is now called neoHebbian 

because it involves not only pre- and postsynaptic terminals (Hebbian) but also a third 

element [24]. In CA1 hippocampal area, the third element is represented by dopamine 

[25]. The existence of this third factor makes the transition between E-LTP to L-LTP 

conditional on properties such as novelty, prominence, or reward value of the stimulus 

[26]. 

As aforementioned, also the presynaptic component may contribute to synaptic 

plasticity under some conditions [27]. The induction mechanisms of presynaptic 

plasticity are diverse and may involve repetitive activity of the presynaptic cell, a 

retrograde messenger released from the postsynaptic cell (nitric oxide, arachidonic acid 

or endocannabinoids), or some signal arising from adjacent synapses or astrocytes [28]. 

The entrance of Ca
2+

 ions via VGCCs or ligand-gated presynaptic receptors, triggers a 

downstream cascade involving kinases and phosphatase activation. A well-known 

possible mechanism involves cAMP and PKA signalling. In particular, an increase in 

cAMP level could induce presynaptic LTP in many regions of the brain [28], while a 

presynaptic inhibition of the cAMP pathway via Gi/o – coupled receptors could result in 

presynaptic LTD, which is also a widespread phenomenon [29]. Changes in the amount 

of neurotransmitter released have influence on the synaptic strength and support the 

expression of presynaptic LTP/LTD but the precise mechanism by which 

neurotransmitter release remains long-lastingly altered is largely unknown due to the 

difficulty of visualizing and manipulating axons and presynaptic terminals. Some 

possible mechanisms have been suggested, such as modification in Ca
2+

 influx through 

VGCCs and changes of the release machinery [28]. Besides, presynaptic terminals 

undergo long-term experience and activity-dependent structural plasticity in the adult 

mammalian brain [30]. These structural changes could underline functional alterations 

of presynaptic strength, for example, via changes in the size or number of active zones, 

the number of vesicles recruited or docked, or through changes in the distance between 

synaptic vesicles and presynaptic VGCCs [31]. 
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The back-propagating action potential 

The active control of dendritic membrane potential by voltage-gated channels, 

such as sodium channels, was a paradigm shift from the previous assumption that active 

propagation of membrane depolarization was assumed to be limited to the axon. The 

discovery of active propagation of action potentials originating in the axon initial 

segment and soma into dendrites, a phenomenon called back-propagation of action 

potentials, opened new ways of thinking about dendrites and their role in neuronal 

information processing. 

Back-propagating action potential plays a role in controlling depolarization envelope 

of the postsynaptic terminal regulating NMDA gating and influencing LTP and LTD [32]. 

Action potential back-propagation is sustained by dendritic voltage dependent Na
+
 and 

activates Ca
2+

 channels. Dendritic K
+
 channels can modulate the amplitude and extent 

of back-propagation. The extent of back-propagation is therefore dependent on the 

densities of Na
+
 and K

+
 voltage-gated ion channels in soma and dendrites. Johnston’s 

group first reported that there was a high density of transient A-type potassium channels 

in dendrites of hippocampal CA1 pyramidal neurons. These channels prevent initiation 

of action potentials in the dendrites, limit back-propagation of action potentials into the 

dendritic area, and reduce excitatory synaptic events [33]. The A-type K
+
 channel, which 

mediates IA current, is a low threshold, rapidly-inactivating potassium channel that opens 

at subthreshold membrane potential (-50mV) and influences repolarization and 

propagation of action potentials. The unique rapidly activating and inactivating 

properties of transient A-type K
+
 channels and their distribution allow them to exert a 

profound impact on the coordination of synaptic responses with neuronal activities and 

the regulation of synaptic plasticity through attenuation of action potential propagation. 

This group further reported that dendritic attenuation of action potentials was reduced 

by theta-like simulation (a typical sinusoidal oscillation of the hippocampal 

electroencephalography critical for mnemonic process) protocol in CA1 pyramidal 

neurons [34]. The decreased dendritic attenuation facilitated the back-propagation of 

action potentials and the induction of LTP. Besides, membrane potential is influenced 

by postsynaptic potentials (PSPs) which reflect the temporal and spatial summation of 

excitatory and inhibitory synaptic input. When an EPSP is produced at a dendritic spine 

by presynaptic release of glutamate and propagates to the axo-somatic AP initiation 

region, it will be attenuated along the dendrite due to electrotonic attenuation, 

inhibitory shunt, and activation of dendritic A-type K
+
 channels. Considering that the 

intensity of IA is diminished significantly as a result of simultaneous induction of LTP, the 

decrease of IA during the induction of LTP help to fulfil the function of synaptic and 

intrinsic plasticity securing the induction of these plasticity by facilitating AP 

backpropagation, influx of Ca
2+

, and amplification of synaptic inputs, and finally, 

reducing the induction threshold of LTP. A-type potassium channels could nevertheless 

be influenced by many neuromodulators such as dopamine, serotonin, acetylcholine 

and others, which indirectly modulate NMDA activity and could influence membrane 
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potential. These types of mechanisms have the capacity to confer the necessary 

molecular/biophysical mechanisms for multi-contingency precision timing of the 

induction of neuronal plasticity in triggering behavioural change.  

 

Dendritic spine turnover 

Accumulating evidence over the past decades indicates that the connectivity of 

the synaptic network is remodelled during life, through the mechanism of synapse 

formation, stabilization and elimination. Dendritic spines are primary sites for structural 

modifications during memory formation: spines are highly dynamic as they grow, shrink 

and change form during lifetime [35]. Indeed, the morphology and stability of 

excitatory and inhibitory synapses change over time and are constantly regulated by 

synaptic activity [23] and consequently strictly related to LTP and LTD processes [36]. 

This phenomenon is regulated by activity, and the size of spine heads correlates with 

synaptic strength, presynaptic properties, and the long term stability of the synapse. 

Electron microscopy studies indeed provide evidence that the induction of synaptic 

plasticity could affect the size and shape of dendritic spines [37]. In addition, two-

photon glutamate uncaging and imaging experiments demonstrated a close association 

between increased synaptic strength and an enlargement of spine head [38], 

enlargement that could account for increased synaptic strength at many synapses. A 

small but significant fraction of synapses undergo a continuous turnover in the adult 

brain, probably allowing a constant adaptation of the neural circuit to experience [39]. 

Despite the magnitude of this process is decreased in the adult brain, a certain capacity 

of circuit remodelling is maintained and can be reactivated by lesions [40]. Activity and 

sensory experience are able to regulate synapse turnover, acting not only through the 

formation of new synapses but also destabilizing the existing ones [39]. An interesting 

feature of the activity-mediated spine turnover is that some evidence suggest that 

plasticity induction is facilitated in the vicinity of potentiated spines and that new spines 

preferentially form close to activated ones [36, 41]. Indeed, using repetitive motor 

learning, it has been shown that new spine formed during learning born clustered near 

spines formed in the training sessions for the same task, resulting also in a higher 

persistence over the time in comparison to non-clustered ones [42]. Depending on the 

protocol used, dendritic spine formation/loss could be shifted through an increase in the 

total number of spines or could result in a balanced change, without marked alteration 

in spine density [43, 44]. Taken together, all these observations suggest that dendritic 

spine turnover and rewiring of the network are important structural correlates of 

learning. 

The molecular mechanisms that control spine turnover are not completely clear. 

Nonetheless, several mechanisms that can modify spine number and dynamics, have 

been reported. Firstly, the mechanisms that control long-term modifications of synapse 

(LTP/LTD), have influence on activity-mediated spine enlargement and stabilization 

[39], thus indicating a close relation linking induction and expression of plasticity, and 
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synapse stability. Phosphorylation processes induced by LTP involves CaMKII and PKC, 

which in turn have influence respectively on enlargement of spine heads and synapses 

stabilization [43, 45]. Moreover, BDNF has been reported to exert effects on spine 

formation and destabilization in the cortex and hippocampus [46, 47]: the effects on 

spinogenesis could be probably related to the activation of MAPK pathway and PI3K 

pathway, which interact with AKT and have functional links with mTOR signalling [48], 

thus influencing protein synthesis. An additional mechanism affecting spine growth is 

realized by the action and modulation of proteins implicated in cytoskeleton 

remodelling, such as Rho GTPases and their regulatory proteins [49]. The peculiarity of 

some of this factor is the possibility to diffuse in the cytoplasm. For instance, the protein 

RAS, which is activated during LTP induction, it is demonstrated to diffuse locally 

promoting plasticity in neighbouring spines [50]. 

 

Adult Neurogenesis 

The adult mammalian brain continuously generates new neurons that become 

integrated in the pre-existing networks. Under physiological conditions adult 

neurogenesis is mainly restricted to the olfactory bulb and dentate gyrus of the 

hippocampus. These areas produce very specific subsets of new neurons. The olfactory 

bulb incorporates new granule cells and periglomerular cells, both of which are 

inhibitory interneurons and release c-aminobutyric acid (GABA) [51]. The dentate gyrus 

generates dentate granule cells (DGCs), principal neurons which release glutamate [52]. 

The contribution of adult-born DGCs to hippocampal function is a central question in 

the field of adult neurogenesis and brain plasticity. Different approaches developed over 

the past 20 years have contributed to the concept that adult neurogenesis is necessary 

for hippocampal function. Nonetheless, what makes adult-born neurons relevant to the 

dentate gyrus network remains a puzzle. The continuous addition of neurons represents 

a remarkable degree of circuit plasticity and will be treated more in detail below, in the 

section of “Part I: plasticity in healthy brain”. 

 

Homeostatic Plasticity 

 

In spite of the numerous changes that nervous system has to face during 

development and learning, such as modifications in synaptic strength or number, the 

brain has the capability to maintain the stability of its functions. Plasticity indeed, might 

be conceptualized as the balanced interplay of mechanisms promoting change and those 

promoting stability. 

First Claude Bernard, and then Walter Cannon, suggest that complex physiological 

systems tend to promote stability, or “homeostasis”, making adjustments of 

physiological parameters to bring them at values near to the reference value, called set-
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point. Nowadays it has become clear that neuronal activity is itself a parameter subject 

to homeostatic regulation. 

Many of the changes that involve neural circuit work to destabilize its activity. Plasticity 

mechanisms such as LTP indeed, according with theoreticians’ opinion, generate a 

powerful destabilizing force because increase the probability that a neuron undergoes 

further LTPs, leading to unconstrained synaptic strengthening [53]. If synapses are able 

to be potentiated and the resultant increase in synaptic strength is very long-lasting, over 

time the total synapses of a neuron could be driven towards high levels of synaptic 

strength, potentially overwhelming the cellular metabolic capacity. Homeostatic 

plasticity is an additional non-Hebbian form of neuronal plasticity that is a critical 

regulator and stabilizer of behavioural change. To be considered homeostatic, a 

plasticity mechanism should regulate a key parameter around a set-point value. This 

concept implies that a neuron must sense the value of the parameter (firing rate for 

instance) and eventually generate an error signal when this deviates from the set point. 

Homeostatic forms of neuronal plasticity regulate all the synapses of a neuron in unison, 

in an orchestrated fashion, thus differing from Hebbian forms of plasticity such as LTP 

and LTD. Currently many phenomena have been described as form of homeostatic 

plasticity. These include: the activity dependent regulation of intrinsic neuronal firing 

[54]; pre- and post-synaptic forms of excitatory synaptic plasticity, as synaptic scaling, 

able to move all of a neuron excitatory synapses up or down, in order to stabilize firing 

[55]; the balancing of excitation and inhibition inside neural networks [56]; 

compensatory changes in synapse number [57]; mechanisms that regulate the 

probability to induce LTP or LTD [58]; homeostatic regulation of intrinsic excitability 

[59]. 

At present, the best understood form of homeostatic plasticity at the central 

excitatory synapses is synaptic scaling (Fig. 1). Synaptic scaling tends to modify synaptic 

strength in a compensatory way once brain network undergoes a perturbation of its 

activity, restoring average firing rates at baseline value [60]. Neurons of the CNS indeed, 

seem to be able to maintain average firing rates around a homeostatic set point [61]. 

Modulating network activity induces uniform increases or decreases of miniature 

excitatory postsynaptic currents (mEPSC) of a single neuron [60], so that the average 

firing rate is maintained but the relative strength of each single synapse is adapted. 

Perturbations in network activity could be sensed by individual neurons as changes in 

receptor activation, or changes in secreted factors, and induce modifications that are 

strongly suggested to be cell-related and resulting in a modification of neuron’s own 

firing. Thus, selectively blocking postsynaptic neuronal firing with Tetrodotoxin (TTX - 

a Na
+
 channel blocker), scales up synaptic strengths with an intensity degree comparable 

to the blockade concentration [62]. Synaptic scaling involves postsynaptic changes in 

receptor accumulation. Blocking postsynaptic firing in neocortical neurons scales 

synapses up through the reduction of CaMKIV activation and transcription as a result of 

somatic calcium drop; this leads to AMPAR accumulation in postsynaptic membrane at 

all excitatory synapses [62]. Like scaling up, scaling down in response to elevated 
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network activity is dependent on calcium flux and in particular involves enhanced 

calcium influx, gene transcription, the CaMKK/CaMKIV signalling pathway, and targets 

the GluA2 subunit of AMPAR [63]. Scaling down is likewise realized through the 

activation of Plk2 (polo-like kinase 2) that after a CDK5-dependent recruitment to SPAR, 

induces its degradation activating a pathway necessary for the reduction in synaptic 

AMPAR accumulation triggered by elevated activity [64]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of synaptic scaling. When activity is perturbed (illustrated here as the potentiation of 

some inputs through Hebbian mechanisms) this triggers synaptic scaling, which produces a proportional 

reduction in strength at all synapses of the right magnitude to return firing to baseline levels. Note that, 

because this mechanism scales synaptic strength up or down proportionally, the relative difference in 

synaptic strengths induced by Hebbian mechanisms is preserved. Figure adapted from “Homeostatic 

Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function” [61]. 

 

Homeostatic plasticity mechanisms could also exist at the network level operating 

through an activity-dependent release of secreted factors which modulate 

excitation/inhibition balance. In neocortical neurons, the activity-dependent release of 

BDNF seems able to mediate synaptic scaling inasmuch as blocking BDNF signalling 

mimics the effects of activity blockade on excitatory mEPSP while exogenous BDNF 

application does the opposite [65]. Another secreted factor suggested to contribute to 

homeostatic plasticity is the Tumour Necrosis Factor  (TNF, a cytokine that is part 

of the inflammatory response to pathological states. Prolonged activity blockade with 

TTX stimulates glial release of TNF which in turn acts on neurons increasing AMPAR 

insertion and scaling up mEPSC amplitude [66]. It seems that TNF play an important 

role in the maintaining of scaling during prolonged (>24h) activity blockade, while it is 

not necessary for the induction of early scaling (4-6h) [66]. Considering that neural 

circuits are composed of excitatory and inhibitory synapses, it is expected that synaptic 

scaling would affect both type of synapses but, taking into account the homeostatic 

concept, in a different and maybe opposite manner. Indeed, it has been shown that 

inhibitory synapses onto pyramidal neurons are modulated in the opposite way in 

response to a drop in activity [67, 68]. Nevertheless, it has been shown that after activity 

blockade in hippocampus, under some conditions, inhibition and excitation change in 
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the same direction [69] and that interestingly, not all excitatory neurons express synaptic 

scaling since CA1 neurons scale synapses in response to activity blockade while CA3 

neurons do not [70]. 

Synaptic scaling is induced in a global manner as a function of postsynaptic firing. 

Nevertheless, local or quasi-local changes in synaptic signalling can induce homeostatic 

modifications in synaptic strength. A truly local form of homeostatic plasticity would 

involve a single synapse in relation with changes in presynaptic transmitter release or 

postsynaptic receptor activation. Despite evidence for the existence of a synaptic-specific 

form of homeostatic compensation (realized through the accumulation of GluA1) at 

postsynaptic sites in response to reduced presynaptic neurotransmitter release [71], 

contrasting evidence make this topic still controversial [62]. Moreover, on a theoretical 

level, the meaning of truly local homeostatic plasticity is not clear considering that such 

a mechanism would counteract memory storage considering that potentiating a synapse 

through LTP would induce a homeostatic depotentiation (and the opposite after LTD). 

On the other hand, quasi-local forms of homeostatic plasticity act on groups of nearby 

synapses and would exert a useful normalization function without markedly affecting 

Hebbian plasticity [72, 73]. On the postsynaptic side, the global blockage of neuronal 

firing with TTX together with local glutamate receptor block with AP5 ((2R)-amino-5-

phosphonovaleric acid) enhance GluA1–containing/GluA2–lacking AMPAR 

accumulation in the blocked synapses resulting in a substantial change in synaptic AMPA 

receptors composition [74]: this effect has recently been attributed to retinoic acid (RA) 

production and RA receptor (RAR) activation [75]. This is in contrast with the 

mechanism behind global synaptic scaling since blocking neuronal firing alone leads to 

the enhancement of mEPSC increasing the number of synaptic GluA2-containing 

AMPAR. On the presynaptic side, enhanced synaptic activity was observed to reduce 

the release probability (Pr) through a mechanism that was local to particular dendrites 

[76]: considering that synapses that contact the same dendritic branch have the same Pr 

and the less the number of synapses the more the Pr is, it is suggested that this regulation 

happens in a quasi-local way in function of dendritic hyperpolarization. This form of 

homeostatic plasticity has been suggested to prevent synaptic saturation and excessive 

depolarization onto a dendrite [76] but the mechanism for the induction remains 

elusive. Interestingly, postsynaptic BDNF release has recently been suggested to locally 

regulate the Pr of neurotransmitters [77], highlighting the role of activity-dependent 

factors on homeostatic plasticity.
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The adult brain has been often considered similar to a circuit board, and thus 

reliant on a fixed and precise connectivity. However, neural network undergoes an 

important and constant remodelling process throughout the lifetime. Brain plasticity is 

seen as a nature’s stratagem to adapt rapidly to a changing environment, thus 

overcoming genetic limitations, which has slower occurrence [78]. Plasticity represents 

an intrinsic property of the nervous system retained throughout life that enables 

modification of function and structure in response to environmental demands via the 

strengthening, weakening, pruning, or adding of synaptic connections and by 

promoting neurogenesis. 

During the early childhood, there is a considerable capacity for cross-modal 

plasticity [79], i.e. the adaptive redeployment of neurons to integrate the function of 

different sensory systems. The observed brain changes in all conditions related to 

alterations of one of the sensory fields highlight the important physiological role of 

adaptative neuronal plasticity. For instance, tactile acuity is significantly superior in blind 

subjects compared to controls [80], speech processing and auditory localization activate 

the visual cortex in congenitally blind humans [81, 82] and the sensorimotor 

representation of the reading finger is expanded in blind Braille readers [83]. However, 

brain plasticity has a pivotal role also in more common and less extreme conditions. 

Indeed, an intriguing model for neuroplasticity studies are musicians. Exposure to 

musical training in early life shapes the brain. The anterior corpus callosum, consisting 

of nerve fibers connecting prefrontal regions crucial for coordination of bimanual motor 

activities and frontal motor-related regions, is larger in musicians that started their 

training before the age of 7 than in musicians without an early start, or controls [84]. 

Moreover, the cortical representation of the left hand fingers in string players is 

increased and is correlated with the age at which the person had begun to play [85]. 

Even though the developing brain is far more plastic than the adult brain, 

memory process involves brain plasticity and even in the adulthood the mature brain 

undergoes a continuous remodelling of the existing connections by experience of the 

everyday life and by performance of specific movements during motor and cognitive 

learning [86]. Plastic short-term modulations are important in the acquisition of new 

skills and can lead to structural changes in the cortical network as the skill become more 

established and automatic [87]. 

A fascinating example of plasticity in the adult brain regard London taxi drivers, who 

have a training period of 2 years before qualifying as drivers. The volume of grey matter 

in their right posterior hippocampus, a crucial region for spatial representation of the 

environment, is greater than controls subjects and increases together with the amount 

of time spent practicing as taxi driver [88]. 

Brain plasticity however has not the same efficiency in each subject: individual 

differences are likely quite large [78]. Important factors that contribute to differences in 
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mechanisms of plasticity include genetic and epigenetic mechanisms, such as 

polymorphisms or genetic expression, hormonal factors, such as gender or phases of 

menstrual cycle, impact of morbidities, such as diabetes or cancer, and lifetime 

experiences, such as brain injury stress, sleep deprivation, substance abuse or poor 

nutrition [78]. In keeping with this assertion, a number of genetic factors have been 

identified to regulate human brain plasticity [89]. The BDNF for example, has an 

important role in neuronal plasticity. A polymorphism of BDNF gene, which consists in 

a substitution of valine to methionine (Val66Met), leads to reduced levels of mature 

BDNF and differentially modulate human cortical plasticity and the response to training, 

brain stimulation and motor learning [90-92]. Another common mutation that 

highlights the influence of genetic factors on brain plasticity is the Apolipoprotein E 

(APOE) gene, and its allele, strictly linked with the risk of Alzheimer’s Disease [93], 

and able to influence brain network plasticity and the extent of plasticity throughout 

the lifespan [94]. Environmental factors contribute to genetic expression interacting with 

genes but also via epigenetic modifications, influencing plasticity mechanism across the 

lifespan [78]. These factors include educational experience, family upbringing and other 

social interactions, hormones, stress or physical activity.  

 

Plasticity in hippocampus: adult neurogenesis 

 

In recent years, neural plasticity has been a field which met an explosion in 

scientific research. It is now clear that environmental influences, including specific 

experiences, have a profound effect on adult brain structure and function [95]. In 

keeping with these evidence, much attention has focused on hippocampus, both because 

of its important role in certain types of learning and memory, in particular episodic and 

spatial memory, and its impressive degree of structural plasticity.  

The hippocampus is localised in the medial temporal lobe (MTL), is considered a 

three-layer cortex and is made up by the Dentate Gyrus (DG) and Cornu Ammonis (CA), 

which is in turn divided in three main areas, CA1, CA2 and CA3 (Fig. 2). The information 

processing in the hippocampus follows a main pathway through its constituting areas 

forming the so-called “tri-synaptic circuit”: in particular, the information from the 

Entorhinal Cortex (EC) reaches the DG and then, in the order, CA3, CA2 and CA1, from 

which it returns to EC passing through the subiculum [96](Fig. 2). 

In line with computational models, the hippocampus appears to rapidly learn 

associations between arbitrary events - one-shot learning -, form distinct representation 

from overlapping neocortical input - pattern separation - and, retrieve a complete 

representation in the presence of ambiguous or partial neocortical input at retrieval of 

memories - pattern completion - [97]. The hippocampal pattern separation function is 

thought to be primarily supported by DG, thanks to its large number of neurons (relative 

to its principal input, the EC) and sparse coding, which might lead to the production of 

distinct non-overlapping representations from similar overlapping input. Moreover, 
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despite many numerous questions still remain, vast literature suggests that the DG 

function is also strictly linked with a peculiar phenomenon which takes place in this 

hippocampal field: neurogenesis. 

 

Neurogenesis in the dentate gyrus 

Adult neurogenesis in the DG has been demonstrated in a wide range of 

mammalian species, including humans [98, 99]. The dentate gyrus has a typical 

arrowhead shape (ventral and dorsal leaflets linked by the crest) (Fig. 2), and is 

considered a three-layer cortex. The molecular layer (ML), is the external one, is 

relatively poor in cells and contain the dendritic trees of granule cells and the fibers 

constituting the perforant pathway, which originate from neurons in the EC. The 

principal layer of the DG is the Granule Cell Layer (GCL) made up of 4-8 lines of granule 

cells which represent the principal neurons of DG; beneath the GCL is localised the 

Subgranular Zone (SGZ), where neural stem cells could be found and which therefore 

represents one of the only two widely acknowledged regions to date that retains 

neurogenesis under physiological conditions in adulthood [52, 100].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hippocampus structure. The principal constituting areas are reported. DG: dentate gyrus; CA3: 

Cornu Ammonis 3; CA2: Cornu Ammonis 2; CA1: Cornu Ammonis 1. The tri-synaptic circuit is also 

reported. In particular, the stellate cells located in the entorhinal cortex represent the principal input onto 

granule cells and their axons constitute the perforant pathway. Granule cell axons, the mossy fibers, make 

synapses onto CA3 pyramidal cells which, in turn, contact CA1 pyramidal cells. The information is 

subsequently brought to external areas. 

 

Lastly, the third layer is the polymorphic one, which is placed between the dorsal and 

the ventral leaflet of GCL, constituting the hilus, where many different types of 

interneurons could be found and where the DGCs’ axons, the mossy fibers, pass until 

they reach and contact the CA3 pyramidal neurons.  
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In adult rodents, there are several thousand new neurons generated every day in 

the DG, modifying approximately 6% of the total DGC population per month [101]. 

Although most of these newborn DG cells (60–80%) undergo apoptosis within about 

one month following birth [101, 102], a remarkable number of new neurons survive 

and functionally integrate into the existing neural circuits [103] (Fig. 3). As new granules 

survive and integrate into the existing neural circuit, they form new connections with 

afferent projections and efferent targets within the neural circuit. Therefore, continuous 

addition of new DGCs in the DG introduces structural plasticity throughout the 

adulthood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Hippocampal Neurogenesis. In the hippocampal dentate gyrus new granule cells are daily 

generated along the proliferative zone called subgranular zone. Progenitor cells (green cells - often 

localised around blood vessels) migrate along the granule cell layer, differentiate and integrate into the 

hippocampal network (green mature cells represented with dendrites and axons). ML: Molecular Layer; 

GCL: Granule Cell Layer; SGZ: Subgranular Zone. 

 

Following what happens in the embryonic development, newborn DGCs in the 

adult brain follow a precise sequence of neuronal development and synaptic 

connectivity before they become fully mature [104-106]. During the first week, newborn 

DGCs have limited processes, crossing the granule cell layer toward molecular layer. All 

cellular properties resemble those of typical immature neurons of the developing brain, 

as they start to express neuronal sodium channels and fire immature action potentials 

[107]. After 2 weeks, new neurons have begun to migrate into the granule cell layer and 

to display typical granule cell morphology, with more numerous and elaborate 

dendrites traversing the molecular layer. However, no dendritic spines are observed at 

this stage [107]. Membrane properties become more mature but the characteristics of 

immature neurons still remain. At 4 weeks, newborn DGCs display the morphology of 
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mature granule neurons, including spiny dendrites that reach the outer border of the 

ML and axons that project to the CA3 region. Basic physiological properties mimic 

mature neurons at this stage, exhibiting mature action potentials and all known types 

of DGC synaptic connections. Nonetheless, the integration into functional circuit, the 

electrophysiological maturation and the plasticity seems to continue to evolve for at 

least three months [108]. During the development of newly-generated DGCs, GABA has 

been shown to play crucial roles [109]. Lacking synaptic inputs in the first week, 

newborn DGCs in the adult brain are tonically activated by ambient GABA. Functional 

GABAergic synapses that receive phasic GABAergic inputs from local interneurons start 

8 days after birth [110]. Physiologically, these GABAergic inputs to adult-born DGCs 

share the same characteristics of those found on mature DGCs born in embryonic and 

early postnatal stages, and have similar functional properties [111]. GABA, as opposed 

to what happens in mature DGCs, has an excitatory action on immature granules owing 

to the high cytoplasmic chloride ion content of newborn DGCs in the first 2–3 weeks, 

and plays crucial role in regulating migration, development, and synaptic integration of 

newborn neurons [109]. Tonic GABA activation depolarizes newborn DGCs, and more 

importantly, it constitutes the majority of GABA-induced activation during the initial 

integration process when phasic GABA activation either does not exist or is weaker than 

tonic activation. 

Following the formation of GABAergic synapses, glutamatergic inputs from the 

entorhinal cortex initiate synaptic connections onto the growing dendrites of adult-born 

DGCs 10 days after the birth [110]. By 4–8 weeks, adult-born DGCs display functional 

glutamatergic synaptic inputs similar to mature neurons [105]. Glutamatergic inputs also 

regulate neurogenesis in the adult hippocampus, presumably by modulating neuronal 

integration and survival during development. Some studies have shown that AMPA 

receptor potentiation increases adult neurogenesis [112], while loss of NMDA receptors 

activity decreases newborn neuron survival [113]. Seemingly, in contradiction, 

application of NMDA or AMPA receptors antagonists increase adult neurogenesis in the 

DG mainly by the regulation of cell proliferation [114-116]. These results suggest that the 

regulation of adult neurogenesis by glutamatergic activity is complex, possibly through 

different downstream signalling pathways, or sensitive to environment or behavioural 

changes following treatment. 

As newborn DGCs extend dendrites into the molecular layer, they extend axons rapidly 

toward the CA3 region. One week after birth, newborn axons pass through the hilus 

and reach the proximal CA3 region; from the second week, they begin to form en 

passant expansions [106, 117, 118]. Axons continue to grow along the CA3 within 3–4 

weeks while their expansions grow into larger, mossy fiber buttons [117]. Newborn DGC 

axons do not extend beyond CA3, so they ultimately share the same trajectory as pre-

existing mature mossy fibers. The earliest output synaptic contacts form on the dendritic 

shafts of target neurons starting from the second week. It takes 8–16 weeks for these 

new mossy fiber buttons to reach full maturity, with multiple invading dendritic spines 

and a stable number of synaptic contacts [117]. Recently, thanks to the optogenetic 
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approach, it has been found that mature adult-born DGCs establish functional synapses 

with hilar interneurons, mossy cells, and CA3 pyramidal cells and release glutamate as 

their main neurotransmitter, as mature DGCs [119]. However, the complete process of 

axonal integration and maturation remains unclear. 

 

Newborn granule cells’ “critical period” and their potential role in hippocampal 

functions 

Newborn neurons are continuously produced and incorporated into the existing 

hippocampal circuits throughout the adulthood. Therefore, a fundamental question is: 

do they contribute to hippocampal functions? Several studies using different approaches 

have shown the involvement of adult-born DGCs in hippocampal-dependent 

behaviours [120, 121]. The enhancement of neurogenesis, is usually associated with 

elevated synaptic plasticity in the DG and/or improved hippocampal-dependent 

learning and memory [122, 123]. Recent data also demonstrated that genetically 

increased DG neurogenesis through the specific inhibition of newborn cell death is able 

to improve hippocampal-dependent pattern separation [124]. In keeping with the 

hypothesis that neurogenesis exerts a positive effect on learning and memory, decreased 

neurogenesis in either transgenic mouse lines, such as Methyl-CpG binding protein 1 

knockout (MBD1-/-) mice, or ablation of neurogenesis by irradiation results in decreased 

synaptic plasticity in the DG and/or deficits in some forms of hippocampal-dependent 

learning and memory [125, 126]. Besides, Drapeau and colleagues observed a direct 

connection between water maze performance and the number of newborn neurons in 

the hippocampus of aged animals, in which animals that retained spatial memory 

exhibited a higher level of cell proliferation and a higher number of new neurons in 

comparison to those with spatial memory impairments [127]. 

Additionally, the removal after learning of integrated, adult-born neurons, using a 

diphtheria toxin-based strategy without affecting ongoing neurogenesis, degraded 

existing hippocampal-dependent contextual fear and water maze memories, suggesting 

that adult-born neurons form a critical and enduring component of hippocampal 

memory traces [128]. Taken together, these studies suggest that adult-born DGCs are 

involved in hippocampal functions. 

During their maturation, the functional properties of newborn granule cells face 

changes which give rise to periods of development possibly related with specific roles 

in hippocampal functions. Hubel and Wiesel established the term ‘‘critical period’’ to 

describe a particular time window in which neuronal properties are particularly 

susceptible to modification by experience, together with extensive anatomical changes 

that become irreversible after the closure of this period [129, 130]. This time window is 

characterised by enhanced morphological and synaptic plasticity, and is now considered 

a central mechanism for establishing fine-tuned neuronal circuits in the developing brain 

[131]. Thus, knowledge of neuroplasticity within critical periods emerged primarily from 

research on sensory systems such as the visual system. Nonetheless, even newborn 
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granules, during the integration in hippocampal circuit, when they start to receive 

experience-driven inputs from existing neural network, go through a phase of enhanced 

plasticity. Synaptic plasticity such as LTP has been thought to be the primary cellular 

basis of hippocampus-dependent learning and memory. As demonstrated by Ge et al., 

young adult-born DGCs display enhanced LTP with decreased induction threshold at 

the age of 4–6 weeks that rapidly drops by 8 weeks of age [132], indicating a critical 

period with enhanced synaptic plasticity. These data confirm previous findings [133, 

134] and are consistent with other studies showing adult-born neurons display a high 

level of anatomical plasticity during this period which decreases thereafter, such as spine 

motility [106], suggesting that the newborn DGCs undergo a short period of fine-tuning 

while integrating into existing circuits. How are new DGCs more plastic during this 

period? Immature adult-born granules display distinct active and passive membrane 

properties such as high input resistance (IR) [105, 107]. Besides, in young neurons, high 

levels of T-type Ca
2+

 channels can generate isolated calcium spikes and enhance fast Na
+
 

APs, contributing to the induction of synaptic plasticity [134]. Another key mediator of 

plasticity is the NMDA type of glutamate receptors. During adult neurogenesis, 

NMDARs are expressed early, starting from immature neuronal stages [107, 135, 136]. 

It is known that during early postnatal neuronal development, switching of NMDARs 

subtypes from NR2B to NR2A changes the direction and degree of synaptic plasticity 

[137-139]. NMDARs containing NR2B subunit are expressed early during postnatal 

development and appear to be associated with enhanced synaptic plasticity during the 

critical period [137, 140], while NMDARs containing NR2A, which are expressed and 

dominant later, mediate dramatically decreased LTP after the critical period [137]. Using 

field potential recordings, Snyder et al. revealed that LTP in the DG with intact 

GABAergic inhibition appears to be largely dependent on young adult-born neurons, 

and could be specifically blocked by NR2B antagonist ifenprodil [125]; in contrast, 

mature DGCs display much less LTP in the same condition [133], or have higher 

threshold for LTP induction [134]. Moreover, by specifically targeting adult-born DGCs, 

Ge et al. showed ifenprodil completely abolished LTP on DGCs of 4-weeks old, but not 

8-weeks old or mature DGCs, providing a temporal correlation between synaptic 

expression of NR2B subtypes and critical period plasticity [132]. They also found that 

the plasticity of newborn DGCs within the critical period relies significantly more on 

NR2B-containing NMDARs than on pan-NMDARs, suggesting that NR2B, which is the 

major NMDARs subtype expressed during the critical period, plays an instructive role in 

the enhanced synaptic plasticity of adult-born DGCs within this time window [132]. 

These studies suggest that adult-born neurons in the critical period undergo molecular 

mechanisms similar to neurons in the early postnatal critical period.  

Adult-born DGCs integrate into existing hippocampal circuits and express an 

improved plasticity during the critical period in relation to events other than mature 

neurons that have passed the critical period [132]. It is therefore natural to ask if they 

make unique contributions to hippocampal function. As suggested by numerous 

emerging evidence, adult-born DGCs might be preferentially recruited into hippocampal 
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circuits related to spatial information processing, contextual fear conditioning, novelty 

recognition and memory formation [103, 120, 141]. This preferential recruitment is 

consistent with the critical period of the adult-born DGCs and appears at 4–6 weeks 

after birth [120, 141]. In relation to their high excitability [105, 142] and the critical 

period of enhanced plasticity, adult-born DGCs of the critical period are more readily 

recruited into the hippocampal circuit for the encoding of novel information. As 

hypothesised by Aimone and his colleague, the special properties of young adult-born 

neurons are required for the formation of temporal clusters which associate individual 

elements of long-term episodic memories, a function called “pattern integration” [143]. 

Indeed, newborn neurons are preferentially activated in the critical period of enhanced 

plasticity and then, after the maturation, become less excitable but part of mnemonic 

traces: the progressive maturation of these granule cells create a temporal link between 

the different input that reach the DG. Overall, the available evidence strongly indicates 

that young adult-born neurons play an important role in participating in certain types 

of hippocampus-related behaviours, particularly learning and memory. However, the 

specific role of adult-born neurons which mature cells couldn’t achieve still remains 

under investigation. 

 

Adult-neurogenesis as substrate for experience-dependent change 

Adult neurogenesis is dynamic and highly dependent on the activity of the neural 

network. As DG receives various innervations from multiple brain regions, adult-born 

neuron development at distinct stages is regulated by numerous factors related to global 

and local neuronal activities. Actually, a growing body of literature indicates that adult 

neurogenesis is strongly influenced by the environment [95, 144]. Findings for overall 

literature on experimental modulation of adult neurogenesis seem to converge on a 

basic model: rewarding experiences, such as physical activity or mating, tend to increase 

the production of new neurons, whereas more aversive experiences, such as social 

defeat or predator smell exposure, tend to decrease the production of new neurons, 

[95, 144]. 

 

Hippocampal neurogenesis and physical activity 

Voluntary physical exercise is one of the most studied activity able to positively 

influence adult neurogenesis. Neurogenesis improvement induced by physical activity is 

considered able to maintain the brain in fit: indeed, a large body of literature bring 

evidence about the cognitive performance improvement after physical and mental 

training. Physical activity is able to significantly increase the number of newly-born 

granule cells [123, 145]. The effect of physical exercise on precursor cell proliferation is 

related to many possible factors such as BDNF [146, 147], serotonin (5-Hdroxytriptamin 

– 5HT) [148, 149], Vascular Endothelial Growth Factor (VEGF) [150-153] or Insulin-like 

Growth Factor-1 (IGF-1). 
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BDNF seems to be the principal factor in mediating the effects of physical activity 

on neurogenesis, and its mRNA and protein levels increase in hippocampus after exercise 

[154]. Thus, the blockage of BDNF signalling lead to impairments in the learning 

improvement and neurogenesis promotion induced by physical activity [155]. Serotonin 

depletion in the brain of Tryptophan Hydroxylase 2 knockout mice (Trp2 -/-) affects 

the neurogenesis induced by physical activity, blocking the increase in granule number: 

it is therefore suggested that 5-HT play a role in stimulating neurogenesis after physical 

exercise [156]. Since Selective Serotonin Reuptake Inhibitors (SSRI) increase BDNF levels 

in the DG, the effect of serotonin might be linked to the BDNF action [157]. VEGF 

expression during exercise is also related to the increased neurogenesis but in a similar 

way to serotonin action, also VEGF probably act in concert with other factors, such as 

BDNF or IGF-1 [158]. Another factor which levels are found increased after exercise is 

IGF-1, which in turn increases angiogenesis and neurogenesis, in cooperation with VEGF 

action [159, 160]. Indeed, physical activity stimulates GH-IGF-1 axis, increasing IGF-1 

blood level and the uptake of this factor not only in the muscle [161] but also in the 

brain [152]. Moreover, the increased levels of BDNF in the hippocampus after exercise 

seem to be triggered by the increasing in IGF-1 levels [152]. Physical activity is able not 

only to improve neurogenesis through enhanced proliferation but also to increase the 

number of surviving newly-generated granule cells, thus promoting survival [162]. 

 

Hippocampal neurogenesis and Enriched Environment 

Donald Hebb, after the discovery of enhanced cognitive performance of pets 

over laboratory animals kept in cage condition, introduced for the first time the concept 

that an Enriched Environment (EE) could be able to improve the quality of life in animals 

[163]. After this first statement, Rosenzweig and colleagues developed the enriched 

environment model as we know it today [164]. Enriched environment consists in 

breading conditions able to offer a higher amount of sensory, motor and cognitive 

stimuli compared to standard laboratory conditions, which is considered a deprived 

environment [165, 166]. Often, the EE include social interaction since many animals are 

housed together. Many EE protocols consist in placing 8-12 rats in large cages containing 

many different objects, daily replaced: this condition provides novelty elements which 

assure cognitive stimuli, spatial representations and social interactions [167]. The items 

generally used in EE are characterised by different colours and shape, to provide visual 

stimuli, wood-items with different textures, to stimulate sensorial perception, tunnels 

with different shapes, for spatial navigation, and wheels for voluntary running: the 

number of items placed in an EE positively correlates with the number of immature 

granules in DG [168]. However, EE is able to affect neurogenesis only until the animal 

doesn’t familiarize with the environment; once the EE lost its novelty, neurogenesis in 

the DG is increased no more [169]. 

The effect of EE on neurogenesis consists in increasing cellular survival rather 

than enhancing neural proliferation [123, 169]; however, Kempermann & Gage [169] 
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revealed the ability of EE to increase proliferation as well. The effect of EE on 

proliferation seems to be mediated by GABA signalling, which could act on silent 

synapses characterised by only Mg
2+

-blocked NMDAR, promoting AMPAR 

incorporation and the synaptic integration [170]. Since NMDAR is crucial for immature 

neuron survival and integration [113], the increase of synapses with activated NMDAR 

might promote neuronal survival.  

 

Hippocampal neurogenesis and Learning 

Learning is able to positively influence neurogenesis. Nonetheless, only certain 

types of learning can promote neurogenesis. For instance, a hippocampal-dependent 

learning such as the Morris Water Maze test, where the animal is tested for the detection 

of a hidden platform in a pool, is able to promote granule survival [171, 172], whereas 

learning to localise a visible platform (hippocampal-independent learning) has no effect 

[171]. 

Hippocampal-dependent task promotes neurogenesis when the task is quite 

tricky and the more the attempts to complete the test are, the more the effect on 

neurogenesis is high; in addition, the effect on neurogenesis is obtained only if the test 

is successfully ended [173]. These findings suggest that mental effort and network activity 

are crucial to rescue newly-born dentate granules, and suggests that a bigger mental 

effort induces better effects. In keeping with this assertion, comparing a demanding task 

such as Tool Use test and a less challenging task, such as the Radial Arm Maze test, 

Kumazawa-Manita and colleagues [174] clearly showed that Tool Use test produces a 

higher number of newborn granule cells than the Radial Arm Maze. 

 Spatial learning promotes neuronal survival and is influenced by the complexity 

of the task, the species employed in the test, sex differences, and the age of immature 

cells during learning [175]. Spatial learning promotes the survival of 6-10 days-old 

granule cells in rat, but seems to induce the opposite effects on older cells [107]. The 

survived cells, rescued by spatial learning, are reactivated when the animal is exposed 

to the test again, suggesting that these cells could be part of memory traces [176]. 

Hippocampus-dependent tasks make precocious the first GABAergic synaptic 

contact onto newborn granule cells, which are detectable 4-6 days after birth; this effect 

could represent the basis of increased survival induced by learning processes in newly-

born granule [110]. It is therefore suggested that a higher number of GABAergic synapses 

could avoid an excessive activation of T-type Ca
2+

 channels, which might lead to 

cytotoxic effect related to prolonged and elevated levels of this ion in the cytoplasm. 

Indeed, GABAAR activation tends to stabilize the membrane at the Cl
-
 equilibrium 

potential that, in immature neurons, is depolarized with respect to the RMP. On the 

other hand, fast changes of membrane potential, such as that observed in immature 

neurons [110], are more efficacious than a constantly depolarized potential in opening 

T-type Ca
2+

 channels, which are highly expressed in these cells [107]. Therefore, the 
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formation of GABAergic synapses might prevent dramatic, possibly dangerous, Ca
2+

 

transients. 

It’s worth mentioning that another training protocol called physical skill learning 

can promote DGC survival and the more the exercise is complex, the more the survival 

is increased. Comparing a difficult task such as accelerated rotarod training with a 

simpler one, such as slow continue rotational wheel training, Curlik and colleagues 

demonstrated a positive correlation between the difficulty of the training and the 

number or survived cells in DG [177]. This kind of learning is hippocampus-independent 

and highlights that also tasks that don’t rely on this structure for their learning affect 

hippocampal neurogenesis. Though, the hippocampus independence is not absolute, 

and hippocampus lesions could affect physical skill learning, highlighting the role of this 

structure on motor sequence consolidation [178]. 

 

Hippocampal neurogenesis and Stress 

Many research groups have been analysed the effects of stress on neurogenesis 

varying the intensity and type of stressor event. Principally, based on the duration of 

the stressor event, stress can be considered acute or chronic. 

Studies on acute stress, that is the stress provoked by a single stressor event, report 

divergent results regarding the effects on hippocampal neurogenesis. Social defeat 

provoked by the presence of a dominant specimen of the same animal species, seems 

to decrease neural proliferation in mouse [179] and, predator’s smells, such as fox, is 

able to reduce cell proliferation in the DG of rats [180]. Acute Restraint Stress gives rise 

to different contrasting results, which might be linked to different protocols in time, 

stress intensity or species belonging. Thus, on one hand restraint stress of 2-6 hours has 

no significant effect on proliferation rate in DG of rats [181], while on the other, 3 hours 

are able to reduce proliferation in hippocampus of rats [182]. Moreover, Brain et al. 

reported that the same protocol they applied on rats exerts the opposite effect on mice, 

increasing the number of newly-generated granule cells [182]. 

Chronic stress, daily experienced for many days or weeks, leads to the reduction 

of proliferation rate in hippocampus. Stress caused by chronic social restriction, in 

mouse, reduces the level of cellular differentiation in newly-born neurons [183]. Physical 

Restraint, besides acting on proliferation, is also able to reduce the survival of newborn 

granule cells in rat [181]. Moreover, if learning becomes a stressing event, it seems able 

no more to exert its beneficial effects on neurogenesis, thus affecting negatively the 

proliferation rate [184]. In addition, age and aging have effect on survival and cellular 

differentiation. Indeed, as emerged on research on tree shrews, psychosocial stress 

induces a higher degree of cell proliferation decrease in aged animals compared to 

young animal [185]. 

Stress is linked with hypothalamus-pituitary-adrenal (HPA) axis activity, which 

leads to the release of glucocorticoids in blood stream that, in turn, seem to inhibit 

neurogenesis in DG. Thus, exogenous glucocorticoids administration alters neural 
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proliferation in the same way as the stress does. Moreover, stress-related effects induced 

on proliferation by predator odour, can be blocked preventing the increase in 

glucocorticoids level [186]. However, it remains to establish if these effects might be 

mediated by the direct action of these steroids on progenitor cells or might be involved 

a still unknown factor. Certain types of stress are able to increase the cytokines levels, 

such as Interleukin (IL) -1 (IL-1), both at peripheral level and central level [187]. IL-1 is 

able to increase the HPA sensitivity to future stressing events [188]. It is therefore 

possible that stressor events could inhibit neurogenesis acting on the release of 

glucocorticoids enhancing IL-1 level. Moreover, considering that progenitor cells have 

the receptors for IL-1, whose activation is able to reduce proliferation [189], it is possible 

that this cytokine might act directly on neurogenesis. However, it has been not currently 

clear if all these different stress types are capable of increasing IL-1 levels. 

 

Uncovering the effect of physical exercise on neurogenesis in the 

dentate gyrus 

 

Physical exercise, as afore mentioned, was found to be a neurogenic stimulus, 

promoting neuron progenitor proliferation [123] and affecting newborn cell survival 

[190]. Besides, it seems to have beneficial effects on mental health and brain activity, 

enhancing memory function and hippocampal plasticity [122, 155, 191]. 

Previously, the section of Physiology of the Urbino University pointed out that a 

brief period of three days of physical activity in a very precocious period of adult-

generated granule cells life, is able to antedate the appearance of the first GABAergic 

synaptic contacts [1, 110]. Indeed, they demonstrated that after voluntary physical 

activity on a running wheel, about 26% of 7-days old granule cells clearly display a 

GABAergic contact, which is normally not seen at this point of development. In 

addition, this very protocol is also capable of increasing the number of 7-days old 

immature granule showing T-type Ca
2+

 channels [1]. These data are of particular interest 

because could be correlated with the increased survival probability of newly generated 

granules seen in association with physical activity [190] and, considering the role of 

GABA and Ca
2+

 in fostering neuronal maturation and development, could have 

important implication in granule cell maturation [110, 192]. From a morphological 

perspective, they bring evidence that the exercise protocol applied induces the 

protrusion of a significantly higher number of primary dendrites without changing the 

total length and complexity degree of the dendritic trees. In addition to these data, a 

contribution of neuronal-activity-induced BDNF release in mediating the effects of the 

protocol they applied has been shown. This correlation is of particular interest since the 

neurotrophin BDNF has been implicated in activity-dependent synaptic plasticity and 

network remodeling [193, 194] and it is able to regulate the extent of adult hippocampal 

neurogenesis [195], presumably via its specific TrkB receptors [196] which are expressed 

on proliferating neural progenitor cells in the dentate gyrus [197], suggesting a direct 
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influence of BDNF on neurogenesis. Thus, the TrkB agonist 7,8-dihydroxyflavone 

mimicked the effect of physical exercise in rats kept under control condition, while the 

TrkB antagonist ANA-12 counteract the effect of the three-days voluntary running [1]. 

Considering the promising results described above, during my first year of PhD 

we decided to go further and evaluate the long-term effects of the same protocol 

consisting of three days of voluntary running on a wheel. The focus of our study was 

therefore moved on 30-days old granule cells where we performed morphological and 

functional analysis in order to asses if long-term effects exist and what might be their 

functional consequences on hippocampal functions. 

 

Experimental procedures 

Animals  

For these experiments, five-week-old Sprague-Dawley male rats (Charles River 

Laboratories, Italy) (n = 22) were used. The animals have been housed in standard cages 

with water and food ad libitum. The environment temperature has been maintained at 

21±1 °C, the humidity was 50±5% and the light/dark cycle was 12-12 h (light on at 

6.00 a.m.). 

To in vivo label adult newly generated granule cells in hippocampal DG, the animals 

were anesthetized with sodium thiopental (45 mg/Kg body weight) and stereotaxically 

injected with Green Fluorescent Protein (GFP)-expressing retrovirus. Retrovirus carrying 

the GFP transgene was infused bilaterally (twice 30 min spaced) into the dentate gyrus 

(1 µL at 0.5 µL per min) (anteroposterior: 23 mm from bregma; lateral: 2 mm; ventral: 

3.2 mm) DG. Retroviral GFP-expressing virions were prepared co-transfecting the 

ecotropic packaging Phoenix cell line (ORBIGEN), at 70% of confluency in 100 mm 

dishes, with 15 mg of GFP-expressing Pinco vector [198] and 7.5 mg of pCL-Eco 

packaging vector (IMGENEX). The transient transfection was conducted by calcium-

phosphate/cloroquine method [198] and the retroviral-containing supernatant was 

collected after 48 h upon transfection, filtered and immediately frozen in aliquots at -

80 °C. Infection of NIH-3T3 cells was performed to check the surpernatant containing 

viral titer (~10
7
 CFU/mL). 

On the fourth day after surgery, the animals were randomly assigned to the follows 

experimental groups: 1. voluntary running in a wheel cage (RUN; running for three 

days: 4°, 5° e 6° day after retroviral injection); Control rats (CTRL, n = 20) not exposed 

to any behavioural experience, nor treated with any drugs. All experiments were carried 

out in accordance with the Italian law on animal experimentation. 

 

Slices preparation 

Thirty days after the retroviral injection, rats were anesthetized with ketamine 

(65 mg/Kg b.w.) and killed by decapitation. Brains were quickly removed and incubated 
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in chilled oxygenated solution containing in millimolar: 110.0 choline Cl
-
, 2.5 KCl, 1.3 

NaH2PO4, 5.0 NaHCO3, 0.5 CaCl2, 7.0 MgCl2, 20.0 dextrose, 1.3 Na
+
 ascorbate, 0.6 

Na
+
 pyruvate, 5.5 kinurenic acid (pH: 7.4; 320 mOsm). Hippocampal transversal slices 

(400 µm thick) were obtained from each hemisphere by vibrating microtome (Campden 

Instruments) and allowed to recover in oxygenated Artificial Cerebrospinal Fluid (ACSF) 

containing in millimolar: 125.0 NaCl, 2.5 KCl, 1.3 NaH2PO4, 25.0 NaHCO3, 2.0 CaCl2, 

1.3 MgCl2, 1.3 Na
+
 ascorbate, 0.6 Na

+
 pyruvate, 10.0 dextrose (pH: 7.4; 320 mOsm). 

The slices were kept in this solution for at least 1 h at room temperature before 

electrophysiological recordings. Individual slices were then transferred into a recording 

chamber where they were held in place with nylon mesh and continuously superfused 

throughout the electrophysiological recordings with oxygenated ACSF at a rate of 3 

mL/min. 

 

Electrophysiological Recording 

The influence of three days of voluntary running on synaptic plasticity was 

investigated evaluating the ability of DG granules to elicit LTP after the high frequency 

stimulation (HFS) of the Medial Perforant Pathway in CTRL (n = 6 rats) and RUN (n = 

8 rats). To specifically asses the role of immature granule cells, which are affected by the 

training protocol applied [1], a particular stimulation protocol developed by Snyder and 

colleagues [125] and able to elicit LTP on the sole immature granule cells has been 

applied.  

To this purpose, recording and bipolar stimulating electrodes were prepared and filled 

with ACSF: the first electrode was placed in the molecular layer, while the latter on the 

medial perforant pathway. Slices giving extracellular field excitatory postsynaptic 

potentials (fEPSPs) of at least 1 mV in amplitude were considered for recordings. The 

stimulation intensity that produced a half-maximal response was chosen for test pulse 

and tetanic stimulation. Low-frequency test pulses (at 30-seconds intervals) were applied 

to elicit baseline responses. Once obtained a stable baseline of approximately 20 

minutes, the medial perforant pathway was simulated applying the LTP protocol 

consisting of 2 trains, 500 ms each, 100 Hz within the train, repeated every 20s. The 

fEPSP was then monitored by recordings for 40 min. Slope (between 10% and 80% of 

max) of the fEPSP was analysed and taken as measures of synaptic strength; values were 

normalized to the mean value obtained over the last 20 min of the baseline period and 

expressed as a percent of this baseline value. To confirm that the LTP elicited was due 

to the immature granule cells only, since NMDAR containing NR2B subunit are 

preferentially expressed on immature granule cells membranes [140], some slices 

underwent the LTP protocol in the presence of Ifenprodil (3 µM), an NMDAR 

antagonist that selectively inhibits receptors containing the NR2B subunit, in the 

perfusion ACSF. 
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Morphological Analysis  

To verify if the exercise protocol exerted long-term modifications of newly-

generated granule cells born during the training, a morphological study of 30-day old 

DGCs has been performed on slices from RUN group (n = 4 rats) and CTRL (n = 4 

rats). The slices, obtained as described above, were immediately fixed in 

paraformaldehyde 4% in 0.1 M phosphate buffer saline (phosphate buffered saline - 

PBS -, pH = 7.4) and kept overnight at room temperature (RT). To reveal GFP, the 

slices were immunohistochemically processed by incubating free floating slices overnight 

at 4 °C with the primary antibody monoclonal anti-GFP made in mouse (1:200 in PBS; 

Sigma) followed by the secondary antibody FITC-conjugated horse anti-mouse IgG 

(1:50 in PBS; Vector, D.B.A.). Immunostained slices were observed using confocal 

microscope (Leica TCS-SL) through a x63 immersion oil objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3D reconstruction of granule cells. The three dimensional reconstruction of 29 day-old GFP-

positive granule cells was performed using Neuronstudio softwere on confocal microscopy stacks. It is 

possible to notice the blue traces of dendrites (arrow) which spread through the three dimensions of the 

slice.  

 

Morphological reconstruction of each GFP-positive cell was performed using a 

Leica TCS-SL confocal microscope equipped with Argon and He/Ne laser sources. 

Morphological analysis was carried out on a subset of reconstructed cells showing no 

clear dendritic cutting at the slice surface. The reconstruction of each granule cell has 

been performed using NeuronStudio software, following the dendritic arborization 

through the three dimensions of the slice thickness made of confocal stacks (Fig. 4). The 

images obtained were used to evaluate the total length of dendrites and the number of 

primary dendrites. To evaluate dendritic arborization, the images obtained in 

NeuronStudio were saved as “.TIFF” and analysed in NeuronJ. Sholl analysis was 

adopted to estimate dendrite arborization and was performed by Sholl Analysis Plugin: 
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(http://biology.ucsd.edu/labs/ghosh/software/ShollAnalysis_.class –Ghosh Lab Website), 

using an 8-µm interval between concentric circles. Moreover, considering that 

throughout the development stages, the newly-born DG granules moves from the SGZ 

through the granular zone, the distance of each GFP-positive granule cell from the hilus 

has been evaluated as index of neuronal migration. 

 

Statistical Analysis 

Data are expressed as the mean±SEM. Statistical analyses were performed 

appropriately, applying Student’s t-test, one-way ANOVA with Tukey post-hoc test and 

two-way ANOVA with Sidak or Fisher LSD post hoc test. The significance threshold was 

established at p = 0.05. 

 

Results 

Results of the electrophysiological analysis 

High frequency stimulation of the perforant pathway elicited a robust LTP in 

both groups, RUN (Mean total distance covered: 6.6±1.2 Km. n = 18) and CTRL. In 

slices from RUN group, the induced LTP was similar to CTRL group during the first 15 

minutes but fEPSP in RUN animals reached significantly higher values as compared to 

controls, especially in the last minutes of recordings (Fig. 5).  

 

 
Figure 5. Long-term potentiation (LTP) in perforant path-granule cell synapses in CTRL and RUN group. 

Slope of the fEPSP was analysed as measures of synaptic strength; values were normalized to the mean 

value of the baseline and expressed as a percentage of this baseline value. Student’s t-test * p < 0.05. 
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Figure 6. Effect of Ifenprodil (3 µM) on LTP elicited in perforant pathway-granule cell synapses.  The 

application of Ifenprodil, an NMDAR antagonist that selectively inhibits receptors containing the NR2B 

subunit, in the perfusion ACSF, abolished the potentiation induced by the high frequency stimulation on 

perforant pathway, confirming the exclusive role of immature granule cells in the LTP observed with the 

stimulation protocol applied. Two-Way ANOVA p < 0.05; Sidak multiple comparison test * p < 0.05.  

 

This finding indicates that immature granule cells, affected by three days of physical 

exercise in a precocious period of their development, contribute to the improved LTP 

maintenance observed after the high frequency stimulation of the perforant pathway, 

which induces a synaptic potentiation based only on immature cells. Consistent with 

this statement, Ifenprodil, which inhibit NR2B-containing NMDA receptors - almost 

exclusively expressed in immature cells - blocked the synaptic potentiation after the 

tetanic stimulation of the perforant pathway (Fig. 6). 

 

Results of the morphological analysis 

Marked cells from both groups, CRTL and RUN, showed one or more primary 

dendrites, which generally emerged from the top of the cellular soma and branched in 

higher order dendrites. The dendrites reached the molecular layer of DG and the 

dendritic spines were clearly noticeable. Total dendritic length was significantly higher 

in RUN group in comparison with CTRL (Fig. 7A) Moreover, in spite of the similar 

number of I order dendrites between the two groups, in RUN group a significant higher 

number of III and V order dendrites was observed (FIG. 7C), suggesting a higher 

dendritic complexity trees in the RUN group.  

Another index of granular development considered was the distance of the cells from 

the hilar zone, consdering that these newly-generated granules, during their 



 

 
30 

 

PART I: PLASTICITY IN HEALTHY BRAIN 

development, migrate throughout the granular layer, moving away from the hilus. This 

analysis revealed that neurons of RUN group were generally farther from the hilus in 

comparison to cells of CTRL group (FIG. 7B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Morphological properties of 30-day-old granule cells. Comparison of total dendritic length (A) 

distance from hilus (B) and dendritic tree complexity (C) between GFP-positive neurons of rats belonging 

to CTRL group (n = 21 cells) and RUN group (n = 19 cells): Student’s t-test * p < 0.05 (A, B). Two-way 

ANOVA p < 0.01; Fisher LSD post-hoc test * p < 0.05 (C). 

 

Focusing our attention on RUN group cells, it is emerged that the differences 

between CTRL and RUN groups were principally due to a subpopulation of cells in this 

latter group. In particular, part of the granule cells in RUN (RUN1) group were not 

different in total dendritic length and distance from hilus when compared to CTRL cells; 

on the other hand, a subpopulation representing about the 26.6% of RUN cells 

(RUN2), was characterised by a greater total dendritic length and distance of migration 

(Fig. 8). In addition, data from Sholl analysis, which provides an estimate of dendrite 

arborization by evaluating the dendritic crossing along the Sholl rings, revealed a 

A B
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significant greater degree of arborization in dendrites of RUN2 group if compared with 

control and RUN1 group (Fig. 9). These morphological findings are outlined in Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Morphological properties of CTRL, RUN 1 e RUN 2. (A) Total dendritic length of GFP-positive 

neurons in CTRL rats (n = 21 cells), RUN1 rats (n = 15 cells) and RUN2 rats (n = 4 cells):  One-way 

ANOVA p < 0.001; Tukey HSD * p < 0.01 RUN2 vs CTRL and RUN1. (B) Distance from hilus of GFP-

positive neurons of CTRL rats (n = 21 cells), RUN1 rats (n = 15 cells) and RUN2 rats (n = 4 cells): One-

way ANOVA p < 0.001; Tukey HSD * p < 0.01 RUN 2 vs RUN 1 and CTRL. 
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Figure 9. Sholl Analysis results showing the differences between CRTL, RUN1 and RUN2 cells. Sholl 

analysis provides an estimate of dendrite arborization by evaluating the dendritic crossing along the Sholl 

rings (starting radius = 3µm; interval between succeeding concentric circles = 8 µm). One-way ANOVA 

and Tukey post-hoc analysis highlight significant differences between RUN2 (n = 4 cells) vs CTRL (n = 

21 cells) and RUN1 (n = 15 cells) at different distances from the soma (  ). 163 µm p < 0.01, Tukey HSD: 

p < 0.01 RUN 2 vs CTRL; p < 0.05 RUN 2 vs RUN 1. 171 µm p < 0.01, Tukey HSD p < 0.01 RUN 2 vs 

CTRL, RUN 1; 179 µm p < 0.05, Tukey HSD p < 0.05 RUN 2 vs CTRL, RUN 1. 187 µm p < 0.01, Tukey 

HSD p < 0.01 RUN 2 vs CTRL, RUN 1. 195 µm p < 0.01, Tukey HSD p < 0.01 RUN 2 vs CTRL, RUN 1. 

203 µm p < 0.01, Tukey HSD p < 0.01 RUN 2 vs CTRL, RUN 1. 211 µm p < 0.01, Tukey HSD p < 0.01 

RUN 2 vs CTRL, RUN 1. 219 µm p < 0.01, Tukey HSD p < 0.01 RUN 2 vs CTRL, RUN 1. 227 µm p < 

0.01, Tukey HSD p < 0.01 RUN 2 vs CTRL, RUN 1. 235 µm p < 0.01, Tukey HSD p < 0.01 RUN 2 vs 

CTRL, RUN 1. 243 µm p < 0.01, Tukey HSD p < 0.01 RUN 2 vs CTRL, RUN 1. 251 µm p < 0.01, Tukey 

HSD: p < 0.01 RUN 2 vs RUN 1; p < 0.05 RUN 2 vs CTRL. 267 µm p < 0.05, Tukey HSD p < 0.05 

RUN 2 vs CTRL, RUN 1. 
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Figure 10. Differences between CTRL and RUN 30-day old GFP-positive granule cells. In the figure are 

outlined the features of newly generated granule cells at 30 days after GFP injection in CTRL vs RUN 

groups. It is possible to notice that a subpopulation of RUN cells is characterised by a greater maturation. 

ML: molecular layer; GCL: granule cell layer. 

 

Discussion 

Three days of physical exercise can influence the development of newly-

generated granule cells with possible implications on hippocampal functions. Analysing 

granules of 30 days, a higher maturation degree, highlighted by the increased 

complexity and dendritic length, in rats of RUN group has been found. However, these 

modifications could be attributed to a percentage of GFP-positive  cells of about 26%, 

which is interestingly close to the percentage found on 7-day-old cells that received a 

precocious GABAergic contact after the same voluntary running protocol here applied 

[1]. It is therefore feasible that anticipation of synaptic GABAergic contact, which 

antedates the exposition of cells to depolarizing GABA action, might affect the survival 

and morpho-functional development of granules that receive the contact, and speed up 

neuronal growth. Therefore, the morphological characteristics of the more developed 

subpopulation of 30-day-old cells, and in particular the increased extension and 

branching of the dendritic trees, highlight the possibility of a higher number of synaptic 

contacts and a deeper integration into the hippocampal network with a possible 

contribution to the hippocampal functions.  In particular, this more developed 

population, which is still in the “critical period” of high excitability, might influence the 

synaptic plasticity related to the immature pool of cells. According to this hypothesis, 

the electrophysiological analysis of field potentials revealed a difference in the 

maintenance phase of LTP induced through the high frequency stimulation of the medial 

CTRL RUN

• Migrate farther

• Have a more complex dendritic tree

• Have a more extended dendritic tree

About
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perforant pathway: in RUN group, this phase of the synaptic potentiation is 

characterised by fEPSPs of higher intensity, suggesting a link between voluntary running, 

enhanced morphological development and hippocampal functions. 

Hippocampus is a structure of pivotal importance for episodic memory, for the 

establishment of memory traces about “where”, “how” and “when” a precise event is 

happened. The DG of hippocampus, which represents its principal mnestic traces 

processing unit, has function of pattern separator, allowing the brain discrimination of 

similar experiences or objects. In contrast, adult-born granule cells pass through a 

“critical period” of their development characterised by morpho-functional properties 

suited for pattern integration function and temporal separation of memories [143, 199]. 

As suggested by Piatti et al. [200], since the higher number of immature granules in the 

development period suited to perform pattern integration function, the increased 

development speed of immature granules might ameliorate temporal resolution and the 

reliability of multiple events memorization. In addition, variation in the dendritic trees 

complexity and extension, might be related with increased number of synaptic contacts 

on the immature population; all these contact originate from not only the entorhinal 

cortex but also from CA3 back-projection [201] and might play an important role in the 

pattern integration function, supporting the correlation between similar events or 

comparable stimulus. 

It is therefore suggested that the subpopulation of more mature newly-generated 

neurons found in RUN group might be subject to a deeper integration into the 

hippocampal network. The effects related to physical activity might be therefore able 

to influence aspects related to memory such as the capability to associate different 

mnestic traces or recognize and discern similar memory traces established with different 

timings. Thus, the difference found in the maintenance phase of LTP is probably related 

with the morphological characteristics of this more mature subpopulation of 30-days 

old cells, and might influence DG functions leading to the physical activity-associated 

improvements of cognitive performance widely reported in literature [122, 155, 191, 

202]. The maintenance phase of LTP represent the trend of the synaptic potentiation in 

time: the more this phase is prolonged and sustained, the more the synaptic potentiation 

at the pathway previously stimulated will last. The LTP lead to the appearance of higher 

intensity EPSCs, increasing the neuronal excitability [14, 21] and, consequently, 

increasing the probability that a neuron might fire when stimulated. The difference in 

the maintenance phase of LTP here reported extend the temporal window within which 

two similar events gain a higher probability of activating the same neuronal population. 

This difference reported in RUN group might lead to the improvement in the pattern 

integration function of the DG since it could improve the association of events through 

the activation of a similar population of immature granules, which, after the 

complement of their development and reduction in excitability, will only respond to 

the events experimented during their development [199]. However, the difference in 

the maintenance phase of LTP in rats that undergone three days of voluntary running, 

starts 10 minutes after the HFS and become evident and significant in the last minutes 
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of the recording. The slightly of the difference reported may be related to the relatively 

small population of the more mature cell found in RUN group – the 26% of the total 

immature population – whose contribution to the LTP could be arduous to clearly 

highlight with a field LTP. Nevertheless, considering the significance of the last four 

minutes of the recording, new experiments, which will extend the recording time from 

40 minutes to 80 minutes after the tetanic stimulation of the perforant pathway, might 

be rightful and hence will be performed soon in the forthcoming.
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 Even though brain plasticity represents a fundamental intrinsic property, able to 

allow the modification of the structures and functions of the central nervous system in 

response to environmental demands, it could also be subject to corruption of its normal 

dynamics and turned into the main rival in the battle against several neurological 

disorders. Indeed, neuronal plasticity is a double face medal, which could also represent 

the central pathogenic foundation of neurodevelopmental and neurodegenerative 

disorders such as depression, epilepsy, Alzheimer’s disease, schizophrenia and autism 

spectrum disorders (ASD). In the same way as plasticity in healthy brain is based on 

mechanisms that involve modifications at synaptic level, in the morphology of the 

neurons or in the number of neurons within the neural circuits, the aberrant plasticity 

in many neurological disease is based on the same mechanisms which, in this case, act 

in an uncontrolled and misleading way. Thus, if plasticity in health can be referred to as 

an adaptive process, acquired brain insults could trigger aberrant plastic dynamics giving 

rise to maladaptive plastic changes that play a role in the pathophysiology of several 

neuropsychiatric conditions. However, important factors to consider that likely 

contribute to individual differences in the efficacy of plasticity dynamics are genetic or 

epigenetic mechanisms, or lifetime experiences [78], which produce dissimilar set point 

or slope of change in plasticity and different disease manifestation and progression.  

To give back a better idea about what plasticity diseases are, some examples of 

these disorders follow. One well-known example of maladaptive plasticity is the focal 

hand dystonia, often referred to as musician’s cramp or writer’s cramp, which causes 

involuntary movement, cramps or tremor of the affected hand. This disorder is a 

disabling condition that has been difficult to treat with physiotherapy or other methods. 

It has been demonstrated that recurrent and rapid time-synchronous movements during 

vigorous practicing, could lead to the degeneration of the sensory feedback controlling 

fine motor movements, which after all result in the fusion of the different cortical 

representation of the specific fingers [203]. The abnormal sensory representation affects 

the motor control and, in turn, anomalous motor control reinforces the sensory 

aberration: at the end, this positive feedback loop reinforces the dystonic condition. 

Compared to control individuals, patients with dystonia have significantly reduced 

levels of the inhibitory neurotransmitter GABA in the sensorymotor cortex and in the 

lentiform nuclei contralateral to the affected hand, as demonstrated with in vivo 

magnetic resonance spectroscopy [204]. Another disorder with a strong base on the 

aberrant plasticity that is worth to mention is the ASD. These neurodevelopmental 

disorders are associated with synaptic deficits, including imbalanced 

excitation/inhibition ratios and impaired synaptic plasticity [205]. In ADS a reduction in 

GABAergic receptors and in the enzymes that synthetize GABA, together with increased 

levels of BDNF has been reported. Moreover, proteins implicated in synaptic 

development and plasticity such as neuroligins 3 and 4, SH3 and multiple ankyrin repeat 
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domains 3 (SHANK3) or protocadherin-10, has been identified as candidate genes that 

confer increased risk of ASD [206]. Since animal models of these human single gene 

syndromic causes of autism demonstrate aberrant synaptic plasticity, these findings have 

suggested the view that autism should be thought as a synaptopathy by which proteins 

that are involved in synaptic development and plasticity are affected. Repetitive 

Transcranial Magnetic Stimulation (rTMS), which as the potential to induce long-lasting 

modulation of the cortical excitability and plasticity, has showed to improve some 

specific behavioural symptoms in individuals with ASD [206]. Further diseases that 

appear as manifestation of aberrant plasticity are for schizophrenia, a 

neurodevelopmental disorder about which several lines of evidence suggest that the 

neurotransmitter mechanisms mediating plasticity in the cortex are altered, and 

Alzheimer’s disease, where the amyloid- (A) protein initiate a cascade of events 

ending in synaptic dysfunction and cell death. In addition, important diseases of great 

impact for human health that share a base of aberrant plasticity dynamics are depression 

and epilepsy: a detailed description of these diseases and their relation with brain 

plasticity could be find in the sections below. 

All the disorders reported above are sadly well-known and draw attention on a severe 

concern since brain diseases represent a serious problem for human health and often 

denote a heavy burden for human society. Besides, many plasticity diseases are complex 

pathologies with limited known treatment options. Plasticity diseases, consequently, 

often cause suffering to the patients and frustration to the professionals who are asked 

to treat these disorders. For these reasons, the research of promising approach for future 

pharmacological therapies, which should be aimed at returning the neural circuitries that 

are in an abnormal state, back to their normal state, is an important and still unmet 

clinical need. 
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UNDERSTANDING AND TREATING MAJOR DEPRESSION 

 

Depression is one of the most devastating illnesses, and is among the leading 

contributors to the global burden of disease. The proportion of the global population 

with depression in 2015 is estimated to be 4.4%. The World Health Organization 

(WHO) reported that prevalence varies throughout WHO regions, from a low of 2.6% 

among males in the Western Pacific Region to 5.9% among females in the African 

Region. Prevalence rates vary by age, peaking in older adulthood (above 7.5% among 

females aged 55-74 years, and above 5.5% among males). Depression also occurs in 

children and adolescents below the age of 15 years, but at a lower level than older age 

groups. This disorder is more common among females (5.1%) than males (3.6%). The 

WHO reported that the total number of people living with depression in the world is 

322 million and the total estimated number of people living with depression increased 

by 18.4% between 2005 and 2015. 

Major Depression Disorder (MDD) is commonly diagnosed by criteria in the Diagnostic 

and Statistical Manual (DSM) [207], which specifies that 5 of 9 symptoms should be 

present for a 2-week period: the criteria are summarized in Tab. 1.  

Melancholic features include a pronounced  loss of pleasure in most or all activities, 

early morning awakening, and a worsening of symptoms in the morning hours; 

psychotic symptoms often include feeling of personal inadequacy, guilt, punishment or 

death [207]. Lastly, depression is strongly associated with suicide ideations and attempts 

[208]. The course of MDD reflects its complexity: initial onset can include various 

physical symptoms among which pain (i.e. headache, musculoskeletal, 

abdominal/pelvic), neurovegetative mood symptoms, and cognitive changes. The 

progression of MDD is variable with some patients rarely experiencing a remission 

(consisting in more than 2 months with no or only a few mild symptoms) and others 

that go through many years with few or no symptoms between isolated depressive 

episodes. Many patients who have experienced only few months of depression, might 

be expected to recover spontaneously. On the other hand, chronicity of symptoms 

decreases the possibility that a full remission will follow the treatment. In addition, 

lower recovery rates are associated with psychotic features, symptom severity, 

prominent anxiety, and personality disorders. Anyhow, most patients with symptoms 

of MDD do eventually improve. An observational study reported that 17% of 

participants with MDD remained in a chronic state of depression after 39 months, and 

another 40% had a fluctuating course of depression, while 43% were in remission from 

baseline [209]. Unfortunately, depression is highly recurrent. In keeping with this 

statement, a prospective study found that 64% of patients recovered from an episode 

of MDD experienced at least 1 additional episode, with the greatest risk of recurrence 

in the first months after recovery. As the period of remission increase, the probability of 

recurrence decrease; on the other hand, each recurrence rises the risk of experiencing 

further episodes of MDD [210]. 
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Table 1. DSM criteria for MDD 

DSM 5
th
 Edition diagnostic criteria for major depression 

 

A. Five (or more) of the following symptoms present during the same two-

week period and represent a change from previous functioning; at least one 

of the symptoms is either depressed mood or anhedonia 

 

B. Symptoms cause clinically significant distress or impairment in social, 

occupational, or other important areas of functioning 

 

C. Episode not attributable to the physiologic effects of a substance or another 

medical condition 

1. Depressed mood most of the day (e.g. feels sad, empty, hopeless) 

 

2. Markedly diminished interest or pleasure in almost all activities nearly 

every day 

 

3. Significant appetite changes or significant weight loss or gain 

 

4. Insomnia or hypersomnia nearly every day 

 

5. Psychomotor agitation or retardation 

 

6. Fatigue or loss of energy 

 

7. Feelings of worthlessness or excessive guilt 

 

8. Diminished ability to think or concentrate or indecisiveness 

 

Adapted from Diagnostic and statistical manual of mental disorders. 5th edition. Washington, DC: 

American Psychiatric Association; 2013. 

 

Etiopathology of depression 

MDD is a multifaceted disease with a etiopathogenesis based upon multiple 

factors that might act at multiple levels such as genetic, biological, psychological and 

social: the mechanisms that contribute to the emergence of the disease are still not 

completely understood. The focus of the etiopathology of MDD is principally on its 

neurobiology and how it associated with genetic and environmental contributors. In 

particular, much attention is condensed on three major monoamine systems namely 

serotonin, norepinephrine (NA) and dopamine (DA). 

The classical monoamine hypothesis of depression postulates a deficiency of 

monoaminergic transmission, and in particular serotonin. Indeed, numerous studies 

support a dominant role of 5-HT system on depression since the presence of evidence 

about alterations of the serotoninergic transmission. In particular, it has been reported 

a reduced activity of 5-HT neurons in post-mortem studies on depressed patients and, 
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a reduction in the number of serotonin transporters (SERT) in midbrain and amygdala 

together with an imbalance in the number of some 5-HT receptor subtypes in pre- and 

post-synaptic terminals [211]. Further support derives from the observation that 

individuals with the s allele of the promoter region of SERT gene (SLC 6A4) have a 

higher risk of MDD in response to early life stress such as child abuse or carelessness 

[212]. This allele gives rise to an attenuated promoter of the SERT transporter gene, 

which regulates the availability of 5-HT in the central nervous system. 

 Norepinephrine system is also considered to be involved in MDD. Drugs that 

block NE reuptake, thus increasing the levels of this neurotransmitter in the synaptic 

cleft, are effective antidepressant. Besides, numerous post-mortem and neurochemical 

studies on depressed patients, report a dysfunction of NE system in MDD. In particular, 

alterations of NE transmission in depression include: low levels of NE in urine and 

cerebrospinal fluid, increased levels of -adrenergic receptors in the cortex and, 

increased MAO-A activity in the CNS of depressed patients. 

Lastly, numerous findings support an important role in depression of DA circuits 

of the central nervous system. Moreover, it has been suggested that the suboptimal 

responses to monoaminergic-targeting antidepressants observed in some individuals 

might be related to the lack of effect of these drugs on DA circuitry [213]. The imbalance 

in DA transmission consists in the reduction of DA transporter binding sites and increased 

postsynaptic dopamine D2/D3 receptor density, suggesting a decrease in synaptic 

availability of DA [214]. The emergence of a dopaminergic hypothesis of depression is 

not surprising since many of the most important symptoms of MDD associated with 

eating, social or pleasure, are primarily mediated by dopaminergic neurons. 

It is almost unanimously accepted that various neurotransmitters are 

pathologically involved in depression, yet none of them seems to be the sole 

responsible. As previously mentioned, depression is multifaceted disease and is probably 

caused by various aberrant plastic changes that ultimately result in the disruption of 

structural and functional connections of the neural circuit that underlie mood regulation. 

Many brain regions are proved to be altered in MDD but the most consistent findings 

regard the prefrontal cortex and the hippocampus, which are both reduced in volume 

in depressed individuals [215, 216]: the volume decrease correlates with length of the 

illness, its severity and the time of the treatment. Moreover, it has been reported a 

reduction of synaptic contacts in depressed subjects [217] and, rodent models revealed 

that, like depression, exposure to stress causes atrophy and loss of neurons in the 

prefrontal cortex and hippocampus [218, 219]. Synaptic plasticity is governed by an 

intricate interaction of signalling pathways and the alteration of these pathways has 

been related with the susceptibility to depression. In particular, some important key 

modulators of synaptic plasticity altered in depression are neurotrophic factors – which 

levels are found reduced – and inflammatory cytokines – which levels are found 

elevated in MDD – [218]. 

Acute traumatic or chronic stress represents a significant susceptibility factors for 

depression and exposure to stress, in particular during early life, cause long-lasting 
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alterations also linked to epigenetic modifications of DNA or histones [220, 221]. A 

hallmark feature of the stress response is the activation of HPA axis and the subsequent 

increase in circulating glucocorticoids level. MDD is often associated with an increase in 

the activity of HPA axis and increased levels of glucocorticoids, together with the 

disruption of negative-feedback mechanisms [222]. In rodents, the chronic exposure to 

glucocorticoids reduces the number of synapses and affects their functioning; moreover, 

it causes atrophy of neurons in the prefrontal cortex and hippocampus, which represent 

atrophied regions also in depressed humans [223, 224]. It has been suggested that 

chronic stress, combined with genetic and environmental factors, might result in short-

term adaptive changes, such as activation of immunity system, that could lead to 

deleterious long-term synaptic and cerebral consequences [225]. Cytokine infusion such 

as interferon, induces depression-like behaviour [226] and, serum levels of pro-

inflammatory cytokines IL-1, IL-6 and TNF have been found increased in depressed 

individuals: interestingly, cytokine levels result normalized after antidepressants 

treatment [227]. Inflammatory cytokines are produced and released in the brain from 

microglial cells and have influence on brain plasticity in physiological conditions [228]. 

Conversely, stress, aging and inflammation, inducing an abnormal increase of 

inflammatory cytokines, affect the normal brain plasticity leading to damage, atrophy 

and loss of spine synapses [225]. The atrophy of neurons caused by stress are key 

contributors to the symptoms of depression: in addition to HPA axis activation, the 

number of synapses and function are altered by other factors, and in particular 

neurotrophic factors, which have been implied in depression. 

Many neurotrophic factors such as Vascular Endothelial Growth Factor (VEGF), Insuline-

like Growth Factor (IGF-1), Fibroblast Growth Factor 2 (FGF2) and, in particular, BDNF 

have been implicated in depression [225]. The possible role of all these factors in MDD 

has been hypothesized in the context of the neurotrophic model of depression. This 

hypothesis postulates that, since their significant involvement in maintenance and 

activity-dependent formation of synaptic connections and the evidence about the 

increased synaptic plasticity after the chronic administration of typical antidepressant, 

stress and depression can lead to decreased neurotrophins levels. In keeping with this 

hypothesis, FGF2 signalling seems reduced in depression [229]; likewise, stress and 

depression decrease the expression and function of BDNF in the prefrontal cortex and 

hippocampus [230]. 

 

Treatments 

Several approaches for the treatment of MDD have been found to be efficacious. 

These approaches include behavioural interventions and self-care, psychotherapy and 

psychopharmacological interventions [208]. 
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Behavioural interventions and self-care 

Intervention based on behavioural/self-care are particularly suited for all the 

patients that are opposed to treat their depressive symptoms using medicines or 

psychotherapy, and prefer to start with interventions that they can initiate on their own 

instead. The increasing in MDD diagnosis is probably associated both on improved 

screening and awareness by patients and health providers and, as Hidaka suggested, on 

the modern lifestyle, which often include isolation from a family unit, weak social 

interactions, high levels of stress, sleep-wake alterations, and inadequate exposure to 

sunlight that in conclusion lead to undernourished, lonely and stressed individuals [231]. 

Behavioural/self-care intervention should be aimed to contrast some of the risk factors 

linked to the modern lifestyle and should be therefore based on a balanced and healthy 

diet, on doing regular and adequate levels of physical activity, on the treatment of sleep 

abnormalities and, on the abstinence from alcohol and drugs consumption. Moreover, 

meditation, music and animal-assisted therapy have some evidence for benefit in the 

treatment for MDD [208]. 

 

Psychotherapy 

Psychotherapy is a useful intervention in the treatment of MDD. In particular, 

the effectiveness of the treatment has been reported in association with cognitive 

behaviour therapy, behavioural activation therapy, interpersonal psychotherapy, 

problem-solving therapy and psychodynamic therapy [208]. The application of one of 

these approaches, comes after an accurate evaluation about the differences between 

these forms of psychotherapy that might confer certain advantage and disadvantage 

depending on the patient’s philosophy, level of insight, willingness to participate and 

preferences [232]. 

 

Pharmacological approach 

The currently available drugs used for pharmacological intervention are divided 

in first- and second-generation antidepressants. First-generation antidepressant is for 

instance tricyclic antidepressants (TCAs) or monoamine oxidase inhibitors (MAOIs), 

while second-generation antidepressants include selective serotonin reuptake inhibitors 

(SSRIs), bupropion, and mirtazapine; the last category is generally preferred over the 

first because of its less problematic side effects and reduced risk of fatalness in overdose 

situations [208]. Pharmacological intervention is suited for treating severe states of 

depression and is generally used as monotherapy or together with psychotherapy and 

other modalities of care. It has been reported that second-generation antidepressants as 

mirtazapine, escitalopram, venlafaxine and sertraline are the most efficacious 

treatments. Among these drugs, it has been suggested that escitalopram and sertraline 

might be more efficacious [233, 234], probably because they are the most potent in the 
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binding to 5-HT reuptake inhibitors. Anyhow, an important factor to consider is the 

rate of dropout, which affects the success probability of the treatment and is partially 

dependent on the side effects of the antidepressant. Indeed, the primary reason for 

discontinuation of antidepressant consumption cited in studies is nausea and vomiting: 

these side effects fortunately resolve in about two weeks and can be mitigated with 

different strategies. Unfortunately, a remarkable portion of patients affected by MDD 

of about 30-40% will not respond to antidepressant interventions. The strict definition 

of treatment-resistant depression indicates the lack of improvements in response to 

adequate doses and duration of therapy with two antidepressant of different classes 

[235]. The treatment-resistance is sometimes overcome increasing the dose of 

antidepressant or switching between classes, but this strategy not always gains the hoped 

effects. Therefore, it persists a need for the research on new effective treatments in drug 

design, trying to address the drug delay in efficacy, the side-effects problematics, and 

the treatment-resistant MDDs. 

 

Receptor-receptor interaction: discovery and their role in disease 

The existence of a direct interaction between membrane receptors, namely 

receptor-receptor interactions, has been assessed through numerous different 

methodologies, spanning from classical biochemical approaches to biophysical 

techniques [236]. Membrane receptors act in cell signalling recognizing specific 

extracellular molecules and transducing the signal inside the cells through the activation 

of elaborated intracellular pathways. Numerous cell surface receptors are 

transmembrane proteins classified and divided in families basing on their topologies. 

Two well-known classes of membrane receptors are G Protein-Coupled Receptors 

(GPCRs) and Receptors Tyrosine Kinase (RTKs). GPCRs are also called seven 

transmembrane domain receptors (7-TM Receptors), since they pass the cell membrane 

seven times: their pathway involves the activation of different heterotrimeric G proteins 

(G) and lead to genomic and non-genomic effects. The major G proteins are Gs, Gi/o, 

Gq and G12/13. RTKs on the other hand, are receptor mostly known for their involvement 

in growth factor, cytokine and hormone pathways. These receptors are most generally 

single subunit receptors – with some exception – which dimerize once bound to their 

ligand: this conformational state lead to the transphosphorylation of their cytoplasmic 

domains and activation of intracellular pathways with subsequent genomic and non-

genomic effects. 

Based on the evidence that neuropeptides often coexist with monoamines in the 

same synaptic releasing vesicles, Kjell Fuxe’s group for the first time made the hypothesis 

about the possibilities of molecular integration of different transmitters signals via 

transmembrane receptor-receptor integration [237]. They began to test this hypothesis 

in the early 1980s, with the studies on the neuropeptide-monoamine receptor-receptor 

interactions (i.e. GPCR-GPCR) in membrane preparations of various CNS regions. 

Interestingly, they found that neuropeptides could modulate the binding characteristics, 
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and in particular the affinity, of monoamine receptors [238-240]. Thus, it was proposed 

that their interactions in the plasma membrane took place in postulated heteroreceptor 

complexes of GPCRs, bringing evidence for the existence of direct R-R interactions in 

the plasma membrane between different types of GPCRs. The term heteromerization 

was later introduced, in 1993, to describe a specific direct interaction between different 

types of GPCRs [241]. The concept of GPCR heteromerization was confirmed in 1999 

by study reporting that two non-functional receptors, GABAB1 and GABAB2, assemble in 

a signalling heterodimer at the cell surface [242]. Nowadays, the R-R interaction field 

in the CNS has expanded and includes monomers, homo- and heteroreceptor complexes 

with receptor assemblies of unknown stoichiometry and geometry together with 

adapter proteins. Moreover, the initial concept about R-R interaction between GPCR 

receptors has been extended to other receptor categories, among which RTKs. Indeed, 

it becomes clear that RTKs and GPCRs possess the ability for transactivation not only 

via GPCR-induced release of neurotrophic factors but also through shared signal 

pathways or via direct allosteric R-R interaction [243, 244]. The hypothesis about a 

direct interaction between RTKs and GPCRs was for the first time introduced by Fuxe’s 

group about ten years ago [243], while the first evidence about a direct RTK-GPCR 

interaction was reported by Flajolet and colleagues between the adenosine A2A and 

FGF receptors using the yeast two-hybrid system; the same group brought also evidence 

for the enhancement of synaptic plasticity after the combined activation of the two 

receptors [245]. The existence of this complex was subsequently validated with BRET 

techniques [244].  

The operational definition proposed for R-R interaction enunciates that two 

experimentally measurable conditions should be fulfilled for defining an interaction as 

R-R interaction. In particular, the binding of a ligand to one receptor must causes a 

detectable change in the biochemical characteristics – ligand recognition, decoding, and 

trafficking process – of the other receptor; moreover, the mean distance evaluated 

through atomic force microscope or Resonance Energy Transfer (RET)-based approach 

– i.e. bioluminescence-RET (BRET) or Fluorescence-RET (FRET), must be less than 10 nm 

[237]. 

The allosteric mechanisms in receptor heteromers make possible a marked rise of 

the range of GPCR recognition and signalling through the modulation of the orthosteric 

and allosteric binding sites of the adjacent protomer, of its G protein activation and 

selectivity, of its signalling cascade and through the appearance of novel allosteric sites 

(Fig. 11). Thus, the allosteric R-R interactions in heteroreceptor complexes give diversity, 

specificity and bias to the receptor protomers due to conformational changes in discrete 

domains leading to changes in receptor protomer function and their pharmacology. 

Therefore, it is clear that R-R interaction has attracted much attention within the 

scientific research world for their promising potential as novel targets for treatment of 

neurological and mental diseases.  
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Figure 11. Receptor-receptor interactions increase the diversity of G protein-coupled receptors recognition 

and signalling. Upon activation of one protomer modulation of the orthosteric and allosteric binding sites 

of the adjacent protomer (A) can take place as well as of its G protein activation (B), its G protein 

selectivity (C), its signalling cascades with among others switching from G protein to β-arrestin signalling 

(D) and through appearance of novel allosteric sites that may alter for instance G protein coupling and 

selectivity (E). Adapted from “The changing world of G protein-coupled receptors: from monomers to 

dimers and receptor mosaics with allosteric receptor–receptor interactions” [237]. 

Modulation of G protein selectivity 
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Indeed, neuropsychiatric disorders and GPCRs are strictly related. The involvement of a 

wide range of GPCRs in this kind of diseases has been known for a long time. However, 

an interesting new entrance is related with the GPCR heteromers involvement and their 

important role in receptor function. The connection between heteroreceptor complex 

has been proven for many pathologies among which schizophrenia (A2AR-mGlu5 [246] 

and A2AR-D2R-mGlu5R [247]), Parkinson (A2AR-D2R [248] and D2R-D3R [249]), 

cocaine addiction (5-HT2AR-5- HT2CR [250]), pain (OR-OR [251] and OR- 

mGlu5R [252]) and major depression (FGFR1-5HT1A [253]). 

A possible strategy to target heteroreceptor complex in disease is to develop a molecule 

that antagonizes the R-R interaction, that could be a protein or a oligopeptide which 

interferes with the complex formation [236]. Transmembrane interface interfering 

peptides have successfully been introduced, leading to a significant decrease of these 

heteroreceptor complex [2]. Nonetheless, in some cases the R-R interaction should be 

enhanced rather than disrupted; this is the case of FGFR1-5HT1A heteroreceptor 

complex, where the enhancement might lead to increased excitability and plasticity, 

thus counteracting depression, a disease where this complex is involved. Moreover, it is 

also possible that positive or negative modulators of one protomer might exert major 

role in modulating the function of the other protomer involved in the heteroreceptor 

complex through similar mechanisms [236]. However, since is currently fairly unknown 

how allosteric modulators at one protomer influence the function of the other in a R-R 

interaction, understanding these modulatory actions might probably lead to gain new 

opportunities for the introduction of novel therapeutic drugs. 

 

FGFR1-5HT1A heteroreceptor complex as a novel target for the 

treatment of major depression 

 

The existence of GPCR containing heteroreceptor complexes which, even in 

absence of neurotrophic factor bound to the RTK, can lead to transactivation of RTKs 

with effect on neuronal plasticity, has the potential to open a new research field for the 

treatment of several diseases, including Major Depression [243, 245, 254]. It is strongly 

suggested that the interaction between the receptor for the basic Fibroblast Growth 

Factor (or FGF2) FGFR1 and the serotonin receptor 5HT1A may play an important role 

in MDD [2, 3, 236, 253, 255]. FGFR1-5HT1A heteroreceptor complex was for the first 

time observed by Kjell Fuxe’s group using the in situ Proximity Ligation Assay (in situ 

PLA) and co-immunoprecipitation (Co-IP) techniques in rat dorsal hippocampus. The 

presence of these complexes were found in the pyramidal cell layers of CA1 to CA3 

fields and in the dorsal leaflet of DG, but not in the cerebral cortex. In addition, the 

existence of this interaction has been confirmed using BRET technique in cellular cultures; 

the specificity of this interaction has been also validated using small transmembrane 

peptide which interferes with the complex formation [2]. The same paper showed that 

allosteric R-R interactions in hippocampal cultures involved a 5HT1A agonist-induced 
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FGFR1 transactivation and pathways activation, as seen from its increased 

phosphorylation, especially after the combined agonist treatment, of FGFR1 and ERK 

1/2 [2]. The agonist regulation of this heteroreceptor complex, in particular with a 

combined agonist treatment, leads to an increase in the affinity of the interaction of the 

two receptor protomers and in the number of receptor complex formed. In addition, it 

has been found that FGF2 and 5HT1A agonist promote neuroplasticity in vitro, 

suggesting a potential effect of a treatment based on this heteroreceptor complex in 

counteract and reverse the atrophy found in hippocampus in MDD. However, no in 

vivo data currently exist in support of such suggestion, thus limiting its value. 

Nevertheless, it is worth to note that these first evidence open up the possibility that in 

the hippocampus, the combined activation of 5HT1A and FGFR1 protomers in the 

FGFR1-5HT1A heteroreceptor complex might also potentially contribute to 

antidepressant-like actions [255]. The hippocampal formation is connected with key 

regions of the emotional and mood circuits of the brain and is therefore in a position 

to effectively influence the operation of these emotional networks, which is known to 

be related with MDD pathophysiology. 

 The hippocampal results were later reinforced by the finding of FGFR1-5HT1A 

heteroreceptor complex in large number of midbrain 5HT neurons in dorsal and median 

raphe nuclei of Sprague Dawley rats and rat medullary raphe cell cultures [3, 253]. In 

the raphe nuclei, the 5HT1A receptor is known to have a function of autoreceptor, 

being localised on 5HT neurons and regulating the serotonin release [256, 257], due to 

their regulatory effect on G protein-coupled inwardly-rectifying potassium channel 

(GIRK). The raphe nuclei are a heterogeneous collections of neurons, with poorly 

defined cytoarchitectonic limits and characterised by distinct morphologies, projections 

and neurochemical characteristics. These neurons surround the midline, along the rostro-

caudal extension of the brainstem, both in animals [258] and human [259]. The 5HT 

neurons are the main neuronal constituents of the raphe nuclei, which provide parallel 

and overlapping ascending and descending projections that constitute the main 

serotoninergic inputs of the CNS. The serotonergic projections participate in the 

regulation of different functional – i.e. motor, somatosensory, limbic systems –, and 

have been associated to the control of diverse physiologic and behavioural endpoints, 

including emotional states and emotional behaviour [260]. In the raphe cells has been 

proven that combined treatment with FGFR1 and 5HT1A agonists produce a marked 

enhancement of the number of processes formed by each medullary raphe neuron and 

of the amounts of serotonin immunoreactivity per cell [253], indicating a promising 

effect on increasing plasticity and serotonin production in 5HT cells. Indeed, the 

ascending midbrain 5HT neurons might be dysregulated in depression and could have 

a reduced trophic support also in relation to eventual disruption or dysfunction of their 

allosteric R-R interactions, among which FGFR1-5HT1A heteroreceptor complex. 

Taken together, the findings on hippocampus and midbrain raphe suggest that 

synergistic allosteric R-R interaction develops within FGFR1-5HT1A heteroreceptor 

complex upon agonist co-activation. It is suggested that the formation of these 
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complexes could contribute to antidepressant effects by recruiting 5HT1A autoreceptors 

into FGFR1-5HT1A complexes, potentially leading to their uncoupling from GIRK 

channels. As a result, both reduced 5HT1A autoreceptor function and increased trophism 

may develop in the midbrain 5HT neurons; moreover, improved trophism could take 

place also in other brain regions as the hippocampal area. Therefore, combined agonist 

treatment has the potential to increase neuronal activity and remove the atrophy found 

in numerous regions of the CNS among which hippocampus and raphe, representing a 

possible major event for long-term antidepressant actions. Nonetheless, the role of 

FGFR1-5HT1A heteroreceptor complex in a depressed brain remains to establish and for 

that reason, the evaluation of possible alteration of this heteroreceptor interaction 

represents an important requirement for the development of antidepressant strategy 

targeting the FGFR1-5HT1A complexes.  

Thanks to the collaboration between the section of Physiology at University of 

Urbino and Kell Fuxe’s group at Karolinska Institutet, during my second year of PhD I 

got the chance to spend six months in the laboratory of Stockholm to study the FGFR1-

5HT1A heteroreceptor complex and its emergence as a promising target for 

antidepressant treatments design. Based on the previous findings from this group, a first 

evaluation about the therapeutic potential of combined FGFR1 and 5HT1A agonist 

treatment on Sprague Dawley rats has been performed. Subsequently, the hypothesis 

was tested if disturbances in the FGFR1-5HT1A heteroreceptor complex can take place 

at the behavioural and neurochemical levels in Flinders sensitive line rat model of 

depression. 

 

Experimental procedures 

The electrophysiological experiments were performed in the laboratory of 

Physiology in Urbino, while the behavioural and biochemical analyses where carried 

out in the Karolinska Institutet laboratory. 

 

Animals 

Concerning the experiments performed in Urbino, the animals used –Sprague 

Dawely rats (SD) –  were housed as previously reported (“Animals”, pag. 25). The study 

was performed in accordance with the current Italian legislation (D.lgs 26/2014) on 

animal experimentation, which is in strict accordance with the European Council 

Directives on animal use in research (n. 2010/63/EU). 

The experiments carried out at Karolinska Institutet were performed using 3-4 

months old male Sprague Dawley rats (SD) (Scanbur, Sweden) or male FSL rats (bred in-

house), which were housed under standard laboratory conditions (20-22 °C, 50-60% 

humidity). Animals that underwent surgery (see “i.c.v. drug treatment”, pag. 50) were 

single-housed after this procedure. For the behavioural testing, the rats were handled 

for a minimum of six days before testing to minimize stress effects. Each animal was used 
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for one test only. All experiments at the Karolinska Institutet were approved by the 

Stockholm North Committee on Ethics of Animal Experimentation.  

 

Electrophysiological analysis of GIRK currents 

The experiments were carried out on adult male SD rats (n = 15). After 

anesthetization with isoflurane and killing by decapitation, brains were processed and 

cut to obtain slices using the same procedures mentioned above (“Slices preparation” 

pag. 25). The patch clamp technique in whole cell configuration was used. The 

experiments were performed under visual guidance using a Zeiss Axioskop microscope 

equipped with an infrared camera connected to a monitor. Recordings were carried out 

using an Axopatch-200B amplifier and WinWCP software for data acquisition and 

analyses. The recordings pipettes were filled with an internal solution containing in mM: 

126 potassium gluconate, 8 NaCl, 0.2 EGTA, 10 HEPES, 3 Mg2ATP, 0.3 GTP (pH = 7.2; 

290 mosM) and the slices where continuously perfused with oxygenated ACSF (for the 

composition see “Slice preparation” pag. 25). No correction was made for junction 

potential between internal and external solutions. Somata of neurons to be recorded 

were identified in CA1 pyramidal cell layer based on their typical shape. The cells were 

recorded in voltage-clamp mode. In each cell, resting membrane potential (RMP) and 

input resistance (IR) were determined. The RMP was evaluated immediately after the 

break-in; IR was assessed applying hyperpolarising steps of 5 mV and 300 ms. During 

the recordings, membrane potential was kept constant at -70 mV. The recordings were 

rejected if the series resistance was greater than 30 MΩ, if was changed at the end of 

the experiment (± 10 MΩ) or if DC offset exceed 5mV after the withdrawal from the 

cell. Cells displaying non-neuronal features were rejected. 

Is well established that serotonin 5HT1A receptors are able to open GIRK 

channels, generating a hyperpolarising outward potassium current [261, 262]. Thus, 

5HT1A activation and its modulation related to FGFR1-5HT1A heteroreceptor complex 

formation, can be monitored using whole-cell patch-clamp following the holding 

current (Ih) trend and IR deviations. Indeed, changes in K
+
 conductance across the plasma 

membrane lead to input resistance decrease and Ih – required to keep membrane 

potential constant at the prefixed value of -70mV – increase. To evaluate if FGFR1-

5HT1A interaction might result in a modulation of 5HT1A activity, GIRK current 

dynamics were analysed in presence of single or combined treatment with the agonists 

for the receptors under investigation. In particular, after break into whole-cell 

configuration, the cytoplasm goes through a dialysis with the pipette recording solution 

that induce a Ih modification and stabilization. Therefore, in each cell a baseline of stable 

Ih was obtained before agonists application. Once Ih reached a stable value – for at least 

10 minutes – a single or combined bath application of the 5HT1A agonist 8-OH-DPAT 

(5 µM), FGFR1 natural ligand FGF2 (10 ng/mL) or selective FGFR1 agonist SUN11602 (5 

µM), were performed. 
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i.c.v. drug treatment  

For intracerebroventricular (i.c.v.) drug delivery animals were implanted with a 

guide cannula (Plastics One, Roanoke, VA). To this aim, SD and FSL rats were 

anesthetized with isoflurane through a breathing mask. For some FSL rats, pentobarbital 

was given to achieve full anaesthesia. Guide cannulas were implanted at the following 

coordinates relative to bregma and dura surface: mediolateral: - 1.2 mm; 

anteroposterior: −1.0 mm; dorsoventral: − 3.7 mm; at a 0° angle from the vertical axis 

in the coronal plane [263]. Animals were allowed to recover 6-7 days after surgery 

before experimental testing. Drugs were delivered 24 hours before the testing day of 

the forced swim test (i.e. right after the training session) and then again 24 hours before 

sacrifice and collection of the brain (i.e. right after the testing session) (Fig. 12). Drugs 

were dissolved in ACSF and injected via a guide cannula using a microsyringe pump 

(1L/hemisphere) at the following final concentrations: FGF2 50 ng, 8-OHDPAT 200 

nmoles. 

 

Forced Swim Test (FST) 

Immobility in the forced swim test is used to measure behavioural despair and 

has good predictive value for testing antidepressant effects [264]. The test consisted in 

two sessions. For the first session, each rat (n = 7-12 rats/group) was placed for 15 min 

in a vertical Plexiglas cylinder (height: 50 cm; diameter: 30 cm) containing 37 cm of 

water (25±1 °C). For the second session (test session), the animals were placed in the 

cylinder for 5 minutes and filmed for the subsequent video-analysis of the behaviour. 

The drugs (see “i.c.v. drug treatment”) were administered immediately after each of the 

two sessions of FST through i.c.v. injections; the animals were sacrificed 24 hours later 

for in situ PLA analysis (Fig. 12). Immobility time was scored manually by an observer 

who was blinded with respect to the experimental conditions and is defined as the 

cessation of activity aside from the absolute minimum movement required to remain 

afloat. Immobility items were compared as averages and statistical tests were made using 

GraphPad Prism Software.  

 

 

 

 

 

 

 

 

 

Figure 12. In vivo treatment and behavioural experimental design.   
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In situ proximity ligation assay 

In situ proximity ligation assay (PLA) was performed according to manufacturer's 

instructions (Duolink in situ PLA detection kit (Olink, Sweden)). The principle of the 

technique is shown in Fig. 13. Briefly, animals were first euthanized by a lethal dose of 

pentobarbital (200 mg/kg) and perfused intracardially with 30–50 mL of ice-cold 4% 

paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline (PBS), pH 7.4, solution. 

After perfusion, brains were collected and transferred into 4% PFA fixative solution for 

6 h. Then, the brains were placed in sucrose 20% in PBS and incubated for 24 h until 

sections (10–30 µm thick) are generated and serially collected using a cryostat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. In situ Proximity Ligation Assay principle. (A) Using PLA, it is possible to display proteins 

interaction using primary antibodies against the proteins of our interest and a secondary antibodies linked 

to special oligonucleotide sequences (secondary proximity probes). Specific hybridization oligonucleotide 

sequences are then added. (B) If these antibodies are close enough, about 16 nm, after the addition of 

ligase, the nick between the hybridization sequences are closed, and a circle is formed. This circle contains 

the sequence for the subsequent rolling circle amplification, that extends the tail of one of the secondary 

proximity probe with a repeated sequence. (C) Adding a fluorescent marked probes (red dots in the 

image), it is possible to reveal these repeated sequence and analyse PLA blobs, using a fluorescence or 

confocal microscope.  

 

The fixed free-floating sections (n = 5 rats per group) were washed four times with PBS 

and then incubated with the blocking solution (5% Bovine Serum Albumin –BSA – in 

Odyssey® Blocking Buffer – Li-cor Biotechnology –). The slices were then incubated at 

RT for 60 minutes with the following primary antibodies: rabbit monoclonal anti-

5HT1A (VTG Biosciences) and mouse monoclonal anti-FGFR1 (abcam). The slices were 

subsequently incubated with the secondary proximity probes 1:10 in the blocking 

solution 2h at 37 °C. After this step, hybridization-ligation solution was added and the 

slices incubated 1 hour at 37 °C. Lastly, rolling circle amplification were performed at 

37 °C for 150 minutes. Control experiments employed only one primary antibody or 

A B C 
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cells transfected with cDNAs encoding only one type of receptor. The PLA signal was 

visualized and quantified by using a confocal microscope Leica TCS-SL (Leica, USA) and 

the Duolink Image Tool software. 

 

Data Analysis 

Data are expressed as the mean±SEM. The number of samples (n) in each 

experimental condition is indicated in figure legends. All data were analysed using the 

commercial program GraphPad PRISM 4.0 and 6.0 (GraphPad Software, USA). When 

two experimental conditions were compared, statistical analysis was performed using 

an unpaired t test. Otherwise, statistical analysis was performed by one-way analysis of 

variance (ANOVA) followed by Tukey's (electrophysiology, neurochemistry) or Dunnett 

(behavioural analysis) Multiple Comparison post-test. The significance threshold was 

established at p=0.05. 

 

Results 

Electrophysiological analysis of 5HT1A activated hippocampal GIRK currents and their 

modulation by FGF2 and SUN 11602 in Sprague-Dawley rats 

In line with literature, activation of 5HT1A induced an outward Gi/o-mediated 

current in recorded CA1 hippocampal neurons due to GIRK channels opening (Fig. 14) 

[265]. This outward current induces a shift from the baseline of the Ih (Ih) (Fig. 14A) 

and IR (IR) (Fig. 14B): the two parameters change following a linear correlation in all 

groups (Fig. 15), thus a higher shift of Ih correspond to a greater IR variation and vice 

versa.  After application of 8-OH-DPAT (5 μM) in bath perfusion, the 5HT1A agonist 

produced a shift of the holding current, demonstrating a hyperpolarization that 

increased over 10 min and was associated with a decrease of input resistance (IR) (Fig. 

14). In contrast, FGFR1 activation, by using the specific agonist SUN116052 (10 μM) or 

FGF2 (10 ng/mL), did not result in any effect on holding current in CA1 pyramidal 

neurons (Fig. 14C), indicating a failure of channel opening. Importantly, following co-

application of 5HT1A and FGFR1 agonists (5μM 8-OH-DPAT + 10 μM SUN11602), the 

outward current was greatly reduced in the CA1 pyramidal neurons (Fig. 14). 
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Figure 14. Reduction of G Protein-coupled inwardly rectifying K
+
 channel (GIRK) currents induced by 

combined bath application of 8-OH-DPAT and FGFR1 agonists on CA1 hippocampal neurons of Sprague-

Dawley rats. A. Representative graph showing the holding current (Ih) shift following 5 μM 8-OH-DPAT 

application, indicating the occurrence of hyperpolarization. B. 8-OH-DPAT application induces an IR 

decrease, suggesting a membrane channels opening C. Summary graph including all agonists tested. 

Combined application of 8-OH-DPAT together with FGFR1 agonists (10ng/mL FGF2; 10 μM SUN 11602) 

reduces the amplitude of the GIRK current induced by 5HT1A activation. One-way ANOVA, Tukey's post-

hoc: *p < 0.05; **p < 0.01. D. GIRK channel opening decrease input resistance (IR) of CA1 neurons. In 

line with the effect exerted on holding current, combined agonist treatment tends to reduce the IR drop 

elicited by 5HT1A-induced GIRK activation. All data are expressed as Mean±SEM. Number of recorded 

cells (n): 8-OH-DPAT (8), 8-OH-DPAT + SUN 11602 (10), 8-OH-DPAT + FGF2 (8), FGF2 (6), SUN11602 

(6) [266]. 

 

The same effect was also achieved by applying a mixture of 5 μM 8-OH-DPAT and 

FGF2 at a concentration of 10 ng/mL (Fig. 14). These data suggest that FGFR1 activation 

was able to produce a significant reduction of the GIRK current induced by 8-OH-DPAT. 

All observed effects were reversed by washing out with ACSF. There was a non-

significant trend for the FGFR1 agonist and FGF2 to counteract the reduction of input 

resistance produced by the 5HT1A agonist (Fig. 14D). 
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Figure 15. Mean value of delta input resistance (IR) plotted against mean value of delta holding current 

(Ih) recorded in the experimental groups. Linear relationship between IR and Ih parameters (red 

dashed line) displays how to an increase of Ih, due to GIRK channel opening, corresponds a decrease of 

IR. 

 

Effects of acute i.c.v. treatment with FGF2 and/or 8-OH-DPAT in the forced swim test  

Sprague-Dawley rats 

Each drug treatment by itself did not significantly affect the behaviour in the 

forced swim test (n = 9-11) compared to ACSF treated littermates (n = 16). The 

combined treatment of FGF2 (50 ng) and 8-OH-DPAT (200 nmoles) caused a decreased 

immobility time compared to ACSF treated littermates (Fig. 16A).  

 

Flinders sensitive line rats 

In FSL rats, a single i.c.v. treatment with 8-OH-DPAT alone (200 nmol/L) caused 

a significant reduction in the immobility time compared to ACSF treated littermates (Fig. 

16B). In contrast, neither the combined treatment, nor FGF2 by itself had any significant 

effect on immobility time in the forced swim test.  
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Figure 16. Forced Swim Test in SD and FSL rats. (A) SD rats showed a significant reduction of immobility 

time upon combined 8-OH-DPAT and FGF2 i.c.v treatment in the forced swim test compared to vehicle 

controls. All drugs were administered i.c.v. 24 hours before testing. Immobility time was scored during a 

5 min test session by an experimenter blind to treatment conditions and expressed as percent of 

immobility time in vehicle treated controls. Neither FGF2 (50 ng) nor 8-OH-DPAT (200 nmoles) alone 

did significantly decrease immobility time in the Sprague Dawley rats. However, co-administration of the 

drugs showed a significant decrease in immobility time as compared to ACSF controls. ACSF n = 16; 

FGFR2 n = 9; 8-OH-DPAT n = 11; FGF2 + 8-OH-DPAT n = 15. (B) FSL “Depressed” rats showed a 

significant reduction of immobility time in 8-OH-DPAT alone (200 nmoles i.c.v.) treated rats in the forced 

swim test compared to vehicle treated rats. All drugs were administered i.c.v. 24 hours before testing. 

Immobility time was scored during a 5 min test session by an experimenter blind to treatment conditions 

and expressed as percent of immobility time in vehicle treated FSL rats. Flinder’s sensitive line rats 

demonstrated a significant decrease in immobility time with 8-OH-DPAT alone, but not with FGF2 alone 

nor with combined treatment (FGF2 + 8-OH-DPAT). ACSF n = 10; FGF2 n = 8; 8-OH-DPAT n = 10; 

FGF2 + 8-OH-DPAT n = 11. One-way ANOVA followed by Dunnett multiple comparison test, *p < 0.05 

[266]. 

 

Effects of acute i.c.v. treatment with FGF2 and/or 8-OH-DPAT on hippocampal FGFR1-

5HT1A heteroreceptor complexes using the in situ Proximity Ligation Assay 

Sprague-Dawley rat  

The CA1, CA2 and CA3 areas of the dorsal hippocampus were analysed by 

confocal laser microscopy (Fig. 17). The specific PLA clusters had a similar density in all 

these areas as seen from the number of PLA clusters per nucleus per sampled field. In 

Fig. 17 it is seen that the only change found in the different treatment groups, in which 

the forced swim test had been performed, was in the CA2 area. A significant increase in 

the density of FGFR1-5HT1A PLA clusters was observed in this region in the combined 

treatment (FGF2 + 8-OH-DPAT) group. A possible trend for such an increase was found 

in the CA3 but not in the CA1 area in the combined treatment group (Fig. 17). The 

panels below the quantification graphs illustrate the increases obtained with the 

combined treatment in the CA2 area vs 8-OH-DPAT alone and ACSF alone. The number 
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of PLA positive cells in percent of total number of nuclei per sampled field did not 

change in any region (data not shown). Thus, the synergistic increase in the number of 

PLA blobs per nucleus per sampled field in CA2 reflects an increase in the density of 

clusters in already PLA positive cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. FGFR1-5HT1A heteroreceptor complexes in SD rat hippocampus detected by in situ PLA. SD 

rats showed a significant increase in FGFR1-5HT1A heteroreceptor complexes (Proximity ligation assay 

(PLA) positive clusters) in the CA2 area of the dorsal hippocampus following a combined, but not single, 

i.c.v. treatment of the two agonists, 24 h after drug administration. 4 rats per group, duplicates, One-

Way ANOVA with the Bonferroni post-hoc test * p< 0.05 [266].  

 

 Flinders sensitive line rats  

 A significant increase in the density of specific PLA clusters was found after i.c.v. 

treatment with 8-OH-DPAT treatment alone in the CA2 and CA3 areas but not in the 

CA1 area of the dorsal hippocampus vs both the ACSF controls and combined treatment 

groups (Fig. 18). The increase induced by i.c.v. FGF2 treatment alone did not reach 

significance. No effects were found in the CA1-3 areas by combined i.c.v. treatment with 

FGF2 and 8-OH-DPAT. In the panels below the graphs of quantification, the increases 

of PLA positive FGFR1-5HT1A heteroreceptor complexes found are illustrated in the 

CA2 area (Fig. 18). The number of PLA positive cells in per cent of total number of 

nuclei per sampled field did not change in any region. Thus, the increase induced by 8-
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OH-DPAT in the number of PLA clusters per nucleus per sampled field in CA2 and CA3 

areas reflects an increase in the density of blobs in already PLA positive cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. FGFR1-5HT1A heteroreceptor complexes in FSL rat hippocampus detected by in situ PLA 

Hippocampal FGFR1-5HT1A heteroreceptor complexes (PLA clusters) increase in the CA2 and CA3 areas 

of the dorsal hippocampus in FSL rats following i.c.v. injections of 8-OHDPAT alone but not with 

combined treatment. FGFR1-5HT1A heteroreceptor complexes remain unchanged in FSL rats in the CA1 

area after acute treatment. 5 rats per group, duplicates, One-Way ANOVA with Bonferroni post-hoc test 

* p< 0.05 [266].  

 

Discussion 

The therapeutic value of antidepressant drugs is widely proved but the 

mechanism behind their effectiveness is not actually understood. Ascendant 

serotoninergic projections and 5HT receptor subtypes expression are disturbed and 

contribute to the pathogenesis of depression, becoming target for the treatment of this 

mental disorder [267]. Besides, hippocampal and prefrontal atrophy and, FGF2 

signalling system downregulation, have reported to occur in depression suggesting that 

alteration of this growth factor pathway may represent another contributing factor in 

MD etiology [229, 268, 269]. The existence of FGFR1-5HT1A heteroreceptor complex 

was demonstrated in raphe nuclei and hippocampus [2, 3, 253], indicating this R-R 
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interaction as a potential molecular meeting point between the serotoninergic and the 

neurotrophic factor hypotheses of depression. Furthermore, the activation of FGFR1-

5HT1A complex, in particular after a combined agonists administration, leads to an 

enhancement of neuroplasticity in vitro [2, 253] and is linked to possible anti-depressive 

effects in vivo [2]. Therefore, it has been suggested that activation of FGFR1-5HT1A 

heteroreceptor complex may be related with antidepressant effect of serotonin in the 

brain, and combined activation of both receptors could results in more rapid and 

stronger antidepressant action than found with SSRIs. 

Following this point of view, the antidepressant effect of combined treatment on 

SD rats has been assessed using the forced swim test. For this test, the animals were 

placed in a cylinder filled with water and received the treatment after the two 

constituting sessions. In FST, immobility – characterised by absence of movements except 

for those necessary to remain above the water level – is considered a depressed-like 

behaviour: if the treatment act on serotoninergic system and has antidepressant effect, 

a reduction in immobility time is observed [270]. Interestingly, combined, but not single 

i.c.v. treatment with 8-OH-DPAT and FGF2 produced antidepressant effects in SD rat 

as seen from the significant reduction of the immobility time. 

The brains of rats used in the FST were lately taken for in situ PLA 24 hours after 

the forced swim test. In line with the behavioural results mentioned above, the 

combined treatment, but not the single treatments in the SD rat, resulted in a significant 

and differential increase in the number of FGFR1-5HT1A heteroreceptor complexes in 

the pyramidal cell layer of the CA2 field. Such a recruitment of FGFR1-5HT1A complexes 

in the CA2 area may contribute to the antidepressant-like effects observed in the FST by 

the combined i.c.v. treatment. The enhanced integrated response in the CA2 area 

through the increase of these heteroreceptor complexes, may be beneficial for the 

emotional brain circuits modulated by CA2 and participate to the antidepressant-like 

effects observed in the current study. Indeed, it was demonstrated that the CA2 area is 

crucial for social memory [271] highlighting a link of the CA2 area to emotional circuits 

and a putative role of CA2 field in depression, as indicated from the current findings.  

5HT1A receptors are widely expressed both at post-synaptic level – where the 

work as heteroreceptor, mediating the serotoninergic effect on target neurons – and at 

somato-dendritic level of raphe 5HT neurons – where are known to function as 

autoreceptor [272]. Depression is associated with an increase in 5HT1A autoreceptors, 

which, in accordance with their regulatory role on the firing of 5HT neurons, reduce 

the serotonin release and thus, the 5HT transmission [272]. The neuronal inhibition and 

firing decrease due to 5HT1A activation is dependent on GIRK channels activation and, 

consequently, to cellular hyperpolarization [273]. The effectiveness of SSRI anti-

depressive treatments seems to be linked with the desensitization of 5HT1A receptor 

and decrease of 5HT1A-mediated auto-inhibition, which, in turn, lead to increased 

serotonin release [272]. 

In line with these assertions, we evaluated by means of electrophysiological 

approach, if FGFR1-5HT1A combined agonist treatment, might exert its beneficial effect 
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through the modulation of 5HT1A-mediated GIRK currents. The electrophysiological 

analysis of 5HT1A-activated GIRK currents gave evidence that FGF2 and the FGFR1 

agonist SUN 11602, can substantially and significantly reduce the GIRK current elicited 

in hippocampal CA1 pyramidal neurons by 8-OH-DPAT. Thus, an uncoupling of the 

5HT1A Gi/o -mediated opening of the GIRK channels may take place upon agonist co-

activation of the FGFR1-5HT1A protomers, probably recruiting 5HT1A receptors in the 

heteroreceptor complexes. The 5HT1A receptor have a modulatory effect on the 

internal circuitries of the hippocampus upon activation by serotonin released from 

widespread 5HT nerve terminal networks [274, 275] originating from the midbrain 

raphe region [276, 277]. The decrease of neuronal hyperpolarization found with the 

combined agonist treatment might lead to increased excitability and hence relevant 

implications on depression treatment. Indeed, the increased neuronal excitability in the 

dorsal hippocampus is related with anxiolytic and anti-depressive effects [278]. The 

combined agonist reduction of 5HT1A-mediated GIRK current might be also exerted on 

5HT neurons of midbrain raphe and, together with the action on hippocampal area, 

might lead to a faster antidepressant effect and promote a beneficial trophic outcome. 

However, to confirm this hypothesis, electrophysiological experiments on midbrain 

raphe are required. In addition, since this short-term effect was recorded on CA1 field 

while lasting increase in FGFR1-5HT1A blobs were found only in CA2 area, the 

electrophysiological experiments should be extended to this neighbouring area, which 

might exert a more important role in the antidepressant effect observed with the 

combined treatment. 

In keeping with the results collected on SD rats, it became necessary to study the 

FGF2 and 5HT1A agonist regulation of the FGFR1-5HT1A heteroreceptor complexes in 

a depressed brain, and in particular in a genetic rat model of depression (FSL).  

In the forced swim test there was no reduction in the immobility time of the FSL 

rats after combined treatment but only after i.c.v. injection of 8-OH-DPAT alone. These 

results might suggest that the FGF2 and 8-OH-DPAT interactions are disturbed in this 

genetic rat model of depression, indicating the presence of alterations in the FGFR1-

5HT1A allosteric R-R interactions. The reasons behind these changes could be numerous. 

Alterations in the receptor-receptor interactions may be related to changes in the 

composition and stoichiometry of the FGFR1-5HT1A heteroreceptor complexes in the 

FSL vs SD strain. It could also involve changes in the allosteric receptor-receptor 

interactions due to differences in the transmitter panorama between the two strains 

[279]. Therefore, the molecular mechanism may involve differential changes in the 

agonist regulation of the FGFR1-5HT1A heteroreceptor complexes through differential 

R-R interactions in the FSL vs SD rat. Nevertheless, 5HT1A supersensitivity has been 

demonstrated in the FSL rats versus control [280, 281] and might in part be responsible 

for the results obtained. 

In situ PLA results point out that in the FSL rats the combined treatment failed to 

change the density of the PLA clusters in the CA2 and CA3 fields in line with the failure 

of the combined treatment to produce antidepressant-like actions in the FST. On the 
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opposite, it is of interest to highlight that 8-OH-DPAT alone produced a significant 

increase in the FGFR1-5HT1A heteroreceptor complexes in CA2 and CA3 fields of the 

dorsal hippocampus, which was linked to the development of significant antidepressant-

like effects in the FST. These results give support to the view that 5HT1A agonists can 

produce antidepressant-like effects involving the CA2 and CA3 areas of the 

hippocampus [282]. Thus, it seems likely that disturbances develop in the agonist 

regulation of the FGFR1-5HT1A heteroreceptor complexes in the CA2 and CA3 regions 

of FSL rats and that these alterations block the recruitment of these complexes upon 

combined i.c.v. FGF2 and 8-OH-DPAT treatment. The malfunctioning of FGFR1-5HT1A 

interaction described in FSL rats might be associated with lack of antidepressant-like 

effect observed in the forced swim test upon combined agonists treatment. As discussed, 

one reason for these differential actions of the treatments in the FSL and control rats 

may be attributable to a possible different composition and stoichiometry of these 

heteroreceptor complexes in the two strains that will likely lead to differences in their 

allosteric receptor-receptor interactions. 

Taken together, the combined results obtained are compatible with the view that 

in a genetic model of depression using the FSL rats, malfunctions may develop in the 

allosteric receptor-receptor interactions of FGFR1-5HT1A heteroreceptor complexes 

located in the CA2 area of the dorsal hippocampus. The combined agonist regulation 

of their densities in this region also becomes disturbed. Future work will require the use 

of interfering peptides [2] to finally determine the role of these heteroreceptor 

complexes in this genetic model of depression. In addition, it is worth to highlight that 

raphe nuclei have a pivotal role in MDD and should therefore be considered in the 

study of the FGFR1-5HT1A heteroreceptor complexes role in depression. In line with 

this statement, some important PLA results have already been obtained at Karolinska 

laboratory and support the suggestion about a malfunction in the allosteric R-R 

interaction of FGFR1-5HT1A complexes also in this crucial brain area [266]. Nonetheless, 

further experiments, and in particular electrophysiological analyses of these 

heteroreceptor complexes in the dorsal raphe and in the hippocampus of the FSL model 

of depression, are required. 

In conclusion, the FGFR1-5HT1A heteroreceptor complex has emerged as a 

promising target for depression treatment development, since the important actions on 

neuroplasticity [2, 253], the potential modulatory effect on 5HT1A-mediated GIRK 

current and the evidence of its malfunctioning in depression. Nevertheless, remain to 

further establish how this complex might be related with depression investigating 

FGFR1-5HT1A heteroreceptor complex in other rat model of depression, such as chronic 

mild stress model or the olfactory bulbectomized model. Therefore, a deep knowledge 

of this complex and its role in disease might contribute to drug development, hopefully 

leading to the emergence of better and faster antidepressant drugs, which in this field 

still remain a major concern. 
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MALADAPTIVE PLASTICITY IN TEMPORAL LOBE EPILEPSY AND 

ITS PREVENTION 

 

Epilepsy is a heterogeneous and debilitating disease which affect approximately 

1-2% of the population and is a brain disorder characterised predominantly by recurrent 

and unpredictable interruptions of normal brain function, during the so-called seizures.  

This neurological condition is known since antiquity but it was only in the late 

nineteenth and early twentieth centuries that, thanks to the advent of 

electrophysiological recordings [283], quickly became apparent that during seizures 

there is a dramatic change in the electroencephalogram (EEG) attributed to excessive 

and synchronous neuronal activity [284]. As the neurophysiology field improves 

through the years, investigators demonstrate that during seizures and interictal EEG 

spikes (i.e. altered EEG recording in the “normal” state of a period between seizures; 

interictal events are too short to give rise to a manifest clinical behaviour) some neurons 

in the cortex fire abnormally. Between the early 1950s and 1970s, many studies on 

animal models of acutely provoked seizures in neocortex and hippocampus, gave back 

many information about the origin and spread of seizures [285]. In the early 1970s, the 

development of the brain slice and dissociated cell cultures allows to investigate 

functional mechanisms at the cellular and subcellular levels giving important 

contributions to our understanding of the mechanisms underlying epileptic seizures 

[285]. However, despite the progressive emergence of new details about epilepsy 

through the years, the mechanisms that convert a normal brain into an epileptic one it 

is not currently fully understood. 

Seizures, which are paroxysmal events due to unusual, excessive and 

hypersynchronous electrical activity in the brain, give rise to several clinical/behavioural 

manifestations ranging from intense convulsions and loss of consciousness to not readily 

discernible manifestations. Seizures, even if are not necessarily more important than 

other brain alterations intrinsic to seizures such as metabolic, blood flow, receptor, gene 

activation and network connectivity changes, are the most well-known neurological 

symptom of epilepsy. The formulation of an exhaustive definition of seizure could be 

tricky. Thus, during the years many different definitions of seizure has been proposed. 

Recently, a task force of the International League Against Epilepsy described a seizure as 

“a transient occurrence of signs and symptoms due to abnormal or synchronous 

neuronal activity in the brain” [286]. However, it is worth to specify that not all seizures 

imply epilepsy, particularly for single seizures with low likelihood of recurrence or for 

provoked seizures in an in vitro preparation or in a normal animal brain. Therefore, a 

seizure is any clinical event related to an anomalous electrical discharge in the brain, 

whereas epilepsy is the tendency to have recurrent seizures. Accordingly, the term 

“Epilepsy” refers to recurrent and unprovoked seizures. Many studies performed 

through the last decades have suggested that “seizures beget seizures”. Hence a first 

seizure, elicited by a series of degenerative, reactive or regenerative events triggered for 
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instance after a traumatic events, infections and febrile status, is capable to trigger a 

cascade of molecular and biochemical events that lead to reactive maladaptive plasticity 

and enhanced network excitability which, in turn, transform the naïve network in an 

epileptic one [287]; this process is referred to as “epileptogenesis”. In accordance with 

the notion that “seizures beget seizures” some patients have a higher risk of new seizures 

in dependence of the number of seizures they have undergone [288]. Many types of 

epilepsy, however, exist and not all of them are characterised by the progressive course 

of the disease. Benign occipital epilepsy, childhood and juvenile absence epilepsies 

[289], juvenile myoclonic epilepsy, benign familial neonatal, infant and neonatal-infant 

epilepsies [290] and benign childhood epilepsy with centrotemporal spikes [291], are 

all examples of non-progressive epileptic syndromes where seizure activity decreases or 

even disappears with age progression [291, 292]. 

On the other hand, mesial temporal lobe epilepsy (MTLE), the most common 

form of human epilepsy [293], despite the existence of milder forms [294],  is a serious 

progressive and chronic disease characterised by seizures originating in hippocampus, 

entorhinal cortex or amygdala [295]. Additional hallmarks of MTLE are mesial temporal 

lobe sclerosis, also referred to as hippocampal sclerosis [296], and its high rate of drug 

resistance (30-40 % of patients with drug resistant epilepsy suffer of MTLE) [297] which 

often make surgical resection of epileptic tissue the only therapeutic alternative. Thus, 

although many advancements in the research on MTLE has been made during years, the 

need for new and, in particular, efficient drugs remains an important and still not 

attained medical achievement. 

 

Epileptogenesis and aberrant circuit modifications in MTLE 

Epileptogenesis, as mention above, can be triggered by genetic or acquired 

factors and is the process by which the normal brain network is transformed into a tissue 

capable of generating spontaneous and recurrent seizures [298]. This term is referred to 

both the initial conversion in epileptic tissue and, according to the new terminology, 

the following expansion of that tissue during the disease development, after the 

diagnosis. Epileptogenesis is a process that can take as little as minutes to hours or as 

long as months to years [299]. Thus, between the first insult and the appearance of new 

seizure, there is a period of transition referred to as “latent” or “silent” period. During 

the latent period, several molecular, cellular and circuital alterations follow one another 

and evolve over time. At the end of the latent period, non-convulsive EEG-detectable 

seizures always precede the appearance of the first convulsive seizure [300, 301]. Most 

of the information about epileptogenesis process comes from animal models of epilepsy 

but recently evidence that validate the information obtained in animals, has been 

gathered also on human tissue from biopsy or autopsy. Based on these data, it seems 

that the incidence of epilepsy is higher in the first years after the injury (for instance 

traumatic brain injury, stroke and others) and, after a decade, it become progressively, 

though still present, lower [302]. In addition, other relevant information obtained 
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concern the importance of the first insult onto the epileptogenesis. Indeed, there is a 

variation in the latency and frequency of seizure depending on the model of epilepsy 

studied: in post-stroke and traumatic epilepsy, the hippocampal damage is milder than 

what observed in Status Epilepticus (SE)-induced epilepsy [303] (Status epilepticus “is a 

special circumstance with prolonged or recurrent seizures” [286]). Most of the 

information on epileptogenesis has been obtained in studies on induced SE and focus in 

hippocampal area. Epileptogenesis is a process characterised by alterations that come in 

succession with overlapping timing of development. From few minutes to several hours 

after the seizure insult, the massive release of neurotransmitters, and in particular 

glutamate, is followed by ion channels activation and calcium influx which induce short-

lasting biochemical modifications of pre-existing target molecules such as receptors, Ca
2+

 

translocation systems and neurotransmitter trafficking. All these phenomena could 

induce excitotoxicity and cell death. In addition, a complex series of delayed but long-

lasting cellular events, such as proteins phosphorylation and immediate early gene 

activation, occur [299]. After several hours to days, it persists an altered and upregulated 

gene transcription and cellular death, growth factor expression and release, a strong 

activation of inflammatory cascades and, glial and vascular responses. Lastly, after weeks 

to months, many remodelling events take place including axonal sprouting, 

synaptogenesis, gliosis, angiogenesis, network reorganisation and increased synchronous 

activity with an altered excitation/inhibition balance [299].  

It is suggested by many histopathological and electrophysiological data that two 

alterations in local synaptic circuits are essential for acquired epileptogenesis: (1) the 

decreased GABA-mediated inhibition and (2) the amplified recurrent excitation relative 

to the increases in axonal sprouting. 

 

Reduced GABAergic inhibition 

GABA is the most important inhibitory neurotransmitter in the CNS. GABA could 

bind to its ionotropic receptor GABAA, which is a hetero-pentameric channel formed by 

various combination of and,subunits. In general, GABA receptor 

containing subunit mediates fast inhibitory currents while receptors containing 4, 

, or and/or asubunit instead of mediate a tonic inhibition. GABA inhibition in 

the brain is linked to a variety of cognitive processes in health and its alteration is 

involved in several neurological diseases among which epilepsy [304]. The observation 

about the link between GABAAR polymorphisms/mutations and numerous epilepsies in 

human, emphasizes the importance of this neurotransmitter and its mediated inhibition 

in this neurological disease [305, 306]. In addition, the loss of GABAergic inhibition is 

observed prior to a seizure [307]. Depending on the type of epilepsy, the alteration of 

GABAergic drive is generally associated to inhibitory interneuron loss and/or reduction 

in the number of inhibitory synapses on principal neurons [308, 309]. Accordingly, 

there is evidence from morphological and physiological techniques that a modest loss 

of inhibitory interneurons is associated with epileptogenesis [310]. Thus, 
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immunohistochemical and in situ hybridization techniques reveal a loss of specific type 

of GABAergic neurons in epilepsy, in cortical areas and in the hippocampus [311, 312]. 

Although GABAergic neurons death has been identified in several brain regions, the loss 

of somatostatin-positive GABA neurons in the DG hilus represents one of the most 

consistent findings [313]; loss of somatostatin-positive GABAergic neurons in CA1 

stratum oriens have also been proved. Inhibitory interneuron loss, if not compensated 

by axonal sprouting, could cause GABAergic tone reduction. Whole-cell 

electrophysiological recordings revealed a reduced frequency of miniature Inhibitory 

Post-Synaptic Currents (mIPSC) in hippocampal granule cells and CA1 pyramidal 

neurons, supporting the hypothesis of inhibitory drive reduction and neuronal loss [314, 

315]. This reduction of frequency, in keeping with the preferential degeneration of 

somatostatin-positive interneurons, is mostly localised on principal neuron dendrites 

[308, 316]. Despite the changes in dendritic inhibition, the mIPSC frequency in the 

somata of principal neurons is preserved [308, 316], thus contrasting an ongoing status 

epilepticus. This pattern of GABAergic interneuron loss gave rise to the suggestion that 

neurons innervating dendrites are more susceptible of damage in epilepsy. Nonetheless, 

despite this suggestion, in CA1 of a mouse model of temporal lobe epilepsy, 

cholecystokinin-positive interneurons, which provide perisomatic inhibition, appeared 

to be decreased while other perisomatic inhibitory interneurons remain unaltered [317]; 

in DG of several animal models, loss of parvoalbumin-positive basket cells and axo-

axonic cells has been proven [318]. Therefore, it is inferable that neuronal loss affects 

diverse typologies of GABAergic neurons and it seems that the most affected type of 

interneuron might vary in relation to the brain region analysed [313, 319]. Despite the 

findings reported above, the relationship between seizures, neuronal death and epilepsy 

continues to be object of several controversies and debates. Indeed, if on one hand it 

seems clear that some types of seizures, especially if isolated and brief, do not lead to 

neuronal death, on the other hand, more prolonged seizures, as those typical of MTLE, 

which often progress to tonic-clonic convulsions, are much more likely to lead to 

neuronal loss [320]. Additionally, the prolonged and repetitive seizure that characterise 

the SE are proved to cause brain damage and extensive neuronal death [309, 321]. The 

demonstration of a clear relationship between GABA neuron loss and epilepsy could be 

difficult to realize in part because GABAergic interneuron loss does not occur in isolation 

but also involves principal neurons death [313]. 

In spite of the evidence for loss of GABAergic neurons in epilepsy, some 

inhibitory GABAergic cells remain and alteration and compensation in this survived 

population might lead to inadequate control of principal neurons and possibly 

contribute to epileptogenesis. In keeping with this idea, deficit in DG basket cell 

function, which lead to an increased failure rate on their synapses onto granule cells, 

has been identified [322]. In addition, receptor alterations on survived GABAergic 

interneurons may also reduce the activity of these cells.  subunit-containing GABAA 

receptors, which are responsible for tonic inhibition, have an increased expression in 

GABAergic neurons of pilocarpine animal model of depression [323, 324] and this 



 

 
 65   
 

PART II: PLASTICITY IN DISEASE 

alteration might reduce their excitability and their inhibitory drive onto principal 

excitatory neurons [323].  Lastly, worth of mention is another important finding 

regarding GABAergic alterations in epilepsy, which concern GABAAR-mediated current 

- IGABA -. Thus, in MTLE patients it is proved that IGABA is subject to a rundown of its 

intensity [325, 326], suggesting a contribution of this abnormality to the reduced GABA 

inhibition on epileptic neuronal circuits. Taken together it seems possible that, despite 

the presence of compensatory network and cellular adjustment, all these alterations of 

GABAergic neuron population could lead to occasional failure in their inhibitory drive, 

which might result in the appearance of sporadic seizure activity. 

 

Axonal sprouting and amplified recurrent excitation 

In the latent period, network reorganisation is observed. Studies performed in 

1970s showed that lesions of the perforant pathway lead to an input reorganisation 

characterised by the formation of aberrant connections [327]. A decade later, it emerged 

that after seizures, new mossy fibers are formed [328, 329], and this phenomenon has 

been successively confirmed in numerous animal model of epilepsy and in human MTLE 

[330]. Some research data highlight that this synaptic reorganisation also consists in 

mossy fiber sprouting, that is the emergence of new DG granule cell axons. The 

hypothesis associated with the mossy fiber sprouting here described is that, considering 

many electrophysiological and ultrastructural data which suggest that almost all mossy 

fiber are excitatory projections, the increased sprouting observed in the latent period 

might increase the recurrent excitation during acquired epileptogenesis, since sprouted 

mossy fiber make contact on dendrites of DGCs and interneurons [331]. In particular, 

recent quantitative ultrastructural research data point out that the sprouted excitatory 

synapses preferentially contact DGCs versus interneurons [332, 333], thus creating an 

excitatory loop. 

Research data shows that in epilepsy, after an initial loss of excitatory synapses onto 

DGCs, the number of those synapses partially recover in the inner ML (about 84%) and 

outer two-thirds of ML (101%) in 3-6 months, probably in relation to mossy fiber 

sprouting [285]. This phenomenon is not exclusively related to the latent period but it 

continues after the epileptogenic brain injury [285], probably in relation to its nature of 

homeostatic mechanism aimed to maintain a set-point level of excitatory drive on 

DGCs. It is possible that this mechanism could be pushed over the limits by epileptogenic 

injuries and contribute to the creation of a network able to generate spontaneous 

seizure. However, the role of mossy fiber sprouting in epileptogenesis remain to clarify 

in order to establish if this phenomenon could be either necessary or sufficient for 

hyperexcitability. 

During epileptogenesis, axonal sprouting and synaptic reorganisation take place 

not only in DG but are observed also in other regions, such as CA1 field [334, 335]. 

Indeed, CA1 is a region highly vulnerable to excitotoxic damage and neuronal death in 

this area represents a well-known marker of hippocampal sclerosis in MTLE. In this 
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scenario, the mechanism of axonal sprouting in the alveus and in stratum oriens [334] 

may give rise to the formation of new recurrent excitatory circuits that could contribute 

to the acquired epileptogenesis. 

Despite the sprouting considered in human and animal models of epilepsies is 

mainly principal neurons sprouting, even GABAergic neurons undergo axonal sprouting 

in MTLE, and may contribute to, or compensate for, the excitation/inhibition imbalance 

found in this neuropathology. Studies on GABAergic sprouting used several markers, 

such as GABA, its synthesising enzymes such as GAD (Glutamate Decarboxylase – an 

enzyme that catalyse the decarboxylation of glutamate to GABA) or GABA transporters, 

such as GAT-1 (GABA transporter 1). A wide portion of reports on GABAergic axonal 

sprouting have focused on the hippocampal portion relative to the dendritic trees of 

DGCs. In pilocarpine model of epilepsy, GAD-positive fibers in the supra-granular region 

and the external two-thirds of the DG molecular layer have been found reduced [336]; 

in addition, GAT-1 and GAD positive fibers in the hilus have been found decreased as 

well [318, 336]. However, this condition distinguishes the first days after the induction 

of epilepsy, while GAT-1 and GABA positive fibers are found increased in the molecular 

layer after 6-9 days and remain higher until the period of recurrent seizures. GAD 

positive fibers, on the other hand, increase following a slower timing and can be found 

increased in the outer ML around and after two months following the SE induction. The 

increased GAD and GAT-1 immunoreactivity has been confirmed in several other animal 

models [337, 338] and in human hippocampus [339, 340]. Taken together, these 

findings suggest an early loss of GABAergic interneurons followed by an increased 

axonal sprouting onto the dendrites of hippocampal DGCs in epilepsy. GABAergic 

interneurons sprouting has also been observed in hippocampal CA1 field but instead of 

contacting pyramidal neurons, it is suggested that sprouted calbindin (CB)- and GAD- 

immunoreactive fibers make synapses onto dendrites of other interneurons [341]. 

Axonal sprouting has been reported not only on interneurons that target the dendritic 

region, but also on perisomatic GABAergic neurons in DG and CA1 fields of 

hippocampus. In line with the evidence on dendritic sprouting, perisomatic neurons 

generate new fibers which make contact on DGCs and in CA1 on somata of other 

inhibitory GABAergic neurons [341]. Nevertheless, the functional consequence of 

GABAergic circuit reorganisation in epilepsy remains to establish also considering all the 

GABAergic changes in epilepsy such as GABAA subunits composition and pharmacology 

changes or G protein modulation of GABAergic drive [342-344]. In addition, despite 

inhibitory sprouting is seen as compensatory mechanism, it is strongly suggested that this 

phenomenon might play a contribution to the emergence of epileptic seizures [341].  

 

MTLE and adult neurogenesis 

The functional role of DG in the hippocampal network it not completely 

understood yet but another and intriguing role proposed is a “gate” function for the 

excitatory input entering the hippocampus [345]. Accordingly, it has been observed, 
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using voltage sensitive dyes, that following the activation of entorhinal cortex and 

subsequent spread of neuronal activity to DG, the further propagation of the impulses 

was blocked at this anatomical level [346]. Thus, failure of DG gating property has been 

highlighted in many different model of epilepsy, suggesting that in this neuropathology, 

the alteration of this feature might exert effects on the excitation/inhibition balance in 

the hippocampus. The failure of this DG activity could be related with many alterations 

among which those described above, such as interneuron loss, but an important 

component might be also represented by the features regarding dentate granule cells 

and neurogenesis in epilepsy. 

Adult neurogenesis is a DG natural feature of mammalian brain and has received 

large attention for the role of hippocampus in learning, memory and cognition. Several 

research data highlight the existence of neurogenesis dysregulation in several brain 

diseases among which epilepsy [347]. The first evidence on a possible connection 

between neurogenesis and epilepsy was gathered in 1990s, on animal models, when 

was discovered that in the latent period it is possible to assist to a substantial increase of 

granule generation in temporal lobe epilepsy [348, 349]. Indeed, among all the pro-

neurogenic stimuli that affect DG granule generation, epilepsy is considered one of the 

strongest. Increased granule neurogenesis is a feature of most epilepsy models [350, 

351], but it is obviously linked to all those epilepsies that involve the hippocampus, 

among which the prominent is MTLE. Here, it was established that these newly-

generated cells survive for at least one year [352]. Despite the increased neurogenesis 

that follow the induction of epilepsy, animal models clearly show a dramatically 

decreased rate of neurogenesis with the passage of time [353], a condition that is 

probably connected with the hippocampal sclerosis often reported in MTLE in both 

animals and humans [347]. 

In epilepsy, abnormal granule cells could be found in the DG and the majority of 

this population has been proven to be newly-generated [352, 354-356]. These 

abnormalities consist in: mossy fiber sprouting onto granule cell dendrites in the inner 

molecular layer (see above); ectopic granule cell migration, which consist in newly-born 

cells that localises in the hilus - instead of integrating into the granule cell layer - thus 

giving rise to recurring excitatory circuits once reached by DGCs axons [357-359]; basal 

dendrite persistence in mature granule cells [360, 361] that project into the hilus and 

receive recurrent innervation from neighbouring DGCs [362, 363]. 

A legit question that arises from these finding is: do the altered features of adult-

generated DGCs impairs DG gating and contribute to epileptogenesis? It has been 

proven that ectopic granule cells display an higher ratio of excitation/inhibition inputs 

[364] and burst, which is a property not common in normal DGCs that could be seen 

as a pro-epileptogenic feature [357]. On the other hand, normal DG granule cells 

correctly located display a decreased level of excitability suggesting the possibility of a 

homeostatic compensation [365]. In addition, many newly-generated cells in this region 

have a decreased number of dendritic spines; by contrast, other newborn DGCs, 

characterised by long basal dendrites and robust innervation by sprouted mossy fibers, 
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display an increased number of spines and are probably reached by a higher excitatory 

drive [356]. Despite all the data collected, the contribution of aberrant DGCs to 

epileptogenesis is still not clear and needs a deeper investigation. Nonetheless, 

considering the features here reported, it is obvious to believe that DG in epilepsy might 

not function in the same manner as a normal dentate gyrus does. 

 

Role of inflammation in epilepsy 

 Inflammation is a physiological response to infections, injuries (i.e. ischemic, 

traumatic and excitotoxic) or stress and is characterised by the production and/or release 

of many different mediators from the cellular component of the innate and adaptative 

immunity. Inflammatory mediators are normally present at very low levels in healthy 

brain, but they can be upregulated by several different stimuli and therefore increase 

their brain levels.  

In the brain, innate immunity is mediated by microglial cells, which can be 

considered as the resident macrophages of the CNS; in addition, also astrocytes and 

neurons take part to the immune response [366, 367]. Brain damage or infections 

induce the release of cytokine-related mediators that activate and recruit, in the affected 

area, microglia and blood-derived macrophages. Microglia in the presence of cellular 

debris or damaged cells, become rounded, circular migratory macrophages and start 

releasing cytokines and growth factors which can exert both damage and beneficial 

effects on the surrounding cells [368]. Some key inflammatory mediators are: IL-1, IL-

6, TNF-, cell adhesion molecules, toll-like receptors prostaglandins and complement 

factors. 

The relationship between inflammation and epilepsy have gathered increasing 

attention in the recent period. Thus, many research data suggest a direct association 

between seizures and acute and chronic activation of inflammatory pathways [369-371]. 

Indeed, inflammation has been assessed not to be a rare phenomenon in the epilepsy. 

Moreover, the finding that anti-inflammatory treatments exert anticonvulsant effect in 

some cases of drug-resistant epilepsy [372, 373] supports the view of 

neuroinflammation as a mechanism implicated in seizures and epilepsy. The expression 

level of IL-1one of the two molecular form constituting the IL-1 cytokine family, is 

found to be rapidly upregulated after the induction of SE in animal models of MTLE (1.5 

hour post-injection of pro-epileptogenic compound) [374] and the rapid increase of this 

cytokine in hippocampus it is proved to be probably dependent on microglial activation 

[375]. In the kindling model of epilepsy, IL-1, TGF-and TNF- expression levels are 

increased in many limbic areas [376]. The effect of TNF- on epilepsy seems to be 

related to the amount of exposition. Indeed, it has been found that low concentration 

of this factor could exert anticonvulsant effects [377], while a chronic over-exposition 

of TNF- leads to neurological dysfunction among which seizures [378]. Another 

important part of the immune response activated in MTLE is the complement cascade 

[379]. Remarkably, injection into rat hippocampus of complement components induces 
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electroencephalographic and behavioural seizures together with cytotoxicity, 

confirming a potential role of complement in epileptogenesis [380].  

Together with the production of pro-inflammatory molecules, inflammatory response 

is also characterised by the release of anti-inflammatory mediators and binding 

molecules which modulate this response limiting the development of deleterious effects 

[381]. Accordingly, in epilepsy, an up-regulation of IL-Ra - an antagonist of IL-1 - has 

been reported [382], but contrary to normal inflammatory response, in this 

neuropathology this factor is released with a delayed time course with respect to the 

release of IL-1 [383], thus making the brain less responsive and effective in terminating 

the action of a sustained increase of IL-1. 

A key component which contributes to epileptogenesis and is related with 

immune activation is the loss in the blood brain barrier (BBB) functions, which has been 

suggested to be caused by seizure activity [384, 385] and/or systemic factors, such as 

the release of immune molecular mediators which increases the endothelial permeability 

[384, 386]. In addition, BBB integrity in epilepsy is also affected by VEGF, a potent 

modulator of endothelial permeability, which is released by neurons in response to 

seizures and triggers vascular remodelling and angiogenesis [387, 388], leading to the 

formation of new leaky blood vessels. 

One of the consequences of BBB disruption is the presence of serum proteins in the 

brain. Albumin, one of the most abundant protein in the blood, it has been 

demonstrated to be taken up or bound to neurons, astrocytes and microglial cells after 

SE [385]. Albumin has influence on neuron excitability and inflammation. In particular, 

the extravasation of albumin due to leaky BBB and the consequent uptake of this protein 

by astrocyte through a TGF- dependent mechanism [389], is followed by a reduction 

in Kir 4.1 potassium channels and the subsequent increase in extracellular potassium 

concentration, which depolarizes neurons and enhances neuronal firing [390]. 

Moreover, it has been proven that albumin uptake in neurons can increase the synthesis 

and release of glutamate [391], which in turn enhances neuronal excitability. BBB 

damage has consequences also for brain inflammation. Indeed, brain inflammation is 

often observed in areas where the BBB is damaged [392, 393]. Extravasated albumin 

can induce brain inflammation through transcriptional changes that lead to upregulation 

of pro-inflammatory cytokines and IL-1 and TGF-pathway activation[394-396]. In 

addition, peripheral leukocytes can infiltrate from the blood to the brain through ICAM-

1 (Adhesion Molecule 1) and VCAM-1 (Vascular Adhesion Molecule 1) adhesion 

molecules, contributing to the epilepsy-related brain inflammation [397]. Interestingly, 

interfering with this process, through the block of the interaction between leukocytes 

and endothelial cells after acute seizures, avoids the development of chronic epilepsy in 

the pilocarpine model of epilepsy [397]. 
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Oxidative stress and epilepsy 

Epilepsy, characterised by recurrent seizures, can lead to increased levels of 

reactive oxygen species (ROS) and reactive nitrogen oxygen (RNS) in the brain. The 

generation of free radicals is mainly imputable to mitochondrial phosphorylation chain 

[398]. The term ROS is referred to species such as hydroxyl radical (HO
∙
), superoxide 

anion radical (O2

∙
), hydrogen peroxide (H2O2) or peroxyl radicals (HOO

∙
); RNS term is 

referred to nitric oxide (NO) and molecules derived from NO, such as peroxynitrite 

(ONOO
∙
), nitrosyl (ON

−
), and nitrogen dioxide (NO2). The increase in oxidative and 

nitrosative stress is generally linked with a condition in which cellular antioxidant 

defences fail to deactivate all the ROS and RNS generated, and could be associated to 

the intense metabolic activity. 

A wealth of studies has shown the existence of a relation between oxidative stress 

and epilepsy [399] and it seems that an increase in free radical production is related 

with prolonged seizures that might result in mitochondrial dysfunction in hippocampus, 

which is in turn linked with neuronal death and epileptogenesis [399, 400]. Research 

data on hippocampus in KA model of epilepsy reported evidence of a reduced 

GSH/GSSH (reduced form /oxidized form of glutathione) ratio together with increased 

glutathione peroxidase and glutathione reductase activity [401]. This increase in redox 

status might contribute to seizure-related neuronal death [399, 402]. Oxidative stress 

levels, as those induced by seizures, can be measured from blood samples. Several studies 

reported a decreased levels of antioxidant such as glutathione peroxidase or Cu-Zn 

Superoxide dismutase in patients affected by progressive myoclonic epilepsies [403]. 

Besides, erythrocytic GSH, total antioxidant status in plasma and vitamin E levels have 

been found lower in patients affected by refractory epilepsy [404]. Moreover, lipid 

peroxidation levels have been found to improve after treatment in epilepsy confirming 

a potential implication of free radicals in this neuropathology [405]. Lipid peroxidation 

(LPO) is a key feature of oxidative stress and is mediated by a radical activity on the 

polyunsaturated 𝜔- 3 and 𝜔-6 fatty acids which leads to the formation of lipid peroxyl 

radicals (LOO
∙
). This compound in turn gives rise to several lipid hyperoxide products 

such as malondialdehyde (MDA), 4-hydroperoxy-2-nonenal (HPNE), 4-oxo-2-nonenal 

(ONE), and 4-hydroxy-2-nonenal (HNE) [406, 407]. 

Considering the strong implication of oxidative stress in epilepsy, many research 

teams have started to evaluate the therapeutic potential of several endogenous or 

exogenous antioxidants. One of the mostly studied antioxidant assessed in epilepsy is 

melatonin. Its anticonvulsive effects have been confirmed in several animal models of 

epilepsy leading to the demonstration that this hormone reduces seizure activity and 

neurodegeneration in KA and pilocarpine model of epilepsy [408, 409]. Melatonin 

reduce ROS, RNS and lipidic peroxidation [408, 410] and the maintenance of its 

antioxidant contribution has been proven to mediate important anti-convulsive and 

neuroprotective effects [411]. 
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Another antioxidant compound studied in epilepsy is ascorbate. Ascorbate seems to 

improve convulsive behaviour and neurodegeneration in many animal models [412]. It 

has been suggested that this compound may act inhibiting oxidative stress and 

maintaining GSH homeostasis [413].  

-tocopherol (-T – the vitamin E isoform with the highest in vivo biological activity 

and bioavailability) is a lipophilic antioxidant which is able to cross the BBB and 

accumulate in the brain [6, 7]. Many studies highlighted that -T levels are reduced in 

the plasma of epileptic patients, suggesting its potential beneficial role in the treatment 

of epilepsy [405]. Besides, it has been proven that -T showed beneficial effects in 

animal model of epilepsy reducing seizure activity and neuronal death [412]; this 

antioxidant compound reduces RNS and lipidic peroxidation in the pilocarpine model 

of depression [414], and it has been proven to decrease BBB disruption [415]. The 

potentiality of -T in epilepsy and its potential ability to contrast epileptogenesis will 

be further discussed in this thesis (see “Post-seizure -tocopherol treatment for 

preventing epileptogenesis”). 

 

microRNA dysregulation in MTLE 

The analysis of brain tissue from patients with MTLE highlights the presence of 

extensive gene expression dysregulation that is connected to recurrent seizures and 

affects several genes related with inflammation, gliosis, synaptic reorganisation and 

neuronal function [416]. New levels in gene expression regulation have recently 

emerged after the discovery of microRNAs (miRNAs or miRs). miRs are endogenous 

and short (about 22 nucleotides) RNA oligonucleotides that recognize partially 

complemented mRNA targets and generally inhibit their transcription [417]. To 

function, a microRNA should form the RISC (RNA-induced silencing complex) after the 

bound with the protein Argonaute (Fig. 18); once formed, this complex binds its mRNA 

targets and induce their degradation or blocks their translation [417]. 

Interestingly, about the 60% of human proteins seems to be directly regulated 

by miR [418]. A single miR has numerous targets, thus controlling several different genes 

together [419]. Since their discovery, the understanding about miR potential role in 

many different diseases and their importance as new target for innovative therapies has 

been progressively grown. Concerning epilepsy, it has recently been established the first 

curated and dedicated database of miR related with this neuropathology called 

EpimiRBase [420]. The first study on miR in human epilepsy was performed in 2010: 

the data obtained showed a clear increase of astroglial expression of miR-146a in 

patients with MTLE and hippocampal sclerosis [421]. In epilepsy, the up-regulation of 

miR-146a is the most reliable result obtained among animal and human studies. miR-

146a is strictly connected to the control of inflammatory response: indeed, its expression 

level is increased by IL-1 [422]. miR-146a, however, is a suppressor of pro-

inflammatory mediators as IL-1 receptor-associated kinase-1 (IRAK-1), IRAK-2 and TNF 

receptor associated factor 6 (TRAF-6). In addition, mir-146a is also a suppressor of IL-
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1, indicating a functioning of this miR as negative feedback aimed to control and 

regulate the astroglial-mediated inflammatory response [422]. Thus, since the mir-146a 

up-regulation acts reducing the expression of pro-inflammatory cytokines, it has been 

suggested that this could represent a compensatory mechanism in epilepsy. However, 

in both rats and human this miR remains up-regulated during latent and chronic period 

of epilepsy [422, 423].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. miRNA biogenesis and some miRNA manipulation approaches. microRNA biogenesis starts 

with the transcription of a pri-miRNA (primary microRNA) from introns of protein-coding genes and 

specific loci. Then, the microprocessor complex (containing the RNase Drosha and Di George Syndrome 

Critical Region 8 - DGCR8 -), cleave the pri-miRNA to produce the pre-miRNA, an approximately 60-70 

nucleotide-long hairpin structure. The pre-miRNA is successively exported to the cytoplasm by exportin 

5 and processed by the RNase Dicer to produce the mature duplex miRNA (approximately 22-

nucleotide): the process is enhanced by transactivation-responsive RNA binding protein (TRBP). One 

strand of the miR is then bound by an argonaute protein, forming the miRNA-induced silencing complex 

(RISC), which traffics along target mRNAs until it binds its 7–8 nucleotide complementarity sequence. 

This binding produces stable miRNA–mRNA complexes that facilitate mRNA decay or translational 

repression following recruitment of other factors, such as GW182 proteins. (On the right) The introduction 

of a miRNA agomir (mimic) will facilitate miRNA-dependent silencing of targets. On the other hand, the 

use of antisense oligonucleotide sequence complementary to the miRNA of interest can block miRNA 

function and thereby de-repress a target mRNA.  

 

Many other microRNAs that might play a role in epilepsy have been identified through 

years [424]. For instance, miR-124 is a brain-specific microRNA considered as a key 

regulator in neuronal differentiation and the development of the nervous system. This 

miR, as suggested by a recent research, could also function at the growth cone or at 

synapses levels where it exert modulatory effects on synaptic activity and neuronal 

connectivity [425]. In addition, mir-124 has also influence on inflammation where it 

plays a dual and contrasting role. Indeed, this microRNA is a master regulator of neuron-

restrictive silencer factor (NRSF) which is a transcription factors repressor whose activity 

Recruitment of other 

proteins and repression 

of mRNA translation 
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contrasts epileptogenesis; however, mir-124 also exerts pro-inflammatory function in 

epilepsy promoting microglia activation [426]. 

Research on miR-155 showed that it represses microglia functions, suppressing several 

genes required for microglial activation, phagocytosis and inflammatory response; 

targeting miR-155 with an antagomir (which physically blocks a miR functioning) (Fig. 

18) protects against neurodegeneration [427] and improves postictal behaviour after SE 

in mice [428]. 

It has been demonstrated that miR-181a is up-regulated in pilocarpine model of epilepsy 

and children affected by MTLE. According to research data on rat model an i.c.v. 

injection of this microRNA antagonist reduces neuronal death after SE [429]. In 

addition, this miR can also target AMPA receptor containing the GluA2 subunit reducing 

dendritic spine and mEPSCs [430]. 

An intriguing feature related with disease diagnosis and follow-up is the presence of 

circulating miRs in biofluid as blood or CSF (Cerebrospinal Fluid), which highlights the 

usefulness of this regulatory oligonucleotides as biomarkers of brain injury [424]. The 

circulating microRNA might originate from controlled tissue release by exosomes or 

directly from brain extracellular fluids as a consequence of a leaky BBB. Studies suggested 

a precise pattern of circulating miRs which delineates a disease profile for different brain 

injuries, including prolonged seizures [431]. A set of circulating miR in epilepsy has been 

identified and increased serum levels of miR-146a is part of it [432]. In addition, 

differences in miR blood levels between patients with refractory and controlled seizures 

have been found, suggesting a potential use of circulation miR as biomarkers for identify 

drug-resistant epilepsy [433].  

 

Animal models of epilepsy 

The understanding of the mechanisms underlying epileptogenesis and seizure 

development in MTLE and other typologies of epilepsy its hardly achievable from 

clinical research on human patients. Therefore, several different animal models of 

epilepsy have been developed. In this paragraph, some of the most commonly used 

animal model of epilepsy are described. 

 

The kainic acid model of epilepsy 

Chemoconvulsant drugs are one widely used method to induce epilepsy in 

animals. Among chemoconvulsant compounds employed, kainic acid (KA) represents 

one of the first compounds used to obtain a MTLE model of epilepsy [434]. Kainic acid 

is an L-glutamate cyclic analogue, antagonist of ionotropic KA receptors. This compound 

was firstly isolated in 1950s from Digenea simplex [435], a red alga, with the meant to 

be used against infestation of Ascaris lunbricoides, a parasitic nematode. Nevertheless, 

it was successively found that KA induces a powerful excitatory response in cortical 

neurons of treated rats [436], thus becoming used as glutamate analogue. This finding 
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leads to the discovery of new glutamate receptors named KA receptors and to the 

development of KA model of temporal lobe epilepsy, characterised to a progress that 

resembles human MTLE, with a latent period followed by refractory seizures [437, 438].  

Soon after an intra-hippocampal injection of KA, it is possible to record EEG changes 

and hippocampal epileptiform discharges before seizures occurrence [439, 440]. These 

first events are followed by the manifestation of seizure that starts in the hippocampus 

and then might spread to ipsilateral and contralateral amygdala, contralateral 

hippocampus and frontal cortex; intra-amygdaloid injection of KA gives rise to a similar 

pattern of propagation [441]. 

The hippocampus is a structure highly vulnerable to the neuropathological changes that 

take place after KA injection and, interestingly, this high susceptibility is maintained even 

if hippocampus it is not the injection site of KA. In particular, kainic acid preferentially 

damages CA3 area but leaves almost untouched CA1 and DG regions. However, in CA1, 

and particularly in the stratum oriens, takes place a relevant loss of GABAergic 

interneurons and specially parvalbumin- and somatostatin-positive neurons [441]. 

Animals injected with KA develop a chronic epilepsy and start suffering for spontaneous 

seizures between 5 days to one month after the induction of SE [440, 441]. Nevertheless, 

alterations in the EEG and interictal spikes can be recorded before and after the onset 

of the first spontaneous seizure [441, 442]. Noticeably, mice and guinea-pig don’t 

manifest convulsive seizures if used to obtain the KA model, while rats undergo non-

convulsive seizures only during the latent period, while manifest convulsion in chronic 

phase [441, 442]. 

 Kainic acid can be also administered systemically and the main advantage is that 

many animals can be injected at the same time without surgical procedures. However, 

this way of delivery has a principal drawback that concerns the bioavailability of KA in 

the brain often leading to the necessity of multiple injections [441]. Many research data 

suggest that using this way of KA administration, SE occurs around 1 hour post-injection 

[443, 444]. About 30 minutes after KA injection, EEG shows an epileptiform pattern 

that has been described to first appear in the entorhinal cortex and then in CA3 field 

and amygdala, followed by thalamus, CA1 field and frontal cortex [445]. The data 

collected through years suggest that systemic injection of KA induces a seizures onset 

principally reliant on hippocampal formation [445, 446]. The typology of damage 

induced by systemic administration of kainic acid is similar to what can be observed 

after the intracelebral injection, but the degree of the induced damages is grater [441]. 

Systemic administration induces a loss of pyramidal cells in CA1 and CA3 hippocampal 

fields [441, 447] and a degeneration of parvalbumin-positive inhibitory interneurons in 

CA1, entorhinal cortex and subiculum [441, 448]. In most animals, non-convulsive 

seizures start between 10 and 30 days after the injection; the implementation of EEG 

monitoring has revealed that the latent period after this kind of administration last 

approximately 14 days [441, 449]. 
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The pilocarpine model of epilepsy 

 Pilocarpine is a chemoconvulsant drug that targets muscarinic acetylcholine 

receptors. To induce SE, this compound could be administered, as seen for KA, 

systemically or through an intracerebral injection. The pilocarpine model of epilepsy has 

many similarities in network and pathways involved with human MTLE. In addition, 

EEG features and neuropathological alteration are similar to the KA model of epilepsy. 

This model has been reported to show mossy fiber sprouting in DG and morphological 

changes in several brain areas such as thalamus, DG hilus, amygdala, and cerebral cortex 

[450]. In addition, similarly to KA model, pilocarpine induces damages of the BBB and 

it has been suggested that this event strongly contributes to SE in the pilocarpine model 

[451]. One advantage of this chemoconvulsant usage is its efficacy since almost all 

animals that survive to SE develop recurrent spontaneous seizures [441]. 

 

Electroshock-induced seizures 

Electrical stimulation approach to induce epilepsy in animals has the great benefit 

to generate epilepsy features with high reproducibility and low mortality [452]. 

Electroshock is a widely used method of electrical stimulation to induce seizure and is 

mainly employed to study the cellular and molecular mechanisms that relate 

epileptogenesis to synaptic plasticity abnormalities or cognitive deficits [453, 454]. It 

can be divided into minimal or maximal electroshock-induced seizures (ES) depending 

on the intensity of stimulation, which do not require a stereotaxic implantation of 

electrodes but could be achieved with a stimulation through corneal electrodes. Minimal 

ES is assumed to represent a model of myoclonic seizures while maximal ES represent a 

model of generalized tonic-clonic seizures [452]. 

 

Kindling model 

 Kindling model of epilepsy represents the most studied model based on the 

electrical stimulation approach. The kindling model is obtained inducing repeated 

afterdischarges by electrical stimulation in precise brain regions (using electrode 

implantation), which induce a seizure-related plasticity phenomenon and the 

enhancement of seizure susceptibility. Repeated afterdischarges lastly result in the 

development of spontaneous seizures and chronic epileptic state [455]. Kindling has 

been considered a useful model for studies on epileptogenesis mechanisms considering 

the reproducible sequences of molecular and cellular alterations that this model induces 

[456, 457]. A clear drawback of kindling, however, is the time and costs required for 

the procedures together with the risks associated with the long periods required, such 

as the possibility of damaging or losing the electrodes implantation [452]. Despite all 

the risk associated with the kindling model procedure, it represents an excellent 

approach to study epileptogenesis. Indeed, contrary to MTLE induced in other models, 
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as pilocarpine or KA, which induce an SE associated with relevant temporal and extra-

temporal damages, kindling provides a progressive development that leads to neuronal 

loss and cellular alterations and lastly results in spontaneous seizures [452]. 

 

Post-seizure -tocopherol treatment for preventing 

epileptogenesis  

 

Status epilepticus is one of the most frequent neurological emergency, associated 

with significant morbidity and mortality if not treated promptly. Thereby, it requires 

rapid assistance to avoid brain damage, systemic complications, or death [458]. 

Antiepileptic drugs (AEDs) are a wide and heterogeneous group of pharmacological 

agents characterised by a varied range of pharmacokinetic and pharmacodynamic 

effects. The effect of these treatments is generally aimed to enhance inhibitory processes 

or to contrast excitatory processes. In the last 20 years, many other new AEDs has been 

developed, thus leading to a general distinction between traditional (commercialized 

before 1990) and newer antiepileptic drugs [459]. Newer AEDs generally differ from 

the traditional for their improved tolerability but a comparable efficacy. However, it 

has also been suggested that increased prescription of new AEDs vs traditional has 

increased the risk of refractoriness [459]. Therefore, it is clear that several clinical needs 

still persist such as resistance to AEDs or adverse side effects which further affect the 

quality of life in patients with epilepsy. Besides, as previously discussed, the 

development of chronic epilepsy passes through a series of maladaptive molecular, 

cellular and circuital detrimental rearrangements, which ultimately lead to the birth of 

a seizure-generating circuit. Here comes the pivotal importance of setting up new 

therapies able to block the process before the onset of new seizures and development 

of the epileptic disease. 

The classical view of epilepsy is centred on neurons and leads to the development 

of treatments that target ion channels, GABA and glutamate receptors. Recently, 

oxidative stress and inflammation have emerged as processes able to precipitate seizures 

or sustain seizure activity. Considering that several research data highlight the contribute 

of free radical to epilepsy [399, 400, 403, 404], natural compounds with antioxidant 

properties were considered in preventing seizure-induced pathology [412, 413]. Among 

these, as previously mentioned, vitamin E was proved to have beneficial effects in 

epilepsy, reducing convulsions and brain oxidative stress [414, 460]. Thus, a treatment 

with vitamin E reduce ROS and RNS generation following a delay of minutes to hours 

[414, 461-463], thereby decreasing the severity of seizures and their detrimental effects. 

In addition, patients with drug-resistant epilepsy got benefit from vitamin E treatment, 

which has been showed to decrease their blood levels of LPO products and induce 

positive changes on their EEG [464, 465]. The effects of vitamin E on epilepsy it has 

been assumed to be connected to the antioxidant properties of this compound. 
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Nonetheless, vitamin E – mainly as -T – has several non-antioxidant properties [466], 

suggesting a conceivable antioxidant-independent mechanism involved in mediating its 

effects on epilepsy. Accordingly, vitamin E can regulate cell signaling through the 

modulation of miRs [467], which regulate gene expression and have influence on 

cellular pathways including inflammatory cascades.  

 Recent findings from our group, demonstrated that four-day application of -T 

after the induction of SE, reduces neuroinflammation and neurodegenerative processes 

in the KA model of epilepsy as highlighted by the reduction of neuron degeneration, 

dendritic spine loss, astrocytosis and microglia activation [6]. These findings might be 

coherent with mechanisms of -T that are beyond the antioxidant one. 

Considering the data previously collected, we decided to extend the -T treatment 

throughout the latent period to further investigate the antiepileptogenic potential of 

this compound and the mechanisms involved. Thus, we used the KA model of epilepsy 

that we obtain through an acute administration of kainic acid on adult rats. We 

investigate the excitability of hippocampus circuitry with and without -T postictal 

treatment 15 days after SE performing electrophysiological field recordings in CA1 of 

brain slices. Besides, GABA and AMPA currents were investigated in Xenopus oocytes 

microinjected with hippocampal membranes from rats treated and not with -T after 

SE induction. The influence of -T treatment on neuroinflammation markers, oxidative 

stress, and neurodegeneration, were assessed in hippocampi from the different 

experimental groups. Lastly, we tested the potential relevance of selected circulating 

miRNAs as epileptogenesis biomarkers. 

 

Experimental procedures 

Animals 

Adult male Sprague-Dawley albino rats (n = 72) (Charles River, Italy) were used 

in accordance with the Italian law on animal experimentation (D.lgs 26/2014; research 

project permitted with authorization N. 465/2015-PR by Italian Ministry of Health), 

and housed as described at page 25. The experimental design is summarized in figure 

19. 

To induce SE, rats were administered an acute intraperitoneal (i.p.) injection of 

kainic acid (KA; 10 mg/Kg b.w. in physiological saline) and seizure behaviour was 

monitored and scored according to the Racine scale, up to the manifestation of a full SE 

[468]. In particular, typical wet dog shakes appear about 30 min after injection while 

full limbic motor seizures (including rearing and loss of postural control) follow, being 

manifested about 1.5 hours after KA injection. 

 

  



  

 
78 

 

PART II: PLASTICITY IN DISEASE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Experimental design. (A) Schematic representation of animal groups and relative treatment: K, 

treated kainate-exposed; VK, untreated kainate-exposed; C, treated non-epileptic; VC, untreated non-

epileptic. (B) Time-course representation of the experimental design. 

 

After approximately 3 hours, animals showed profuse salivation, circling and jumping, 

and SE. Three hours after the appearance of SE, seizures were suppressed by diazepam 

injection (2 mg/Kg b.w.). Animals showing all the Racine scale steps were considered (n 

= 48); about 20% of the kainate-injected rats died during or early after the SE, while 

approximately 14% did not clearly show the full progression of Racine stages. Epileptic 

rats were randomly divided in two groups: i) animals treated with an i.p. bolus of -T 

once a day up to the fifteenth day (n = 24; K) (250 mg/kg b.w. for the first 4 days 

followed by 2 mg/kg for the remaining days); ii) rats (n = 24; VK) injected with the 

vehicle solution (Fig. 19). In addition, other animals (n = 42) were injected with 

physiological saline instead of kainic acid (non-epileptic rats): half of them (n = 21; C) 

were treated with -T (once a day, for 15 days following the same schedule described 

above) and the other half (n = 21; VC) with the vehicle solution (Fig. 19). Epileptic rats 

were monitored, using the Racine scale steps, for spontaneous seizure arising up to the 

conclusion of treatment protocols. At the end of the 15-day treatment, rats were 

anaesthetized and sacrificed as previously described (pag. 25).  
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Electrophysiological field recordings on CA1 

Brain from kainate injected (K, VK) and saline-injected (C, VC) rats (n = 8 

each group) were processed for electrophysiological field recording on slices as 

described at page 25. 

Recording and bipolar stimulating electrodes were both filled with ACSF (for the 

composition see “Slice preparation” pag. 25): the former electrode was placed in CA1 

pyramidal cell layer and the latter in the stratum radiatum, maintaining approximately 

500 μm of distance between them. Slices giving fEPSPs of at least 1 mV in amplitude 

were considered for recordings. To test basal synaptic transmission, input/output curves 

were performed eliciting fEPSPs through the application on slice of current square pulses 

of increasing magnitude (from 0 to 160 pA, increments of 20 pA; 300 μs in duration) 

with A385 stimulus isolator (World Precision Instruments, USA). Afterward, baseline 

responses (60% of maximal fEPSP amplitude) were evoked using low-frequency test 

pulses (at 30-s intervals) and recorded over 30 min, a period sufficient to ensure stability. 

Population spikes arising from fEPSP were analysed. 

Once obtained a stable baseline, GABAA-receptor antagonist bicuculline (BMI, 50 µM) 

and potassium channel blocker 4-aminopyridine (4-AP, 50 µM) in ACSF solution were 

added to bath perfusion for 30 min, during which spontaneous drug-induced 

extracellular field potential events (interictal) and fEPSPs were recorded. The latency to 

the onset of epileptiform-like activity was estimated. 

Electrophysiological data analyses were performed offline using the WinWCP software. 

Experiments and data analyses were performed in blind by the operators. 

 

GABAAR and AMPA current evaluation in transfected Xenopus oocytes 

Tissue collection and membrane preparation 

Brain tissue from K and VK rats (n = 3 for each group) was snap frozen 

immediately after collection in liquid nitrogen and stored at -80 °C until further use. 

For membrane preparation, tissues were homogenized using a Teflon glass homogenizer 

in 2 mL of glycine buffer composed of (in mM): 200 glycine, 150 NaCl, 50 EGTA, 50 

EDTA, 300 sucrose; plus 20 L protease inhibitors (Sigma); pH 9 adjusted with NaOH. 

The homogenate was centrifuged for 15 min at 9.500 x g. The supernatant was collected 

and centrifuged for 2 h at 105 x g at 4 C. The pellet was washed, re-suspended in assay 

buffer (glycine 5 mM) and used for microtransplantation by injection in Xenopus laevis 

oocytes. The use of female Xenopus laevis were performed in accordance to institutional 

policies and guidelines of the Italian Ministry of Health (n°. authorization 78/2015-PR).  
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Electrophysiology  

Twelve to 48 hours after injection, membrane currents were recorded from 

voltage clamped oocytes by using two microelectrodes filled with 3 M KCl. Oocytes 

were placed in a recording chamber (volume 0.1 mL) and perfused continuously, 9-10 

mL/min, with oocyte Ringer's solution (OR) at room temperature (20-22 °C) composed 

of (in mM): NaCl, 82.5; KCl, 2.5; CaCl2, 2.5; MgCl2, 1; HEPES, 5, adjusted to pH 7.4 

with NaOH. 

GABA current rundown was defined as the decrease in percentage of the current peak 

amplitude after six 10 seconds-applications of GABA 500 µM at 40 s intervals [469, 

470]. The IGABA desensitization was defined as the time taken for the current to decay 

from its peak to half-peak value (T 0.5). GABA was delivered by pressure applications 

(10-20 psi for 1 s with a General Valve [Fairfield, NYUSA] Picospritzer II) from glass 

micro pipettes positioned near to the oocyte. 

Current–voltage (I–V) relationships were constructed holding the oocytes at -60 mV and 

stepping the membrane potential for 2-4 min at the desired value before applying the 

neurotransmitter. For these experiments, electrodes were filled with K-Acetate (3 M) 

[471] to reduce the excessive leakage of Cl
- 
from electrodes into the oocytes. However, 

the experiments
 
gave the same results when KCl filling solution was used (not shown).

 

To determine the GABA reversal potential (EGABA), I–V relationships were fitted with a 

linear
 
regression using the Sigmaplot 12 software (Systat Software Inc.). Unless otherwise 

indicated, for all the experiments, GABA 500 µM was applied for 4 s. 

In experiments involving AMPA currents, the oocytes were pretreated for 20 s with 

cyclothiazide (CTZ, 20 μM - a positive allosteric modulator of AMPAR), before 

application of 10 s of AMPA, 20 μM [472], to block the receptors desensitization. 

Experiments involving IEM 1460 (a voltage-dependent open-channel blocker which 

preferentially blocks GluA2-lacking AMPARs [473]) were performed holding the 

oocytes at -80 mV; the current inhibition was calculated as the ratio of the current 

blocked by IEM 1460 (I GluA2-lacking) over the total IAMPA , expressed as a percent. 

Chemicals were dissolved in sterile water (GABA, AMPA, IEM 1460), or DMSO (CTZ) 

and stocked at -20 °C until use. For all the experiments, solutions were freshly prepared 

and drugs and neurotransmitters were diluted to the desired concentration in OR. The 

final concentration of DMSO was always lower than 1:2000 after dilution. All drugs 

were purchased from Tocris Bio-science (Minneapolis, MN, U.S.A.) and OR salts from 

SIGMA (Saint Louis, MO, U.S.A.). 

  

Biochemical Analyses 

Rats (n = 16, 4 for each group) were killed by an overdose of sodium tiopenthal 

via i.p. and hippocampi, after transcardial perfusion with ice-cold physiological saline, 

were quickly excised, and stored at -80 °C up to use. Hippocampi were then 

homogenized and lysed with 0.5 mL of ice-cold lysis buffer (50 mM Tris–HCl, pH 7.8, 



 

 
 81   
 

PART II: PLASTICITY IN DISEASE 

0.25 M sucrose, 1% (w/v) SDS, 1 μg/mL pepstatin, 10 μg/mL leupeptin, 2 mM sodium 

orthovanadate, 10 mM NaF, 5 mM EDTA, 5 mM nethylmaleimide, 40 μg/mL 

phenylmethylsulfonyl fluoride, and 0.1% Nonidet-P40) and sonicated for 45 s at 50 W. 

Oxidative stress evaluation and protein expression quantification were performed. 

 

Oxidative stress evaluation by spectrophotometric detection of protein carbonyls (PCO) 

The amount of oxidative stress was determined measuring PCO levels in 

hippocampus samples using the molecule 2,4-dinitrophenylhydrazine (DNPH), which is 

a specific probe able to react with PCO leading to the formation of protein-conjugated 

dinitrophenylhydrazones (DNP). Protein-DNP adducts are characterised by a peak 

absorbance at 366 nm, allowing a quantitative determination of PCO content by 

spectrophotometer.  

A step by step protocol to assay PCO was carried out in accordance with 

Colombo and colleagues [474]. In particular, 200 µL of 10 mM DNPH solution was 

added to 1 mL of protein samples; at the same time, blank samples were prepared 

adding 200 µL of 2N HCl (without DNPH) to 1 mL of protein sample. The samples are 

than vortexed and left in the dark at RT for 60 min where are mixed every 15 min. 1.2 

mL of 20% TCA solution are then added to protein samples which are subsequently 

incubated on ice for 15 min. After this step, the samples were centrifuged at 10,000 × g 

for 5 min, at 4 °C. The supernatants were discarded and the proteins washed with 1 mL 

of 20% TCA. The samples were centrifuged at 10,000 × g for 5 min, at 4 °C and the 

supernatants discarded. Pellets were than washed twice with 1 mL of 1:1 (v/v) 

ethanol:ethyl acetate and vortexed to remove free DNPH, until supernatants are 

completely transparent. The pellets were collected centrifuging at 10,000 × g for 5 min, 

at 4 °C and discard supernatants. The pellets were dried for about 5 min to allow 

complete solvent evaporation. After this step, the protein pellets were re-suspended in 

1 mL of 6 M guanidine hydrochloride (dissolved in 50 mM phosphate buffer, pH 2.3) 

and incubated at 37 °C for 15-30 minutes. Once protein pellets were completely 

dissolved, spectrophotometric measurements of PCO content were performed at 366 

nm by using a molar absorption coefficient of 22,000 M
−1

 cm
−1

, and results were 

expressed as nmol of PCO per mg of protein (nmol/mg protein). 

 

Electrophoresis and western blotting analysis 

Hippocampus samples were boiled for 4 min and then centrifuged for 10 min at 

14,000 x g to remove insoluble debris. Supernatants were mixed 1:1 (vol/vol) with 

sample buffer (0.5 M Tris–HCl, pH 6.8, 2% SDS, 10% glycerol, 4% of 2-

mercaptoethanol, and 0.05% bromophenol blue) and 30 μg of sample proteins were 

loaded onto 10%, 12% and 15% SDS-polyacrylamide slab gels and separated by 

electrophoresis. Pre-stained molecular mass markers (Bio-Rad, Milan, Italy) were run in 

adjacent lanes. The gels were electroblotted and stained with Coomassie brilliant blue 
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R250. For immunoblotting, the following antibodies were used: mouse monoclonal 

antibodies against Claudin-5 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), 

GFAP (Sigma: Saint Louis, MO, USA), interleukin-1 β (IL-1 β; Santa Cruz Biotechnology: 

Santa Cruz, CA, USA), and interleukin-6 (IL-6; Santa Cruz Biotechnology: Santa Cruz, 

CA, USA); rabbit polyclonal anti-TNF- (Sigma), anti-ionized calcium-binding adapter 

molecule 1 (IBA1; Wako Life Sciences Inc., USA) and anti-actin (Sigma: Saint Louis, MO, 

USA). Blots were incubated with specific primary antibodies (1:1.000) and subsequently 

with the appropriate secondary antibodies conjugated with horseradish peroxidase 

(1:3.000; Bio-Rad, Milan, Italy). Immune complexes were visualized using an enhanced 

chemioluminescence Western blot analysis system (Amersham - Pharmacia, Milan, Italy) 

following manufacturer’s specifications. Blot images were then digitized (Chemidoc, 

Bio-Rad) and areas of all labelled bands were quantified using the computerized imaging 

system software (QuantityOne; Bio-Rad). After antibody probing, nitrocellulose 

membranes were stripped for 30 min at 50 °C with stripping buffer (62.5 mM Tris–HCl, 

pH 6.7, containing 10 mM β- mercaptoethanol and 2% SDS) and re-probed with anti-

actin (1:200). Immune complexes were visualized using an enhanced 

chemioluminescence. In each series, relative optical densities (arbitrary units, AU) were 

normalized for densitometric values obtained from actin-labelled bands.  

 

microRNA Expression Analyses  

Total RNA extraction from serum and hippocampal homogenate 

Peripheral blood samples were collected from anesthetized rats (sodium 

tiopenthal, 45 mg/kg body weight via i.p.; n = 3 for each group) in appropriate tubes 

and, following 30 min resting at RT, serum was obtained by centrifugation at 2500 rpm 

for 5 min at 4 °C. 

Hippocampi were then excised from the anesthetized rats after suppression and 

microRNAs were isolated from supernatant of homogenates prepared as described 

above (see Biochemical Analyses paragraph, page 80). After two subsequent spins, total 

RNA was extracted from 100 μL of rat serum and homogenates using an RNA 

purification kit (Norgen Biotek Corporation, Thorold, ON, Canada). RNA was stored 

at -80 °C until use.  

 

Quantitative Real Time PCR (qRT-PCR) for mature microRNAs analysis 

miR-124, mir-126 and miR-146a expression were analysed. microRNA expression 

was quantified using a real-time approach with the TaqMan miRNA reverse 

transcription kit and a miRNA assay (Applied Biosystems, Foster City, CA). The TaqMan 

MicroRNA reverse transcription kit was used to reverse transcribe the total RNA 

following manufacturer’s instructions. Briefly, 5 µL of RT mix contained 1 µL of each 

miR-specific stemloop primer (miR-126, miR-146a and miR-124), 1.7 µL of input RNA, 
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0.4 µL of 10 mM dNTPs, 0.3 µL of reverse transcriptase, 0.5 µL of 10× buffer, 0.6 µL of 

RNAse inhibitor diluted 1:10 and 0.5 µL of H2O. The mixture was incubated at 16 °C for 

30 minutes, at 42 °C for 30 minutes, and at 85 °C for 5 minutes. Afterwards, qRT-PCR 

was performed in 20 µL of PCR mix containing 1 µL of 20× TaqMan MicroRNA assay 

(containing PCR primers and probes; 5′-FAM) 10 µL of 2× TaqMan Universal PCR 

Master Mix No UNG (Applied Biosystems), 1.33 µL of reverse-transcribed product and 

7.67 µL of nuclease-free water. The reaction was first incubated at 95 °C for 10 minutes, 

followed by 40 cycles at 95 °C for 15 seconds and at 60 °C for 1 minutes. To obtain 

accurate and reproducible results, the relative expression of circulating miRNAs was 

quantified using synthetic Caenorhabditis elegans miRNA (cel-miR-39) as the reference 

miRNA, which was spiked into rat serum before RNA extraction. MicroRNAs expression 

in homogenate was evaluated using the spliceosomal RNA U6 as the reference. Each 

reaction was performed in duplicate. 

The qRT-PCR was performed on an ABIPRISM 7500 RealTime PCR System (Applied 

Biosystems). Data were analysed using a 7500 system software (1 1.4.0) with the 

automatic comparative threshold (Ct) setting to adapt baseline. Detection thresholds 

were set at 35 Ct. The relative amount of miR-146a, miR-126 and miR-124 was 

calculated using the Ct method: 

 

 Serum: ΔCt = Ct (miR-146a/miR-126/miR-124) − Ct (cel-miR-39); 2-
ΔCt

 

 

 Homogenate: ΔΔCt = [Ct (miR-146a/miR-126/miR-124 treated sample) − Ct (U6 

treated sample)] - [Ct (miR-146a/miR-126/miR-124 control sample) − Ct (U6 

control sample)]; 2-
ΔΔCt

 

 

Results are expressed in the figures as fold change related to control sample (VC) and 

values less than 1 indicated down-regulation, whereas values higher than 1 indicated up-

regulation. 

 

MicroRNA Fluorescence in situ hybridization (FISH) 

To perform fluorescence in situ hybridization rats (n = 12; three for each group) 

were deeply anesthetized with sodium tiopenthal (via i.p.) and transcardially perfused 

with physiological saline followed by 4% paraformaldehyde (PFA) in phosphate buffer 

saline (PBS, 0.1 M; pH 7.4). Brains were removed, post-fixed in 4% PFA for 48 h, and 

then transferred in PBS. Brains were embedded in paraffin and cut by a rotative 

microtome in 6 µm-thick coronal sections, which were processed for in situ 

hybridization, using TSA
TM

 Plus Fluorescence systems through the miRCURY LNA
TM

 ISH 

optimization Kit (Exiqon, Euroclone, Italy); procedure for FISH detection of microRNA 
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was performed according to manufacturer’s instructions. Every step of the procedure, 

including tissue sectioning, was took place in a clean and nuclease free environment. 

Briefly, PFA-fixed, paraffin-embedded sections were mounted on slides, dewaxed, 

rehydrated with PBS and treated with Proteinase K solution at 37 °C for 20 min at the 

concentration of 2 µg/mL, in a Dako Hybridizer machine. Slides were then dehydrated 

in ethanol and air-dried. The FISH probes (LNA
TM

 microRNA probe, LNA
TM

 scrambled 

microRNA probe and LNA
TM

 U6 snRNA to set optimal hybridization conditions) were 

denatured at 90 °C for 4 min, before proceeding with the hybridization of the probe 

with the specimen on the slides; a coverslip was applied, sealed with rubber cement, 

and sections were incubated at 55 °C for one hour in a Dako Hybridizer machine. Then, 

after coverslip removal, the slides were placed in a glass jar containing Saline-Sodium 

Citrate solution (SSC: 3 M NaCl, 0.3 M sodium citrate, pH 7), put into a water bath set 

to the hybridization temperature to ensure sufficient stringency. Following PBS washes, 

the slides were placed in a humidifying chamber and incubated with blocking solution 

(containing 2% sheep serum, 0.1 % Tween-20, 1% BSA in PBS) for 15 min at RT. Slides 

were then incubated with anti-DIG-POD (1:400 in dilutant solution containing: 1% 

sheep serum, 0.05% Tween-20, 1% BSA in PBS) for 60 min at RT. Finally, TSA
TM

 Plus 

Fluorescein substrate (Perkin Elmer) substrate was applied to the sections and incubated 

2x5 min at RT. PBS buffer washes were used to stop the reaction. The slides were 

covered directly with SlowFade Gold antifade reagent (Life technologies - Thermo Fisher 

Scientific) and examined under a confocal microscope (Leica TCS-SL), with suitable filter 

set. 

To perform the densitometric analysis of FISH staining, six slices for each experimental 

group were considered. Signal intensity of miRNAs and U6 expressions were measured 

using ImageJ (https://imagej.nih.gov/ij/) to calculate the product of area and mean gray 

value (Integrated density) as percentage of modulation (miRNAs percentage value 

versus U6). 

 

Morphological Analysis 

The animals (n = 12 rats; three for each group) were deeply anesthetized with 

sodium tiopenthal (via i.p.) and transcardially perfused with physiological saline 

followed by 4% PFA in PBS. Brains were removed, post-fixed in 4% PFA for 48 h and 

then transferred in PBS. Vibratome was used to cut brains in serial sections (50 µm thick), 

which were collected in PBS and mounted on slides. To perform FluoroJade staining, 

slides were sequentially immersed in 100% ethanol for 3 minutes and then in 70% 

ethanol for 1 minute. After rinsing in distilled water, slides were incubated in 0.06% 

KMnO4 solution for 15 minutes, rinsed in distilled water and transferred to a 0.001% 

solution of FluoroJade dissolved in 0.1% acetic acid for 20 minutes. Slides were then 

rinsed thrice in distilled water for 1 minute, dried, immersed in xilene and coverslipped 

with Entellan. FluoJade-positive cells were observed by Axioskop fluorescence 

microscope (Carl Zeiss, Germany) equipped with a filter suitable for visualizing 
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fluorescein isothiocyanate; cells with evident neuronal morphology were counted in at 

least six sections for each animal taken along rostro-caudal extension of CA1 

hippocampal field. Eighty-five fields/animal (270 x 250 µm each) were considered.   

 

Statistical Analysis 

Data were expressed as mean±SEM. For multiple variable comparison, results 

were analysed using appropriate ANOVA test (one-way or two-way) followed by 

Tukey’s post-hoc test; for single comparison, Student’s t test and Chi-square test, 

unpaired t-test or Wilcockson Signed rank test, after normal distribution testing (Shapiro-

Wilk test) were appropriately used. Significance threshold was established for p = 0.05. 

 

Results  

Electrophysiological recordings 

Population spike analysis 

Differences in the hippocampal network excitability related to -T postictal 

treatment in epileptic and non-epileptic rats were evaluated by stimulations of Schaffer 

collaterals in stratum radiatum of brain slices and recordings in CA1 pyramidal cell layer. 

To this aim, some excitability indexes as the number of population spikes in fEPSP 

responses, input/output curves, and the latency of the first interictal event after drug-

induced network dysregulation, have been assessed. 

Non-epileptic rats (C and VC) during baseline recording, typically showed a fEPSP 

characterised by a single population spike (Fig. 20A); in these groups, a second 

population spike in the fEPSP response was rarely found (Fig. 20B).  

On the contrary, slices from KA-injected rats (K and VK) showed a fEPSP which gave 

rise to one to three/four population spikes (Fig. 20A; VK mean value: 2.71 ± 0.24); 

notably, only slices from vehicle-treated epileptic rats exhibited up to four population 

spikes, while most of K slices evoked only one population spike, thus similarly to non-

epileptic rats (K mean value: 1.68 ± 0.17). In addition, input/output curve at increasing 

stimulus magnitude showed that K group displayed a significantly lower number of 

population spikes compared to VK, starting from 40 pA stimulus intensity (Fig. 20B), 

indicating a reduced network excitability following -T postictal treatment in epileptic 

rats. 
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Figure 20. Population spike number. (A) Field excitatory post-synaptic potential recorded in CA1 

pyramidal layer in treated kainate-exposed (K) and untreated kainate-exposed (VK) rats. The arrowhead 

indicates multiple population spike recorded in VK rat slice. (B) fEPSP population spike number recorded 

in all the experimental groups in response to Schaffer’s collaterals stimulation. Two-way ANOVA repeated 

measure followed by Tukey's post-hoc, *p < 0.05; **p < 0.01. Data are expressed as mean±SEM. K, 

treated kainate-exposed; VK, untreated kainate-exposed; C, treated non-epileptic; VC, untreated non-

epileptic. Data are currently under submission. 

 

Induced epileptiform-like network activity 

The appearance of spontaneous epileptiform bursting events was exclusively 

found in VK group (about 40% of recorded slices; n = 15; Chi-square test: p < 0.01), 

supporting the higher hippocampal excitability in this group. 

BMI and 4-AP co-application in perfusion bath gave rise to epileptic-like activity in slices 

from all groups. The adopted blocker concentrations were able to mainly evoke 

interictal events, characterised by a duration of less than 400 ms, with a positive and 

negative peaks clearly distinguishable from baseline activity (Fig. 21A); ictal event, 

defined a spontaneous activity constituted by at least three interictal events in rapid 

succession, were rarely observed. As index of hyperexcitability, we evaluated the latency 

for the onset of the first interictal event. Epileptic rats treated with -T showed a latency 

of the first interictal event comparable to that of non-epileptic rats with and without 

treatment, and significantly different from that detected in VK rats (Fig. 21B), indicating 

a less marked hippocampal excitability under -T treatment following SE.  
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Figure 21. Bath application of 50 µM BMI together with 50µM 4-AP leads to the appearance of 

spontaneous interictal events. (A) Enlarged view of a single interictal event. (B) Latency of the first 

interictal event recorded in the experimental groups. One-way ANOVA followed by Tukey's post-hoc, 

*p < 0.05. Data are expressed as mean±SEM. K, treated kainate-exposed; VK, untreated kainate-

exposed; C, treated non-epileptic; VC, untreated non-epileptic.  Data are currently under submission. 

 

GABAAR and AMPA current evaluation in Xenopus oocytes 

The effect of -T treatment on electrophysiological properties of GABAAR and 

AMPAR was here evaluated taking advantage of membrane microtransplantation in 

Xenopus oocytes. First, a good expression of GABAA and AMPA receptors using tissues 

from treated and untreated rats (VK vs K: mean IGABA = 81.2 nA ± 26.5 vs 101.8 ± 

31.4 nA, n = 14 vs 13, p = 0.369; mean IAMPA = 75 nA ± 33.5 vs 118.5 ± 43 nA, n = 

10 vs 14) was obtained. The small variability in the current amplitude between the 

groups is due to the difference of expression between cells and donors (frogs) as 

reported in [475, 476]. Successively, the evaluation of the electrophysiological 

properties of the two receptors was performed. As for GABAAR, a significant current 

rundown was present in both K and VK hippocampal tissues (VK vs K: 43 ± 7.5 % 

vs 54.8 ± 6.9 %, n = 10 vs 12, p = 0.259), suggesting that α-T does not act on the 

degree of current desensitization as previously reported for BDNF or fracktaline [470, 

477]. 

Additionally, no differences of EGABA were observed between the two groups (VK vs K: 

mean EGABA = -4.7 ± 1.2 mV vs -22.6 ± 1.4 mV; p > 0.05 (n = 10)), thus indicating that 

a modification of chloride homeostasis is not likely to be involved in the effect evoked 

by the administration of -T. 

Furthermore, IAMPA normalized to IGABA amplitude [478] were analysed: the result point 

out that this parameter was similar in the two groups (AMPA/GABA: VK= 304 ± 82%; 

K = 239 ± 47%, p > 0.05; n = 10). 

To further characterize AMPA responses, IEM1460, a selective GluR2-lacking AMPA 

receptor blocker, was tested since GluR2 function is crucial in development and various 

pathologies [473]. The results showed that the percentage of IEM1460 block was similar 
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in the two groups (VK= 60.3 ± 16%; K = 53 ± 14; p > 0.05, n = 8) indicating no 

difference in the expression of GluR2. 

 

Biochemical Results 

Oxidative stress evaluation 

The formation of PCO has been considered a marker of oxidative stress in 

hippocampi derived from the different experimental groups. In detail, the hippocampi 

of vehicle-treated epileptic rats (VK) showed a significantly larger amount of PCO as 

compared to α-T treated epileptic group (Fig. 22), which in turn resulted similar to non-

epileptic rats. Furthermore, no difference was found in PCO content when -T was 

administered under control conditions. These findings indicate -T treatment lead to a 

reduction in oxidative stress levels 15 days post-SE induction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Effect of -tocopherol treatment on protein carbonyls formation used as marker of oxidative 

stress. Histograms represent PCO content of three independent measurements in each experimental group 

(means±SEM). One-way ANOVA followed by Tukey’s post hoc test, *p < 0.05; **p < 0.01. K, treated 

kainate-exposed; VK, untreated kainate-exposed; C, treated non-epileptic; VC, untreated non-epileptic.  

Data are currently under submission. 

 

Neuroinflammation assessment 

Fifteen days after SE, the expression levels of GFAP and IBA-1 (used as markers 

of reactive astrogliosis and microglial activation, respectively), were both significantly 

increased in vehicle-treated epileptic animals (VK) when compared to non-epileptic 

vehicle-treated rats (VC) (Fig. 23). Consistently, the expression of pro-inflammatory 

cytokines IL-1 β and TNF- was also up-regulated (Fig. 23), whereas, IL-6 protein levels 

appeared to not change. In K rats, the levels of all the neuroinflammatory markers 
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here considered were significantly lower than in VK (Fig. 23), except IL-6 which levels 

resulted increased.  

As consequence of neuroinflammation, disruption of the BBB can occur, losing its 

capability to protect brain environment. Thus, we evaluated the expression levels of 

claudin-5, a molecule forming tight junctions, which limit the paracellular permeability, 

in order to gain insight regarding the integrity of the BBB 15 days after SE. Densitometric 

analysis of immunoblots revealed a marked decrease in claudin-5 protein levels in KA-

injected groups, which was recovered by -T treatment (Fig. 23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Effect of -tocopherol treatment on neuroinflammatory and markers blood–brain barrier in 

control and kainate-induced epileptic rats. Western blot analysis of the expression levels of 

neuroinflammatory markers and claudin-5 (used as marker of blood-brain barrier integrity - dashed line), 

in hippocampal homogenates obtained from rats of all the experimental groups. Per each experimental 

group: representative immunoblots are displayed and anti-actin blots are shown as loading control. Note 

that immunoblots are shown in the same sequence as bars in the corresponding histograms. Histograms 

represent densitometric analyses of blots from three independent experiments (means±SEM). One-way 

ANOVA followed by Tukey’s post hoc test, *p < 0.05; **p < 0.01. K, treated kainate-exposed; VK, 

untreated kainate-exposed; C, treated non-epileptic; VC, untreated non-epileptic. Data are currently 

under submission. 

 

microRNA Expression Modulation  

Aberrantly expressed microRNAs detected in the hippocampus of MTLE patients 

and TLE mice models [479], include miR-124, miR-126 and miR-146a. In particular, 

much attention have received the well-characterised miR-146a which play an important 



  

 
90 

 

PART II: PLASTICITY IN DISEASE 

role in the regulation of astroglia mediated inflammatory response [422], revealing its 

overexpression in glioneuronal lesions from patients with drug-resistant epilepsy. In 

addition, miR-146a has been found to modulate IL-6 expression by targeting IRAK-1 and 

TRAF-6, key regulator proteins of TLR-4 signalling activation [480].  

Our results on three selected miRNAs – miR-124, miR-126 and miR-146a – among the 

experimental groups, revealed a significant up-regulation of miR-146a in hippocampi of 

vehicle-treated epileptic rats (VK) (Fig. 24A) as compared to non-epileptic ones (VC); 

strikingly, this SE-induced effect, was completely prevented by -T treatment (K) (Fig. 

5A). On the contrary, a trend of decrease in miR-126 and miR-124 expression levels was 

observed in epileptic hippocampi in comparison to vehicle-treated non-epileptic rats 

(VC); after -T treatment the differences became statistically significant. Interestingly, 

this effect was induced by -T also in absence of epileptic insult (C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Effect of -tocopherol treatment on microRNA expression. (A) Quantification of miR-124, 

miR-126 and miR-146a expression in hippocampal homogenates and, (B) quantification of serum miR- 

124, miR-126 and miR-146a expression obtained from rats of the different experimental groups. One-way 

ANOVA followed by Tukey’s post hoc test, *p < 0.05; **p < 0.01. All data have been normalized on 

VC miR expression level and expressed as mean±SEM. K, treated kainate-exposed; VK, untreated 

kainate-exposed; C, treated non-epileptic; VC, untreated non-epileptic. Data are currently under 

submission. 

 

In addition, in the serum of same rats we measured circulating microRNAs. We 

uncovered changes for miR-146a and miR-124 that fit with those observed in the related 

hippocampi (Fig. 24B); on the contrary, miR-126 serum levels were strongly up-

regulated following SE (VK), a phenomenon promptly prevented by -T treatment. 

A 

B 
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miR-124 expression was found significantly down-regulated both in hippocampus and 

in serum by -T. 

To further investigate its low hippocampus expression, FISH for miR-124 was performed 

in pyramidal neurons of CA1 hippocampal fields: this technique confirmed its down-

regulation. miR-124 signal was bright in pyramidal cells of CA1 hippocampal field and 

restricted to cytoplasm (Fig. 25). The brightness of the FISH signal was quenched in 

neuron cytoplasm of -T treated epileptic rats and was very similar to that of the 

corresponding -T non-epileptic ones (C) (Fig. 25). 

Taken together, these results suggest an influence of -T on microRNA expression. In 

addition, circulating microRNAs indicate that miR-126 and miR-146a may be biomarkers 

for the epileptic disease and useful in the evaluation of the effectiveness of treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Effect of α-tocopherol treatment on miR-124 expression. (On the left) Representative confocal 

FISH images (on the left) of fluorescent in situ hybridization of miR-124 in CA1 pyramidal cells (scale bar: 

50 µm). (On the right) Quantification of FISH intensity of miR-124 normalized to U6 snRNA in CA1 

pyramidal cells. All data are expressed as mean±SEM. One-way ANOVA followed by Tukey’s post hoc 

test, **p < 0.01. K, treated kainate-exposed; VK, untreated kainate-exposed; C, treated non-epileptic; 

VC, untreated non-epileptic. Data are currently under submission. 

 

Morphological Analysis Results 

Fifteen days following SE, epileptic hippocampi showed a number of FluoroJade-

positive cells, while, no degenerating neuron was found in control (saline-injected) non-

epileptic rats (αC; VC). VK rats exhibited an overall greater number of degenerating 

neurons across rostro-caudal extension of CA1 field (Fig. 26) than K hippocampi, which 

was highly significant at more caudal brain levels (Fig. 26). This finding indicates a 

reduction in neuronal degeneration due to -T post-seizure treatment, thus confirming 

and extending previous finding from our lab [6]. 
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Figure 26. Effect of -tocopherol treatment on neuronal degeneration. The histogram reports the 

quantification of FluorJade-positive cells in CA1 hippocampal field in K and VK experimental groups. 

Plate A: -3,3 mm, Plate B: -4,3 mm and Plate C -5,8 mm from Bregma. Student’s t test, **p < 0.01. K, 

treated kainate-exposed; VK, untreated kainate-exposed; C, treated non-epileptic; VC, untreated non-

epileptic. Data are currently under submission. 

 

Discussion 

TLE represent the most common form of partial epilepsy in humans and is often 

preceded by a seizure-free period defined as latent period, during which maladaptive 

network reorganisations take place, leading to the appearance of spontaneous recurrent 

seizures that characterise the chronic stage [481]. The KA model of epilepsy resembles 

the human MTLE disease [442], thus representing a validated animal model to study 

epileptogenesis. The CA1 region of hippocampus following kainate-induced SE is 

hyperexcitable, establishing a permissive factor for the genesis and propagation of 
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epileptic seizures. Neuronal cell loss, synaptic reorganisation, imbalance in excitatory 

and inhibitory drive, gliosis and inflammatory pathway activation may contribute to 

alter network excitability and synchronization during the latent period. 

The present study demonstrates that -T postictal administration is able to strongly 

reduce CA1 hippocampal network excitability as highlighted by the electrophysiological 

analysis of some parameters considered good markers for the evaluation of neuronal 

network excitability during epileptogenesis [482, 483].  In particular, -T has been 

found to decrease the number of population spikes in evoked fEPSPs and reduce the 

susceptibility to generate spontaneous and drug-triggered epileptiform bursting events 

on slices. These findings would support the use of vitamin E to improve seizure control 

in patients with epilepsy [465] when added to the antiepileptic drugs (AEDs). However, 

the mechanisms underlying the antiepileptogenic effect of this natural compound have 

not yet been fully investigated.  

Aberrant excitatory/inhibitory drive in epilepsy is considered one of the main alteration 

contributing to epileptogenesis and GABA, the most important inhibitory 

neurotransmitter in the CNS, and its receptors are considered the main target of current 

and future antiepileptic drugs. The reduced efficacy of GABAergic inhibition has been 

strongly associated with the  occurrence of recurrent seizures [484]. Indeed, it has been 

demonstrated that GABAA receptors in the epileptic hippocampus of both humans and 

in animals, become less responsive to repeated activation than those from normal tissue 

[325, 326, 485-487]. This change in GABAAR desensitization, called GABAAR rundown, 

might represent a crucial mechanism contributing to inhibitory failure and 

excitation/inhibition imbalance that lead to spontaneous seizures [488]. In this context, 

we found that -T did not mitigate the SE-induced GABAAR rundown since hippocampal 

tissues from both -T treated and vehicle-treated epileptic animals displayed a very 

similar marked rundown during repetitive applications of GABA. The molecular 

mechanisms behind the increased GABAA-receptor rundown in the epileptic tissue are 

still unknown. However, it has been hypothesized that it could be dependent on 

alterations in GABAA receptor subunit composition [485] or changes in GABAAR 

phosphorylation/dephosphorylation [488]. Hence, our data suggest that -T has no 

effect on GABAA receptor population structure nor their function regulation. In addition, 

chloride homeostasis is not different between treated and untreated epileptic animals, 

suggesting that chloride transporter expression and/or activity are not altered by the -

T postictal administration. Lastly, AMPA/GABA current ratio was not different in the 

two groups, as well as AMPA response and subunit composition, indicating no effects 

directly exerted by -T on AMPA expression and/or functioning. Taken together, it is 

suggested that the observed beneficial effects of -T treatment are due to different 

mechanisms. 

A number of studies have often ascribed vitamin E effectiveness in mitigating the 

severity of human and animal epilepsy, to its well-known antioxidant property [464, 

465]. In line with this view, our findings regarding PCO determinations indicate the 

significant reduction of oxidative stress level in hippocampus of -T-treated epileptic 
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rats. Nevertheless, a series of studies revealed that the forms of vitamin E, mainly -T, 

are able to function as signaling and gene regulation molecules independently from their 

antioxidant action [489] and in the last few years, several laboratories have described 

additional cellular and molecular properties for this vitamin, such as, reduction of 

proliferation rate [490, 491], the enhancement of immune functions, inflammatory 

pathway regulation and neuroprotection [6, 492-495]. 

Previous findings from our lab have shown that four days of -T treatment after kainate-

induced SE are able to reduce hippocampal neuroinflammation and neurodegeneration, 

quenching neuroinflammatory processes triggered by SE [6]. Additionally, -T treatment 

counteracts glutamine synthase decline, recovering the glutamate-glutamine-GABA cycle 

pathway, which has been found to be disrupted in the hippocampus of MTLE affected 

patients [496]. Lastly, post-SE -T treatment induces an increase in dendritic spine 

number and in synaptophysin immunoreactivity, suggesting a role of -T in 

synaptogenesis promotion and/or synapse protection [6]. 

Here, the post-SE -T administration effects of reducing hippocampal 

neuroinflammation and neurodegeneration are confirmed after a longer period of 

treatment. Thus, 15 days of -T treatment significantly reduce astrogliosis and microglial 

activation together with pro-inflammatory cytokines IL-1 β and TNF-. IL-6 protein 

levels, however, are up-regulated by -T in epileptic rats with respect to all the other 

animal groups. IL-6 is a multifunctional cytokine with pro-, but also anti-inflammatory 

activities [497] and it has been reported to contribute to neuroprotection after SE [498]. 

Besides, IL-6 knockout mice appears to be more susceptible to some chemoconvulsant 

agents [499]. The mechanisms underlying IL-6 anti-inflammatory effect have not been 

fully elucidated, but it has been demonstrated that this cytokine can down-regulate the 

synthesis of other pro-inflammatory cytokines such as IL-1β and TNF- [500, 501], thus 

limiting neuroinflammation contribution to epileptogenesis. According to these findings, 

here we highlight a low protein expression level of IL-1β and TNF- in epileptic rats 

treated with -T as compared to the corresponding non-treated ones. This down-

regulation could in part be related with the IL-6 effect above mentioned. Interestingly, 

the small regulatory RNA molecule miR-146a, an inflammation-associated microRNA 

up-regulated during epileptogenesis in rat hippocampus [421], has been recognized as 

an endogenous regulator of cytokine signalling [502]. In this view, He et al. [503] 

demonstrated that miR-146a has influence on IL-6 expression, since miR-146 up-

regulation increase, and miR-146a mimics decrease, the expression of IL-6 in 

Lipopolysaccharides (LPS)-stimulated macrophages. In our experiments, we found that 

miR-146a expression was significantly enhanced in VK rats in comparison to control rats 

fifteen days after SE, while miR-146a up-regulation in epileptic rats has been found 

reduced by -T treatment. -tocopherol was previously disclosed to down-regulate 

miRNA levels [467]. Thus, a plausible hypothesis is that during the latent period post-

SE induction,-T can reduce miR-146a expression and increase, as a consequence, IL-6 

release in rat hippocampus. However, it is worth mentioning that mechanisms other 

than the anti-inflammatory one could be involved in the neuroprotective effects of IL-
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6. Indeed, this cytokine facilitates the concentration- and time-dependent up-regulation 

of adenosine A1 receptor expression and signalling [504]: adenosine has been shown to 

exert a powerful anticonvulsant effect [505]. In addition, in vitro studies showed that 

IL-6 is able to protect against glutamate- and NMDA-induced excitotoxicity [506, 507]. 

The present findings confirm and extend at 15 days post KA injection the previous 

findings about the protection against SE-induced neurodegeneration exerted by -T. 

FluoroJade analysis revealed that degenerating neurons were scattered throughout the 

rostro-caudal CA1 extension, with a particular higher concentration at more caudal 

hippocampal levels. Importantly, at this level we detected a significantly lower number 

of degenerating neurons in -T-treated epileptic rats in comparison to the corresponding 

non-treated ones. The rostro-caudal gradient in vulnerability of CA1 to epileptic injury 

could be consistent with the increasing degree of neuronal excitability from dorsal to 

ventral hippocampus described by several authors [508-512] and, it is noteworthy that 

postictal -T administration is able to rescue CA1 neurons, showing a corresponding 

region-specific pattern along the rostro-caudal axis of hippocampus. 

The evaluation of the existence of a possible beneficial effect exerted by -T 

treatment on preventing BBB damages has been evaluated in the present study. A 

compromised functioning of brain endothelial cells results in serious consequences for 

BBB integrity [513] and therefore for brain homeostasis. BBB breakdown can be a direct 

consequence of seizure activity or immune mediators, which induce shifts in vascular 

physiology, damaging its function of separating the circulating blood from CNS 

extracellular fluid, thus increasing permeability [384-386]. Tight junctions contain a 

complex of transmembrane proteins, including claudin, the alteration of which in the 

expression levels is indicative of a BBB damage. Our results clearly highlight the ability 

of -T to promote BBB integrity, probably by reducing neuroinflammation levels after 

SE. This is a remarkable effect considering the crucial role played by BBB in maintaining 

cerebral homeostasis and providing neuroprotection. 

Since numerous research data indicates that a number of microRNAs are 

dysregulated in epileptic brain of human and animal models [420, 424], we monitored 

changes in the expression levels of three selected miRs in all the experimental groups. 

Accordingly, we found that miR-146a was significantly up-regulated in hippocampus of 

non-treated epileptic rats fifteen days after SE induction, but -T treatment was able to 

prevent its over-expression. On the other hand, miR-126 and miR-124 were significantly 

down-regulated in -T treated epileptic hippocampi. Besides, it is worth mentioning 

that under -T treatment, in absence of the epileptic insult, all the considered miRs 

showed an alteration of their expression indicating a possible direct effect of -

tocopherol on miRs expression. Consistently, it has been previously reported that -T 

can induce a redox-independent down-regulation of microRNA expression by [467]. 

The miR-146a appears to be a crucial mediator in the neuroinflammatory response and 

increased level of miR-146a has been found in the latent period of epileptic disease both 

in rat model and in human MTLE [421], thus suggesting a potential role of this miRNAs 

in epileptogenesis. It is therefore conceivable that -T, decreasing the expression levels 
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of IL-1β and TNF- pro-inflammatory cytokines, is able to prevent miR-146a up-

regulation induced by SE, which in turn, as discussed above, might lead to an increased 

IL-6 release, hence contributing to reduce IL-1β and TNF- protein levels. 

miR-126 is an highly expressed microRNA in endothelial cells and plays a critical role in 

angiogenesis and blood vessel integrity [514, 515]. In addition, miR-126 regulates the 

expression levels of endothelial adhesion molecules in inflammation [516]. According 

to recent findings, the BBB function is dependent on several miRNAs, among which 

miR-126 [517]. Our data point-out that miR-126 expression level tends to decrease in 

hippocampus fifteen days following SE. This reduction could be related to impaired BBB 

integrity as shown by the dramatic loss of claudin-5 detected in epileptic non-treated 

rats. It is remarkable to highlight that -T treatment seems able to reduce miR-126 levels 

even in the absence of epileptic insult. This effect suggests that -T can independently 

and directly regulate miR-126 expression in the brain, affecting the regulation of its 

targets including those related with cellular growth and survival [518]. Accordingly, miR-

126 has been proven to regulate SOX2 [519] and EGFL7 – a Notch signaling modulator 

- [520], thus suggesting a role in the regulation and maintenance of self-renewal and 

pluripotency features in stem cells and neural progenitors. However, it is not possible 

to exclude the influence of DG neurogenesis and its modulation by -T [521-523] and 

epilepsy [347] on the results obtained since miR-126 evaluation was performed in whole 

hippocampus. 

miR-124 is widely expressed in the brain and several evidence suggests a link between 

its dysregulation and numerous CNS disorders [524]. miR-124 is also involved in 

epilepsy where it plays a dual and opposite role of pro- and anti-inflammatory 

modulator [426]. In our experimental conditions, hippocampal miR-124 expression was 

not significantly modified fifteen days after KA-induced SE, even though a trend toward 

down-regulation is appreciable. FISH analysis, revealed a miR-124 expression in 

cytoplasm of hippocampal neurons, including pyramidal neurons of CA1 field. Both RT-

PCR quantitative analysis and FISH staining showed that under -T treatment 

conditions, miR-124 expression was significantly down-regulated in KA-injected and 

non-epileptic rats, thus suggesting a direct insult-independent action of -T on miR-124 

expression. However, considering the effect of -T on neuron network excitability, 

these findings could support a pro-epileptogenic role played by miR-124 in epilepsy. 

Circulating miRs have been proven to be clinically relevant diagnostic/prognostic 

biomarkers for several human diseases [525]. Accordingly, our results on miRs 

expression levels in serum revealed that the modulation of miR-124 and miR-146a in 

the different experimental rat groups reflects the data obtained in hippocampi from the 

same animals, faithfully reproducing alterations induced by SE and -T treatment. In 

particular, the expression level of circulating miR-124 is of special interest since it is 

specifically expressed in brain and has been proposed as diagnostic and prognostic tool 

in some brain disorders. At the opposite, miR-126 evaluation in serum from VK group 

resulted increased (instead of decreased as emerged in hippocampus) with respect to 

miR-126 serum levels detected in non-epileptic untreated rats. Notably, -T treatment 
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reduce miR-126 levels in epileptic and non-epileptic rats, thus corroborating the -T 

effect on miR-126 expression. 

Taken together, our findings allow us to suggest miR-124, miR-126 and miR-146a 

expression levels in the serum as biomarkers to follow up the effectiveness of 

antiepileptic treatments.  

In conclusion, -T treatment during the seizure-free latent period after SE-

induction allows the decrease of maladaptive plasticity processes, including 

neuroinflammation and neurodegeneration, which promote the occurrence of 

spontaneous recurrent seizures leading to chronic epilepsy. The main findings of this 

study disclose an -T-mediated decrease of hippocampal network excitability following 

SE-induction and the possible involvement of an -T-mediated anti-inflammatory 

mechanism in reducing epileptogenesis. The reduced excitability is not a consequence 

of -T influence on GABAAR and AMPA currents but it is probably due to other 

mechanism as, for instance, reduced GABAergic neurons degeneration, decreased BBB 

damage or inflammatory pathways modulation. Importantly, -T treatment on 

epileptic rats did not induce any adverse reaction such as significant weight loss, 

bleeding, diarrhea, liver structure damage, or others. This is a very significant aspect 

since side effects of current AEDs are a major impediment to optimal dosing for seizure 

control, mainly under drug-resistant epilepsy. Finally, a major discovery regard 

circulating miR-126 and miR-146a during epileptogenesis which might represent not 

only valuable diagnostic/prognostic biomarkers but also useful biomarkers to evaluate 

the clinical efficacy of specific treatments. 
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Learning, memory and many neuropathologies have a common underlying 

feature called brain plasticity, which plays a double-face role in these different 

conditions. It is therefore clear that the current concept of brain plasticity has a great 

relevance for neuroscience, but also for areas outside this field, being of potential 

interest for all human life. 

A healthy brain is able to respond with physiological plastic changes that 

involve spines, synapses or dendrites which continuously rewire the network 

throughout our lifetime, overcoming the limits of genetic slowness, and making 

adaptation to a fast-changing environment possible. Among all the mechanisms that 

support brain plasticity, hippocampal neurogenesis represents a highly fascinating 

phenomenon not jet completely understood. Indeed, it remains to shed light upon 

the specific contribution of newly-generated granule cells to hippocampal function, 

a question that after several years of research on this field has not been answered yet. 

A possible way to understanding the functional role of hippocampal adult 

neurogenesis lies in its dynamicity and dependency on the network activity which 

could promote or prevent this process. Accordingly, rewarding experiences as 

physical activity, positively affect adult born DG neurogenesis, promoting the 

generation and integration of new granule cells. Here, we brought evidence that a 

brief physical activity generates short-term and long-lasting modifications in 

hippocampus, which could influence future network activity potentially lead to 

cognitive enhancement widely attributed to physical activity [122, 155, 191, 202]. 

Despite brain plasticity can be certainly considered an essential property of the 

neural network, its highly controlled dynamics might face their failure and become 

corrupted giving rise or contributing to several neurological disorders among which 

major depression and epilepsy. A common social need concerning these maladaptive 

plasticity-related pathologies, is the availability of new and more efficient treatments, 

together with the identification of fast and reliable diagnostic/prognostic tests, also 

considering the high incidence of treatment-resistant patients. The present thesis has 

analysed and emphasised the existence of promising new targets of treatment in the 

depressive disorder and the potential benefits of -tocopherol-based treatment in 

counteracting epileptogenesis, together with the emergence of some circulating miRs 

for the valuable monitoring of mesial temporal lobe epilepsy. 

To conclude, managing to manipulate brain plasticity is gaining great 

attraction for its potential in health and disease. On one hand it might allow to 

improve essential features of human brain as learning, memory and cognition; on the 

other hand, the correction of the program that govern maladaptive neural plasticity 

in disease might lead to the development of effective form of treatment aimed to 

correct the mechanisms behind the pathology and not the symptoms themselves. 
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5-HT – 5- Hydroxytryptamine 

5HT1A – 5- Hydroxytryptamine Receptor 1A  

-T – -Tocopherol 

ACSF – Artificial Cerebrospinal Fluid 

AEDs – Antiepileptic drugs 

AMPAR – α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AP – Action Potential 

BBB – Blood Brain Barrier 

BDNF – Brain Derived Neurotrophic Factor 

CA1, CA2, CA3 – Cornu Ammonis 1, 2, 3 

CNS – Central Nervous System 

DA - Dopamine 

DG – Dentate Gyrus 

DGCs – Dentate Granule Cells 

EEG – Electroencephalogram 

fEPSP – Field Excitatory Postsynaptic Potential 

FGFR1 – Fibroblast Growth Factor Receptor 1 

FSL rats – Flinder’s Sensitive Line rats 

FST – Forced Swim Test 

GABA – Gamma-Aminobutyric Acid 

GCL – Granule Cell Layer 

GFP – Green Fluorescent Protein 

GluA1, GluA2 – Glutamate receptor subunits 

GPCR – G Protein Coupled Receptor 

i.c.v. – Intracerebroventricular 

IL-1, IL-6 – Interleukin -1 and -6 Families 
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in situ PLA – in situ Proximity Ligation Assay 

i.p. – Intraperitoneal 

KA – Kainic Acid 

LTD – Long Term Depression 

LTP – Long Term Potentiation 

LPO – Lipid peroxidation 

MDD – Major Depressive Disorder 

mEPSC – Miniature Excitatory Postsynaptic Current 

mIPSC – Miniature Inhibitory Postsynaptic Current 

miR – microRNA 

ML – Molecular Layer 

MTLE – Mesial Temporal Lobe Epilepsy 

NA - Norepinephrine 

NMDAR – N-methyl-D-aspartate receptor 

NR2A, NR2B – NMDAR subunits 

PLA – Proximity Ligation Assay 

PSC – Postsynaptic Current 

RNS – Reactive Nitrogen Oxygen 

ROS – Reactive Oxygen Species 

R-R interaction – Receptor-Receptor interaction 

RTK – Receptor Tyrosine Kinase 

SD rats – Sprague Dawley rats 

SE – Status Epilepticus 

SGZ – Subgranular Zone 

SSRI – Selective Serotonin Reuptake Inhibitors 

TNFTumour Necrosis Factor 

VGCCs – Voltage Gated Calcium Channels
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