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Chapter 1

Introduction

Today we repeatedly join and leave dynamic and complex systems such as online com-

munities, transportation networks, and cities. Most of the time we are not aware of be-

having as linked nodes in massive networks, like traffic flows or economic systems. But

fast-evolving systems like these need to be continuously monitored in order to extract

information essential to decision making, proactive surveillance, and policy making.

The process of handling complex systems starts with the non-trivial task of collect-

ing data about, analyzing, and understanding complex contexts. Until about a decade

ago, the most suitable methods for examining these contexts took advantage of tools

like Wireless Sensor Networks (WSNs) and emerging phenomena such as the Internet

ofThings (IoT).Althoughbeing innovative andon the cutting edge froma technological

point of view, they were not flexible enough to provide building blocks of applications

able to deal with contexts highly dynamic in both space and time dimensions. Moreover,

even if such technologies would have been of great help inmining knowledge from com-

plex networks, some shortcomings (e.g., high installation and maintenance cost, lack of

scalability, steep learning curve, and limited node coverage) have hindered their full com-

mercial exploitation and their pervasive diffusion in many real world applications.

With the recent widespread availability of smartphones, this scenario has radically

changed. Having a full fledged computer with high connectivity and computing power

but small enough to be carried around with no efforts by users, has enabled a new fast-

growing sensing paradigm. Not only smartphones, but also smart vehicles and wearable

devices— along side with further developments in cloud computing—offered an inter-

esting opportunity for developing distributed applications able to quickly and precisely

investigate even dynamic and quite complex phenomena.

Nowadays, standard smart device, and smartphones, in particular, sport a consider-

able number of embedded sensors. The capability to adequately sense the environment

is paramount in collecting well-grounded data and has a pivotal role in any application

9



10 CHAPTER 1. INTRODUCTION

which aims to understand a real-world event. Nonetheless, from the crowdsensing per-

spective, the main contribution of the smartphones diffusion doesn’t lie in the intro-

duction of new and more precise types of sensors. In general terms, having two sensing

networks, one composed of motes1 and the other onemade of smartphones, we can eas-

ily identify some advantages of the second approach. Smart devices have much greater

computing power which can be leveraged to filter or pre-process data collected before

sending them to the application server. Connectivity has always been a major issue es-

pecially for ad hoc networks of motes with limited communication range, while even

entry-level smartphones can use many different technologies to communicate. Having

many connectivity interfaces such as Bluetooth,Wi-Fi, NFC, and broadbandmobile net-

work capabilitiesmakes them capable not only to easily communicate with peers or with

a central server but also enables them to act as a bridge between other connected devices

with limited connection capabilities.

One of the main issues of traditional approaches was the inability to follow the dy-

namic changes (in terms of context and geographical position) due to limited ability to

move toward or to follow the phenomenon. Most sensing applications aim to acquire

knowledge about an event where the user is involved in some way or about the envi-

ronment where the user spends some time. Smartphones are inherently portable and

designed to act as truly personal devices, so users are accustomed to bring themwherever

they go. As a result, there is no need to move the sensing device to the context we want

to analyze since, most of the time, the device is already in the range of the event itself.

Having all these peculiar characteristics, smart devices constitute an amazing tool

which can be leveraged to collect and analyze local data and, in general, to grasp a more

clear understanding of the complex contexts we live in. This is one of the very reasons

why anew fast-growing sensing paradigmhas started gainingwidespread adoption, lever-

aging the extensive presence of mobile personal devices in our lives and social participa-

tion of volunteer citizens. This new paradigm, called Mobile Crowd Sensing (MCS),

has been widely adopted in distributed problem-solving applications, involving online

or offline crowds.

To be concise, MCS is about relying on the crowd to perform sensing tasks through

their sensors-enabled devices. Mobile Crowd Sensing (also referenced as Mobile Crowd

Sensing and Computing [73]) was firstly introduced by Ganti et al. in 2011 and since

then it has been the subject of a great deal of research [60, 72, 23, 95, 21]. Only in 2014,

Guo et al. gave the first widely accepted formal definition:

[...] a new sensing paradigm that empowers ordinary citizens to contribute

data sensed or generated from theirmobile devices and aggregates and fuses

1In a wireless sensor network a sensor node is commonly known asmote.
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the data in the cloud for crowd intelligence extraction and human-centric

service delivery. — Guo et al. [71]

1.1 Harnessing theWisdom of Crowds

Over the past few years, the idea of crowd-powered problem solving has been a key re-

search focus. In 2005, Surowiecki wrote a book titled “The wisdom of crowds”, describing

a general new phenomenonwhere “the aggregation of data or information from a group

of people often results in better decisions than thosemadeby a single individual from the

group” [170] identified as Crowd Wisdom. Surowiecki stated that diversity of opinion,

independence of thinking, decentralization, and judgment aggregation are four essential

qualities which make a crowd smart.

Few years later Malone et al. tried to redefine the well known concept of collective

intelligence [105] under the crowd-powered problem solving context [119].

Crowd Wisdom and Collective Intelligence share many aspects and, in particular,

both focus on the advantage of group decision-making. Inmore recent years, those who

tried to formalize the concept ofMCS took inspiration from these two pillars extending

the concept focusing more on crowd-powered data collection and processing.

The term crowdsourcing was introduced in 2006, in an article published in theWired

magazine by Howe [79]. A more formal definition was given by the same author in an-

other study: “[...] crowdsourcing represents the act of a company or institution taking

a function once performed by employees and outsourcing it to an undefined (and gen-

erally large) network of people in the form of an open call. This can take the form of

peer-production (when the job is performed collaboratively), but is also often under-

taken by sole individuals. The crucial prerequisite is the use of the open call format and

the large network of potential laborers.” [78]. Here, key concepts are the initial open call

and the presence of a large group of people (especially an online community) willing to

participate by performing the requested service. TheWikipedia project is iconic: several

thousands of contributors collaboratively create the most comprehensive encyclopedia

of the world.

From its definition it is apparent how crowdsourcing follows a top-down approach,

where a central institution releases an “open call” and somehow supervises the workers.

On the other hand, as pointed out by Carreras et al., MCS initiatives usually follow a

mixed bottom-up/top-down paradigm [23]. MCS applications are typically based on

the direct involvement of users, trying to involve citizens in solving complex tasks or

sensing complex contexts (through their smartphones) in order to solve issues such as

public decision-making, urban planning, and quality assessment campaigns of public

services. In some cases users can eventually submit reports about public issues, monitor
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Table 1.1: Mobile Crowd Sensing literature summary partially taken fromGuo et al. [72]

Concept Definition and Relationship By

CrowdWisdom Theaggregationofdataor information fromagroupofpeople
often results in better decisions than those made by a single
person from the group.

[170]

Collective
Intelligence

Groups of individuals doing things collectively that seem intel-
ligent.

[119]

Crowdsourcing The practice of obtaining needed services or content by solicit-
ing contributions from a large group of people, and especially
from an online community.

[79]

Participatory
Sensing

It tasks average citizens and companioned mobile devices to
form participatory sensor networks for local knowledge gath-
ering and sharing.

[18]

Mobile Crowd
Sensing (and
Computing)

An extension to the participatory sensing concept to have user
participation in the whole computing lifecycle: (1) leveraging
both offline mobile sensing and online social media data; (2)
addressing the fusion of human and machine intelligence in
both the sensing and computing process.

[72]

the air pollution, or even help in earthquake early detection, then the central authority

can act to get a particular result based on collected data.

In 2006, Burke et al. proposed the closest concept toMCS: participatory sensing [18].

It tasks citizens to form participatory sensor networks through their personal mobile

devices, harnessing their proximity for local data gathering and sharing.

When it was proposed, the definition of participatory sensing emphasized explicit

user participation. In more recent years, with the widespread diffusion of smartphone

sensing and mobile Internet techniques, the aim of crowd problem-solving systems has

been broadened. We can see the definition of MCS— already seen in this Chapter — as

an extension of the definition of participatory sensing. They differ in two main aspects:

while participatory sensing only leverages data sensed frommobile devices by a physical

community,MCSalso exploits user-contributeddata fromonline social network services

(mainly open data from other projects); MCS usually harness both human andmachine

intelligence in both the sensing and computing process.

A very brief summary of key definitions and a reference to their first introduction is

the shown in Table 1.1.
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1.2 MCS applications

To date, a great deal ofMCS applications has been developed and used in real-world sce-

narios. Presenting a comprehensive list of all the applications known so far is far beyond

the scope of thiswork, but briefly describing some illustrative examples could contribute

to gain a better understanding of the MCS peculiarities and challenges. For a more de-

tailed analysis and a complete classification, please see the survey ofGuo et al. [72] or the

one from Zamora et al. [201].

As already seen, MCS applications can serve as sensing and processing instrument

in many different fields. Due to mobile devices’ inherent mobility, they can be utilized

for sensing tasks aimed to gain better awareness and understanding of urban dynamics.

Acquiring knowledge in such context is of prime importance in order to foster sustain-

able urban development and to improve citizens’ life quality in terms of comfort, safety,

convenience, security, and awareness. Many researchers have focused on studying ur-

ban mobility and behavioral patterns in urban areas, using MCS tools support to get

their research question answered. For instance, Noulas et al. analyzed check-in histories

of a large set of location-based social network (LBSN) users and found out that, for hu-

man movement prediction purposes, rank distance played a bigger role than physical

distance [135]. Many other studies have investigated urban social structures and events

starting from crowdsensed data. Crooks et al. studied the potential of Twitter as a dis-

tributed sensor system. They explored the spatial and temporal characteristics ofTwitter

feed activity responding to a strong earthquake, finding a way to identify impact areas

where population has sufferedmajor issues [40]. Large-scale data can be also collected by

means ofMCS platforms to analyze the actual social function of urban regions, a kind of

data which is usually very difficult to obtain and that can be of primary importance con-

cerning urban planning. For instance, Pan et al. started from the GPS log of taxi cabs to

classify the social functions of urban land [139], while Karamshuk et al. tried to identify

optimal placements for new retail stores [90].

Awareness of user location is the foundation of many modern and popular mobile

applications, such as location search services, indoor positioning [199], location based-

advertising [61], and so forth. But more useful and precise services can be enabled har-

nessing all the peculiar characteristics of personal mobile phones. As an example, Zheng

et al. used crowdsourced user-location histories to build a map of points of interest

which can be of help for people who are familiarizing with a new city [205]. Again, Geo-

Life [207, 206] is a MCS platform able to suggest new friendship looking at similarities

in user-location logs, while CrowdSense@Place [29] is a framework able to exploit ad-

vanced sensing features of smartphones to opportunistically capture images and audio

clips to better categorize places the user visits.
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In many cases, the development of a particular MCS platform has been the answer

to issues raised by pre-existing communities or grassroots initiatives. Citizens and poli-

cymakers have usually strong interests inmatters like environmental monitoring, public

safety, and healthcare, where the participatory andmobile essence of theMCS approach

provides a novel way for collaboratively monitor the issue being considered. Besides, the

moving nature of these topics draws the attention of online and offline communities.

The potential of a community can be harnessed by MCS approaches to engage people

and tomake them participate in the data collection. It is not just a matter of the number

of participants, rather someone who is moved by a topic not only will be more disposed

to contribute but — as we are going to discuss in Section 1.3.5 — he or she will also be

prone to provide better and more complete data [86]. As an example, Ruge et al. de-

scribed how their application SoundOfTheCity [158] allowed users to link their feelings

and experiences with the measured noise level, helping in providing information essen-

tial to have a more clear understanding of the context (is the high noise level in a party,

at a festival or just in a crowded street?). This is an illustrative case of how qualitative

data provided by users can enrich the quantitative data gathered through personal smart

devices. In short, to fully harness their potentialitieswhen analyzing such contexts,MCS

applications should aim not only to collect as much data as possible but also to provide

ways for users to enrich the collection with thick data2 [183]. Other examples of MCS

applications analyzing topics of common interest are: NoiseTube [118] which was a sys-

tem able to exploit volunteers’ smartphones to collect data about environmental noise in

users’ daily lives and to aggregate them to obtain a fine-grained noise map; U-Air [208]

inferred air quality data by heterogeneous crowdsensed data comparing them against in-

formation from sensing stations and traffic information; theGreat Backyard Bird Count

project3 (cited by Cuff et al. [41]) used volunteers to continuously report the count of

watched birds in the US.

Mobile Crowd Sensing application can also be used for assisting in disaster relief [112,

111], such as earthquakes and floodings [36, 11], or in critical events like gas shortages in

urban areas [132]. Healthcare is another field where MCS is helping a lot by collecting

a wealth of data for applications more and more useful for an aging society like ours.

Google researchers did pioneering work in 2006 using health-related search queries to es-

timate illnesses distribution inUS [52], whileWesolowski et al. exploited thewidespread

diffusion of mobile phones to analyze malaria spreading in Kenya [189].

Also, many mobile social recommendation services, like friend, place, or itinerary

recommendations, has been enabled by the body of data collected by MCS platforms.

2Thick Data can be defined as: “data related to qualitative aspects of human experience and behavior,
particularly when used as context for the analysis of a large data set”

3Great Backyard Bird Count: http://www.birdsource.org/gbbc/ [last accessed 06 Jun. 2017]
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Most of these systems shared the characteristic of combining mobile crowdsensed data

and user-generated information from LBSN. In 2014 Yu et al. presented a system whose

aim was to produce travel plan suggestions starting from data such as Points of Interest

(POIs) features, temporal and spatial constraints and user data taken from social net-

works [200]. Yang et al. developed SEALs [197] a fine-grained preference-aware loca-

tion search framework which leverages the crowdsourced traces from Foursquare, using

check-ins and extracting users’ sentiment about locations. More recently, Marakkalage

et al. introduced a crowdsensing platform aimed to identify POIs among elderly popula-

tion in Singapore [120]. Their system can passively collect the location history through

GPS sensors embedded in users’ smartphone, and determine popular places among the

elderly.

Crowdsensed data in urban areas can be leveraged for public transportation system

design, traffic forecasting, and real-time information systems, for monitoring the road

network condition and so on. Location history is usually perceived as sensitive data by

users who thus need to be motivated or reassured to take part in this kind of crowd-

sensing process employing some cooperation incentives. Most researchers in this field

choose to collect data from usermobile phones, mainly usingGPS, accelerometers, com-

pass, gyroscope, and other related sensors already available on board of every average

smartphone, while some others made use of other kinds of smart object like GPS track-

ing devices (which are usually already on board of vehicles). Many applications on traffic

dynamics are based on leveraging data from public transportation, buses, and taxis [187,

20, 108]. Amongmany it is worth mentioning the work of Giannotti et al. where, using

location histories of numerous GPS tracking devices embedded in vehicles (usually for

safety reasons), researchers have used mobility patterns to analyze if the current official

district division reflects actual traffic flows, travel customs and center of attraction for

drivers [62]. An application only based on data sensed using personal user smartphone

is SmartRoadSense [2]. The platform is a crowdsensing system used to monitor the sur-

face status of the road network. The SmartRoadSense mobile app is able to detect and

classify the road surface irregularities bymeans of accelerometers and send them to an in-

cloud server. Aggregated data about road roughness are shown on an interactive online

map and made available as open data [57].

1.2.1 MCS classification

Due to largeheterogeneity of applications,many classificationshavebeenproposed. MCS

platforms can be classified based on the type of phenomena beingmonitored thus divid-

ing them up in applications with a personal and a community sensing approach [60].

Applications collecting data about an individual — such as healthcare applications, fit-

ness monitoring, and so on — belong to the first category whereas applications whose
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aim is to acquire data about large-scale phenomena are part of the second category. A

community sensing application pertains to themonitoring of events or contexts not fea-

sible by a single individual, because of the scale of the phenomenon is too broad (e.g., air

pollution in an urban area) or because to get sufficiently precise data they have to be col-

lected frommany different sources with different tools (e.g., road conditions monitored

by a single user, even if performedmultiple times, may be significantly less accurate than

when monitored by multiple users, using different vehicles).

Following another classificationprinciple,MCSapplications can also bedivided into

two other categories depending on how much users are aware of the sensing process.

When users are asked to actively produce data by reporting an event, taking photos, or

takingnotes about aparticular conditionof a context,we can talk ofparticipatory sensing

approaches [18]. Opportunistic approaches, on the other hand, are those where the user

involvement is minimal and the sensing process is more autonomous and transparent.

To this category belong applications that continuously track users or systems where the

volunteers can participate in the sensing campaign just by activating the process in their

mobile client [102].

Many other classifications are possible. Applications can be divided into different

categories based on their scale (e.g., urban, regional, national, worldwide), by categoriz-

ing their topic, by their infrastructure, or by the motivation incentives they employ to

engage users.

1.2.2 MCS architecture

Regardless the category they fit into, allMCS applications share the same simple architec-

ture in terms of main software components. As coordinated distributed software plat-

forms, MCS systems are usually composed of a central in-cloud application server and

several mobile clients. The central server is responsible for managing all the centralized

phases of the whole sensing and processing procedure. It implicitly or explicitly assigns

the sensing tasks to the users then it receives data collected by participants. The sensing

task is performed in a decentralized manner through mobile clients of volunteers. The

software client can collect data directly or with the help of the user. In some cases the

main mobile client can draw data by connecting to secondary IoT clients, which would

be otherwise unable to be directly connected to the application server. In Figure 1.1 the

architecture ofMCS is depicted in a synthetic but complete way. For amore comprehen-

sive analysis of typical MCS architectures, see the work of Louta et al. [110].

A more detailed description of each possible phase of the crowdsensing process is

shown in Figure 1.2. Many researchers tried to formulate a suitable reference process

structure to illustrate the key functional blocks and to explain the key techniques ofMCS

systems [72, 193, 202, 110]. The following analysis ismainly based on theirwork. Feworig-
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Figure 1.1: Software architecture of MCS applications.

inal contributions have been included in order to make the described process updated

and coherent with some recent works discussed so far.

Task Creation In this phase, the central entity or theMCS organizer creates specific tasks

and provides a detailed description of the required actions. The task creation

can be even started by users, the same ones who will consume the data collected

using the MCS application [146]. Depending on the platform used, the descrip-

tion could be either in natural language or domain specific language that software

clients are able to understand and present to volunteers [151]. In some cases, the

task creation is implicit in the platform structure. Volunteers who join the appli-

cation are automatically tasked with a defined sensing operation [2].

Task Allocation This phase can occur in a centralized or in a decentralized way. The

central entity can analyze the sensing task and assign it to specific participants (or

nodes of the sensing network) possibly trying to respect given constraints: ensur-

ing area coverage, minimizing the task completion estimated time, maintaining

the number of volunteers involved under a given threshold, ensuring a minimal

average trust value among the selected participants, and so on. Another approach

is to notify all clients that a new task is available and let them choose whether to
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Figure 1.2: Proposed reference process structure for MCS applications.

take part in the sensing task or not [22, 153]. Depending on the motivation in-

centive systems utilized, some systems also allow approaches like auction based

assignments [188, 203, 181].

Data Sensing Involvesboth information sensed frommobiledevices anduser-contributed

data from mobile Internet applications [72]. MCS applications usually have to

tackle security and privacy issues, thus providing users with automated or semi-

automatedmechanisms determining what kind of information theywant to pub-

lish and whom to share them with is fundamental. Many MCS systems resort to

access control mechanisms and pre-anonymization techniques. In order to reduce

transmission costs and size, data are often pre-processed on board of the user de-

vice. Finding the appropriate tradeoff between the amount of processing to be
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done onboard of smartphones and in cloud— after the data have been transmit-

ted—is a crucial parameter for aMCSapplication. To resolve this issue, Xiao et al.

proposed an innovative approach using proxy VirtualMachines and a distributed

cloud infrastructure as communication middleware between mobile clients and

the central application server [193]. The data sensing is an inherently distributed

phase.

Data Transmission Sensed data have to be transferred to the central server for further

processing. In doing so, mobile clients need to take care of inevitable network in-

terruptions and communication issues. MCS applicationsmay adopt opportunis-

tic transmission paradigm, storing data in mobile clients internal memory until a

suitable network connection makes possible the upload to the server [37]. Other

applications implement mechanisms to forward data from a client to its peers in

order to exploit their connectionwhile someMCSplatforms provide nodes of the

sensing networkwith cooperation tools to allow heterogeneous nodes to enhance

the performance of data transmission [69].

Data Collection In this phase, data are received bymobile clients and stored into appro-

priate memory supports. Privacy-preserving techniques are applied to ensure se-

curity and to avoid that malicious users acquire collected data and can track them

back to users. The sensor gatewaymodule provides a standard approach—usually

implementing common web services technologies [156] — to enable data collec-

tion from crowdsensed sources supplying a unified interface. MCS applications

may collect a vast amount of heterogeneous data and big data storage systems are

usually employed. Big data techniques simplify the collection of large-scale and

complex data like noise level measured across a urban area. Sensing tools used by

participants to evaluate the phenomenon at stance typically varies a lot, leading

to significant differences in the accuracy of crowdsensed data. Therefore data are

commonly transformed and unified before being stored and passed to the next

phase in order to boost further processing. Data anonymization techniques like

data coarsening, randomization, k-anonymization, spatial cloaking are applied to

data to eliminate or to mask information that might compromise participant pri-

vacy by leading to their identification or by disclosing sensitive attributes [146].

Data Processing Aims to derive high-level intelligence from raw data received. Using

logic-based inference rules and machine-learning techniques this step focuses on

discovering frequent data patterns in order to extract crowd-intelligence starting

from data sensed by mobile users and user-contributed data from other mobile

Internet applications mixed together. The first step of the data processing is the
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data aggregation phase, in that, raw data from different users, time and space are

combined on different dimensions and associated with reference known features

(e.g., map-matching [45]). Then further data processing techniques are applied

to extract the three kinds of crowd-intelligence (namely: user awareness, ambient

awareness, and social awareness [70]). Most MCS applications also sport a data

quality management module. When information passes through this phase, dif-

ferent statistic methods are applied to classify the quality of aggregated data.

Data Distribution Oncedata havebeen aggregated, and the crowd-intelligence has been

extracted from them, this information is usually made publicly available to be re-

used (often as Open Data) or only shared in a private way with authorities, com-

munities, companies, etc.

Applications Finally data arrive at the stage where they are re-used, exploited or just

shown. Many applications and services can be enabled by MCS platforms. The

implementation of a usable user interface and of data visualization techniques

(such as mapping, graphing, animation) are essential to fully exploit the crowd-

intelligence extracted by the underlyingMCS system starting from rawdata. Both

of them make data-based decision-making tasks and awareness sharing to users

feasible.

Cooperation Incentives As shown in Figure 1.2, the cooperation incentives phase influ-

ences almost every other stage of theproposed framework. Users canbemotivated

to participate in a sensing task by using incentives in the task allocation phase. In

the sensing phase, the idea of a possible future reward can motivate users to col-

lect better ormore data. Data transmission and collection encompass dealingwith

privacy-related issues. Strict privacy rules can seriously limit the kind of incentives

the platform can make use of. The definition of a data quality index in the data

processing stage can positively or negatively affect the type of rewarding token a

user collects by providing some data. About the data distribution phase, a user

could be rewarded with different quantity of rewards based on how much third-

party applications or users are using the aggregated data he contributed to.

1.3 Challenges and open issues

As a relatively new paradigm, in the MCS field, many challenges are currently being ad-

dressed by researchers and developers. MCS application designers often borrow tech-

niques and tools from related areas such as big data and gamification but many other



1.3. CHALLENGES AND OPEN ISSUES 21

problems still need an optimal and original solution. In this Section, many open issues

are presented.

1.3.1 Data quality

Data quality is usually described as the degree of how suitable the information is for the

objective we want to employ them. One of the drawbacks in the MCS process already

seen is that there is no o little control over distributed sensing operations. Acquiring

data on a particular phenomenon through MCS often means to collect a vast quantity

of information coming frommanydifferent unsupervised sources. Each source produces

data bymeans of automated or semi-automatedprocesseswhosemeasurements could be

context-related, non-calibrated or just not precise enough. Particularly, the involvement

of thehumanvariable enhances the general lack of control over theway data are acquired.

Redundancy is the main strategy MCS platforms usually put in place against low-

quality data collected by unknowing or malicious users. But it could not be enough, in

particular for sensing tasks which require few participants or where redundancy is un-

suitable (e.g., the phenomenon to be sensed is too transitory to be sensed many times or

by many users). Therefore, volunteers and data selection are often needed to improve

overall data quality. Filtering algorithms could be directly implemented in MCS clients

aiming to filter out data before their transmission to the server. While server-side data fil-

tering is commonly preferred because it can act as a barrier for data providedbymalicious

users who could not be effectively stopped with distributed approaches.

Data quality could also be a determining factor concerning how much a volunteer

should be rewarded for thework he carriedwithin a sensing task. Oncedata are processed

they should trigger positive or negative feedback on the motivation incentive system im-

plemented by the application, assuring greater rewards for users who provided higher

quality data.

1.3.2 Scalability

Thanks to its distributed sensing approach, a MCS application could gather vast quan-

tities of data in little time. Data coming from various sources also usually present het-

erogeneous structure and types. Volume, velocity, and variety are typical features of big

data [103], indeed many MCS applications make use of big data analytics and big data

storage techniques to manage such big, fast and complex body of information. Tradi-

tional approaches in storing and processing data revealed to be not suitable for handling

demanding tasks such real-time sensing in wide areas. In order to achieve a comprehen-

sive picture of the sensing object, MCS systems often try to integrate crowdsensed data

and user-contributed knowledge bases. Once data have been received, pre-processed and
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stored in-cloud, machine learning and data visualization techniques help in mining and

presenting the crowd-intelligence mined from raw data [22].

1.3.3 User interface

As discussed in Section 1.2.2, MCS platforms are commonly composed of a server-side

stack and a client-side application. The latter usually consist in amobile application run-

ning on at least two of the three major mobile platforms which— at the time of writing

— are leading the market: Android, iOS and Windows Mobile (successor of Windows

Phone). Most of the times, MCS applications aim to engage as many participants as pos-

sible so, lowering the barriers preventing users from joining the sensing task is a primary

concern of platform designers. In terms of MCS mobile clients, this usually means to

provide users with a native mobile application for their platform of choice. In order to

speed-up the development and to contain implementation costs a multi-platform devel-

opment approach (like Xamarin [75]) or a web-based approach are used [93].

Recently, the growth of mobile application market started to slow down, and mo-

bile users became less prone to install new apps unless for utterly necessary tasks [35],

preventing someMCS applications to reach many users.

Moreover, in 2013 Xiao et al. proposed 3 code design principles to “Lower the barri-

ers to large-scale mobile crowdsensing”:

i) Separation of data collection and sharing from application-specific logic.

ii) Removal of app installation on smartphones from the critical path of

application deployment.

iii)Decentralization of processing, and data aggregation near the source of

data.

Theprinciple II states theneed forMCSapplicationdesigners to consider alternative

ways to cover the last mile between the platform and the volunteers. Nonetheless, a

viable alternative to standard mobile applications is yet to come.

1.3.4 Privacy

MCS applications are strongly based on human participation. Many projects start as

grassroots initiatives and, as seen in Section 1.2.2, the sensing phase is usually accom-

plished thanks to volunteers who are willing to help in the sensing campaign.

But human involvement inherently brings privacy concerns. Participants may not

want to share their sensory data, as they may contain or reveal private or sensitive infor-

mation about the user. Privacy concerns may discourage users from joining sensing a
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campaign. Disclosing of one’s identity, exposing sensitive attributes or activities about

participants are typical user’s concerns, and they can lead to a participant withdrawal

from a sensing task or to not making him joining the task in the first place. Therefore

MCS applications have to commit to protecting users privacy.

Theprivacy issue inMCShas recently been studied extensively [145, 146]. Researchers

defined detailed adversary models to understand howmalicious and semi-honest entities

within aMCSsensingparadigmcouldobtainprivate information about otherusers [145].

They have also studiedmost common attacks and found outwhat countermeasures have

to be taken in order to prevent or stop such attacks. Most common techniques include

data anonymization through use of pseudonyms, connection anonymization. Others act

directly on the MCS data structure, trying to remove or conceal, spatio-temporal data

or links between contiguous data, like: spatio-temporal cloaking, spatial obfuscation, and

data coarsening. Some approaches try to acquire as little information as possible about

users, applying pull-based data collection scheme [145] and zero knowledge techniques [51].

Many privacy-preserving techniques are based on the fundamental principle ofmak-

ing the user in control of how many and which information he wants to share. For in-

stance, users could be willing to voluntarily disclose some personal privacy-concerning

data, like sharing their current location in a social network. Projects likeNervousNet [147]

provide tools which let MCS participants to explicitly set sharing or not-sharing prefer-

ences about their information. This kind of approach tries to realize a privacy-preserving

by-design approach.

Once data have been aggregated, and crowd-intelligence has been mined MCS ap-

plications commonlymake results of their sensing process available privately or as Open

Data. In both cases, the platform design needs to ensure that no one who has helped

in any stage of the process can be back-tracked starting from shared data. Open data

protection and group privacy are so fundamental to even raise ethical issues among re-

searchers [54].

Is worth mentioning that applying strict privacy-preserving mechanisms in design-

ing a MCS system, could hinder the implementation of many other useful features or

even the sensing task aim itself.

1.3.5 Cooperation incentives

People involved inMCShelp the sensing taskprocessbyproviding their limited resources.

To sense, collect and process crowdsensed data participants have to make either implicit

efforts (e.g., energy, bandwidth, monetary costs) or explicit efforts (e.g., to collect or to

give inputs, to assess process or other efforts, to act as bridge for other peers) [72]. As

manyMCS instances are grassroots initiatives, volunteers may be willing to help just be-

cause interested in the topic, but most of the time users need to be strongly motivated
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by providing incentives mechanisms [114]. Cooperation incentives can be broadly classi-

fied as intrinsic or extrinsic (financial) incentives [99]. Intrinsic incentives comprehend:

interest in the topic (users are willing to participate because they think the topic is impor-

tant or interesting), social or ethical motivation (such as altruism, or interest in public

recognition), and personal enjoyment (in that, user enjoy the sensing process because it

is an entertaining activity or a proper game). Intrinsic incentives are often insufficient to

motivate volunteer and many MCS platform resort to extrinsic incentives which prob-

ably are the easiest way to motivate people regardless the type of activity they are asked

to do. Extrinsic incentives include fiat money, virtual cash, or credits for online/offline

services. The drawback of using financial incentives is that once money is involved users

will be motivated to deceive the system to get more economic benefits. In this regard,

financial incentivemechanisms based on game theory have been proposed [196, 84]. Un-

fortunately, thesemethods are quite complicated to implement and unsuitable formany

types of MCS systems. There is still the need for a new rewarding platform able to en-

courage and attract people and which comply to the many different MCS application

peculiarities.

1.4 Structure of this work

In the rest of this work, we address some of the MCS open issues presented so far. In

Chapter 2we tackle the data quality issue, proposing two original solutions about charac-

terizing the quality of crowdsensed data [58, 45]. In Chapter 3 we discuss cooperation in-

centives, trying to address the coexistence between strict privacy-preserving mechanisms

and functional rewarding platforms [33]. Chapter 4 contains an in-depth analysis of a

new conversational interface paradigm, which we proposed to name bot-plication and

we believe could be a suitable answer to some user interface hurdles of MCS applica-

tions [97]. In the last Chapter, we draw our conclusions on the MCS paradigm and

outline possible future research directions.
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Data Quality

During the data collection phase, MCS data can be conceptually modeled as a stream

or many single tokens of information flowing from clients towards the central server.

On the server side, information will be received and stored discretely as numerous data

particles, possibly linked one another. Along with application-specific values (e.g., noise

level, location history, temperature, etc.), each particle typically includes a timestamp (or

a time window), and geolocalization values (usually a point, a path, an area, or a set of

these features). For instance, an urban noise level monitoring application would gather

data particles containing: the recorded noise level (typically a numeric value), the times-

tampofwhen the sensing has beenperformed, and the geolocalizationof theplacewhere

the recording happened (usually expressed as a couple of latitude and longitude values).

MCS applications generally process all these information together to have a complete un-

derstanding of the phenomenonbeing analyzed. Therefore an acceptable data quality of

all the data contained in a particle is of prime importance. In general, applications analyz-

ing transient events need precisely time-stamped information while for applications like

SmartRoadSense [2], which gather data about an event happening in a moving context,

having a good estimate of the sensing instrument’s location is paramount.

In this chapter, data quality issues are discussed. In the first Section, we try to define

an index based on simple statistical tools, suitable forMCS data and applicable on differ-

ent parts of a data particle. In the second Section, we propose amap-matching algorithm

capable of dealing with inaccurate GPS information and dense traces of data. This algo-

rithm has been designed to be used by applications in which having a reliable association

between data and features on a map is fundamental for the platform’s purposes.

25
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2.1 Bootstrap for Data Quality Estimation

As already described, the distributed architecture of MCS systems, the heterogeneity

of sensing devices used, and the direct involvement of users influence the quality of

data [72]. To fully exploit the wealth of data collected by MCS platforms, the num-

ber representing sensed quantity should be associated with quality indicators in order

to help in discriminating between reliable and unreliable data. Having an estimate of

such quality has a large impact on following processes carried on by other system com-

ponents (e.g., data filtering, crowd-intelligence extraction, and rewarding mechanisms).

MCS features that concur to define data quality can be broadly summarized as follows:

• The spatial and temporal resolution of the monitoring activity;

• Systematic and random errors in the measurement of the sensed quantity. Such

errors are due to lack of precision and heterogeneous processing and communica-

tion capabilities in embedded sensors;

• Users with different trustworthiness levels may provide reliable or unreliable data.

To date, approaches to tackle the data quality issue have primarily focused on outlier

identification and elimination [72], on collaborative resolutions of lack of consistency

in data [127], or on reputation systems used to single out corrupted or misleading con-

tributions [82, 83].

Crowdsensed data are obtained by ameasurement activity. InMCS, it can be a direct

or an indirect measurement and it is usually performed in a distributed way by using a

smartphone as a sensing device. The typical way to deal with the data quality issue is by

estimating the uncertainty associated with each measurement (as is customary in phys-

ical sciences [172]). Instead, we propose an approach for estimate the quality of data

collected by MCS systems which takes into account the distributed nature of the pro-

cess. We cast the problem of data quality assignment as an evaluation of the uncertainty

of the underlying measurement process. Briefly, themeasurand (i.e., the quantity associ-

atedwith a phenomenonwe aremeasuring) estimate has to be associatedwith ameasure

of uncertainty. The uncertainty is typically estimated by looking at how the dispersion

of themeasured values is (the larger the dispersion, the bigger the uncertainty). Themea-

surement error is estimated by the dispersion around the actual value of the measurand

which is determined by the interaction among error-prone sources. In MCS systems,

the value is typically the result of a composition of different measurements. Therefore,

the uncertainties associated with each measurement need to be propagated computing

their combination [172]. Lately, user trust principles an uncertainty propagation tech-

niques have been used as sensing uncertainty metrics in the sensor network context by

Asmare and McCann [5].
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Typical methods to gauge uncertainty propagation commonly imply some model-

ing assumptions about the measurement process, especially for those approaches con-

cerning the probability density function of measured values [172, 38, 39]. The distribu-

tiondescribedbyprobability functions could be employed either by analytically deriving

the distribution of themeasured quantity (given) its functional dependence from the in-

put quantities or by performing Monte Carlo simulations to obtain an estimate of the

measurand’s output distribution [38, 39, 12].

Monte Carlo numerical simulation is a suitable solution if the input distribution

is known or reasonable assumptions can be made about it. Unfortunately, this is not

the case of MCS applications where measurements are performed by many devices in

unsupervised conditions, making the formulation of a sound statistical model nearly im-

possible. Besides, having an adequate mathematical model of the input variable would

not suffice in any case, as their composition functionmakes it difficult to derive an analyt-

ical expression of the output (e.g., aggregation phases inMCS usually output quantities

that are results of recursive composition functions [2]). Additional issues are encoun-

tered when the temporal dimension is taken into account. In fact, the composition of

several measurements over longer periods is a common approach used to smooth and

progressively update the collected information. This poses the challenge of how toman-

age such an update of measurements at given checkpoints.

To solve the issuesmentioned above,wepropose to employ statistical non-parametric

bootstrap which is a largely known data-driven technique for empirically estimating the

uncertainties of measured unknown quantities. Bootstrap has been proven to be a suit-

able solutionwhenmodeling approaches andanalyticalmethods arehardly applicable [155,

100]. In simple terms, bootstrap is a Monte Carlo simulation method that approxi-

mates the sampling distribution by sampling the original observationswith replacement.

The statistic of interest is computed for each resample and the resulting distribution —

named bootstrap distribution— can be used as a replacement of the actual sampling dis-

tribution in order to study its shape and spread [155, 100, 48, 49, 91]. Statistical boot-

strap as a tool to characterize uncertainty propagation has been used by Kass et al. in the

framework of neural data analysis [91] while Lee et al. exploited it as a method to refine

estimation of a system for blood pressure measurement [104].

In this Section we try to give the following contributions:

• Amethod that frames the problem of assessing data quality in crowdsensing plat-

forms into a formal, technically sound approach, by casting it as an uncertainty

evaluation problem.

• The design — based on statistical non-parametric bootstrap — of a data-driven

strategy which could be used to get rid of complex interactions among the (poten-
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tially many) variables affecting the measure estimate and the related uncertainty

propagation.

• The evaluation of the applicability on a MCS application, characterized by peri-

odic updates of data and associated quality.

We validated the proposed approach against numerical simulation and synthetic bench-

marks. We also implemented the bootstrap-based method in a real-world mobile crowd-

sensing platform for road surface roughness monitoring. Our experimental results sug-

gest that our method is a suitable tool for evaluating data quality in a complex sensing

tasks by estimating the uncertainty of the overall process measurements.

In the following Section, we describe the architecture of the MCS platform used in

our case-of-study. Then, the proposed method is detailed and, in the last two Sections

we outline the experimental setup, we present empirical results obtained, and finally, we

draw our conclusions.

2.1.1 Reference System Architecture

In the following Sections we will often refer to aMCS platform called SmartRoadSense

(already cited in Chapter 1). The system has been developed to provide quantitative esti-

mations of road network surface roughness [2, 57, 45] and in this Section we will briefly

describe its features and architecture. The SmartRoadSense’s approach at data sensing

and processing is general enough to be employed also in different contexts. As many

other MCS platform, sensing tasks in SmartRoadSense are performed by multiple dis-

tributed sensing devices by means of which volunteers contribute to gauge the quantity

of interest in a specific location, within a specific time-window.

As shown in Figure 2.1, the architecture of the SmartRoadSense platform is charac-

terized by the following three layers:

• An app running on users’ smartphones during a given car trip. The application

makes use of the smartphone’s accelerometers and computation capabilities to col-

lect and process acceleration values the device is subject to. The result, represent-

ing the estimated roughness of the travelled road in a given point at a given time,

is geo-referenced, time-stamped, and transmitted to a server by means of radio

connectivity.

• A cloud-based back-end service in charge of collecting, aggregating and storing

data from multiple users. According to Figure 2.1, this layer is in charge of two

tasks:
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Figure 2.1: SmartRoadSense architecture

– Map-Matching: georeferenced roughness indexes stored in the database of

raw-data (SRS_RAW ) are projected on digital cartography maps, specifi-

callyOpenStreetMap1. Map-matching entails the association ofGPS points

to features on a digital cartography maps;

– Sampling and aggregation: data is subsequently aggregated to provide a sin-

gle evaluation (for a given spatial coordinate) of the roughness index, given

the data made available for that point by multiple users. Aggregated data is

used to populate the related database (called SRS_AGGREGATE).

• A front-end service providing visualization capabilities of the geo-referenced in-

formationproducedby the SmartRoadSense processing pipeline. The same front-

end also allows interested end-users to download a continuously updated version

of the database containing all SmartRoadSense aggregated data in a ready-to-be-

reused fashion. Each row of the open-data dataset contains a set of information

relative to the roughness level, the geo-localization, the quality of the data, and

1OpenStreetMap is a collaborative project whose aim it to build a free editable map of the world. Please
refer to https://www.openstreetmap.org for more information.
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even a indication of the estimated number of occupants of each vehicle that has

been involved in the gathering process. The detailed description of each informa-

tion is shown in Table 2.1.

ColumnName Format Description

LATITUDE DECIMAL
DEGREES

The latitude coordinate of center of the
section of the road where the PPE value has
been estimated.

LONGITUDE DECIMAL
DEGREES

The longitude coordinate of center of the
section of the road where the PPE value has
been estimated.

PPE DECIMAL The average roughness level of the road
section.

OSM_ID LONG INT The ID of the road in the OpenStreetMap
dataset.

HIGHWAY TEXT The road category according to the
OpenStreetMap classification2

QUALITY DECIMAL A numerical estimate of the quality of this
particular PPE value. This quality index has
been calculated using our bootstrap-based
method, in our case-of-study.

PASSENGERS DECIMAL The average of the number of passengers in
vehicles involved in the process.

UPDATED_AT DATE (ISO
8601)

The last update of the data for that
particular road section.

Table 2.1: SmartRoadSense open data structure

In SmartRoadSense (and possibly in other mobile crowdsensing systems), the sens-

ing process can be divided into time epochs, during which data is continuously gath-

ered, processed and aggregated. Segmentation of both space and time dimensions (e.g.,

through the definition of a bi-dimensional grid and the discretization of the time axis)

can be in fact considered a common approach to the design of MCS at different spa-

tiotemporal resolutions [82, 83, 204].

At the end of a given time epoch the system updates current information on the sta-
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tus of measured variables and, in case, it performs a composition operation with data

collected in previous epochs (in SmartRoadSense an epoch represents a week of moni-

toring activity). The platform continuously receives values of road roughness from end

users. Roads are spatially segmented into landmark points, then all values associated to

positions falling within a given range (typically 20 meters) of a landmark point p are ag-

gregated and concur to the overall roughness index of p (the mean value of contributed

points is taken by default). At the end of each week current epoch terminates, and the

roughness value of each point p is updated by taking the average between the value of

current epoch and the value of previous epoch. This processing inherently implements a

form of infinite impulse response filter, the aim of which is to progressively downweigh

(through an exponential decay ofweights) the contribution of older samples to the value

assigned to p. Needless to say, different update rules can be conceived, according to dif-

ferent specific needs.

The above description exemplifies the difficulties that could arise when dealing with

uncertainty propagation in these settings, since the measurand (the roughness index of

p in SmartRoadSense) needs to be tracked along its evolution and the corresponding

unknown uncertainty subject to possibly complicated transformations.

2.1.2 Bootstrap Based Uncertainty Propagation

To bypass all the issues related to the propagation of uncertainty inMCS platforms that

preclude the adoption of analytical and Monte Carlo methods, we propose to take ad-

vantage of the statistical bootstrap.

Figure 2.2 provides an overview of the toolflow of the proposed approach when ap-

plied to the SmartRoadSense crowdsensing system, while Table 2.2 summarizes the sym-

bols used along this Section.

As illustrated by Figure 2.2, data produced by terminal devices at a given time epoch

ti (with i= 0,2...,nnw) are collected into a sample of size ni . Nonparametric bootstrap is

applied to this sample (for each time epoch). Data is sampled with replacement, obtain-

ing Nb resamples, each of size ni. The statistic of interest (i.e. the mean value x) is com-

puted from every resample and plugged into the processing block labeled as Y , which

represents the functional relationshipbetween all variables that influence themeasurand.

In SmartRoadSense application, this phase encompasses the propagation of uncertainty

along the different time epochs, according to the update filter: eachmean value xi at time

epoch ti is averagedwith the corresponding value yi computed at time epoch ti−1. The re-

sult yi =
xi+yi−1

2
is then stored as current value to be composed with a newmeasurement

at next time epoch.

The distribution of values assigned to y is the output bootstrap distribution. Such

distribution can be studied to obtain information about its center, shape and spread.
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Symbol Description

p Generic geo-referenced landmark (aggregated) point

nw Number of epochs

t0, t1, ...ti, ...tnw Time epochs

n0,n1, · · · ,nnw Size of samples and of resamples at epoch ti

Nb Number of bootstrap resampling iterations

x Mean value of a generic resample

xi Mean value of resample at epoch ti

yi Measurand variable computed at epoch ti

Y Generic function relating xi to yi

Table 2.2: Description of notations and symbols used in this Section.
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Figure 2.2: Toolflow of the bootstrap-based approach.

While the center of the output bootstrap distribution represents the estimate of the

statistic under study (the mean value in this specific case), the shape provides effective

information about the type of distribution and, finally, the spread conveys information

about the output uncertainty (what we are searching for). Needless to say, bootstrap re-
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sampling does not lead to any improvement in the accuracy of the estimate of the statistic,

since this clearly depends on the accuracy of the initial sample from which all resamples

are derived. Nevertheless, important information regarding the sampling distribution

is encoded in the bootstrap distribution and this is exactly what we are interested to ex-

ploit to infer the uncertainty of measurement. The histogram placed in right-bottom

corner of Figure 2.2 illustrates this concept. Indeed, bootstrap distribution values are

finally sorted and samples representative of a given percentile are extracted to provide a

confidence interval CI to be used as uncertainty estimate.

Other statistics might be evaluated according to the presented method. In fact, one

of the major points of strength of the bootstrap is its flexibility in handling different

types of statistics, which has to be comparedwith thedifficulties faced to derive analytical

results. If we were interested, for instance, at investigating the uncertainty associated to

the median value (instead of the mean) the same approach would remain valid and we

would only need to change the computation of the mean value x from each resample

with the respective median value.

Themain algorithmic steps of the proposed approach can be summarized as follows:

1. for k = 1 toNb

• for i = 2 to nw

– Sample with replacement the observation vector collected during time

epoch ti

– Compute mean value xi (or any statistics of interest) of the bootstrap

resample at time ti

– Update measurand yi according toY . In SmartRoadSense, yi = (xi +

yi−1)/2

2. Extract 95% confidence interval from bootstrap distribution

For each crowd-based measurement the system will reiterate the whole process de-

scribed by the above pseudo-code (and shown in Figure 2.2). For instance, the Smart-

RoadSense platform applies the bootstrap process for each aggregated point in the ex-

ample. As already detailed in Section 1.3.2, MCS applications can collect large amount

of data in little time. The big data flow could raise the question of the scalability of the

proposed approach, which should be taken into consideration when a huge number of

uncertainty evaluations have to be carried on. Nonetheless,the inherent parallelism of

the proposed approach should be remarked. In fact, uncertainty intervals associated to

different geo-localized points can be computed independently from each other. There-

fore, in principle, they can be split in many processing tasks that can be autonomously

executed in parallel, potentially mitigating the impact of the computational burden.
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2.1.3 Experimental Results

To validate the introduced technique, several experiments have been conducted:

• First, a set of synthetic benchmarks has been devised to compare the bootstrap

based uncertainty evaluation against a standard Monte Carlo method, under the

assumption of knowing the input probability distributions, needed to run the

Monte Carlo experiments.

• Second, a sensitivity analysis has been performed to evaluate the dependence of

the results from the number of bootstrap resamplings (Nb), allowing to explore

the tradeoff between accuracy and computational complexity.

• Third, an experiment has been conducted to simulate the case of a systemmeasur-

ing a time-varying quantity.

• Last, the uncertainty of a measurement within the SmartRoadSense crowdsen-

sing platform has been computed to show the applicability to a real world use-

case.

2.1.4 Synthetic benchmarks

The rationale of these experiments was to assess the suitability of the proposed approach

in terms of accuracy of the confidence interval. The proposed bootstrap-based uncer-

tainty propagation has been validated by comparing it with standard Monte Carlo un-

certainty propagation (SMC, for short), assuming the knowledge of input probability

density functions. We recall that, while this is an assumption that has to be made if one

wants to apply standard Monte Carlo propagation, it cannot be taken for granted. The

bootstrap propagation technique, conversely, doesn’t rely on any type of knowledge of

input data, rather it performs a data-driven Monte Carlo simulation by drawing the so

called pseudo-observations from the vector of initial observations and generating from it

(through resampling) all the information needed for inference tasks.

Three types of distributions have been considered, covering a wide spectrum of pos-

sible statistical configurations, namely: a Gaussian distribution of mean µ = 5 and stan-

dard deviation σ = 1, a uniform distribution taking values in the [4,6] interval, and a

Rayleigh distribution with scale parameter b = 5.

We included the Gaussian distribution because of its role in statistics and error dis-

tributions [155]. As well, we chose the uniform distribution since it is often studied in

uncertainty evaluations of measurements [38]. Finally, we also took into consideration

the Rayleigh distribution because it is an example of asymmetric distribution, which

adds to the significance and coverage of our experiments.
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For what concerns the bootstrap based uncertainty propagation, we generated 100

points (according to each of the input distributions) representing the observations. Sam-

pling with replacement has been performed with Nb = 105 replications, mean values

have been computed and given as input to the propagation pipeline representing the up-

date process described in the last Section: the mean of observed values at each epoch has

been averaged with the mean of observed values at previous epoch. Three sets of experi-

ments were performed, simulating a time horizon of, respectively 2, 10 and 25 epochs (on

a system like SmartRoadSense, characterized by weekly updates, this means simulation

on an interval spanning from half a month to around half a year). The approximate 95%

confidence interval has been computed by taking the 0.025 and 0.975 quantiles of the

resulting bootstrap distribution.

RegardingMonte Carlo simulations, for each type of distribution we generated 100

points, took the mean value and propagated it according to the same rule (i.e. mean of

current epoch averaged with the updated value y computed at previous epoch) on the

same time horizons (i.e. 2, 10, and 25 epochs). The whole process has been repeated

for 105 trials, leading to a distribution of values from which the average value and an

estimated 95% confidence interval have been computed.

All the experiments have been repeated for 10 runs. Results are represented by the

average of the following values: i) the mean value at the end of the propagation process

(representing the estimate of themeasurand); ii) the lower bound of the 95% confidence

interval; iii) the upper bound of the 95% confidence interval.

In Figures 2.3a, 2.3b, and 2.3c we reported histograms providing a comparison of

the performance of bothmethods according to the abovementioned metrics for, respec-

tively, Gaussian, uniform and Rayleigh input distributions. For each Figure, histograms

denote the mean value estimate, together with error bars encoding the confidence inter-

vals for each simulated epochs horizon (2, 10, 25). As a reference term, we also computed

the values (represented as star markers in Figures 2.3a, 2.3b, and 2.3c) that would be ob-

tained for the measurand if no bootstrap were applied, but only a simple composition

of the observations were made epoch by epoch.

Results provide evidence of a very good agreement between the standard Monte

Carlo approach and the proposed bootstrap uncertainty propagation method.

Inparticular, thewidth of confidence intervals obtainedwith ourmethod arewithin

a 1.5% deviation from the intervals estimated by means of SMC, with a maximum 0.15%

relative error on the value of the lower bound and a 0.13% relative error on the upper

bound for the Gaussian input.

In case of uniform input distribution, weobtained confidence intervalswhosewidth

differs at most for a 1.7% from that of SMC, while lower bounds of the intervals are

within 0.32% from their SMC counterparts, and upper bounds fall within a 0.35% range.
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(a) Mean values and confidence intervals. Normal distribution (µ = 5,σ =
1).
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(b)Mean values and confidence intervals. Uniform distribution (a = 4,b =
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Figure 2.3: Synthetic benchmarks
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Finally, the analysis of experimental results with input following a Rayleigh distri-

bution showed a 0.81% maximum difference between the confidence interval widths of

the proposed approach and those of SMC. Themaximum relative error obtained by the

proposed approach with respect to the SMCmethod, amounts to 1.38%, for lower limits

and 1.31% for upper limits.

As expected, our technique doesn’t lead to any improvement in the accuracy of esti-

mates, which clearly depends on the accuracy of the initial observation vector (an inher-

ent feature of resampling techniques). This justifies the differences seen with uniform

distribution and, in particular, with the Rayleigh distribution.

Once the accuracy of the bootstrap based uncertainty propagation has been assessed

and demonstrated to be consistent with the one obtained by Monte Carlo approaches

(that assume prior knowledge of statistical distribution of input), we turned our atten-

tion to other types of experiments. We indeed analyzed the effect of thenumber of resam-

pling iterations (Nb) on the system performance, by computing 95% confidence intervals

with the proposed algorithm for different values ofNb (namelyNb = 102,103,104,105)

along a time horizon of 10 epochs. Input observations were randomly drawn from a

normal distribution (µ = 5,σ = 1). The results obtained over 100 runs are plotted in

Figures 2.4a, 2.4b, and 2.4c for, respectively, the left bound of the 95% confidence inter-

val, the mean estimate, and the right bound of the 95% confidence interval.

Experiments highlight the variationof themean estimate andof the confidence inter-

vals as the number of resamplings changes. In particular, albeit not markedly significant

(maximumvariations arewithin a 1.7% range), the effect ofMonteCarlo random fluctua-

tions across the different runs is clear: higher values ofNb correspond to lower variations

across the runs, in accordance to known results in the bootstrap theory [76]. It took on

average 36.5s to compute the confidence intervals for a single run when Nb = 105, and

0.0365s when Nb = 102. Experiments have been performed on an Intel® i7 CPU, with

a 2.80GHz frequency clock and 8GB RAM, running a Matlab®implementation of the

bootstrap-based approach.

This empirical experiments highlight a mild variation as Nb decreases: the width of

confidence interval changes by up to 8% (when Nb = 102), with respect to the width

computed with Nb = 105. This empirical evidence shows the potential of alleviating

the computational workload by lowering the number of resampling iterations without

severely affecting the accuracy. Conversely, when mitigation of stochastic fluctuations is

an issue, Nb should be increased.

The final experiments on synthetic data have been designed to test the proposed ap-

proach on a wide time interval during which the value of the measurand is subject to

dynamic change. This experimental set up has been conceived tomodel situations when

a potential drift of the physical quantities has to bemonitored and tracked by the crowd-
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Figure 2.4: Sensitivity analysis: left boundof 95% confidence interval (a), estimatedmean
values (b), right bound of 95% confidence interval (c), for different number of bootstrap
resamples across 100 runs. Normal distribution (µ = 5,σ = 1).



2.1. BOOTSTRAP FOR DATA QUALITY ESTIMATION 39

sensing system. For instance, in SmartRoadSense the road surface could progressively

deteriorate and, at a given point, could be subject to maintenance or in NoiseTube [118]

the noise level of a specific area could suddenly change. The effect of this possible evolu-

tion has been evaluated by simulating a piecewise linear dynamics of themeasurand along

different time epochs. In particular, input data was generated according to three types

of statistical distributions as follows:

• Gaussian distribution: observations were randomly generated with a mean value

linearly increased at each epoch (from µ = 5, at epoch 0 to µ = 7, at epoch 50)

and then set back to µ = 5 for the remaining 50 epochs. Standard deviation was

kept constant for the whole simulation (σ = 1).

• Uniform distribution: datawas generatedby taking values uniformly at random in

an interval that was progressively shifted from [4,6], at epoch 0 to [6,8], at epoch

50. From epoch 51 to epoch 100 values were drawn again uniformly in the [4,6]

interval.

• Rayleigh distribution: input valueswere taken fromaRayleighdistributionwhose

scale parameter bwas linearly changed from b = 5 (at epoch 0) to b = 7 (at epoch

50) and then set again to b = 5 (from epoch 51 to epoch 100).

These observations have been then used as input for the uncertainty propagation

processing pipeline based on the non-parametric bootstrap. Following the previously

described experiments, the update at each epoch was performed by taking the average

between the measurand estimate at current epoch and the one at the previous epoch.

Plots of the mean value and error bars representing the associated confidence inter-

vals are reported in Figures 2.5, 2.6, and 2.7 to illustrate the results for, respectively, the

normal, uniform, andRayleigh distribution. As expected, the system can effectively cope

with a changing input, by dynamically tracking its evolution. Thanks to the proposed

approach, the estimates of the measured variables and the corresponding confidence in-

tervals can be also effectively updated.

2.1.4.A Case study: SmartRoadSense

Inorder to exemplify thepractical applicability of ourproposal, we applied thebootstrap-

based method to a dataset extracted from the SmartRoadSense project [13]. Data refer

to a road segment in Italy composed of 10 monitored points, each one aggregating from

12 to 30 measurements across two adjacent weeks (week 18 and 19, corresponding to the

period from May 2, 2016 to May 15, 2016) of the SmartRoadSense monitoring activity.

Themain features of the dataset are reported in Table 2.3: with respect to the aggregated

point indicated in column 1, we reported in column 2 the week (epoch) the values refer
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Figure 2.5: Dynamic input analysis: mean values and confidence intervals as function of
number of simulated updates. Normal distribution. Nr. of bootstrap resamples = 103.
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Figure 2.6: Dynamic input analysis: mean values and confidence intervals as function of
number of simulated updates. Uniform distribution. Nr. of bootstrap resamples = 103.

to, in column 3 the number of points aggregated, and in columns 4 and 5 their mean

value and standard deviation.

For each point of the dataset we applied the bootstrap-based uncertainty propaga-

tion method to compute the 95% confidence interval at the end of the period spanning

the two weeks of observations. The number of bootstrap resampling iterations was set

to Nb = 104.

Results are reported in Figure 2.8, plotted as a histogram with error bars, overlying

the piece of map that includes the road under investigation. Each bar is associated to an

aggregated point whose roughness index is expressed through a colormap (green for low

roughness values, red for high roughness levels).

To provide some further details about the sensitivity of the method with respect to

the number of resampling iterations, we computed 95% confidence intervals for point
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Figure 2.8: Case study: mean values and confidence intervals at [2.5%97.5%] for 10 points
taken from a monitored road in SmartRoadSense. Nr. of bootstrap resamples = 104.

P10 of theSmartRoadSensedatasetwithdifferent valuesofNb (i.e. Nb= 102,103,104,105)

across a set of 100 runs. Interestingly, the analyzed point clearly represents an example of

a small sample size being composed of 10 measurements (in each of the two weeks). Re-

sults of this experiment are illustrated in Figures 2.9a, 2.9b, and 2.9c for, respectively, the

left bound of the intervals, the mean estimate, and the right bound. Stochastic Monte

Carlo variations are, as for the synthetic benchmarks, significantly compressed in a small

range whenNb ≥ 104. It is worth noticing a higher variability of the results from run to

run for low values of Nb (up to 17.4% for the left bound, Nb = 102), with respect to the

experiments performed on synthetic benchmarks experiments, plausibly because of the

effect of the small sample size.

On average, the confidence intervals for a single run were computed in 6.8s, when
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Table 2.3: SmartRoadSense dataset: number of raw points, mean value and standard
deviation for each aggregated value and monitored week.

Aggregated point Week Count Avg Stdev

P1

18 12 0.1587 0.0217
19 13 0.1318 0.0314

P2

18 30 0.2278 0.1764
19 23 0.2017 0.1702

P3

18 30 0.2023 0.1093
19 23 0.2421 0.1680

P4

18 23 0.5260 0.5422
19 30 0.5055 0.5580

P5

18 18 0.4093 0.4577
19 28 0.5954 0.6407

P6

18 18 0.2312 0.2084
19 25 0.3863 0.4178

P7

18 23 1.1319 1.0053
19 32 0.9361 0.7257

P8

18 23 1.6216 0.8599
19 24 1.0610 0.6417

P9

18 13 1.9805 0.8552
19 9 1.2424 0.5309

P10

18 10 1.9473 0.8892
19 10 1.6059 0.5432

Nb = 105. The same task, when Nb = 102, was completed approximately three orders

of magnitude faster, i.e. around 7ms (timing results refer to the same hardware configu-

ration and implementation used for synthetic benchmarks).

2.2 Accuracy Improvement in MCS Vehicular Applications

When dealing with geo-spatial data, accuracy is a two-fold issue, in that it concerns both

the value of the sensed quantity and the GPS coordinates of the point in which it was

measured. When the point needs to be associatedwith an object on amap, GPS accuracy

impacts map matching [131, 175].

This Section focuses on efficient map matching algorithms for crowdsensing road

applications. In particular, we provide a classification of map matching issues and pro-

pose incremental real-time algorithms to tackle them and improve the overall mapping

accuracy.

As we already did in the last Section, we are going to take SmartRoadSense as a case
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Figure 2.9: Sensitivity analysis: left boundof 95% confidence interval (a), estimatedmean
values (b), right bound of 95% confidence interval (c), for different number of bootstrap
resamples across 100 runs. SmartRoadSense dataset, point P10.
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study [2]. Among the wide range of vehicular applications that pose map matching is-

sues, SmartRoadSense has several peculiarities that give rise to new challenges: i) it re-

quires fine-grained sampling, ii) it targets not only recognized main roads, but also not-

yet-tagged road segments, and iii) it collects data from heterogeneous devices installed

both on public and on private vehicles. Hence, map matching is addressed without

relying on a pre-established trajectory (as in the case of public transportation), nor on

the knowledge of roads and links among them. Rather, incoming data are sequences of

points that need to be matched on road segments based only on geometrical considera-

tions and on first-order reachability analysis performed on the fly. Moreover, we assume

map matching to be applied in real time, so that computational complexity has to be

kept under tight control, looking for a solution belonging to the category of incremen-

tal online methods.

Experimental results, validated against ground truthdatasets collected foronemonth

on known bus lines, show that mapmatching accuracy can be significantly improved by

means of incremental linear algorithms applied on the fly without leveraging any topo-

logical information.

The rest of the Section is organized as follows: Section 2.2.1 provides a summary

of related work on vehicular crowdsensing systems and map-matching algorithms; Sec-

tion 2.2.2 introduces concepts and definitions related to the map-matching problem;

Section 2.2.3 describes the proposed approach; Section 2.2.4 describes the experimental

setup and presents the results.

2.2.1 Related Works

In this Section, we report some recent scientific literature related to techniques, meth-

ods, and systems prosed so far in the scope of our work, namely: system architectures

for mobile sensing (with a particular focus on vehicular applications) and algorithmic

approaches for map matching problems.

2.2.1.A Vehicular crowdsensing systems

Oneof the first applications of vehicle-based crowdsensing is representedbyCarTel, a sys-

tem developedwith the aim of detecting road potholes utilizingGPS and accelerometers

mounted in cars equipped with embeddedmicroprocessors [50]. Mobile sensing for the

detectionof traffic conditions, bumps, and acoustic events has been investigated through

the integration of data from accelerometers and microphones into a system calledNeri-

cell [129].

Thiagarajan et al. proposed in 2009 a system (named VTrack) targeting the goal of

road traffic delays estimation bymeans ofmobile phones [175]. A particular focus of this
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work is represented by the reduction of smartphone energy consumption during sensing

activities and by the compensation of noise associated with sensors sampling. CTrack

is a system developed by some of the authors of VTrack to achieve accurate trajectory

mapping from GSM fingerprints instead of using WiFi signals or GPS traces [176].

Large-scale mobile sensing has been proposed for air pollutionmonitoring inOpen-

Sense [1]. Data gathering in OpenSense is achieved by means of participative sensing of

citizens equipped with enhanced modified smartphones or ad hoc pocket sensors, and

by means of special sensor stations placed on public transport vehicles.

Recently, some architectures for road surface collaborative monitoring have been

proposed [2, 57, 101]. Themore representative is SmartRoadSense, the platform already

presented which is designed to integrate mobile sensing and cloud systems to support

continuousmonitoringof road surfacequality. A roughness index is computedonboard

of end-users’ smartphones and then transmitted to be stored, processed, aggregated and

visualized in cloud. The SmartRoadSense platform entails several components, resulting

in a multi-tier architecture. In particular: i) signal processing techniques have been used

to process acceleration traces and obtain a numerical value (the roughness index, RI)

that correlates to the quality of the road segment spanned by a given vehicle; ii) GSM

communication is used to transmit RI values, GPS coordinates and timestamp in batch

to a remote server; iii) a cloud-based back-end is used to store, process and aggregate

geo-referenced traces from multiple users; iv) a cloud front-end based on CartoDB 3 is

adopted for visualization of geospatial data (e.g., overlay on geographical maps such as

Google maps 4).

2.2.1.B Map matching

Map matching is an inference process that reports a sequence of location data onto a

map. In mobile sensing applications, data is typically a GPS trace (i.e. a sequence of

time-stamped (latitude, longitude) values and themap refers to annotated road networks

in a digital georeferenced database. Sequence localization data can derive from different

sources of information (e.g., GPS devices, GSM fingerprints, WiFi access points posi-

tion) while target maps could differ in the information content and available details (e.g.,

topological information, one-way roads annotations, etc.).

Map-matching algorithms are classified into global algorithms and incremental algo-

rithms. Global approaches [131, 175] process whole input traces in order to achieve a solu-

tion, while incremental algorithms [178, 121] work on small segments to be processed in

sequential order. On one hand, global algorithms usually result intomore accurate solu-

tions butmust be inherently run only offline; on the other hand, incremental algorithms

3Please see http://cartodb.com
4Please see http://maps.google.com
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make local choices that could possibly impact the accuracy of mapping but are suitable

for online execution. Hence, global strategies are particularly useful to obtain reliable

data from inaccurate and/or sparse input, while online algorithms become amandatory

choice for real-time applications and in all cases when efficiency is an issue.

In this framework, many different techniques have been proposed to tackle themap-

matching problem. Some authors investigated the use of computational geometry tech-

niques posing the problem as a patternmatching between curves under Frechet distance

[16, 28]. Others proposed the use of signal processing methods (e.g., Extended Kalman

Filters) [136] or Bayesian estimators [121]. According to recent scientific literature [64,

184], the best performances in terms of accuracy are obtained by algorithms based on

HiddenMarkovModels (HMMs). HMMsallow to testmultiple possiblemappings and

find the maximum likelihood solution by means of dynamic programming (i.e. Viterbi

algorithm). This statistical approach grants robustness to thematching algorithm, result-

ing in enhanced accuracy when faced with noisy inputs [131, 176]. A local, incremental

variant amenable for an online implementation has been recently presented by Goh et

al. [64].

Despite significant advancements obtained, the above mentioned algorithmic ap-

proaches present some issues with respect to the mobile crowdsensing scenario. In fact,

global solutions incur high computational overhead that makes them unsuitable for

vehicle-based applications where timeliness is often required. Furthermore, most state-

of-the-art methods make some assumptions on input data (e.g., the availability of topo-

logical information) which is not always guaranteed. Overcoming these issues is one of

the main purposes of this work.

2.2.2 Problem Statement and Scope

This Section formulates the map-matching problem addressed in this paper referring to

known definitions [64] and to terms adopted in OpenStreetMap [138].

Trace A trace, T = (tn|n = 1, ...,N), is a sequence of N samples collected by a vehicle.

Each trace point tn is characterized at least by: time stamp (tn.t), GPS coordinates

(tn.lat, tn.lon), and sample (tn.val). Additional fields can be available, like the GPS

accuracy (tn.acc) or the vehicle speed (tn.v).

Line A line, L = (pm|m = 1, ...,M), is a M-point polyline representing a road segment

as a series of segments connecting vertices p1, ..., pM in order. Each vertex pm is

represented by its coordinates (pm.lat, pm.lon).

Map Amap S is a set of lines representing all the road segments of interest.
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According to OpenStreetMap, we consider a road as a relation among lines, possibly an-

notated with viability information (speed limit, directions, permissions, etc.). A road

network is a set of roads complemented by a connection matrix which adds topological

information to the map. A road network is defined on a map and, in general, it covers

just a subset of the lines of themap. The percentage of lines covered by the road network

in a given region depends on themaintenance and updating of the underlying data base.

Working on a map (rather than on a road network) maximizes the coverage at the cost

of giving up topological information which is usually exploited in map-matching algo-

rithms.

Map-Matching Given a trace T and a map S, the goal of map matching is to find the

correspondence between each point of T and a line of S.

In general, reducing the sampling rate (i.e., reducing the number and density of the

points in the trace) makes it harder to determine the actual trajectory of the vehicle on

the map. Hence, considerable research efforts have been devoted to the development of

robust map matching solutions able to cope with sparse traces [131, 175]. In the limiting

case in which there is less than 1 sample per line, the key problem is to figure out which

path the vehicle took between two points. The topology of the road network is essential

in this case.

On the other hand, challenging issues can be raised also by the abundance of points

provided by high sampling rates. When the rate reaches the order of one sample per sec-

ond, there are two new problems to face. The first one is accuracy, in that the distance

between subsequent points in the tracemight fall below the resolution of theGPS, caus-

ing many possible artifacts. The second one is performance, in that the sampling rate

poses tight constraints on the time taken to process each sample in online real-time ap-

plications.

2.2.2.A MapMatching Issues

Figure 2.10 provides a schematic representation of the basic artifacts possibly produced

bymapmatching algorithms fed by a dense trace. Lines (i.e., road segments) are denoted

by labels a, b and c, while dots represent trace points. Bold lines on the left represent the

false trajectory inferred by matching points on the closest lines, while those on the right

represent the actual (ground-truth) trajectory. All the traces are assumed to go from left

to right (meaning that points to the left have time stamps preceding those to the right)

along a ground-truth trajectory that goes from a to c. Label b is used to denote a line
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Figure 2.10: Schematic representation of the 4 main artifacts of map matching applied
to dense traces. For each case the artifact is represented to the left and contrasted with
the ground truth trajectory, to the right.

which is not in the trajectory but passes so close to some of the trace points to induce

mapping artifacts.

In Case 1 line b is a crossing road orthogonal to a and c. The wrong trajectory looks

as if the vehicle had taken the cross and then was immediately turned back on the main

road.

In Case 2 line b is one of the two roads of a fork which runs parallel to c for a non-

negligible stretch. If, after the fork, most of the trace points are closer to b than to c, it

looks as the fork was taken. But when b and c diverge, the remaining points are mapped

back to c without a viable link.

In Case 3 a fork similar to that of Case 2 is encountered in the opposite direction, so

that the fake trajectory jumps from a to b as the two roads get close to each other, and

then it rejoin the main road at the fork.

In Case 4 some of the samples are mapped on line b even if it never encounters lines

a and b.

All the artifacts possibly encountered when map-matching a dense trace can be ex-

pressed as a combination of the four listed above. Without loss of generality, in cases 1,

2, and 3 we assume the road to switch from line a to line b exactly when it crosses b. All

other situations can be easily obtained by considering a=c.
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For the sake of explanation, the points in Figure 2.10 are represented as equidistant

from each other and laying on an ideal trajectory, even if misplaced with respect to the

map. Real traces look much worse, in that the points usually jump on both sides of the

ground-truth lines and sometimes they overlap and locally reverse the order. However,

persistent errors like the ones schematically represented in Figure 2.10 are the most diffi-

cult to detect and correct.

It is also worth mentioning that, in the absence of viability or topological annota-

tions, the artifacts of Figure 2.10 occur whenever there are lines that cross or get close to

each other on the map, even if there are no paths between them in the road network.

Thepurpose of our approach is to find an incrementalmap-matching algorithmable

to detect and correct matching artifacts when dealing with dense traces in the absence of

topological information.

2.2.3 Proposed approach

The output ofmapmatching is the association of each trace point to a line. Weuse tn.line

to denote the property of point tn that represents its association to a given line. Hence,

map matching reduces to setting all the tn.line properties to the appropriate line id.

Restricting the range of candidate solutions to the ones that can be executed incre-

mentally in linear time, we start bymatching each point to the closest line, as determined

by issuing a query to the underlying geospatial data base. To speed up the refinement of

this first-cut matching we make use of run length encoding (RLE) to represent contigu-

ous subsets of trace points mapped on the same line [159].

Run A run R = (rk|k = 1, ...,K), is a sequence of K contiguous points taken from a

given trace, such that all the points in R are mapped on the same line (denoted by

R.line) and the points that precede and follow R in the trace (if any) are mapped

on a different line.

Runs are computedon the fly basedonlyonproximitymatching, and then incrementally

processed to correct artifacts. A slidingwindowof three runs, denoted by previous (Rp),

currrent (Rc) and next (Rn), is used to this purpose. At each step a decision is taken on

the correctness of thematching ofRc, based on the consolidated matching of Rp and on

the first-cut matching of Rn.

The decision process is based on the following conditions, whichminimize the num-

ber of additional queries:
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• A) Reachability from previous run. Rc.line and Rp.line cross in a point close to

the first point of Rc and to the last of Rp (only two points and two lines involved

in the query);

• B) Reachability of next run. Rn.line and Rc.line cross in a point close to the first

point of Rn and to the last of Rc (only two points and two lines invlved in the

query);

• C) Fork. Rp.line, Rc.line and Rn.line cross in the same point, close to the first and

last points of Rc (only two points and three lines involved in the query) ;

• D) Short run. Thenumber of points inRc is lower than a given significance length

L (no geospatial queries required).

A B C D Action

Case 1 T T T T split Rc between Rp and Rn

Case 2 T F merge Rc in Rp

Case 3 F T merge Rc in Rn

Case 4 F F split Rc between Rp and Rn

Table 2.4: Truth table of the artifact compensation algorithm.

Table 2.4 shows the decision criteria used to detect the 4 cases of Figure 2.10 and the

actions taken to correct each of them. Rows are associated with possible artifacts, while

columns are associated with conditions. Empty entries represent don’t care conditions.

In Cases 1 and 4 the current run (Rc) is split between the previous and the last ones.

This is done by assigningRp.line to the line property of the first points ofRc, andRn.line

to the remaining points of Rc. In Cases 2 or 3 the current run is merged either in the

previous one or in the next one.

a

b

c

Figure 2.11: False positive case: actual trajectory that risks to be recognized as a case-1
artifact if the link road b is very short.

Looking only at the truth Table, conditions C and D seem to be redundant. In fact,

the two binary conditions A and B provide the 4 combinations required to encode the 4

cases of interest. However, C andD are needed to distinguish Case 1 from false positives,
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like the one in Figure 2.11, which represents a short link road. Whenever none of the four

artifacts is detected, the current run is assumed to be correct and its line labels are left

unchanged.

2.2.4 Implementation and experimental results

This Section presents the experimental results obtained by applying the proposed map

matching algorithm to enhance the quality of the SmartRoadSense road surface moni-

toring system.

2.2.4.A Implementation and experimental setup

The architecture of SmartRoadSense is composed of three components: a mobile appli-

cation running on Android devices to compute every second a geo tagged estimate of a

roughness index, a server that gathers roughness traces from all the end-user devices and

maps them on OpenStreetMap, and a cloud-based front-end for graphical visualization

of geospatial data, based on CartoDB.

The server-side map matcher of SmartRoadSense, called Cartesian matcher, asso-

ciates each trace point to the closest line, according to the 2-dimensional Cartesian dis-

tance. Theproposed algorithm is implemented as an additional component, calledmatch

enhancer, which operates on the runs of trace points annotated by theCartesianmatcher.

Data points are collected by a standardweb service endpoint and stored in a PostGIS

database system. Both the Cartesian matcher and match enhancer are implemented as

PHP scripts which operate on collected data by means of PostGIS stored procedures

written inPL/pgSQL.Maps are taken from theOpenStreetMapproject, whileCartoDB

is used to display data and double-check the correctness of the matches.

Although SmartRoadSense was conceived as a mobile crowdsensing application en-

gaging end-users in road surface monitoring, the approach was validated on data col-

lected for one month from Android devices installed on public buses operating on a

known line in the Province of Pesaro-Urbino, in Italy. All the map elements along the

actual bus line were manually sorted to build the ground truth baseline.

2.2.4.B Results

Figures from 2.12 to 2.16 show the results of map matching in the four misleading cases

targeted by the proposed approach. Each Figure refers to a specific case and reports the

trace points projected on the line segments in which they are mapped by the traditional

Cartesian matching and by the proposed match enhancer. The effectiveness of the en-

hancer is apparent, in that the artifact are completely cancelled. In particular, Figure 2.12
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(a)

(b)

Figure 2.12: Projected trace points plotted on top of the satellite map showing examples
of Case-1: (a) before and (b) after match enhancement.

shows several examples of Case-1 artifacts, Figure 2.13 shows an example of Case 2, Fig-

ure 2.14 shows an example of Case 3, while both Figure 2.15 and Figure 2.15 provide exam-

ples of Case 4.

Twometrics canbeused to estimate the accuracy ofmapmatching relative to ground

truth: the percentage of trace points mapped on lines that do not belong to the bus line

(miss rate), and the ratio between the number of wrong lines and the number of ground-

truth lines involved in matching (fake line ratio).
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(a)

(b)

Figure 2.13: Projected trace points plotted on top of the satellite map showing examples
of Case-2: (a) before and (b) after match enhancement.

Cartesian matching provided a miss rate of 2.85%, but in site of the small percentage

of wrong matches, the fake lines involved in matching exceeded the number of ground-

truth lines (108 against 102), leading to a ratio of 1.06. The difference between the two

metrics is explained by the nature of the trace and of the map: the trace includes extra

urban roads with a limited occurrence of artifacts, while the map is highly fragmented,

containing many unclassified very short segments which are the most error prone ones.

The application of the match enhancement provided sizeable advantages, reducing



54 CHAPTER 2. DATA QUALITY

(a)

(b)

Figure 2.14: Projected trace points plotted on top of the satellite map showing examples
of Case-3: (a) before and (b) after match enhancement.

the miss rate to 0.90%, and the fake line ratio to 0.47.

2.3 Final remarks

The MCS paradigm is inherently incline to producing heterogeneous data whose data

quality can fluctuate. In this context, providing suitable approaches to deal with low or

unknown data quality—inwhich case the collected datamust be supplied with a quality
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(a)

(b)

Figure 2.15: Projected trace points plotted on top of the satellite map showing examples
of Case-4: (a) before and (b) after match enhancement.

indicator—is crucial. The additionof an index of data qualitymay also affect other stages

of the system’s internal processes.

In the first part of this Chapter, we treated the mobile crowdsensing activity as a

distributed measurement process, in that, the estimate of the quantity to be measured

is a composition of multiple distributed measurements performed by multiple users

through their personal devices.

We reformulated the problem of associating a quality index to a measured value as
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(a)

(b)

Figure 2.16: Projected trace points plotted on top of the satellite map showing examples
of Case-4: (a) before and (b) after match enhancement.

an evaluationof uncertaintywithin apropagation framework. The complex interactions

among variables together with the difficulty of determining their statistical features ham-

per the feasibility of applying analytic techniques or classical Monte Carlo simulations.

We therefore proposed the use of a statistical tool called non-parametric bootstrap as a

data-driven method to cope with the uncertainty propagation process without any pre-

existing knowledge (or hypothesis) about the statistical properties of data.

The effectiveness of our approach, regarding its accuracy, flexibility, and consistency,



2.3. FINAL REMARKS 57

has been extensively demonstrated by empirical results we described. We also tried to

demonstrate the potential of the proposed approach in an actual crowdsensing applica-

tion by testing our method against data gathered by SmartRoadSense.

In the second part of the Chapter, we made use of the same MCS application to

present an incremental real-time algorithm to enhance the accuracy of map matching

in crowdsensing applications dealing with dense traces to be mapped on maps with un-

known topology.

The issues raised by the abundance of tracepoints have been discussed and classified

and efficient solutions have been proposed to handle them on the fly.

The effectiveness of thematch enhancing techniques presented in this paper has also

been demonstrated using SmartRoadSense as a real-world case study.

Experimental validation performed on known trajectories show that all types of ar-

tifacts are appropriately handled by the proposed algorithm with significant improve-

ments in the overall matching accuracy. In particular, the percentage of wrong matches

reduces from 2.85 % to 0.90 %, while the ratio between fake lines and correct ones de-

creases from 1.06 to 0.47.
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Chapter 3

Privacy Preserving Incentives

Volunteer participation is pivotal to the success of any crowdsensing initiative. But tak-

ing part in a distributed mobile sensing task entails an investment in term of time, ef-

fort and mobile device resources (e.g., mobile data traffic, battery, and computational

resources). Moreover, many MCS applications require a long-term commitment and

even the willingness to share some personal data without providing any direct benefit

to the participant. Offering some reward to contributors represents a crucial feature for

MCS applications, where a lack of volunteer participation or interest can constitute a

major obstacle to the application’s success [115]. On the other hand, systems providing

rewarding mechanisms are usually based on the concept of user profile and can require

the collection of personal user data. That is to say that users willing to participate in or-

der to be rewarded can lose interest in joining the sensing endeavor if they have to share

their private data.

Table 3.1: Rewarding schemes classification in terms of motivation provided and
anonymity of user information.

Motivation Non-anonymous Anonymous

Interest
Social inclusion, belonging,
social good.

Enjoyment, entertainment,
gamification.

Community Reputation, trust. Altruism.

Monetization
Virtual or fiat currency
exchange, bidding, monetary
transfers.

Vouchers, credits.

59
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In Chapter 1 we gave a widely adopted classification of cooperation incentives com-

monly adopted in crowdsensing initiatives. In this Chapter, we analyze the same topic

taking into account another aspect often crucial in MCS application: privacy.

To date, different rewarding schemes have been proposed. Some of them include

privacy-preservingmechanismspreventing information aboutparticipants tobe inferred

during the reward assignment [88] Table 3.1 shows howmost cooperation incentives can

be broadly characterized in terms both of the type of motivation they are based on and

whether they are compatible with anonymity-preserving mechanisms or not.

We speak of incentives based on interest if they rely on the volunteer’s intrinsic mo-

tivation. Volunteers can join a sensing task because they are interested in the task itself

or because they take enjoyment from participating. The latter can be the case when the

task is playful by itself or because gamification elements havebeen employed in designing

the task [46]. Community incentives are based onmoral or ethical motivations. Sensing

task can be promoted by communities by leveraging immaterial rewards such as repu-

tation and trust while altruism and sense of community are the only reasons behind

anonymous contributions. Rewarding mechanisms based on exchanging sensed data

with money (either real or virtual), credits or any other type of financial-based rewards

go under theMonetization category. As seen in Section 1.3.5, adopting this kind of in-

centives may expose the system to user misconduct as they may be willing to deceive the

system to get higher rewards [72].

In this Chapterwewill focus on incentiveswhich allow anonymity-preservingmech-

anisms. In particular, gamification techniques and the exchange of vouchers. The follow-

ing Sectionwill discuss gamification as amethod tomake the sensing taskmore appealing

and playful, as to engage as many volunteers as possible. In particular, we will see how

gamification and anonymity can get along as major features of anMCS application. We

will demonstrate how anMCS application with strict privacy requirements could be en-

hanced andmademore appealing by adding a gamification layer without compromising

the privacy-preserving techniques already in place.

Generally speaking, most MCS platforms exploit the participation of a number of

volunteers to generate social value, pursuing goals oriented toward the common good.

Incentive mechanisms are usually an essential part of any MCS application, but exter-

nal stakeholders may also be interested in the common cause the platform is aiming

to without wanting to play an active role in the sensing process. In the second part of

this Chapter, we will introduce an inclusive rewarding platform designed explicitly for

MCS endeavors. The proposed rewarding system acts as a bridge between volunteers,

the MCS application, and third-party stakeholders, putting them in communication to

trigger network effects and positive externalities that can help the pursuing of the com-

mon good. Our rewarding protocol is based on voucher exchanging mechanisms and



3.1. A GAMIFIED APPROACH TOMOTIVATION INCENTIVES 61

will be described together with some implementation details.

3.1 A gamified approach to motivation incentives

Collective awareness is defined as an attribute of communities that helps them solve col-

lective action problems, equivalent to theway that social capital is defined as an attribute

of individuals that helps them solve collective action problems [15]. Collective awareness

is a critical aspect within communities: it promotes collective action and crowdsourcing

through citizen participation, which may lead to the accumulation of data and infor-

mation essential for informing decision making and for solving difficult problems [143].

However, engaging a huge number of the general public in a crowdsourcing initiative is

a mammoth task. There are existing initiatives that are exploiting the use of game me-

chanics for encouraging people to engage with tasks that produce real outcomes, such as

Foldit [42], a citizen science game that uses the mechanics of puzzle solving for folding

protein. Engaging citizens with tasks associated to real meaning and purpose taps into

autonomy and agency, which are key for fostering self-directedness when it comes to

education, social awareness, and civic participation. With these perspectives, we aim to

explore an existing initiative for facilitating auser-engagement strategy for public-led, col-

lective awareness platform for facilitating self-directed participation in stealth tracking of

datawithin the context of transportation andurbanplanning. This paper specifically dis-

cusses the approach taken by the Crowd4Roads (C4Rs) project1, which aims at combin-

ing smart sensing, ride sharing, and gamification applications to harness collective intelli-

gence for providing open data towards boosting traffic conditions in Europe. Domains,

such as transportation lies at the core of society, providing safe and easy solutions to indi-

viduals and businesses to connect actions and interactions that would otherwise be inac-

cessible [56, 89]. The infrastructure of road transportation in particular plays an impor-

tant role in the global economic growth and activity, providing easy access to health and

education, social benefits and offers connecting pathways for commercial ventures [150].

Passenger cars account for 73.7% of total intra-EU passenger transport [34], which indi-

cates a strong public sector usage and dependence on the international network of road

systems topursuedaily activities. With greater accessibility and improved transportation

services, a global increase has followed in the demand for production services, which has

consequently seen the rise of national and international consumption of resources [124].

Consumption practices, alongside substantial public usage of the road systems in the

EU, has led to concerns of the impact that road transportation has had, and will lead to,

1The Crowd4Roads (C4RS) project “combines trip sharing and crowdsensing initiatives to harness col-
lective intelligence to contribute to the solution of the sustainability issues of road passenger transport, by
increasing the car occupancy rate and by engaging drivers and passengers in road monitoring.” [141] For
more information about the project please see http://www.c4rs.eu
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on the surrounding ecology and its effects on the environment. Current trends and pre-

dicted growth in traffic and road use have been estimated globally as an unsustainable

venture, leading to an increased urgency of developing coordinated approaches to sus-

tainable travel policies for preservation of the environment, business, health and social

mobility for future generations [65]. A white paper issued by the British government

on sustainable travel strategies, discussed these needs further and proposed working in-

centives to help bring about public behavior change to harmonize with government pol-

icy, the reduction of unnecessary road travel [47]. The goal of the C4Rs project is thus

to engage the general public, i.e. car drivers and passengers, in making road transport

more sustainable by exploiting SmartRoadSense, a crowdsensing system we already de-

scribed in Section 2.1.1 that exploits the accelerometers of car-mounted smartphones as

non-intrusive sensors of road surface quality, and increasing crowd participation in the

initiative via gamified interfaces.

In this Section we also describe the games and gamification strategy for engaging

end-users, which will provide both a direct effect, allowing the community to benefit

from the service provided by individuals, and an indirect effect, being for sure the most

effective way of raising awareness. Being involved in decision making when it comes to

a local community and surrounding may nurture attitudes and behaviors required for a

greater awareness of local transportation issues and roles of citizens in urban planning.

SmartRoadSense has been already described throughout this work but in the next Sec-

tion more details about it will be added in order to set the context for the following part

of the Section. Then, the gamification strategy proposed for providing a more playful

and engaging interface to the application will be outlined. This Section is concluded

with reflections on the development considerations, providing relevant insights for the

development of game-based interventions that rely on smart sensing and citizen partici-

pation on a mobile platform for sourcing big data.

3.1.1 Smart sensing of road quality

SmartRoadSense is a crowdsensing platform, which aims to provide administrators, pol-

icy makers and citizens with up to date open-data on the roughness of the road surface

network, to empower them to make better-informed road maintenance decisions. In

Chapter 2, we already described the platform multi-tiered architecture sporting both a

multiplatformmobile application client anda complex cloud-based infrastructure. Smart-

RoadSense enables users to collectively monitor the status of roads through their smart-

phones, just activating the mobile app while they travel on board of a vehicle, without

any further interactions during the driving. The user interface of the mobile app has

been designed trying to reduce as much as possible the number of actions required from

users as they usually interact with SmartRoadSense just before and right after their ride.
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The most common usage pattern is that users launch the app (Figure 3.1a) and push the

main button to start tracking their journey (Figure 3.1a). Once the journey is over they

push the stop button and close the app. Even if they forget to stop the tracking session,

the app detects that they are not in a moving vehicle anymore and automatically stops

the tracking. Recorded data will be further analyzed in a background process and sent

to the server as soon as a suitable network connection is available. The collected data

are anonymously transmitted to the server which stores and aggregates them extracting

useful data about road surface status. These data are subsequently published as seen in

Section 2.1.1.

(a) (b)

Figure 3.1: (a)The SmartRoadSense app initial screen (b)Tracking activated in app.

Each data represents a single measure of the roughness of the road in a particular

time and point. These data are grouped in ordered sets called tracks, each one represent-

ing a portion of the roads travelled during the user trip. A track can be conceptually

seen as an array of single data, ordered according to the instants when they have been

recorded, each one containing a roughness measure along with the corresponding geo-

graphical position, the timestamp of the measurement and other minor information as

the device model and the mobile operative system on top of which the app is currently

being executed. The app does not collect, at any time, user personal information (e.g.,

name, email, address) as this may be harmful to the user privacy. All the tracks are tem-

porarily stored in the smartphone internal memory with restricted access permissions.

As data are collected, the app continuously updates a local database containing aggre-
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gated indexes about tracks. The database includes data on the SmartRoadSense usage

such as the distance covered, the number of individual measurements elaborated, the

time spent tracing, the average andmaximum roughness levels registered, and the overall

distribution of roughness values per level of driving comfort. This information is calcu-

lated as daily, monthly and overall user’s statistics and are presented in a dedicated view

of the app (Figure 3.2). Although the numerical values are not sent to the central server

in any way, as this would mean to communicate data related to user’s activity, through

the SmartRoadSense mobile app users willing to do so can share their statistics as screen-

shots among major social networks.

Figure 3.2: Statistics view in SmartRoadSense Android mobile app

Also, the entire communication system between the mobile SmartRoadSense app

and the server has been designed to allow users to gather and deliver data in a privacy-

preserving manner. Once a track has been collected and stored, the appwill try to send it

to the server as soon as the connection of the mobile device allows it. To further weaken

the relatedness between data and the user who provided them, tracks collected during a

single journey are split into multiple chunks of consecutive measurements. Each chunk

is then individually delivered to the server through a communication protocol inspired

by zero-knowledge techniques [51]. This kind of method allows a prover to prove to

the verifier that he knows a secret without revealing information about that secret. In

the specific case of SmartRoadSense, data are delivered to the server without sending

any sender’s personal information, and the server responds with a secret token which

can be afterwards used by the sender to claim its ownership of that burst of data. Each
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single communication is exchanged using standard asymmetric cryptography protocols,

in order to maintain the exchange confidential.

3.1.2 Engagement strategy using gamification

This Section presents the gamification layer design to be used as a method of engaging a

large and varied user base with the road sensing application.

With gamification’s rise in prominence, particularly within the business and enter-

prise sectors, different definitions have been proposed. The more widely accepted in-

clude: “theprocess of engagingpeople and changingbehaviourwith gamedesign, loyalty,

and behavioural economics” [209], “the use of game design elements in non-game con-

text” [46] and “the craft of deriving all the fun and addicting elements found in games

and applying them to real-world or productive activitie” [30]. The use of game tech-

niques has also been applied to awide range of subjects, such as science [157], maths [63],

foreign languages [43], cultural heritage [66], health [59], computer science [106], soft-

ware engineering [168], business and logistics [154]. Gamification techniques are also

employed to pursue transversal objectives, such as fostering participatory approaches

and collaboration among peers [106], self-guided learning [185], completion of home-

work assignments [63], making assessment procedures easier and more effective [128],

integration of exploratory approaches to learning [66] and strengthening student cre-

ativity [8].

American game designer Jane McGonigal, in her book [122] argues that advancing

a gamefulmind-set in the real world can produce effective and measurable change, lean-

ing on modern research in positive psychology, to promote games as an integral factor

contributing to human happiness, motivation, meaning and community development.

Despite becoming “the public face of gamification”, with this book McGonigal has dis-

tanced herself from the denomination (favouring the notion of gameful design) and its

then emerging negative connotations. Indeed, with more and more scientific research

and data complexifying the field after the initial (marketing oriented) enthusiasms, gam-

ification is, as of now, a contested field of studies, raising objections from three main di-

rections: 1) efficacy 2) ethical acceptability, and 3) techno-determinism. In 2016, Arnab

suggested that “gamification is essentially an experience design tool focusing on motiva-

tions and emotions of the target group” [171], emphasising on the relationships between

people, context and activities. It is essential not to de-humanise “the target users by using

trivial mechanics in hope of engaging them as a common entity by performing player

profiling instead and emphasizing motivations and emotions in order to establish an en-

gaging user experience” [4]. The potential of games and gamification to foster change

of perceptions and views and nurture positive attitudes and behaviors open up oppor-

tunities for the techniques to be used to achieve positive outcomes. Social games com-



66 CHAPTER 3. PRIVACY PRESERVING INCENTIVES

munities for instance are changing social interactions, leading to greater capabilities for

social learning and interactions and importantly more fun in everyday contexts. There

are existing games for social change and change of behavior such as Darfur is Dying2,

Evoke3, PR:EPARe4 [32], RecycleBank5, Foldit6, The Walk7, FitBit8, Khan Academy9,

CrowdRise10 , and SuperBetter11 that are focusing on sensitive, subjective and/or current

issues. For instance, Foldit exploits collective awareness and citizen participations in solv-

ing challenges associated to protein folding, which have helped scientists to further their

research and Evoke encourages the general public to undertake real missions that are

linked to real world issues and real life applications.

The C4Rs project hopes to draw on the ideas of developing positive psychological

motivation to engage users to interact with the road sensing application. Future pilot

studies will be conducted to evaluate the engagement factors of the app with and with-

out the gamified layer to provide an analysis on the success of using gamification in the

Crowd4Roads project. Presented below is a first iteration of the game design template

which will inform the gamification layer.

3.1.2.A Harnessing the potential for narratives and role playing

The engagement strategy relies on the simple mechanics of pervasive quests and the en-

gaging characteristics of stories and narratives towards fostering self-directedness. The

gamification layer forC4Rs isbasedon thegenre ofRolePlaying (RP) game systemswith

elements of interactive narrative fiction games. The core concept is that the player will

take on a semi-customizable character (player choice from a few pre-defined characters),

and complete game missions to level up their character’s reputation and gain in-game

collectable items.

Following the outcome that our targeted users for the C4Rs app will likely be a very

varied user group with no discernable connected interests, it is intended to make the

gamification layer as open to different tastes and preferences as possible, in a similar de-

velopment style of a MMORPG (Massively Multi-player Online Role Playing Game)

such as World of Warcraft12. Players will be tasked with completing missions in ‘space’

2Darfur is Dying: http://www.gamesforchange.org/play/darfur-is-dying/
3Evoke: http://edition.cnn.com/2010/TECH/03/01/evoke.game.africa.poverty/
4PR:EPARe: http://www.seriousgamesinstitute.co.uk/games/prepare.aspx
5RecycleBank: http://www.recyclebank.com
6Foldit: https://fold.it
7TheWalk: http://www.thewalkgame.com
8FitBit: https://www.fitbit.com
9Khan Academy: https://www.khanacademy.org
10CrowdRise: https://www.crowdrise.com
11SuperBetter: https://www.superbetter.com
12World of Warcraft: https://worldofwarcraft.com
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using different real world locations as unlockable areas for new in-game world quests.

The game will use narrative, humor and player choice to encourage player investment

and drive story. In-game items are connected to the quest story’s and are given a value

systembased on rarity, encouraging players to try and retrieve higher value in-game items

for character reputation and re-sell for real world rewards. Presented below are three core

considerations of game mechanics that are to be used in the development of a RP game

system for the C4Rs’ road sensing application

3.1.2.B Pervasive Quest/Story Unlocks: Road Distance Travelled

Exploiting the current popularity of the pervasive nature of games, such as Pokémon

Go13, the direct connection between the gamification layer and the road sensing applica-

tions is the trip information, where game quests are unlocked through travelling around

in the car in the real world. Much like, location-based services will be used to track the

distance a player has travelled in the car with the road sensing app on. The design aims to

increase and improve the player’s interaction and agency within the gamification as well

as considering other gameplay changes which we intend to make. It will cover the basic

flow of Quest Packs, how the player will be asked to make choices and the basics of En-

counters aswell as talking aboutRewards and Items, and their usewithin the gamification

system.

Users of the SmartRoadSense applicationwill be awarded credits, which can be used

within the SmartRoadSenseGamification system, whenever they collect data that is then

uploaded to theSmartRoadSensedata servers. There are two typesof creditwhich canbe

collected, these are defined asQuest Credits andGold Credits. Quest Credits are awarded

for collecting data on Standard Roads; these are roads which are not considered to be

special by the application. Gold Credits are awarded for travelling on Special Roads. Spe-

cial Roads are roads for which little or no data has been collected. Each type of credit will

be gathered at specific rates (see Figure 3.3):

Quest Credits One Quest Credit will be gained by the user for every 1 kilometre of data

collected on a Standard Road.

Gold Credits One Gold Credit will be gained by the user for every 1.5 kilometres of data

collected on a Special Road.

13Pokémon Go: http://www.pokemongo.com
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Table 3.2: Number of Quests in a Quest Pack vs. Quest Pack Cost in Quest Credits.

No. of Quests Quest Pack Cost

3 150

4 200

5 250

6 300

7 350

8 400

9 450

10 500

Quest Packs form the backbone of the SmartRoadSense gamification. Each Quest

Pack will contain from three to ten Quests which form a storyline. As the player pro-

gresses through each Quest they will be confronted with Options and Encounters. The

player must surmount these to progress to the next part of the storyline and so on to-

wards eventual victory. The player will be provided with one to three unlocked Quest

Packs when they first download the application. Any remaining Quest Packs will need

to be unlocked using Quest Credits. Quest Credits are gained by the player whenever

they travel and use the application to gather data. Each of the Quest Packs costs a spe-

cific amount of Quest Credits which is determined by the amount of Quests it contains.

Table 3.2 shows the relationship between the amount ofQuests within aQuest Pack and

its cost; this will be modified during playtesting.

Additional to the distance travelled mechanic associated to Quest credits, there will

be another travel/locationbasedmechanicofunlockingnew/special quests throughplay-

ers tracking information to places that are less well travelled in the real world (Gold Cred-

its). Gold Credits will allow the player to purchase quests that will have a higher than

average chance of receiving rare items. This mechanic will be used to encourage players

to travel on less known roads for higher gain quests and to feed-back data on areas that

little is known about.

These mechanics, that are connected to the tracking system of the C4Rs application,

use scarcity through item rarity, collecting, chance and narrative to drive player engage-
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Examples of in-game screens. From (a) to (f) Loading Screen, Loading Bay,
Cargo Bay, Quest Packs, Quest List, Story Encounter and Quest Unlock screens.

ment. Primarily, players should be motivated through their desire to gather and com-

plete collections of in-game items to travel greater distances using the application and to

explore routes of travel that they may not normally have considered. These mechanics

should appeal to the collector, explorer and social player types. Competition could also

be a driving factor of motivation for players as once items are gathered into a player’s col-

lection, player’s main gain will be “social recognition” for acquiring these items amongst

friends.
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Initially, the team considered using the road roughness level data to equal the games

quest difficulty score, however, after much deliberation it was decided that distance trav-

elled may help gather more quality data due to issues surrounding ability to stop players

cheating. The teamwas concerned that players could alter the datamore easily in relation

to the road roughness and therefore the game rewards could be open to manipulation

from players, skewing the data that the C4Rs server received. In light of this, the team

decided that it was much easier to track and control manipulation of distance travelled,

than to control the road roughness level of the application.

To formally set distance parameters to the quest difficulty gauge, the team will has

looked at pre-pilot data already available on the Crowd4Roads server to determine aver-

age travel distances. We shall also highlight less travelled areas and use this as a basis to

develop a prototype of a special quest.

3.1.2.C Player Choice (Quest Stories & Outcomes)

Players are presentedwith various difficulties of quests throughout the game. Each quest

starts with a background scenario which will be presented as a written screen with the

potential for a voice over/audio option. The background scenario will present the player

with a scenario in which they have a choice of how they may respond. Players are then

given the option of what they would do in that scenarios situation. Choosing from one

of two/three options, players are then rewarded/penalized based on their choice. This

mechanic is often used in board games and referred to as a crisis deck (examples of these

board games include Battlestar Galactica14 and Dead of Winter15).

By using non-linear narrativemechanics to support themotivations of player choice,

players feel a greater sense of involvement in the games story and players can control how

they are developing their character. Players also feel a greater sense of achievement when

rewarded with a higher value item due to the fact that they have had a direct input into

acquiring that item. Players who make poor decisions through the quests offered may

learn from their previous decisions and start to choose options that they would not have

previously considered.

3.1.2.D Core Reward System

Listed below is a set of perceived core rewards systems that will engage and reward the

player for interacting the C4Rs application.

• Treasure In-Game Items: Items are awarded from quests and completing quest

packs. Each Item will be assigned a rarity factor and a value factor. The rarity fac-

14Battlestar Galactica: https://www.fantasyflightgames.com
15Dead of Winter: https://www.plaidhatgames.com/games/dead-of-winter



3.1. A GAMIFIED APPROACH TOMOTIVATION INCENTIVES 71

(a) (b)

Figure 3.4: Board Game examples of Player Choice/Narrative Mechanics.

tor will be connected to quest difficulty. Rarer Items can also be located through

completing quest packs and exploring unknown areas. Items are also assigned an

item value for an in-game monetary system. Items can be traded in or exchanged

with other game rewards based on the value of the item. A concept of this rarity

and value system is shown in Table 3.3.

Items are the core reward system within the C4Rs gamification strategy, target-

ing collectors (completing sets, gathering items), merchants (players interested in

financial/monetary systems in games) and social exhibitors (social media sharers).

• Vouchers collection: The exploiting of a novel voucher exchange system is an ad-

ditional idea for supporting the transfer between in-game rewards to real world

rewards. It was suggested that items and Gold Credits could be turned into a

value of Geo-Coins that would be stored in another separate application known

as a “wallet”. Vouchers could then be traded for real world rewards such as free

parking or vouchers. This would all be dependent of collaboration with exter-

nal stakeholders and interested parties for providing these real-world rewards. In-

game Items gathered from quests can be sold if the player does not want to retain

specific items or has multiples of same item. This may provide an extrinsic mo-

tivation for players who are not interested in the in-game rewards system. The

voucher reward platform will be further discussed later in this Chapter.

• Pets/Oddity/Collectibles: Pets are another in-game item that is used bymanyRP

games. Pets are collectable items that often grant bonuses to a character or pro-
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Table 3.3: Concept of Item Rarity and Item Values.

Quest Difficulty Item Rarity Item Value

Easy Common 10 Coins

Medium Uncommon 50 Coins

Challenging Rare 100 Coins

Hard Epic 250 Coins

Epic Mythic 500 Coins

vide an aesthetic value for the player. Pets could be included as rewards on certain

quests, completing quest packs or exploring unknown areas. Much like treasure

items they add another level to the collection mechanic.

• Social Media Sharing: To ensure that any in-game items have extra external value

and promote the sense of competitive collection in players, all items/pets once

gained, should be made available to be shared on most social media platforms.

This will help promote competition elements within the gamification layer and

encourage social acceptance in player motivations.

3.2 A flexible rewarding platform

Independently from its particular purpose, any public and successfulMCS system is able

to put the exceptional sensing and communication capabilities of mobile devices to the

service of a common goal shared by a community of users, thus encouraging active citi-

zenship. MCSplatforms generate an intrinsic social valuewhich can be capitalized by the

application provider, by the participants, or by third-party stakeholders. Indeed, exter-

nal organizations and communities could be interested in the results of the crowdsensing

process without giving relevance to the process itself.

End-user engagement in MCS systems has been treated in several pieces of research

[203, 109, 86, 61, 188, 181, 196, 88, 115]. Most of these studies address the cooperation incen-

tive mechanics as one (essential) feature of a crowdsensing platform, just like any other

integrated feature (e.g., data sensing and gathering). However, even if closely related,

binding together aspects like data collection and reward mechanisms could restrain the

network effect and reduce positive externalities, keeping potential stakeholders out of
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the loop [164].

Rather, the separation of the crowdsensing process from reward mechanics could al-

low external stakeholders to allocate incentives in order to stimulate the citizen’s motiva-

tion in contributing to one or manyMCS initiatives. In this framework, the decoupling

is intended to help in applying platform economy concepts to collective aims [140].

Using real currency to reward participants is the most flexible and direct method of

paying back user efforts, but dealing with fiat money can lead to possible complications.

For instance, Ogie have demonstrated that “an inverse relationship between privacy and

monetary reward can be gleaned i.e. the higher themoney involved, the greater the need

to collect personally identifiable information of participants and hence, the lesser the

privacy” [137]. Moreover, when money is involved, volunteers are more likely to trick

the system to get more benefits [72]. Ensuring trustful contributions while preventing

misbehaviors (e.g., forgery, double spending, cheating, or speculation) can be cumber-

some [14].

In this context, another fair and homogeneousway of evaluating and attesting the ef-

fort devoted by individuals to the collective aims is required, making public engagement

work as fiat money [137]. A variety of third-parties could adopt this kind of effort-based

currency while eschewing the complications of using real currency.

In the following,wepropose a general purpose rewardingplatformbasedon avoucher

exchange system, specially designed for publicMCS application users. The platform has

been conceived in respect to the peculiar features of contributions in typical MCS appli-

cations (outlined at thebeginning ofChapter 2), while respecting user anonymity and en-

abling a thorough decoupling between MCS instruments and participation incentives.

3.2.1 Proposed system

The slim architecture of our proposed systemmakes it suitable to provide a general and

inclusive framework, to implement cross-platform policies and strategies.

Contributions are evaluated in terms of time and resources consumed in the volun-

teer’s effort, and on its geographical location (tomake thosewho provide rewards able to

identify areas of major interest). Contributors are awarded vouchers, as a compensation

for the resources spent in the sensing activity. These vouchers are intrinsically tied to

a geographical position (i.e., where was the contribution generated?), a timestamp (i.e.,

whenwas the contributionmade?), and apurpose (i.e., whichMCSapplicationwas used

by the user and what is its goal?).

Fromaprivacy-orientedperspective, these vouchers are conceived tobe entirely anony-

mous and not to include any additional information about the user. They can be freely

exchanged among users as they are not bound to any to a particular individual. To pre-

vent double spending and user misbehaviors the consumption of vouchers is overseen
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by a central authority, but their ownership is neither tracked nor exclusive.

3.2.1.A Definitions

Our proposed system takes care of the following operations:

(a) Generating vouchers;

(b) Making vouchers available to the intended recipient;

(c) Verifying voucher validity;

(d) Exchanging vouchers between peers.

Definitions we will refer to in the following description of the platform’s operations

are shown in Table 3.4.

Aim One of the goals of a crowdsensing platform taking part
in the proposed voucher system.

Volunteer Individual that invest time and effort in order to pursue
the common aim.

Registry Central authority that issues and registers vouchers.

Instrument Tool provided by a crowdsensing platform and used by
volunteers in order to perform work, which is then re-
warded through the generation of vouchers.

Merchant Third-party interested in one or more aims pursued by
platforms of the voucher system, which may exchange
vouchers for goods, services, or other rewards.

Pocket Tool controlled by the volunteer that collects vouchers.

Point of Sale (POS) Technical end-point that allows merchants to accept
vouchers.

Table 3.4: Definitions used to describe the proposed voucher system.

3.2.1.B Protocol description

The protocol can be split into two main parts. Voucher generation includes operations

(a) and (b)mentioned above. Payment includes operations (c) and (d). Both procedures

are explained in more detail below.
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Voucher generation. The procedure is triggered by the user contributing to a common

aim. Contributions can be provided in terms of data transmissions or any other form

of trackable effort performed by the user or the instrument. As shown in Figure 3.5, to

compensate the volunteer’s efforts a number of vouchers must be generated.

The generation procedure is started by the instrument, which requires new vouch-

ers from the registry after being used by the volunteer in order to contribute some work

towards the platform’s aim. The registry is responsible for issuing the vouchers and de-

livering them to the volunteer’s pocket.

Figure 3.5: Voucher creation protocol and transfer to the volunteer’s pocket.

Following the actions enumerated in Figure 3.5, the generation protocol is articu-

lated as follows:

(a) The instrument registers the volunteer’s contribution and requests the generation

of n vouchers.

(b) The registry permits the emission of the new vouchers and generates a one-time

code, OTCgen, in the form of an URL with including a unique code.

(c) The instrument forwardsOTCgen to the volunteer’s pocket (e.g., a mobile applica-

tion).
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(d) The pocket uses the one-time code to redeem the vouchers from the registry.

(e) The registry verifies that the one-time code is valid and that the request can be

satisfied. The vouchers are generated and transferred to the pocket.

Payment. Vouchers earned by volunteers has to be exchanged with a third-party mer-

chant to be of any use. The merchant can provide the volunteer with goods or services

in exchange for vouchers. Figure 3.6 shows how this exchange happens between themer-

chant’s point of sale and the volunteer’s pocket.

The procedure can be detailed as follows:

(a) The merchant’s point of sale creates a new “payment instance” through the reg-

istry. This can happen before or after that a volunteer manifests his or her desire

to obtain some goods or to access a service. The POS indicates the voucher fil-

ter (see Section 3.2.1.D), the number of requested vouchers k (i.e., the “cost”), a

payment location URLp, and an (optional) acknowledge location URLack (see

Section 3.2.1.E);

(b) The registry generates a new one-time code OTCpay for the payment;

(c) The point of sale forwards OTCpay to the volunteer’s pocket (i.e., a mobile appli-

cation);

(d) The one-time code is verified by the registry which also add data about the pay-

ment’s filter and k are retrieved. The pocket determines whether the payment can

be satisfied (i.e., enough vouchers satisfying filter are present) and allows the user

to accept the payment;

(e) k vouchers are transferred to the registry and are considered to be lost to the pocket

and the user;

(f) The payment is confirmed by invokingURLp;

(g) Optionally, the registry invokesURLack to acknowledge the payment to themer-

chant.

3.2.1.C Voucher format

The registry generated vouchers upon request by instrument in the form of simple tex-

tual JSON-encoded files. Each file represents a voucher signedwith the private key of the

registry to have a proof of its authenticity.

A single voucher vi includes the following information fields:
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Figure 3.6: Payment protocol.

vi = Kpriv(IDi, lati, lngi, tsi,URLgen)

Where Kpriv represents the signature operation performed on the voucher payload

utilizing the registry private key. The IDi is a globally unique identifier (GUID) for the

i-th voucher. lati, lngi respectively represent the latitude and the longitude value of

the voucher’s geographical position. tsi stands for the voucher’s timestamp. It indicates

when the contribution happened (i.e., data are received by the instrument’s server). The

instrument responsible for issuing the voucher is represented byURLgen, i.e., an URL

known and registered by the registry that uniquely identifies the instrument.

3.2.1.D Voucher filtering

Figure 3.6 shows how new transactions (in the form of a one-time code) are triggered by

the merchant’s point of sale and generated by the registry. The POS is also responsible
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for specifying transaction details, such aswhich kind of vouchers and howmany of them

are requested as payment.

In the proposed system each voucher has a unitary non-fractional value. To simplify

the system, single vouchers cannot be further split and can either be spent entirely or not

at all (i.e., the payment procedure does not contemplate changes). For each payment, the

required amount of vouchers has to be specified. In the protocol description, described

in Section 3.2.1.B, such amount is indicated as k.

Merchants can be interested in rewarding efforts carried out, with through a certain

instrument, within a specific geographical region, and during a particular timespan. For

instance, local authorities could be interested in data collected in their urban areas while

services releasing continuous data updates may decide to incentivize work done in the

last few hours. All thesemerchant’s preferences can be expressed by a voucher filter. The

role of such a filter is to exclude non-compliant vouchers from being used for a payment.

A voucher filter uses a white-list approach and can include any number of the follow-

ing criteria: (a) identifier of the instruments that generated the voucher, in the form of

an URL (see previous Section); (b) geographical structure in the form of a GeoJSON16

polygon; (c) time reference as an absolute timespan or a relative expression.

Looking at the step (d) of Figure 3.6, we can see how the pocket itself applies the

filter on the vouchers available to the user and determines whether the payment can be

completed or not. After which, the registry confirms that the vouchers selected by the

pocket are compliant with the filter.

ThePocket is responsible for selecting the vouchers requested for a payment. Vouch-

ers can be picked randomly among those that satisfy the criteria, or theymay be selected

manually by the user.

3.2.1.E One-time codes and URLs

Figures 3.5 and 3.6 showhowboth voucher creation requests andpayment instanceswait-

ing to be completed make use of one-time codes. In both cases, one-time codes identify

a pending voucher operation on the registry’s side. In the generation protocol, the user

makes use of them to redeem new vouchers, while in the payment protocol, codes are

used to complete a payment.

More specifically, a one-time code is a textual unique identifier associated to anunique

operation. A one-time code could take the form of a URL using HTTPS as a schema

and point to a registry-owned host. The URL path may contain the unique operation

identifier.

For instance, a simple one-time code could have the following shape:

16
GeoJSON:http://geojson.org/

GeoJSON: http://geojson.org/
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https://registry.
om/payment/7d9bd006

When instruments and pockets are implemented as mobile applications, having one-

time codes as HTTPS-based URLs is particularly useful since most mobile app plat-

forms allow applications to register URLs as deep links. In that, on mobile platforms

such as Android or iOS, a deep-link can be used to launch the target mobile applica-

tion automatically, also supplying custom launch parameters (i.e., the one-time payment

unique code).

In case the mobile client application is not installed on user’s smartphone, having

one-time codes implemented as URLs provides a fallbackmechanism since codes will be

opened as common URLs in the default mobile browser (in those cases the URL could

link to a landing web-page that prompts the user to install the app). Security for mobile

deep links can be ensured by using “AppLinks” onmostmodernmobile platforms [107].

POS Registry Pocket

VolunteerMerchant

permanent Cpay

permanent Cpay

verify(permanent Cpay)

transfer(v1 ,...,vk )

con�rm: URLp

con�rm: URLack

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(c   )bis

createppay (�lter, k, URLp, URLack )

Figure 3.7: Offline payment protocol.

The mechanism of one-time code, used for voucher generation and payment pro-

tocol, relies on the fact that they are discarded right after being used for the first time.

However, the payment protocol shown in Figure 3.6 can be changed to be used in offline
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mode. In this scenario payment instances are created once and marked as “permanent”

(without the need of an active point of sale). Figure 3.7 shows how the registry returns a

permanent payment codewhich does not expire after the use and can be reused multiple

times, by different users. Being a persistent URL, themerchant could encode the code

into a QRCode and display it in physical locations where users can scan it at any time—

(cbis) in Figure 3.7— without requiring an online back-end service.

3.2.1.F Platform growth

The proposed voucher-based rewarding platform is designed in order to attract both

crowdsensing systems (whose aims usually are related to pursuing the common good

and are backed by a community of volunteers) and third-party stakeholders (which may

be interested in supporting a cause or rewarding active citizenship without taking an

active part in theMCS process).

In our platform, voucher creation is linearly dependent on the amount of effort de-

voted by volunteers. That means that the system does not impose an upper bound on

the number of existing vouchers. Consequently, the risk of inflation is high then some

control over the behavior of voucher creators must be exercised (also to guarantee a fair

treatment of volunteers in spite of the diversity of the aims they pursue and in spite of

theMCS instruments they use).

On the other hand, hoarding is discouraged by this inflationary risk and by the fact

that vouchers are rigidly tied to the units of work performed by volunteers.

The central authority managing the rewarding system is responsible for approving

new crowdsensing platforms (and their aims). A transparent ethical committee should

be in charge of such evaluation, with the purpose of assessing the pertinence of any new

MCS system joining the platform.

To ensure that generated vouchers are proportional to the effort provided by volun-

teers, instruments provided by joining MCS must be checked for technical correctness.

Also, instruments have to be registered to registry in order to request new vouchers and

to be associated with a unique public identifier.

On the other hand, there is no need of an evaluation process for merchants. They

can freely choose how many (and which kinds of) vouchers they require in exchange

for the service provided. However, while any merchant’s point of sale can freely join

the system by exploiting the platform’s open protocol, technical requirements impose

that they need to register themselves to the registry. Upon such registration, the registry

provide them with an API key points of sale use for communicating. The registry could

disable a misbehaving POS if needed.
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3.3 Final remarks

In thisChapter, we confronted theproblemof providing userswith appealing incentives

to engage them in the sensing endeavor. We discussed different approaches from the

privacy point of view, proposing an original rewarding schemes classification in terms

of motivation provided and anonymity of user information. We then discussed the two

most promising paradigms between those identified as compatible with strict privacy-

preserving mechanisms: gamification techniques and voucher-exchanging systems.

In Section 3.1 we presented an overview of the potential of engaging the general pub-

lic to participate in providing useful data on roads through the road sensing app and the

proposed gamification layer. Following the C4Rs research conducted on identifying po-

tential target end users, the gamification method that has been proposed utilizes a num-

ber of core game mechanics such as collection, trading, and choose your own adventure

stories to appeal to awide-reaching audience. This is due to no core target audience being

identified and the need to garner appeal on a scale similar to anMMORPG. We predict

that the gamification design proposed in this paper will, however, appeal to younger

members of the community, with a hope that this may inspire more consideration on

developing healthier travel behaviors for future generations.

It is worth mentioning that all the game mechanics discussed only rely on data al-

ready present on-board of the player’s smartphone. In that, the game requires no further

data disclosure other than that already requested by the C4Rs platform functioning. In

this framework, the socialmedia sharingmechanic is not essential to the gameplay. More-

over, volunteers/players may willingly share their in-game achievements to the public

but the game metaphor is abstract enough to conceal any real-world user personal data,

and in doing so, it helps in preserving the anonymity of the contribution.

We acknowledge the theoretical and design proposal nature of what presented so

far. Future works will include pilot testing and feedback of the proposed gamification

strategy against that of the use of the non-gamified approach of the Road-Sensing appli-

cation. These findings will be analyzed and put forward to document the outcomes in

future works.

In the second part of this Chapter, we presented an original and open rewarding

platform based on a voucher exchange system.

Thanks to a framework for implementing cross-application incentive strategies, the

platform permits a real decoupling between MCS instruments and rewards provided

by third-party stakeholders. The protocols presented and the vouchers’ format allow

to maintain user anonymity throughout the process. Stakeholders are free to filter the

vouchers they request for providing services or goods (for aim, location, and time) and

are therefore enabled to implement social policies by fine-tuning incentives and filtering
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criteria.

The platform described is currently under development and will be adopted within

the CROWD4ROADS project already mentioned in this Chapter.

Several pilots will be deployed, making use of SmartRoadSense (in the role of the

instrument) and the parking systems of selected municipalities that have shown interest

in participatory roadmonitoring (whichwill act asmerchants and provide incentives, for

instance in the form of free parking for contributors).

The platform will also be made available to the Collective Awareness Platforms for

Sustainability and Social Innovation (CAPSSI) Community17, in order to be thoroughly

evaluated and exploited at large.

17CAPSSI: http://
apssi.eu

http://capssi.eu


Chapter 4

User Interface

Most of the times, the interaction between users and amobile crowdsensing application

happens through a user interface (UI). Even if someMCS solutions have no interface on

the client side and they only process collected data and send them to the server, themajor-

ity of MCS platforms provide volunteers and end-users with various kind of interfaces.

The sensing task and the way end-users consume processed data determine which type

of user interface the applicationmay provide. For instance, volunteersmay be enabled in

their sensing activities by amobile application, whosemainpurpose is to let users control

the sensing operation and to relay all collected data back to the server. Along with these

basic functionalities, mobile clients usually allowparticipants to select or join the sensing

task, to configure sensing parameters associated with the sensing tool (e.g., frequency of

sensing, precision of sensing, contexts in which the sensing should be activated or deacti-

vated, conditions of data transmission, ecc.), to receive feedbacks on their activity, and to

manage the rewards the user collects. As specified before (see Section 1.2.2), users are not

just exploited to collect data, but many MCS applications let them create sensing tasks

or consume final aggregated data produced by the crowdsensing process. It is in the in-

terest of a successful MCS to provide users with a suitable UI for all the aforementioned

activities.

Unfortunately, most of theMCS platforms used in real-world application still strug-

gle to provide volunteers with a usable and easy-to-understand UI. As shown in Fig-

ure 4.1, the simple act of configuring the sensing tool parameters can become cumber-

some when such settings are numerous and very specific. This issue can be ascribed to

the inherent complexity of the task or to the lack of expertise among the research team

components (who usually develop this kind of applications). Nevertheless, the MCS

paradigm is based on participants and, commonly, applications aim to engage as many

volunteers as possible in order tomaximize the coverage of the sensed area or to improve

the data redundancy (and therefore the aggregated data quality). As a consequence, the

83
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ability to attract and recruit users in joining the crowdsensing task is fundamental: hav-

ing a well-designed user interaction is paramount to lowering the barriers preventing

users from joining the sensing endeavor [193]. Tomake anMCS application as inclusive

as possible the user interface of its clients should be easy to understand, but at the same

time, it should be powerful enough not to hinder or obstacle the sensing process itself.

In this regard, UIs primary focus should be on finding the perfect balance between pro-

viding users with a complete but possibly verbose or cluttered interface and offering a

smooth but less powerful instrument to participate in the sensing process.

In the heterogenous MCS ecosystem, many applications are just prototypes (e.g.,

Anonymity [198], Anonysense [169], and Medusa [151]), simulators (e.g., MCSGame

[192], Matador [24], and Context [133]), or demonstrators (e.g., Ear-Phone [152] and

GPS-Less [167]). Among those platforms that are real-world implementations of a full-

fledge distributed sensing system many have been implemented on top of dedicated

frameworks (e.g., Sparse [182],MoreWithLess [194], SmartRoad [80], andMCSaaS [125])

ormiddlewares (e.g., MDPPS [161], Sahyog [7], andNeighbor [77]). Few contributions

proposed MCS platforms designed and implemented from scratch (e.g., SmartRoad-

Sense [2], MCS-Foster [22], and Ecosystem [81]). Focusing on the UI aspect, virtually

all of the proposed applications have a server-side interface based on web technologies

(with few exceptions [152]). Users can manage their sensing task, do queries and access

aggregated data via standard websites or web services. As regards the client-side, almost

all the proposed systems only provide participants with a graphical UI designed for the

Android mobile operative system. Only a few platforms allow users to participate in

sensing task and control their contributions using other operative systems. In particu-

lar, only PRISM [44] offers aWindowsMobile application clients, while LineKing [17],

TYT [149], and CrowITS [3] sports both an Android and a iOS mobile clients. To the

best of our knowledge, no real-world application provides a web application interface,

even if this kind of mobile clients could allow users from all of the three major mobile

operative systems (Android, iOS, andWindowsMobile) to join the sensing process. Web

application frameworks usually provide limited control on smartphone embedded sen-

sors. This is probably the reason behind the absence of web apps in the MCS scenario.

Providing a client interface in the form of a mobile application seems to be the method

of choice for almost any MCS platform. Nonetheless, mobile applications, especially

those designed and implemented from scratch, entail serious drawbacks. Mobile appli-

cations are hard to implement and — as already seen in Chapter 1 — are rarely installed

and kept by users [35]. Moreover, local storage on mobile operating systems is known

to be insecure [144]. It is clear that the sensing tasks should not be a burden but, as also

outlined by Zamora et al. [201], there are still many issues concerning the client side of

MCS which still need to be properly resolved.



85

(a) UrbanSense [113] data collection and filtering configurations

(b) ExposureSense [148] map and timeline activity views

(c) NervousNet [147] lets users explicitly set logging and sharing
configuration

Figure 4.1: To date, most of theMCSplatforms used in real-world applications still strug-
gle to provide a usable UI
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In this Chapter, we will propose an original solution to theMCS UI issue. Our pro-

posal is especially suitable for those MCS applications which require an explicit sensing

style [72] and a significant commitment by the volunteer, that is to say where empower-

ing users with an effective tool to contribute to the sensing task is crucial. We propose an

original approach to tackle the aforementionedUI issues inMCS.Our approach is based

on the emerging paradigm of conversational interfaces, and on the chatbot phenomenon

in particular.

In the following Section, we give an overview of the chatbot phenomenon detailing

its peculiar characteristics and its advantages (and disadvantages). In Section 4.2 a case

of study based on a rather simple but representative MCS application is presented. In

Section 4.3 we will discuss the approach and draw our conclusions.

4.1 The rise of bots

The reach of third-party applications for mobile operating systems— usually marketed

as “apps” — has grown dramatically over the last years. A decade after the launch of

the App Store for iPhone in 2008, the number of apps available to smartphone users

now reaches into the order of millions. Their reach, impact, and economic significance

cannot be ignored.

However, recent statistics have shown that users frequently make use of a limited

set of popular apps. Moreover, most smartphone owners are accustomed to installing

nearly zero new apps on their devices on a monthly basis [35]. For app developers it has

become more and more difficult to make their products visible in an already crowded

application store, where competition is harsher than ever.

Instantmessaging (IM) and social network applications consistently take up the top

spots among themost used applications. IM apps in particular have shown tremendous

growth over the last years, recently taking over the lead in terms of number of users,

growth, and user engagement [190]. Messaging platforms are getting immense atten-

tion and — as their success depends on the network effect of their users — ferociously

compete for market share.

Starting in 2014,manymessaging systemshave introduced support for so-called “bots”:

enhanced conversational agents that can chat with users, right inside the messaging app

itself. These bots live inside a very familiar place: in a conversation thread, right next

to private conversations with friends and relatives, which is increasingly the most used

feature of a user’s smartphone. Most users in fact use messaging apps several times a day

and have a well-rounded understanding of their interface and manner of working.

Instead of trying to attract people to new apps, bots provide an incredibly conve-

nientway for services anddevelopers to engagewith userswhere they already are,making
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use of the existing conversational paradigm. Even if the conversation follows the familiar

and recognizable conventions of a messaging system, the exchange does not need to be

text-based. Thanks to the richness of the development frameworks made available by

manymessaging platforms, bots can also exchange information using complex messages

and UI primitives, which allow the conversation to be more efficient.

Bots are growing fast in number and many IM platforms have started offering bot

stores, just like mobile OS platforms do for apps. In fact, the robustness of the messag-

ing ecosystem— encompassing its existing user base and distribution channels —make

bots the perfect bridgehead to transform instant messaging systems into software deliv-

ery platforms. This could be a lucrative endeavor formessaging apps, bringing them into

competition with the mobile platforms on which they operate.

However, to the best of our knowledge, a thorough and detailed appraisal of this

phenomena is still missing.

In this Section, we examine this trendwith a history of existing chatbots and a survey

of popular IM platforms. We then propose the definition of “Botplications”: conversa-

tional agents designed to follow a set of guidelines that can serve as functional replace-

ments of apps. The distinguishing characteristics of such agents are identified, including

differences and advantages over traditional applications. We then speculate about the

future trends of these technologies and conversational interfaces.

4.1.1 History of conversational interfaces

The idea of building a computer — or better, a program — able to talk with humans,

giving the illusion of a true human-to-human interaction, can be dated back to the ’50s,

when Alan Turing proposed his seminal “Imitation Game” [177]. Better known as the

Turing test, it aims to determine if a machine can give the impression to other humans

of being human itself. Today the Turing test is still used as a test for evaluating to which

extent a program, a bot, is human-like: the Loebner Prize is annually assigned to the best

computer system pretending to be human.

4.1.1.A Chatterbots

One of the first examples of such a program was ELIZA, created by Weizenbaum in

1966 [186]. ELIZAdid simply answer all theuser’s utteranceswith other vaguequestions,

giving a rough impression of aRogerian psychotherapist. Weizenbaum’s first example of

a so-called “chatterbot”, and its crude attempts at fooling users into believing they were

interacting with another human, laid the foundations for chatterbots and bots in the

following 50 years, until today.

Another example of a popular andmore recent chatbot isALICE (Artificial Linguis-
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tic Internet Computer Entity), which won the Loebner prize in 2000, 2001, and 2004. It

was developed byWallace in 1995, inspired by ELIZA. ALICE relies on a simple pattern-

matching algorithm: it uses pattern templates to represent input and output andmakes

use of recursive techniques to apply different rules [180]. The underlying intelligence is

based on the Artificial Intelligence Markup Language (AIML), which makes it possible

for developers to define the building blocks of the bot’s knowledge [179].

4.1.1.B Personification

From the initial attempts with ELIZA and ALICE, to the ambition of developing “in-

telligent” agents able to fully converse with humans using natural language, bots have

been increasingly employed inmany fieldswith a discrete success, yetwith limited spread.

They have been applied in e-commerce applications [94], likeNicole, a virtual assistant

with customer service tasks, orAnna by IKEA; in education, like CHARLIE [126], a bot

that lets students communicate with the online learning platform INES, or TQ-bot [55],

dedicated to student tutoring and evaluation; information retrieval [160, 165], and e-

government services [117]. Most of those bots are based onAIML andALICE [162, 166].

Along with chatterbots, supported by the evolution of Automatic Speech Recog-

nition (ASR) systems in the ’80s, Spoken Dialog Systems (SDS) started drawing the

attention of academics and the industry [123]. The conversation did move from a tex-

tual to a spoken channel, as a presumably easier and more natural interface for humans.

ATIS [74] was a telephone-based flight reservation system, funded by DARPA, devel-

oped in 1990, in the USA; in the same years, SUNDIAL was developed in Europe [142],

with the same aim of giving information about flights via telephone. The latter system

was able to understand between 1.000 and 2.000words in four different languages. Mer-

cury was a similar, more recent, undertaking in this field [163]. These systems addressed

several difficult technological issues, including speech recognition, understanding the

user’s requests, and giving the system the means of offering satisfactory answers.

A further step toward the “personification” of intelligent systems has been achieved

with the development of Embodied Conversational Agents (ECA) [123], in the late ’90s.

Animated characters, with human features, able to simulate emotions with facial expres-

sions and gestures, have been employed in different fields to interact with humans. They

seem to be perceived asmore trustworthy and agreeable, and are thus employedwith the

hope of being more readily accepted in everyday life applications than simple textual or

spoken interfaces. Cassell et al. developed REA (Real Estate Agent) [25], a humanoid ex-

pert in real estates, that interacted with users and could sense them bymeans of cameras.

Kopp et al. give another example of an ECA that has been used as a museum guide, in

order to engage visitors and to interactively chat with them. In a real world study it was

observed that users were inclined to use human-like communication strategies and that
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they perceived the agent as being sociable [98].

4.1.1.C Instant messaging

After the success of browser chats at the beginning of the ’90s, like IRC (Internet Re-

lay Chat), the end of that decade has seen the spread of instant messaging services, such

as AOL Instant Messaging (known as AIM), Yahoo! Messenger, and MSN Messenger.

Many of these platforms allowed users to add bots to their contact lists as if theywere real

people: they could then exchange simple text messages and receive different kind of in-

formation [94]. A famous example of such a bot was SmarterChild, that could converse

about breaking news and the weather.

4.1.1.D Virtual Private Assistants

Only few years ago, “smart assistants” have started drawing the attention of the greater

public. According toMcTear et al., different reasons have influenced this new success of

conversational interfaces [123]: the progresses in artificial intelligence assistive technolo-

gies, like speech and image recognition; the emergence of the semantic web; the increas-

ing availability of connectivity and improvements in device hardware; and the renewed

interest of big technology players. Apple’s Siri (generally considered to be the the first

public voice-enabled Virtual Private Assistant), Microsoft’s Cortana, Google Now and

Google Assistant, AmazonAlexa, and Samsung S Voice are themain actors of the last five

years in the field of conversational interfaces.

Most notably, the reasons of the growing success of VPAs could also be explained

by the many differences in respect to older personal assistants. First of all, smartphones

have become pervasive in everyday life and are perceived asmore personal than any other

device. The same goes with the assistants, which are always present for the user. Mod-

ern assistants are perceived as more flexible: they are not limited to a very narrow task,

but are able to interact with a plethora of applications, internal and external to the de-

vice [10]. The interaction is more “human-like”, using simple, yet impressive tricks: the

effort made to provide direct answers, in integrated and often spoken dialogs; improve-

ments to the inference of the user’s intents and the correction of ambiguities; better in-

terpretations of the input’s semantics; the capability of answering sassy questions, giving

the illusion of a synthetic and likable personality. All these factors have probably made

the luck of modern VPAs and the failure of older ones, like for instanceWildfire, a VPA

of the mid ’90s, multi-modal and phone based, but with poor human-like interaction

capabilities [87].

Even though basic services of the aforementioned personal assistants are somewhat

similar (including web search capabilities, event planning, voice calls andmessaging, mu-
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sic playback, personalized notifications, weather information retrieval, etc.), some pecu-

liar aspects can differentiate them. Siri and Cortana are the more similar ones, acting as

personal assistants with a well defined “personality” that transpires in many of their an-

swers. Google Now is also similar to these first two, but lacks a well defined personality

and pulls information directly from the user’s online Google Account, possibly raising

some privacy questions. Samsung S Voice is probably the more “classical” one among

the others and may not be perceived as personal like the other ones. Lastly, Amazon

Alexa is going in a somewhat different direction: developed for Amazon Echo, a smart

speaker, it brings the Internet of Things (IoT) closer to everyday life and it can be inte-

grated with different other devices and services, especially in regard to home automation

and entertainment.

It is alsoworthmentioning the IBMstatistical responding agent called “Watson” [53],

which stepped into the limelight in 2010 for participating in the “Jeopardy” television

program. In that occasion Watson beat both his two human competitors only relying

on an off-line database of unstructured contents. In more recent years, IBM further de-

velopedWatson, turning it into a powerfulArtificial Intelligence (AI) assistant employed

in health-care and custom-care scenarios. Watson can also be exploited as a cloud-based

cognitive services of composable AI building blocks [195]. Developers can train theWat-

son AI to answer to answer questions posed in plain natural language about particular

intent, and use it to build applications like chatbots.

4.1.1.E The rise of a new bot-based paradigm

In the last couple of years a new approach to conversational interfaces has been reclaim-

ing prominence: an apparent return to the classic chatterbot texting interfaces has been

observed, with the main difference that these new bots have gained additional capabili-

ties and now “live” in the cloud.

Starting in 2014, many online messaging systems (like Kik, Telegram, and WeChat)

have opened up to third-party developers, offering the means to building bots and pro-

grammatically exchanging messages with users through their platforms. Application

Programming Interfaces (APIs) for bots expose high level services (messaging, payments,

bot directory, authentication, etc.) and UI elements (buttons, locations, images, etc.)

giving developers the possibility of implementing innovative services through a conver-

sational user experience.

Services offered by these new bots are of a higher level than the ones offered by their

predecessors. Bots often feature access to other services that have utility in everyday life,

such asordering food,managing an e-commercepurchase, booking restaurants, ordering

a cab, and so on. Examples include health care bots such asNombot [67], a bot helping

users to track their daily food consumption on Telegram; educational bots, like the one
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by Chaniago et al. that let parents track their children’s presence at school [26]; educa-

tional help, likeMOOCBuddy that proposes MOOC courses over Messenger [85].

It is also of note that the possibility of building more helpful and practical bots is

in good part due to the increased availability of service APIs open to third-parties and

the rise of the “platform” business model [31]. The recent decade has seen a growing

attention to open data as well, which is increasingly made available by governments or

administrative entities, also providing a useful foundation for many bots.

Since data and services are more and more accessible through programmatic inter-

faces, and given that bots often offer a simpler development platform than apps in terms

ofdevelopment andmaintenance efforts, the task of offering access to such services through

a conversation interface is very approachable.

Many of the major messaging platforms1 lately have started offering bot directories:

repositories similar to app stores, listing the available bots that can be accessed through

the platform.

4.1.1.F Beyond “Chatbots”

In light of the recent resurgence in popularity of chatbots, we argue for a new and more

significant taxonomy of autonomous conversational agents.

Firstly, the very nature of the term “chatbot” sets certain expectations about the

agent’s interactions: users may assume that a chatbot will be able to “chat” with them

using natural language, but only a subset of autonomous agents are designed to simulate

natural conversations. Agents that are not will inevitably fall short in their understand-

ing of humans, who have been generally shown to tend to impatience when interacting

with software agents [92, 10].

In fact, the “chat” verb trivializes the potential of bots, leading back to chatterbots as

silly novelties with which to exchange messages on a command-line, mimicking human

idiosyncrasies without any further purpose, just like with the aforementioned ELIZA

chatterbot. Instead, as we discuss in the next section, bots have the potential to be a pow-

erful and efficient software platform, only incidentally accessible through text messages.

1Kik: https://dev.kik.
om/,
FacebookMessenger: https://developers.fa
ebook.
om/do
s/messenger-platform ,
Telegram: https://
ore.telegram.org/bots,
Skype: https://www.skype.
om/en/developer/ ,
Line: https://developers.line.me/messaging-api/overview ,
WeChat: http://dev.we
hat.
om/we
hatapi ,
Slack: https://api.sla
k.
om/bot-users ,
all accessed on October 2017

https://dev.kik.com/
https://developers.facebook.com/docs/messenger-platform
https://core.telegram.org/bots
https://www.skype.com/en/developer/
https://developers.line.me/messaging-api/overview
http://dev.wechat.com/wechatapi
https://api.slack.com/bot-users
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4.1.2 Botplications

Among the plethora of new and old conversational interfaces, we identify a category of

conversational agents that, having been designed according to principles of simplicity

and effectiveness, can serve as functional replacements of mobile applications.

We call them “Botplications”.

A Botplication is an agent that is endowed with a conversational interface accessible

through amessaging platform, which provides access to data, services, or enables the user

to perform a specific task.

In particular, a Botplication is generally characterized by the following distinguish-

ing features.

4.1.2.A Thread as app

Botplications are stepping stones in the evolution from an app-centric mobile OS expe-

rience — where the whole user experience of the device is concentrated in mostly inde-

pendent applications that serve as an enclave of unique services and functions — to a

thread-centric experience. That is, a user experience where services and information are

provided as streams of messages and notifications, presented using a coherent and con-

sistent set of interface paradigms.

Messaging threads are independent conversations that enclosepersonal relationships.

Exchanging messages is in fact the primary method for users of a mobile OS to keep up

relations with other people, in a very natural and intimate way. These personal conver-

sations and relations can be naturally extended to services and businesses.

Each one of these threads is an entity that can send updates and notifications to the

user, even in multiple parallel conversations, while taking advantage of the built-in facil-

ities of the messaging system.

Among these facilities, for instance, the ability of users to retain total control over

each single thread: they can chose to reply, mute the conversation, or even to perma-

nently delete the thread. Also, threads have the capacity of keeping track of read/unread

status and message drafts on multiple devices or platforms. The user has the ability to

search for a message across all open threads, instead of having to remember in which par-

ticular app or service the information is hidden. Incoming messages on any thread are

notified to the user in a familiar way.

Most modern messaging apps are in fact presented as a threaded “inbox”, automat-

ically grouping messages from the same sender and surfacing recently updated conver-

sations that may be of interest. Instead of having new information dispersed across a

number of isolated apps, each with its own custom interaction modes, users can rely on

the fact that frequently or recently used services are automatically promoted to a visible
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position.

A user’s “inbox” acts as a replacement for the app-centric homescreen of a mobile

OS, where the most recent threads serve the same purpose of a dynamic list of favorite

apps.

Conversation threadsmake it easy to provide integrated tools and services thatmake

it easy to accomplish regular tasks, but in a recognizable and familiar place: a personal

relationship developed through the exchange of text messages.

4.1.2.B History awareness

Just like mobile apps, Botplications are designed to solve a specific and circumscribed

issue. However, unlike most apps, Botplications inherently keep an exhaustive chrono-

logical log of past interactions with the user in their thread.

This ingrained feature of a thread of messages allows the user to explore past infor-

mation in a familiar way, by scrolling through a timeline or by using built-in temporal

search. Users can approach the service with more confidence, since past state appears

frozen in previous messages and data does not unexpectedly vanish.

History can only change with familiar and explicit user actions, deep-seated in mus-

cle memory for the majority of users used to receive and send text messages. New mes-

sages are appended to the history in a predictable and well-known way, while past inter-

actions can be deleted through explicit action of the user.

History also serves as guidance to users, since past commands (and the results they

generated) can be easily used as a template for future requests.

Also, past history provides the context in which all future interactions can be eval-

uated. Information collected by a Botplication should be maintained and used in order

to streamline requests, skipping questions and automatically disambiguating between

different choices if possible. A conversation is a natural and effective way to collect per-

sonal information, interests, purpose, and preferences of the user, all of which can be

employed in order to improve the quality and accuracy of the service.

4.1.3 Enhanced UI

Despite the fact that Botplications derive from chatterbot-like conversational interfaces,

their UI does not have to consist of mere plain text messages.

Modernmessagingplatforms support a variety ofmessages, includingpictures, “stick-

ers” (preset or custom images that convey emotion), videos, and audio. Most platforms

also allow the transmission of packaged data, as in the case of geo-locations or contact

information, in addition to generic data files. While these platforms of course do not of-

fer the graphical capabilities of apps, it is important to make use of the features available
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and to exploit the conventions of the messaging platform. For instance, instead of print-

ing out a raw URL, some platforms may display links as nicely formatted cards with a

preview.

Moreover, on many messaging platforms even plain text messages can be enriched

with a limited subset of rich text formatting. Bold, italic, and embedded links are the

most common formatting options, available throughmarkup languages such as a subset

of HTML or Markdown. Unicode-encoded emoji characters can also be used to effi-

ciently transmit additional meaning or to convey emotion.

Typing should be reduced to a minimum: ideally it should be limited to very short

and concise commands and replies, of few characters. A fitting comparison can be done

with UNIX commands, which are an example in terseness, as they were designed to effi-

cientlywork over teletypewriters— the primeval example of text-based interfaces— and

reward users with powerful functionalities through very little typing.

Even if it canbe argued that younger generations are gettingmore accustomed to typ-

ing on touch-based soft keyboards, the practice of shortening common words or using

abbreviations in everyday messaging by itself demonstrates why full-fledged and verbose

conversations should be avoided if possible. Interactions with Botplications should fol-

low linear conversation routes and avoid complicated branching or multiple complex

dialogs: anything that cannot be accessed through a couple of taps on the screen will be-

come tiresome tomost users. In auser studybyAzenkot et al. the average text entry for all

participants on apopularmobileOSkeyboardwasof 41.01WordsperMinute (WPM)[6].

Also, the theoreticalmaximumtyping ratepredictedbyMacKenzie et al. wasof 43.2WPM

for expert users on QWERTY keyboards [116], which is of course far lower to what can

be achieved by expert typists on a physical keyboard [68]. Text interactions for mobile

users should therefore be kept short and precise.

Many messaging platforms also feature advanced structured message forms, which

can further enhance the flow of conversation. Structured messages may, for instance,

contain buttons for preset “canned” replies, show different alternatives in a rich repre-

sentation, or show a list of available commands. Examples of suchmessages are shown in

the next section. The advantages of structuredmessages aremanifold: (1) They constrain

the conversation into a limited number of expected outcomes, reducing the possibility

of users feeling trapped in a dead endwhere they have to “guess” their way out. (2) They

push the user to use the service, suggesting how the conversation can continue. They

also reduce the need for the users to “explore” the interface, making it easier to learn and

use. (3) Buttons and quick replies reduce interactions to a single tap instead of requiring

complex typing. (4) The service can be implemented more easily.

Botplications try to fill the gap between plain conversational interfaces—which are

inherently inefficient to use and offer littleway in terms of user experience customization
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— and the world of the full graphical interface.

4.1.3.A Limited use of Natural Language Processing (NLP)

Given the aforementioned rising interest in Virtual Private Assistants (VPAs), voice ap-

pears to be a natural fit for conversational interfaces. However, to the best of our knowl-

edge, existing bots onmessaging platforms avoid voice processing and choose digital text

as the most direct and unambiguous form of communication, possibly adopting NLP

systems in order to extract commands and intent from the user’s messages. Even if nat-

ural language understanding is getting progressively more advanced [10], in many sce-

narios complex dialogs break down because of simple misunderstandings, because of

unexpected turns of phrase (human language shows incredible variation and rarely fol-

lows a script), or because the user’s context cannot be fully elicited from the conversa-

tion [123, 9].

Botplications should not attempt to provide the complex experience of a full VPA.

Instead, in keeping true to the principles of simplicity and effectiveness, Botplications

should almost completely avoid natural language where possible. At the scale of a single

bot, going after AI is mostly excessive and counterproductive, when the same results can

be obtained with simple text commands using a limited structured language.

Botplications should in fact not pretend to be human: except in cases where this is

desirable (e.g., for customer support or as a barrier before an actual conversations with

a human operator is activated), it should be clear to users that they are talking to a ma-

chine. Even if artificial delays or “is typing” indicators can be used in order to make the

conversation more familiar to the user, faking human responses risks to increase the per-

ceived distance between service anduser instead of decreasing it. Texting a computer that

doesn’t understand what the user is saying can be a frustrating experience, in particular

when the computer hides its failures inside a dialog that is artificially kept “natural” and

“human-like”. This hides failure points in the conversation and makes the user feel less

in control of the interaction.

However, this does not imply that bots shouldn’t show a personality or take advan-

tage of humor and emotional responses to provide a charming and likable interaction

with users.

Botplications should rely on the limited—but accurate— interaction tools themes-

saging platformmakes available, while NLP frameworks can optionally be employed to

accommodate unforeseen user requests. AI and deep human-like dialogs are red her-

rings in the current development of conversational interfaces: Botplications should be

about accessing services efficiently, a command-line-like interface to cloud-based APIs,

not talkers.
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Table 4.1: Features of major messaging platforms that support bots (as ofOctober 2017).

Platform MAU† Groups Mentions Message types Buttons Carousel Quick reply Payment

Messenger 800M Picture, video, file, voice. X X X X

Persistent menus, several message templates (Airline trip, Buy, Receipt, Web link, etc.).

WeChat 700M X Picture, video, sticker, voice, location. X‡ X

Deep-links through QR codes, Rich media andMusic messages. Integrated web views§ .

Skype 300M Picture, video. X X

Several message templates (Hero image, Thumbnail, Receipt, Sign-in, etc.), phone call support.

Line 220M X Picture, video, sticker, voice, location. X X

Imagemapmessage template (picture with multiple hot-spots).

Telegram 100M X X Picture, video, sticker, file, voice, location. X

Persistent commands. Deep-links to conversations.

Kik 80M X X Picture, video, sticker, voice. X

Kik code identifiers, browser integration via Javascript.

Slack ≩ 3 M X X File. X

† Monthly Active Users, based on most recent quarterly report published at the end of 2016. Numbers for Slack are an
approximation based on known Daily Active Users.
‡ In the form of custom defined menus shown in the conversation UI.
§ WeUI, HTML/Javascript library that provides web-based UI elements coherent with the WeChat app:

https://weui.io/0.4.x/ .

https://weui.io/0.4.x/
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4.1.3.B Message self-consistency

Each single message sent by a Botplication should contain the full context of the con-

versation and should embody what a single UI screen represents for mobile apps. Users

should not have to browse through their conversation history in order to figure outwhat

they are attempting to do and what the service is expecting. Each message has an atomic

meaning and stands on its own.

The scope of eachmessage must be clear, its intent must be explicit, and what action

must be taken by the user — if any—must be explicit and unequivocal. Indeed, a mes-

sage delivered by a Botplication should be conceptually seen as amicro application, while

the conversation is a timeline of past application screens. As mentioned before, struc-

tured forms of messages, which include buttons or commands, should be used where

appropriate.

Some messaging platforms have, in fact, the ability to alter messages after they have

been delivered. In that case, messages can be changed based on the availability of new

data or other changes in state, giving the impression of a living view on the service.

4.1.3.C Guided conversation

An important part of an application’s user experience is based on user guidance and, like-

wise, the same care should be applied when designing conversational interfaces through

text messages. In fact, because of the free-form nature of the medium, it is easy for bot

users to get lost and not to be certain of what commands orwhat exact syntax is required

to perform the desired action.

A successful Botplication guides the user through a task in order to avoid this im-

passe. The serviceproactively suggests actions that are likely to followupafter the current

interaction, offers alternative choices when needed, and generally offers a framework in

which user interactions feel reliable. This can be achieved using the same UI enhance-

ments mentioned before, that is through the use of buttons, formatted messages, or

built-in menus that offer interface guard rails to the conversation.

Also, notice that when starting the first interaction with a bot, manymessaging plat-

forms offer a way to show a welcome message to the user. The design of the onboarding

experience must take into account the initial user guidance and ensure that all function-

alities are readily available.

4.1.4 Technological survey

In this section the most popular messaging platforms that support bots through their

APIs will be taken into exam, describing distinguishing features of each one.
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All of the platforms mentioned allow third-party developers to register an identity

for a virtual agent and to programmatically receive messages from any user of the plat-

form, either by accessing an API end-point (pull mode) or by being called back by the

platform itself using a “web-hook” (pushmode). All platforms, in any mode, make use

of the HTTP protocol.

TheKikmessenger service launched in 2010 and introduced bots in 2014. On April

2016 the platform launched a “botshop”, which includes a directory of available service

bots. WeChat is a popular IM system in China, first launched in 2011, that always in-

cludedmore features than simplemessaging. Theplatform includes support for “Official

accounts”, which can provide services to users. It includes a payment system that allows

the exchange of monetary gifts, known as “red envelopes”. Telegram published its bot

support API on July 2015, further expanding it with the 2.0 API in April 2016. Line also

launched its first messenger API in 2015, while Facebook’sMessenger and Skype joined

the game only later, including support for bots in April 2016. The former also added

support for payments in September 2016.

Given the rising interest in bots, most platforms are rapidly iterating and evolving

their APIs and services to third-party developers. This survey is updated toMarch 2017.

In Table 4.1 the platforms considered in this study are listed, firstly reporting the

amount ofMonthly Active Users (MAU), which gives an approximation of the relative

popularity of each system. Furthermore, theTable showswhether the platform supports

group messaging (i.e., if one or more bots can be added to a group conversation between

real users) and mentions (i.e., if bots can be “called into” a conversation using a special

combination of characters). Both of these features allow bots to be used in order to

perform specific tasks for a group of users instead of only one. The Table also reports

the different message types supported by the platform (including pictures, voice, video,

stickers, and structured messages, discussed in the next Section) and other significant

features.

4.1.4.A Interface features

Messaging platforms distinguish themselves not only for their underlying technical as-

pects, but also because of the different user interface elements they offer to bot developers

and, ultimately, to the end-users. While sending and receiving text and basic multime-

dia messages is a common feature, more structured messages are available only on some

platforms and often differ in key aspects.

Many platforms offer away to suggest canned replies, which can be sentwith a single

tap. For instance, onMessenger bots may display a selection of quick replies that appear

on the bottom of the conversation and remain valid for one interaction, as shown in

Figure 4.2a. On Telegram and Kik, bots have the ability to replace the keyboard with



4.1. THE RISE OF BOTS 99

(a) (b)

Figure 4.2: Features that allow users to pick suggested replies. (a) Quick replies on Mes-
senger. (b) Button keyboard on Telegram.

suggested responses, as shown in Figure 4.2b.

While these preset replies can change in the course of the conversation, other UI fea-

tures can immutably be added to the chat. In Figure 4.3a a list of commands are shown.

On Telegram, like on Slack, commands are characterized by starting with a ‘/’ character

and are always available to the user to perform tasks in a command line-like experience. A

similar system, but with a hierarchical structure, is shown in Figure 4.3b: WeChat allows

developers to add a fixed menu to the chat interface, showing a maximum of 3 first-level

options and several second-level ones. The same system has been also adopted by Mes-

senger in March 2017. Commands and menus alike give direct access to a bot’s main

features.

Other UI features are not bound to the overall conversation, but are instead tied to

a specific message. For instance, carousel messages shown in Figure 4.4a make it possible

to include multiple rich cards, provided with an image, a description, and a button, and

make them horizontally scrollable to the user. In Figure 4.4b a message with embedded

buttons is shown: in this case the actions provided to the user are not persistent through-

out the conversation, but are limited to one single interaction. Both message formats

allow bot developers to show available alternatives to the user, providing a well defined

path for the conversation.

Several other message formats are available to specific platforms, among which mes-
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(a) (b)

Figure 4.3: Structured commands available during the whole conversation. (a) Com-
mands on Telegram. (b) Custom defined menu (with an open second-level menu) on
WeChat.

sages including a “Buy” link for shopping-oriented bots, messages with music support

in WeChat, and flight travel itinerary messages onMessenger.

In terms ofmaking bots interoperatewith external systems, it is noteworthy that sev-

eral messaging platforms have included support forQRCodes or variations thereof. On

WeChat, code scanning can be used internally to the system in order to send payments

of a preset value to a given contact, which makes the platform compelling for sellers of

physical goods as well. On the other hand, Skype, Telegram, and Messenger allow web

sites and apps to launch conversations through the use of a specially marked URL. Such

URLs include a custom data payload that is sent to the bot in order to track user entry

points or to invoke specific actions. This mechanism— also known as “deep linking”—

can be used to embed bots in innovative and complex workflows [96].

4.1.4.B Advantages of Bots for users

Instant availability Bots do not need to be downloaded and installed: they are immedi-

ately up and running as soon as a conversation is started inside themessaging app. Device

storage capacity, installation, and complex configuration steps are not required. This

makes bots fast and lightweight, if compared to traditional mobile apps.

“Instant Apps”, a technology for Android still in development, will bring a simi-
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lar experience to apps as well, making them instantly available to users without installa-

tions2.

Gentle learning curve Texting has been used since the dawn ofmobile phones and this

makes it quite natural for users of any skill level. Provided that the bot provides adequate

guidance through its features, learning how to interact with it is never an outlandish

experience.

Since all bots on the same messaging platform rely on the same UI building-blocks

(such as buttons, carousels, quick-replies, and so forth, down to the basic text messages),

all bots share a common UI vocabulary. Knowledge in the use of one bot can easily be

transfered to the usage of other bots.

Notifications Manymobile applications implement their ownnotification system, used

as amean to re-engage inactive users. Instant messaging applications however already in-

clude an efficient and functional push notification system, which is available by default

without any additional implementation effort.

According to statistics by Localytics3, more than 50% of users find push notifica-

tions annoying. However, receiving notifications through the messaging apps could be

perceived as being less invasive.

Social graph and contacts Users are already accustomed to voluntarily sharing and stor-

ing contact information in messaging apps. In fact, as soon as a bot conversation is ini-

tiated, the bot automatically receives the user’s basic personal data. When participating

in a group conversation withmultiple users, bots also gain access to the contact informa-

tion of all participants.

Moreover, all contents generated by an interaction with the bot exist in the form of

messages, which can be directly forwarded and shared with friends. Thus contact to the

bot can be spread through a user’s social graph, without leaving the messaging app or

installing new applications.

Platform independence Bots live inside instant messaging applications without having

to worry about which mobile platform they are running on. This makes bots indepen-

dent from the underlying host operating system: each bot is inherently available on all

operating systems the messaging app supports, without any graphical or functional ad-

justment.

2Android Instant Apps: http://developer.android.
om/topi
/instant-apps/
3Localytics: http:/info.lo
alyti
s.
om/blog/the-inside-view-how-
onsumers-

really-feel-about-push-notifi
ations [last accessed 10 Oct 2017]

http://developer.android.com/topic/instant-apps/
http:/info.localytics.com/blog/the-inside-view-how-consumers-
really-feel-about-push-notifications
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(a) (b)

Figure 4.4: Structuredmessage templates inMessenger. (a)Carousel presentingmultiple
choices through horizontal scrolling. (b)Message buttons embedded in a message.

On the contrary, native mobile applications must be adapted or rewritten for each

mobile operating system, often with great effort. Users sometimes perceive the same

application as being different if they are using it on different operating systems, which

can frustrate user engagement. Also, mobile applications must be frequently updated in

order to keep up with upgrades to the host system and its features.

Authentication Usually, for each new application or service, users need to register and

go through the steps of creating a new account. This is a known obstacle to user on-

boarding, who notably dislike long registration processes and often do not remember

new account credentials.

In contrast, user authentication is not needed in bots. The hosting messaging plat-

form already provides and guarantees the user’s identity reliably. Users are uniquely iden-

tified by default and they do not have to create additional accounts and passwords in

order to interact with the service.

Payment support Some of the analyzed platforms include payment services, integrated

in the messaging system. Often users will have already connected their credit cards or

bank accounts to such services, allowing bots to use the existing payment methods in a

safe and reliable manner, for both user and developer. In contrast, for each brand new
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app requiring payment capabilities, users have to re-connect their payment accounts and

have to trust the newly installed app.

Discoverability As seen previously, discoverability is a very real problem for mobile ap-

plication on application stores: fierce competition and very small economic margins of-

ten make it very hard to compete and gain visibility. The same issues exist for bots. Even

if many messaging platforms offer “bot stores” with a selection of available bots, emerg-

ing and gaining a solid user base remains one of the main development issues. However,

bots have some advantages considering that they can be easily integrated in group con-

versations or shared just like any other contact.

Asynchronicity Exchanging instant messages is an asynchronous task: after sending a

message, users do not have to wait for a reply. Conversation threads store the context,

letting user free of leaving a conversation and going back to it later, picking up the dialog

from the very last interaction. Multiple conversations can be easily carried forward in

parallel.

Limited data requirements Downloading a new app can have a sizable impact on a

limited mobile data plan, whereas starting to use a new bot only requires to initiate a

new thread in an existing messaging app, with a negligible impact in terms of data traffic.

The data size of exchanged messages in an instant messaging app is limited and usually

more predictable. This makes bots very attractive for users with limited data plans or

in countries with less developed technological infrastructure [130]. In fact, Facebook

recently developed “Lite” versions of its applications, specifically targeted at emerging

markets, where limited data plans are more common [191].

4.1.4.C Advantages of Bots for developers

Communication reliability Instant messaging applications are naturally designed for

fast and efficient message delivery. They are capable of dealing with all kinds of network

issues, automatically retrying transmissions and ensuring that themessage is either deliv-

ered or that failure is handled adequately or correctly reported to the user. Security and

privacy of transmitted messages are also guaranteed by many platforms.

On the other hand, mobile applications must implement most of these networking

features independently, incurring in the likely risk of bugs or security issues. These issues

are multiplied in case of multi-platform applications.

Fast iteration Since a bot’s logic is implemented server-side and no code must be de-

ployed onto user devices, deployment is effectively effortless. Similarly to what happens



104 CHAPTER 4. USER INTERFACE

for web pages or web apps, bot updates are also almost immediately propagated to all

users. This form of deployment also completely avoids issues with app stores, for in-

stance due to rejections or delays during application review. This allows for fast and un-

complicated development iterations.

Lack of version fragmentation The immediate propagation of updates to all users also

means that no user risks staying stuck with an old version of a mobile application: just

like web apps, bots are always updated to the latest version.

Limited design e�orts Bots heavily rely on the instant messaging application UI and

usually havequite limitedpossibilities of graphical customization. This reduces the inter-

face design time, limiting it to minor customizations of interface elements and focusing

on a rich user experience using few simple building-blocks.

Development ease As seen in the previous Sections, several important and demanding

services are already implemented by the messaging platform. Services such as user au-

thentication or payments normally require major efforts and attention by mobile app

developers. Bots however already include many of these services, which are ready to use

through developer APIs.

Moreover, having a generally smaller API surface—which can be used through any

development platform and language — developing a bot is generally cheaper and less

time demanding than the development of a mobile application.

4.1.5 Discussion

Aspreviously examined, themobile device ecosystemhas been characterized by thepopu-

larity ofmobile apps and app stores as a software distribution platform in the last decade.

Recent statistics have however shown that users tend to rely almost exclusively on a very

restricted set of consolidated, preferred apps, instead of trying out new ones, leading the

number of new downloaded apps nearly to zero in the short-mediumperiod [35]. More-

over, a 2014 report has also shown the surprising overtake of online messaging platforms

usage over social network apps [190].

Bots on instant messaging platforms have recently started gaining widespread inter-

est. As discussed above, not only do bots rely on very popular messaging apps, they also

eschewmanyof thedifficulties ofmobile appdevelopment anddistribution. In fact, bots

can increasingly be considered as a novel approach to the software distribution problem.

From this point of view, bots show many similarities with mobile web apps, as a

distribution system competing with native mobile applications [27]:
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1. they allow the development of multi-platform services using a commonly avail-

able platform (messaging apps or the web),

2. they are partly limited in terms of what features of the mobile device they have

access to (this is particularly true for bots, which however have a different usage

paradigm with different expectations from users),

3. the “look and feel” is different from a native app (however, while the user expe-

rience of mobile web apps may be different from what users are accustomed to,

bots offer a very familiar interface that feels native to the messaging app at least),

4. both approaches favordevelopers in termsofdevelopment, distribution, andmain-

tenance efforts, however bots also ensure a high ease of use to end-users.

These advantages notwithstanding, there are different drawbacks to bots that must

be taken into consideration when evaluating their merits as a software platform.

In the first place, not every application is well suited for conversational interfaces.

There are several tasks that are inherently more convenient to be tackled by means of a

dedicated app, with access to local computational resources and data storage, instead of

a remote bot. Other tasks simply work better with a rich visual interactions that goes

beyond what a conversational interface can offer.

Even if bot development is very approachable by developers and offers many ad-

vanced features at essentially very little effort, a bot is tightly bound to its messaging

platform, which may lead to design constraints. There are, very noticeably, inherent lim-

its to the customization of UI elements, the look and feel, and finer details of the user

experience.

Bots require an active Internet connection in order to work (in contrast to modern

mobile web apps, which may provide an offline experience). This can create discontinu-

ities in service availability and negatively affect the bot’s perceived reliability, in case of

lacking network coverage or limited data plans, especially in growing markets [130].

Despite the appearance of “bot directories”, discoverability is still a crucial issue that

must be tackled both by developers and bot platforms. Also, the risk of an overpopu-

lation of bots that hinders the discovery of new services, like for app stores, is equally

likely.

Many recent efforts in the field of bots have made use of natural language process-

ing in order to create a generic conversational interface, supporting natural human-like

interactions. There is however an inherent distinction between conversational virtual

assistants (such as AmazonAlexa or Apple’s Siri), which are well-suited to interactions

through spoken natural language, and service-oriented bots, that currently benefit from

structured input. While the first kind of bots may provide a more convenient, and in



106 CHAPTER 4. USER INTERFACE

some cases instinctive, interface, the latter can focus on providing a more efficient and

lean experience. Also,NLPcapabilities arepresentlynot always sufficient to fulfill natural-

feeling conversations and they still impose a learning curve on users [10, 9].

Even though some of these issues can be addressed and mitigated in the near future,

there are inherent limitations to what bots can offer, which limit how far they can serve

as a replacement to native and web apps.

The relative novelty of bots must also be taken into account: the first roots for the

spread of bots have been put down, but we are still in the very early days of this new era.

A “killer application” for bot platforms, which goes “viral” and fully justifies the rising

interest by clearly showing the full potential of bots, is yet to be seen.

In this Section the spread of the new generation of bots onmessaging platforms has

beendiscussed, describing how the concept of “bot” has changed from its very first stages

to the present days.

A definition ofBotplications has been given, as a conversational agent living on exist-

ingmessaging platforms, that follows a set of principles of simplicity and purposefulness

in providing access to services and data.

Features and limitations of the most prominent messaging platforms have been pre-

sented and compared. A technological survey, depicting in detail the peculiar available

user interface mechanisms, and advantages of bots, for both users and developers, were

discussed in detail.

In conclusion, even if bots will not substitute the whole mobile application ecosys-

tem in thenear future, close attentionmust bepaid to the “rise of bots”, as a new software

platform for delivering services and data to users.

4.2 AMCS Botplication case study

In the previous Section, we thoroughly discussed the Botplications phenomenon. In

this Section, we will cast the conversational interface paradigm in the MCS framework

as an alternativemethod to provide participants with a simple and usable client interface.

Our aim is to find an approach able to lower the barriers to adoption and to increase the

user base of suitable MCS application.

To demonstrate how a Botplication can be used to effectively reach volunteers of an

MCS platform we develop a basic MCS application whose mobile client component is

a simple bot. Da-qui-a-lì is a Botplication we use as a toy example. It will allow us to

empirically investigate and, then, discuss how convenient is the use of conversational in-

terfaces asMCSUIs. In the following of this Section, wewill overview theMCSplatform

we implemented and its aims. After that, the conversational interface will be described,
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and in the last part of this Section, we will try to analyze advantages, limitations, and

drawbacks of adopting a bot-based client in designing anMCS platform.

4.2.1 Platform’s Aims

Da-qui-a-lì is an elementary MCS application whose aim is to collect data about pedes-

trian accessibility within residential areas and produce a map of best and fastest paths

throughout the city. “Da qui a lì” is the italian for “from here to there”, and the platform

name reflects its working principle. Users are tasked with a simple sensing task: to pro-

vide an estimate of the duration and comfort of paths they cover within an urban area.

Each participant can record as many journeys as he/she wants and the same track can be

loggedmany times. Users provide both the starting and the ending location of their jour-

ney, its duration, and few other meta-information such as a score representing how they

evaluate the accessibility of the covered path, whether they needed any external help in

traveling, and which kind of physical impairment (if any) they suffered along the path.

Collected data are processed offline in order to build a pedestrian accessibilitymap of the

covered area4.

As a proof of concept, the software architecture of Da-qui-a-lì directly mirrors the

commonMCS application architecture seen in Section 1.2.2. In this simple application,

the application server is responsible for collecting data fromparticipants as such informa-

tion will be processed offline afterward. Themobile client is implemented as a Telegram

bot that volunteers use to communicate data they gather during their journeys. The bot

core logic is implemented as a web service and the telegram bot’s backend refers to it

whenever a user sends a message through the mobile messaging platform.

Both the application server and thebot core logichasbeendeveloped asPHP/MySQL

applications. As already discussed in Section 4.1, Telegram is a cloud-based mobile and

desktopmessaging appwith a focus on security and speed [173]. In this work, we choose

to implement our application on top of the Telegram instant messaging platform since

its adoption rate is growing fast [19] and because both its communication protocols and

its Bot’s APIs are extensively documented and easy to be used [174].

4.2.2 A message-based sensing style

In this Section, we describe the typical usage ofDa-qui-a-lì. Volunteers whowant to join

theMCS application doesn’t need to install a dedicatedmobile app instead they just have

to search for the Da-qui-a-lì bot5 using the standard Telegram app (Telegram platform

4Da-qui-a-lì has been developed in order to demonstrate the suitability of modern conversational in-
terfaces as user interfaces for MCS platforms, thus the implementation of an application including all the
MCS phases described in Section 1.2.2 is out of the scope of this work.

5The bot is currently available at https://t.me/daquiali_bot
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functionalities are also available through a Desktop client, but only the mobile version

of the client allows users to share their GPS-based location Da-qui-a-lì aims to collect).

(a) (b)

Figure 4.5:Da-qui-a-lì first interaction

Telegram’s bots are commonly started by typing the \start command. On its first

interactionwith a new interlocutor, the bot greets him explaining the platform’s aim and

asking to select the user current condition by indicating any physical impairment he suf-

fers (Figure 4.5). The bot memorizes this information which will be added as metadata

to any journey the user logs. If the user condition changes, the relative record can be

modified before each recording session.

Each sensing session starts when the user sends its current starting position to the

bot. The bot presents the user with a convenient interface with just one virtual button a

brief explanation of what the user has to do in order to contribute. Thanks to a specific

Telegram API, when the user pushes the virtual button (represented in Figure 4.6), his

location is shared with the bot along with a textual command. On the server side, the

user location is memorized together with the message timestamp.

Once started, the sensing session can be completed by clicking the virtual button

“Destination reached!” in Figure 4.7. When the button is clicked, the newuser’s location

is shared once again, and the application server memorizes the new position and the new

timestamp.

At the endof each session, theuser is asked toprovide feedback about thenew record.

Firstly, data about the length and thedurationof the journey have to be confirmed. Then
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(a) (b)

Figure 4.6: Da-qui-a-lì starting a new journey

Figure 4.7:Da-qui-a-lì stopping the recording phase

thevolunteer rates thepath accessibility and specifieswhether somehelphas beenneeded

to complete the travel or not (Figure 4.8).

At this point, the interaction can be carried on either by starting new journeys click-
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Figure 4.8: Da-qui-a-lì evaluating last journey

ing the related button or by selecting another condition to be associated with future

records.

The Da-qui-a-lì bot has been released in beta testing version in July 2017 and, to

date, many journeys within urban areas have been logged by volunteers. As alreadymen-

tioned, in its current shape the bot doesn’t sport a data processing phase which is cur-

rently run offline. The application is still under development, and an hackathon will

be organized by the University of Urbino (with the partial support of the Rotary Club

Urbino) by the end of November 2017. During the hackathon participants will be able

to experiment original methods to deal with data collected until that day. By the end of

2017, a final version of the platformwill be released. It will include a data processing and

a data distribution phases. Computed best paths will be available as an automatically-

updated online map. Further enhancements described in Section 4.3 will be added later

on.

4.3 Final remarks

In Section 4.1 we described the emerging phenomenon of Botplications as a new soft-

ware platform for delivering services and data to users. In the current Section, we demon-

strated how a modern-day bot could also act as the mobile client of a distributed MCS

application. The design and the implementation of Da-qui-a-lì gives us the chance to

describe which are the pros and cons of such a methodology and under which circum-
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stances casting ourMCS application as a Botplication could be convenient.

Designing and implementing a multiplatformmobile application can be extremely

time and resource-consuming. Modern mobile operative systems allow high-level pro-

gramming and take care of abstracting hardware and low-level software features to pro-

vide a developing platform on top of which is easy to implement even complex applica-

tions. On the other hand, the programming framework remains relatively complicated.

Its usage learning curve could be quite gentle for an experienced developer while the im-

plementation of a production-ready application is still a hard task for an inexperienced

one. Conversely, implementing a bot is a task quickly achievable even for non-experts

as most of the major messaging platforms provide ultra-high level programming inter-

faces. This allows a coding style similar to the declarative programming (at least for what

concerns theUI): theuser interface is built by themessaging platform following thedirec-

tives it receives from the web services associated to a particular bot. The core logic of the

Botplication can be implemented using any programming framework offering HTTP

communication primitives.

Another advantage of designing an MCS app as a bot is that privacy and security

communication aspects are already managed by the messaging platform, at least on the

client side. Moreover, majormessaging systems provide mobile clients for Android, iOS,

and Windows, covering almost the totality of the smartphone users. Building an MCS

application on top of a messaging system environment, allows developers to program

a bot just once and obtaining a multi-platform app by design. Botplications live inside

other messaging systems. As already mentioned in Section 4.1, mobile messaging clients

are becoming more and more popular, and almost every smartphone user have one of

them installed on their device. In order to lower the barrier of adoption — an essential

task forMCS systems—develop a client as a bot is a reasonable approach as it means no

need of app-installation at all. Volunteers just have to search for the desired bot inside

the messaging application. Even better, systems like Telegram and Messenger, through

the deep-linking mechanism, enable the use of physical means like QRCodes to make a

bot directly reachable by the users.

Nonetheless, theproposed approachpresents few limitations anddisadvantages. First

of all, bot-based client rely on many external components, over which developers have

little or no control: Internet access, DNS, the IM platform’s back-end, the IM mobile

clients and more. Each component could be a potential failure point and can introduce

performance issues.

The development of a bot-based MCS application interface is relatively easy thanks

to the availability ofmany resources, which are provided by the IMplatforms themselves.

On the other hand, the bot’s interface is hard-connected to the messaging platform sys-

tem. This strongly inhibits app customizations andmakes the app not suitable forMCS
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tasks needing data pre-processing and local data storage. Moreover, bots are not the best

tool for implementing the mobile client of an MCS application based on an implicit

sensing style since many sensors cannot be used directly. IM programming interfaces

don’t provide bots with handlers to communicate to the underlying hardware so, the

user should always act as middle-person in feeding bot with sensed data.

One of the key benefits of using the conversational interface from instantmessaging

systems is that the basic UI paradigms of messaging are well known, both by novice and

expert users. However, we found that in many cases users tend not to read any text at

all [134]. This may be worsened by the general verbosity of conversational interfaces and

by the lack of recognizable UI elements in textmessages (e.g., colors, modal dialogs, etc.).

In many cases, the effectiveness of messages can be improved using terser language and

text emojis to convey tone or status (e.g., a flashing light or a ‘stop’ sign for errors, sad

smiles for wrong answers, etc.). Having to interact mainly through textual messages, the

design of any Botplication, and in particular, for MCS bot-based application, should

find a way to provide users with useful information avoiding wordiness.

(a) (b)

Figure 4.9: Telegram brand-newLiveLocations feature: Figure 4.9a shows how users can
share their live location. Figure 4.9b illustrates how live locations looks like once shared
(please note the reminder above the chat UI).

It is worth mentioning that this research is still under active development. In the

next months, we plan to refine our application and to make some improvements. The

next phase of this study will be to replicate the implementation as a Messenger’s bot
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as this platform is currently the most widely used among those we analyzed (at least in

the western part of the world). In doing so, we will try to broaden the user base and

to increase the number of feedbacks collected. In the following, a focus group will be

organized in order to evaluate the convenience of the proposed approach in terms of UI

efficacy, in a controlled environment.

In recent days, Telegram released the new LiveLocations feature6. In Figure 4.9, a

mechanism that allows receiving continuous updates about a user’s location. The same

functionality is available for bots and it could constitute a great enhancement in our

application usage paradigm, and, likewise, for any other MCS application focused on

user’s movement patterns or user’s location history. The mechanism will be deeper in-

vestigated, and it could be added in a future release of Da-qui-a-lì.

To fully explore the UI resources that the Botplication paradigm unlocks, our ap-

plication will be used to study the effectiveness of a mixed-reality interaction approach.

We will exploit the ability to scan and decode QR Codes using third-party mobile apps

together with the already mentioned deep linking functionalities of some IM platforms.

The aim would be to lower the adoption barriers even more, by giving to participants

the chance to initiate the interaction with the Botplication not only by searching it in

dedicated but crowded directories (as it commonly happens today) but also by scanning

printed QR Codes, they can find along their paths.

6Please see https://telegram.org/blog/live-locations
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Chapter 5

Conclusions

In this work, we examined the Mobile Crowd Sensing paradigm. We started analyzing

theprocess and the researchprogresses that led to amodern and shareddefinitionofwhat

MCS is and what differentiates it from other types of distributed sensing and processing

initiatives (e.g., crowdsourcing, participatory sensing, etc.). Then, we surveyed anumber

of applications in order to pinpoint the distinguishing features of most MCS platforms

and to model their common high-level process architecture. The introduction to the

MCS topic concluded with the examination of themajor open issues that a hypothetical

designer of MCS applications would have to face, including preventing privacy leaks,

dealing with limited data quality, and facing scalability issues. Throughout this work,

we separately examined three open issues, every time trying to look at them from a fresh

perspective and always proposing original solutions.

MCS systems are based on the concept of a distributed and unsupervised data sens-

ing activity. In such frameworks, low data quality could hinder or bias the data analysis

and the emerge of collective intelligence crowd intelligence extraction. In Chapter2, we

discussed how characterizing the quality of sensed data is essential for any crowdsensing

initiative. We proposed a novel method to evaluate the data quality based on a simple

statistical tool (namely “bootstrap”). This technique enables the estimation of relative

quality in large amount of data. It is especially suitable for MCS applications as it does

not require any prior knowledge or assumption on the data source’s behavior.

We then focused on the typical structure of anMCS data particle, which, along with

application-specific values, commonly entails data representing the timespan and the ge-

ographical position of when and where the sensing activity has been performed. Those

metadata are usually essential for the data processing phase: their quality can also pos-

itively or negatively influence the overall intelligence extraction outcome. To this pur-

pose, we proposed a newmap-matching algorithm to be applied on dense traces of data,

whose aim is to remove errors derived from low-quality GPS recordings. Our approach

115
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has been tested in a real-world environment and empirical results show how it can en-

hance the data quality (and the subsequent association between data points and features

on a map) of applications interested in gathering data frommoving vehicles.

In Chapter 3 we tackled the problem of providing users with substantial incentives

in order to engage them in the sensing endeavor. Distributed sensing processes not only

leverage user resources as computational power, battery, and communication capabili-

ties, but also could require a strong commitment from volunteers, in terms of sharing

private information such as location history, profile information, and personal social net-

work. Even if cooperation incentives have been in the limelight for about thirty years, we

cast theproblemof findingways tomotivate users to collaborate toward a shared cause as

a privacy issue. Safeguarding the user’s privacy and anonymity should be paramount for

any MCS platforms but constrictive policies could hinder the implementation of effec-

tive motivation mechanisms. In Chapter 3 we proposed a rewarding schemes classifica-

tion in termsofmotivationprovided and anonymity of user information. We found that

gamification techniques and voucher distribution are mechanisms suitable to be used in

anonymous systems in order to engageusers. Our analysiswent further aswepresented a

real-world design of a gamification layer built on top of anMCS application implement-

ing strict privacy-preserving techniques. In the following, we also introduced a novel

voucher-based rewarding platform, explicitly designed for MCS endeavors. Our system

acts as a bridge between volunteers, MCS applications, and third-party stakeholders al-

lowing the latter to be part of the rewarding paradigmwithout the need of participating

in the crowdsensing procedure. The platform uses a voucher exchanging system as a tool

for triggering network effects and positive externalities that can help the pursuing of the

common good. Themain protocols are outlined along with technical details in order to

demonstrate the validity and the flexibility of the approach. The platform is currently in

the implementation stage, and further developments will be the object of future works.

InChapter4wediscussed clientUI approaches used inMCS instruments. The client

interface is the sole point of interaction between users and platform for most crowdsen-

sing applications. Since having a good number of volunteers is fundamental in MCS,

joining a sensing task should not be a burden. In particular, the client UI should not

constitute a barrier to platform adoption by users but, unfortunately, most of theMCS

platforms used in real-world application still struggle to provide a usable and easy-to-

understand UI. In recent times, instant messaging and social network applications con-

sistently take up the top spots among the most used applications. Most of these plat-

forms already provide programming interfaces that allow the implementation of a new

generation of conversational interfaces. Our main idea was to exploit the popularity of

IM platforms, and the flexibility of the conversational interfaces they host, to empower

MCS volunteers with an effective tool for contributing to the sensing task. We first stud-
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ied the new phenomenon, outlining its main features, pros and cons. A definition of

“Botplication” to identify those new approaches in designing mobile applications pro-

viding a conversational interface. Also, we implemented a proof of concept in the form

of a simple MCS application with a botplication client demonstrating the feasibility of

our approach. We analyzed the prototype’s interface and drew conclusions on the pro-

posed approach.

In summary, we proposed and discussed many solutions to both well-known and

relatively new issues in the context ofMCS. In order to keep their treatise as clear as pos-

sible, we examined each approach in isolation, providing actual implementations or at

least concrete designs of our ideas. Nonetheless, discussed methods are inherently gen-

eral and could be applied in many different scenarios. As a matter of fact, they could

also be employed all together on the proper MCS platform, and they will. Work is cur-

rently being done in order to provide an actual integrated implementation of proposed

solutions in the C4Rs project.

More in detail, the map-matching algorithm and the methodology to estimate the

data quality index presented in Chapter 2 are currently being implemented into the

C4Rs data processing server. While the gamification layer we presented in Chapter 3,

will be added to the current implementation of the C4Rs mobile client. The MCS Bot-

plication presented in Chapter 4 will be further improved and refined. Once mature

enough, it will act as Instrument in the context of the voucher-based rewarding platform

outlined in Chapter 3.

Thedevelopment of the rewarding systemwill be anotherproject’s remarkable achieve-

ment as it will allow third parties to easily contribute to the common good. The reward-

ing platform will indeed be a key element since — even if it is specifically designed for

MCS contributions — it will allow contributions from outside the crowdsensing con-

text. Theoverarching intent is to open theplatformanduse it for external projects pursu-

ing public interests, such as public campaigns about digital skills and inclusion, cultural

and scientific literacy actions.
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