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Preface 

The title of this thesis might mislead by inducing to think that it will be only a careful 

examination of the numerous factors involved in the onset of the Chronic Venous 

Disease (CVeD) and in its progression, but the words “open window“are far from being 

trivial. Different points of view can justify their use, starting from that historical which 

enables us to dredge up that the Greek physicians Hippocrates (460-377 before Christ) 

and Galeno (130-210 before Christ), with their first observations and theories about the 

CVeD and the physiology of venous circulation, have marked the begin, or rather the 

opening of a research season which nowadays goes on1. Figures as Vassaseus (1544), 

who described venous valves and their function, Harvey (1628), a pioneer of modern 

medicine, who revolutionized the Galenic theory by clarifying the venous valve role in 

blood flow maintenance, Brodie, (1846) who described symptoms and signs of Chronic 

Venous Insufficiency (CVI)and later Linton, who founded the pathophysiological theory 

for CVeD on the concept of ambulatory venous hypertension1,2, have begun to give voice 

to the still current need for improving the knowledge about the most deep mechanisms 

of the widespread venous disorders, although this goal is still long way off. In effect, 

questions as, are there further CVeD risk factors besides those well-known? What are 

the deep cellular and molecular mechanisms triggering the switch among the CVeD 

stages? What is their timing? What are the real moderators of the biochemical 

interactions characterizing the venous disorders? What criteria should be used to 

consider a therapeutic treatment as successful? These might represent some of the 
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partially opened questions which inspire the efforts to find suitable answers to lean out 

of that open window consciously.  

The favourable implication of this positive disposition consists in the contribution to a 

knowledge shift from the only CVeD pathophysiology framework to the details which 

could make the difference in developing of targeted therapeutic approaches.  
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Chapter 1  

Introduction 

1.1 Epidemiological, diagnostic and therapeutic background of the Chronic Venous 

Disease 

In the centuries, numerous clinical studies have endeavoured to elucidate the 

multifaceted magnitude of the macro- and microcirculatory impairments and the 

potential molecular mechanisms responsible for the multiple symptoms and signs of 

CVeD. Although these efforts are certainly praiseworthy also due to their implications in 

the unbated research of the suitable therapeutic options, they represent only one side 

of the medal. In fact, it should not be neglected the socio-economic and psychological 

impact that the different manifestations of venous disorders and their consequent 

management have on the patient quality of life. The costs of diagnosis, therapeutic 

treatments and the loss of working days represent only some aspects of the heavy 

burden bore by the worldwide Western country population affected by telangiectasies 

(80%), varicose veins (from 20% to 64%), the more advanced stages of CVeD edema, 

hyperpigmentation, lipodermatosclerosis (5%) and active or healed ulcers (from 1% to 

2%)1,3
. This prevalence rates should be certainly considered with relation to some of 

well-known risk factors, as age, gender, ethnicity, obesity, familiar history, in order to 

understand their real significance1,4. In this regard, the correlation between the 

increased appearance of varicose veins and chronic venous insufficiency (CVI) and the 

older age and female gender remains one of the most confirmed epidemiological 

evidence of the progression from the CVeD asymptomatic signs to the most sever clinical 
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manifestations5,6,7. In particular, the second of the above-mentioned factors is strictly 

correlated with the pregnancy, which seems to have its weight in venous disorder 

appearance8. Furthermore, the obesity (BMI >30 Kg/m2) and a CVeD familiar positive 

history might also contribute to some hemodynamic disfunctions, despite the genetics 

role remains unclear in several respects nowadays3,9,10. This risk factor summary might 

be enriched by considering other factors, as oral contraceptive assumption, low fibre 

intake or constipation, smoking, hypertension, prolonged orthostatism (> 4 hours daily) 

and physical activity, whose potential relationship with CVeD should be clarified in some 

respects6. However, the population ethnicity might be considered a persistent 

background in both the worldwide spread of the progressive CVeD manifestations and 

in the risk factor contribution to these11. In this regard, several recent studies have 

interestingly noticed that the CVeD is one of the diseases with the major prevalence in 

the western world population compared to that Asian (Tab. 1.1.1)3,12,13.  

 

 

Tab. 1.1.1 Clinical and general prevalence of CVeD in the main world geographical areas3. The tables 

show data collected during the period 2009-2013 and relating to the different CVeD manifestations in 

worldwide scale   
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Although it is fairly quick, this epidemiologic review enables to set the CVeD in a 

framework of implications highlighting that it certainly represents a serious clinical 

problem. Nevertheless, the increased pain, the reduced physical function and mobility, 

which often accompanied the most advanced CVeD stages, contribute to convert the 

venous disorders in a real psycho-social burden often characterized by depression and 

social isolation feelings9. These uneasiness sensations might be defined only as the tip 

of an iceberg represented by a series of health dimensions, as physical functionalities 

and limitations, emotional problems, pain, vitality, mental and general health 

perception, which are evaluated through different Quality-of-Life (QoL) assessments. 

They consist in questionnaires which are often specific for well-defined CVeD 

manifestations (e.g. AAVQ for varicose veins, CIVIQ for the CVI early manifestations) and 

so prone to poorly flexibility, but their features enable them to represent a mirror of the 

CVeD whole spectrum severity useful to elaborate an accurate evaluation of patient 

clinical condition and its therapeutic outcomes14,15,16. Sure enough, the QoL 

measurements are affected by the patient sociocultural context besides their aging, the 

disease perception and the presence of comorbidities, thus they might be considered a 

promising instrument halfway through the population epidemiologic characterization 

and the effective diagnosis of CVeD symptoms and signs. In this regard, the chances of 

mastering the management of venous disorders is also related to the opportunity of 

recognizing their hallmarks from the first appearance, by a thorough disease 

classification. The Clinical-Etiology-Anatomy-Pathophysiology classification (CEAP) lives 

up to this expectation, though it provides only a descriptive approach consistent with 

the original aim of refining the CVeD description and ensuring a straightforward 
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scientific and clinical communication. This remark enables to get to the heart of the 

CEAP classification, which defines the CVeD as a series of morphologic and functional 

venous disorders, rather than as disease, through its four above-mentioned points of 

view (Tab. 1.1.2)1,17. In particular, the first provides a clinical focus on the CVeD 

manifestations by arranging them in seven worldwide adopted sequential classes (C0-

C6) in order to explain the potential venous disorder progression from the absolute 

absence of disease signs (C0) to the appearance of the first structural and functional 

abnormalities, as telangiectasies and varicose veins (C1-C2), followed by the arising of 

chronic venous insufficiency corresponding to the development of edema, skin changes, 

eczema, lipodermatosclerosis and healed or active venous ulcers (C3-C6)17.  

 

 

Tab. 1.1.2 The complete clinical, etiologic, anatomical and pathophysiologic (CEAP) classification of the 

CVeD. The table shows the clinical, etiological, anatomical and pathophysiological features of the CVeD 

manifestations 

 

However, it should be borne in mind that this progression through these worldwide 

adopted CEAP clinical classes representing the whole spectrum of CVeD is prone to 

different influencing factors, which might lead to arrest it in one of them. As above-

anticipated, the etiological, anatomical and pathophysiological CEAP classification might 

be considered from three further points of view which enable to pin the CVeD down by 

specifying its primary or secondary aetiology, the exact affected venous system 
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(superficial, deep or perforator veins) and the pathologic events at the origin of the 

disorder (obstruction, reflux or other pathophysiologic processes) (Tab. 2)17. 

Overall, these information doubtless contribute to build a reliable characterization of 

the clinical CVeD manifestations, but they are lacking in considering the appearance of 

some key symptoms and in pointing out the disorder severity1. This deficiency is often 

filled by resorting to the venous severity scores (VSS), which are suitable to report also 

faint changes in disease symptoms and severity. However, their limitations, as the poor 

reliability of the patient-reported symptoms, the existence of comorbidities and surveys 

of CVeD not specific symptoms, make them complementary instruments with CEAP 

classification and QoL assessments in evaluating both the clinical picture and 

outcomes14. Although all these aforementioned diagnostic instruments are affected by 

clinicians or patient disorder perceptions, they still provide the basis for a more 

thorough investigation of the venous system general state and potential functional 

disorders by more or less invasive diagnostic tools. The cornerstone in the CVeD 

symptom detection consists in the Duplex Ultrasonography (DUS) which offers the 

considerable advantage of observing the vein anatomy and the presence of valvular 

incompetence or venous obstructions by combining ultrasound imaging and pulsed 

wave Doppler. Its use has supplanted the outdated handheld Continuous Wave Doppler 

(CW Doppler) mainly due to its weak reliability in venous anatomical and hemodynamic 

impairment detection18,19. Furthermore, the DUS consists in a non-invasive diagnostic 

approach and its high accuracy is increased by the frequent concurrent performance 

with colour flow imaging which quickens the visualization of also deep venous system 

incompetence20. These assets have led to overtake invasive diagnostic tools, as 
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phethysmography and air-plethysmography (APG) based on venous volume and 

pressure measurements, or the further imaging technique phlebography21,22. Moreover, 

the DUS diagnostic results might be enhanced by the acquisition of three-dimensional 

vein structure processed by the alternative methods Computed Tomography (CT) and 

Magnetic Resonance Venography (MRV) in order to determine a careful CVeD diagnosis 

and choose the most suitable treatments23. This latter aspect, which represents the 

desirable result of the whole diagnostic effort, might consist in different therapeutic 

options. In this regard, the compression therapy constitutes the undisputed gold-

standard among the numerous conservative therapeutic strategies24. Its non-invasive 

approach, consisting in the exercise of a controlled pressure on both lower limb 

superficial and deep venous systems, and its versatility are the effective advantages that 

allow it to work on the calf pump functionality to restore the physiological ambulatory 

pressure25,26,27. The main consequence of this mechanical action is the prevention or the 

management of venous hypertension, which represents one of the first 

pathophysiological processes at the origin of the different CVeD manifestations. 

Numerous garments, as elastic stockings, tights, and elastic or non- bandages 

commercially available have physical properties able to provide a proper graduated or 

an intermittent pneumatic compression (Tab. 3)28,29. In particular, the stiffness, which 

represents a direct correlation between the increase of pressure applied and the leg 

circumference increase (mmHg/cm), and the number of layers constituting the 

compression devices determine specific resting and walking pressure values suitable for 

treating the different CVeD manifestations26. Multilayer elastic compression stockings 

with high stiffness and a graduated compression degree around 20-40mmHg are 
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recommended in the active treatment of varicose veins, lipodermatosclerosis and 

edema due to their ability to apply a pressure which decreases from the ankle up to the 

thigh and results higher during the walking than the resting position (Tab. 1.1.3)28,30,31.  

 

 

Tab. 1.1.3 Pressure values (mmHg) and respective compression classes of stockings used in different 

world countries28. The table shows the pressure values applied by compression garments to a 

hypothetical cylindrical ankle; (1 mmHg = 1,333 hPa)  

 

In this regard, the wanted effect is comparable with a strong massage on the calf during 

the patient deambulation able to reduce pain and swelling. These functional 

characteristics, based on the La Place’s law stating that the pressure applied around a 

cylinder is directly proportional to the radius of the cylinder one, make them useful also 

in maintenance treatment of lower limb healed ulcers and lymphoedema, even if elastic 

bandages are preferred in these cases25,32,33.  

As previously mentioned, non-elastic bandages, as the Unna’s boot impregnated with 

zinc oxide paste or adjustable velcro straps, and intermittent pneumatic compression 

devices, obtained through inelastic cuff intermittently pumped up by a pump which 

produces different pressure degree in established time intervals, complete the range of 

the available compression approaches1,25. Furthermore, other non-invasive CVeD 

treatments consist in leg physiotherapy, which seems to improve the calf muscle 

functionality by selected exercises, leg elevation, which is recommended especially in 

C2-C6 treatment by enhancing the microcirculation and reducing edema, and the leg 

massage, which is mainly aimed to ameliorate the tissue edema by making deep 
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massages around the ulcer area before wearing the elastic stockings or bandages34,35. 

Nevertheless, a noteworthy common feature of these numerous CVeD non-invasive 

therapeutic approaches often consists in their concurrent use with those invasive. In this 

regard, a real cornerstone in the CVeD treatment is the well-known surgery. Different 

surgical strategies are developed over the time from the varicose vein ablation through 

the High Ligation with Stripping (HL/S) often associated with the ambulatory 

phlebectomy, the Ambulatory Selective Varices Ablation under Local anaesthesia 

(ASVAL), a less invasive phlebectomy technique aimed to preserve the undamaged 

segments of saphenous trunk, or the Cure conservatrice et Hémodynamique de 

l’Insuffisance Veineuse en Ambulatoire (CHIVA), improving the superficial venous 

system hemodynamics, up to the innovative Transilluminated Powered Phlebectomy 

(TIPP) consisting in large varicose vein cluster ablation with a considerably reduced 

number of incisions36,1. All these treatments are effectively followed by the 

recommended wearing of compression devices with proper pressure levels in order to 

ameliorate the post-operative outcomes by giving relief from pain and other potential 

complications. Moreover, this represents the same clinical procedure followed after 

performing the superficial venous system treatment by the sclerotherapy37,38. This 

consists in a therapeutic strategy for the chemical ablation of varicosities, venules or 

telangiectasias by the injection of liquid or foam sclerosant agents which damage the 

venous endothelial lining due to their close contact with it and induce the collagen and 

smooth muscle basal layer exposition accompanied by vasospasms and the treated 

vessel transformation in a fibrous cord39. However, it should not be neglected that this 

sclerosant effect is distance and time-dependent due to the direct contact between the 
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chemical agents and the blood circulating cells which take away them and determine 

their dilution, also defined consumption40,41,42. This interaction is delayed by the more 

efficient blood displacement induced by foam than liquid sclerosant by extending the 

treatment effects43. In fact, the chemical nature of the sclerosants and their physical 

state (liquid or foam) result decisive for the treatment outcome44,45. The best known 

sclerosant polidocanol and sodium tetradecyl sulphate have respectively non-ionic and 

anionic nature which determines their membrane solubilization and protein denaturing 

properties on circulating and non- components following their injection in the damaged 

vessel46,47. Furthermore, several studies have interestingly highlighted time-dependent 

pro-coagulant effects at low concentrations of both the sclerosant agents unlike those 

anti-coagulant revealed at increased concentrations48,49,50.  The sclerotherapy is only 

one of a series of alternative and less invasive approaches developed for the saphenous 

vein incompetence treatment also including the Endovenous Laser Ablation (EVLA), the 

Endovenous Thermal Ablation (EVTA), the Radiofrequency Laser Ablation (RFA) and the 

more recent Mechanochemical Ablation (MOCA) and cyanoacrylate glue injection1,51,36. 

These strategies are equally aimed to induce endothelial damages through different 

percutaneous procedures by causing the treated vessel occlusion. Thus, all these 

treatment features might enable to set them halfway between the aforementioned 

invasive clinical approaches and the controversial pharmacological strategies. In this 

regard, drugs as alpha-benzopyrones (Coumarin), gamma-benzopyrones (flavonoids 

and their micronized purified fraction or MPFF), saponines (escin, ruscus extract), other 

plant extracts (anthocyans, proantocyanidins) and calcium dobesilate, benzarone, 
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naftazon are overall defined as natural or synthetic venoactive drugs (VAD), which differ 

from the nonvenoactive drugs (pentoxifylline, acetylsalicylic acid) (Tab. 1.1.4)52,53,13.  

 

Tab. 1.1.4 Classification of the main venoactive drugs (VAD)52   

 

The firsts are able to increase the venous tone also by exploiting the noradrenaline 

pathway, to reduce the venous permeability and the inflammation by counteracting the 

leucocyte-endothelium interactions, the second act by limiting the white cell and 

platelet activation with consequent anti-inflammatory effects. Furthermore, this action 

spectrum encompasses also the therapeutic effects of some glycosaminoglycans (e.g. 

Sulodexide) which contribute to restore the endothelial physiological functionality and 

to reduce inflammatory processes54,55,13. Clearly, all these effects make the medical 

approaches fit for each CVeD stage treatment often in association with the compression 

therapy.  
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1.2 The structural and hemodynamic players of the Chronic Venous Disease 

The occurrence of visible dilated blue or red/purple dermal veins, corresponding to 

reticular veins or telangiectasies (C1), with a smaller diameter (<4 mm) than the palpable 

and tortuous varicose veins (>4 mm) (C2) up to the unsightly skin changes and 

ulcerations represent some of the signs of the primary and secondary CVeD56,17,57. The 

choice of drawing the attention to these CVeD clinical signs is consistent with the 

perspective of considering them mirror of break points in the structural and mechanical 

integrity of the intricate lower extremity vascular system. Three different venous 

components, the superficial, deep and perforating veins, provide the correct blood 

distribution in the supplied districts through their specific localization56,58. However, 

their role runs down far from being simple and passive conduits since they have 

structural features actively related to the main hemodynamic events responsible for the 

physiologic drainage of lower limbs, besides for the blood return to the heart. In detail, 

the set of reticular veins lining the dermis, which accompany the Great Saphenous Vein 

(GSV) and the Small Saphenous Vein (SSV) with their numerous tributaries and a series 

of associated nerves, represent the abovementioned superficial venous system 

implicated in the skin microcirculation56,58,59. This function is also consistent with their 

spatial organization in a superficial sub-compartment, known as saphenous 

compartment, in which the GSV and the SSV are confined between the saphenous and 

the muscular fascia56. The ascending GSV course starts from the dorsal pedal venous 

arch up to the joining with the common femoral vein in the thigh through the 

saphenofemoral junction (SFJ) after crossing the medial malleolus and the tibia. 

Tributary veins, principally organized in the Leonardo’s arch, enable the GSV to drain 
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numerous ankle, tibial and anterior or posterior calf veins. Moreover, the GSV is also 

connected with the SSV and collects blood from the superficial external pudendal, 

epigastric and circumflex iliac veins by spilling it into the femoral vein. The small or short 

saphenous vein equally rises up from the dorsal pedal arch by passing behind the 

malleolus and proceeds posteriorly up to the calf, where it crosses the gastrocnemius 

muscles and joins the popliteal vein through the saphenopopliteal junction (SPJ)60,56. 

The functionality of this intricate system of lower limb superficial veins is sustained by 

the equally complex arrangement of the deep vein system. They might be described 

according with their anatomical localization in foot, calf and thigh deep veins. In 

particular, the two plantar veins give origin to both the saphenous veins and are 

organized in a calcaneus plexus involved in the ambulatory pressure control besides in 

ejecting blood in the paired posterior tibial veins. These last with the corresponding 

anterior tibial veins, the peroneal, soleal and gastrocnemius veins consist in the deep 

calf venous system. The soleal and gastrocnemius veins, which are connected with the 

popliteal vein, give rise to muscular venous plexuses essential for the calf pump function. 

The tibial and soleal veins are usually connected with the peroneal veins to form the 

popliteal vein, which goes up the thigh and becomes the femoral vein after running into 

the thigh adductor magnus muscle. The popliteal and femoral veins represent a 

fundamental deep check-point in the preservation of the calf pump functionality 

through their valvular competence59. Furthermore, the femoral vein runs through most 

of the thigh up to the inguinal region where it joins the deep femoral vein and the GSV 

to form the common femoral vein besides to accompany the femoral arteries and 

receive numerous muscle tributary veins. The common iliac vein, which takes origin 
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from the connection between the external (derivative of the common femoral vein) and 

the internal iliac vein, and the pelvic vein, which is organized in a series of venous 

plexuses interconnecting deep and superficial veins with pelvis, visceral and parietal 

districts, enrich the deep thigh venous system59,61.  

The perforating veins exactly located in four anatomical districts, consisting in the foot, 

the medial and lateral calf and the thigh, represent “the glue” of the whole lower limb 

drain system by just favouring blood exchange between deep and superficial veins cited 

until now56,59. However, the collecting station of the whole blood circulation through 

this venous network lies in the Inferior Vena Cava (IVC) which takes origin from the deep 

common iliac vein and gathers blood from lumbar, renal, inferior phrenic, right gonadal 

and hepatic veins before heading for the heart through the diaphragm and 

pericardium59. 

Structural and mechanical features of these intricate vascular systems represent the 

basis for the correct physiologic blood drainage in lower limbs and their competence 

ensures the awaited results of this transport process. In this regard, the valvular 

systems, variously distributed in the lower vascular architecture, have a noteworthy role 

in association with some essential pressure phenomena and compressive mechanisms 

mainly induced by muscles variously distributed in lower extremities. They consist in 

bicuspid and unidirectional venous valves showing half-moon-shaped cusps which are 

characterized by a thin collagen and endothelial layer consistent with the vein wall 

structural composition2,62. In particular, each cusp has the margin attached to the vein 

wall which appears thicker in the point of contact than the opposite free (Fig. 1.2.1b). 

These valve components, whose length is strictly related to the respective venous 



Introduction. The structural and hemodynamic players  
of the Chronic Venous Disease 

 

 
18 

calibre, present two different sides named luminalis and parietalis. The first, consisting 

in the cusp side directly exposed to the lumen of the vessel and, thus, to the blood flow, 

is made up of an internal and fairly thick elastic layer covered by medial connective 

tissue and an external endothelial lining disposed along the vessel major axis, whereas 

the second, representing the cusp side facing the vein wall of the valve sinus, is 

characterized by a depleted connective and muscular layer covered by endothelial cells 

transversally stretched. The mechanical implication of this variable endothelial cell 

orientation accompanied by the presence of plentiful smooth muscle cells and elastic 

fibres in specific valve portions (e.g. the join between the valve cusps and the vein wall) 

consists in the acquisition of properties useful in tackling blood flow fluctuations62. In 

this regard, the very existence of the venous valves and their open-and-closure 

mechanism passively regulated by a transvalvular pressure gradient determine the 

fragmentation of the blood column in multiple segments with controlled pressure1,57. 

The reversal of this gradient triggers the valve closure after a physiological quick reflux 

(< 0.5 sec)59,63,64. These events occur continuously in each valvular system to generally 

favour the blood drainage from the superficial to the deep venous system despite their 

variable distribution progressively less abundant by raising along the leg56. Nonetheless, 

the competent valvular functionality is further sustained by the structural arrangement 

of the vein wall three layers which spread to the bicuspid valves (Fig. 1.2.1a). In 

particular, the most internal tunica intima is mainly characterized by the presence of 

endothelial cells which rest on their basement membrane followed by an intimal elastic 

lamina whose fibres stretch out in the valvular cusps accompanied by some muscular 

bundles. This thin monolayer, endowed with anti-thrombogenic or pro-coagulant 
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properties dependent on endothelium stimulations, is sequentially followed by the 

tunica media organized into three superimposed smooth muscle layers accompanied 

with scattered collagen and elastin fibres in addition to an adrenergic innervation65. 

These consistent venous muscular and elastic components take part of the valvular 

portions subjected to the major mechanical stress in order to develop an appropriate 

resistance besides to prevent an excessive venous dilatation62. The last and thickest 

venous wall tunica consists in the adventitia which is mainly composed of collagen fibres 

which sustain the just mentioned functional aim56.  

 

a)                                                                                  b) 

 

 

Fig. 1.2.1 Representation of the intimate venous wall and bicuspid valve structure. The figure in a) shows 

the three overlapped layers (tunica intima, tunica media, tunica adventitia) and their cellular components; 

the figure in b) shows the structural organization of the venous bicuspid valve 

 

Thus, the evidenced structural features should be counted as the mechanical 

requirements for providing both the unidirectional valve role of preventing the blood 

reflux occurrence and the physiologic vascular tone and compliance1,66. These last 
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aspects, closely related to the contractile ability of the muscular component and the 

adaptation of vascular capacitance to the blood flow entity, in addition to the valvular 

competence, the hydrostatic, ambulatory and dynamic pressures and the respiration 

contribution represent the main physiological forces influencing the venous blood 

return to the right atrium18,67. Although the respiratory airflow might seem the least 

pertinent factor among those affecting the lower limb circulation, this involuntary act 

makes its indirect contribution to the physiologic process. In fact, the inspiration 

determines a consistent reduction of the thoracic cavity pressure accompanied by a 

consequent increased blood flow in the upper portion of trunk and the opposite effect 

on the abdominal pressure with a correspondent decrease in lower extremities blood 

outflow. The expiration reverses these anatomical and pressure adjustments leading to 

a heavy blood return from the lower body districts59,68. In line with the essential need to 

provide the correct occurring of this last physiologic process, noteworthy assets might 

be also credited to the dynamic pressure. It directly depends on the heartbeat 

propagation firstly in the arteries followed by the other vascular systems with a 

progressive decrease related to different factors, as the arterial precapillary 

vasoconstriction (12-18mmHg in capillary venous side). However, this pressure is 

affected by the influence of the lower still atrial pressure (4-7mmHg), which induces the 

presence of an effective gradient favouring the blood return to the heart1. This flow 

modulation, mainly predominant in supine position, is heavily influenced by the other 

two mentioned pressure systems. The ambulatory pressure, as its name implies, is 

closely related to the well-organized contractile activity of the principal foot, calf and 

thigh muscles during the daily ambulation. In this regard, it should be noted that the 
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functional competence of these real pumping systems also depends on the elliptical 

geometry typical of the calf and foot veins which enhances the venous capacitance by 

minimizing the effect of blood volume and pressure changes. Their flaccid appearance 

at low pressure value alternates with more circular sectional geometry consistent with 

an increased blood volume are a representative confirm of this their property59. 

Therefore, the high capacitance and low resistance of vessels and the prevalent activity 

of the muscular component make the calf pump the main driving force of the blood 

return to the heart (Fig. 1.2.2)69. Its ejection fraction (EF) of about 65% is tightly 

associated with the ambulatory pressure, which still consists in a gradient involving the 

thigh and the distal leg districts and exactly generated by the calf muscle activity70. In 

particular, the contraction determines the increase of venous pressure and the 

consequent centripetal blood expulsion from the deep popliteal and femoral veins to 

the superficial GSV (pressure of about 140 mmHg), whereas induces a pressure fall 

around 25-30 mmHg in the lower leg and foot. The calf pump relaxation reverses this 

effect with a consequent centrifugal blood flow directed from the GSV, characterized by 

high pressure, to deep venous system56,69.  
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Fig. 1.2.2 Representation of the venous calf pump. The figure schematically shows the structural 

organization of the calf pump muscles and the mechanical effects induced on the retrograde blood return 

 

The very existence of this horizontal flow depends on the venous perforating system, 

which spreads the pressure changes between the other two venous systems due to its 

medial position. Furthermore, the physiologic muscular activity of the calf pump is also 

able to indirectly affect the retrograde blood return to the right atrium by influencing 

the hydrostatic pressure71. This consists in an additional blood pressure component 

arisen from the gravitation force effects on the lower limb veins during the quiet 

standing position. Interestingly, it can be defined as the vertical distance between the 

heart, which corresponds to the pressure zero line, and a specific body anatomical 

district by depending on the subject height. The hydrostatic pressure generally increases 

of about 0.8mmHg/cm as proceeding from the right atrium to the ankle, where it 

amounts to 80-100mmHg67. Although it is not subjected to variations both in deep and 

superficial venous systems at the resting position, however the ambulation induces the 

calf pump activation, which determines the drop of the high hydrostatic pressure to 
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about 25-30mmHg in the calf and foot during its muscular contraction. The pump 

relaxation causes a slow pressure increase to the initial value instead67.   

On the basis of this general focus on the roles of each dynamic variable involved in the 

regulation of the physiological blood circulation in distal leg and the vital retrograde 

blood flow, there needs to point out the essentiality of the valvular competence as 

common denominator18. In this regard, the previously hinted open-and-closure 

mechanism of the venous valve leaflets (about 20 times/min in standing position) 

determines a pulsatile blood flow which is characterized by two dynamic components 

consisting in the directed and the vortical flows. The first is mainly sustained by the 

ambulation effects on foot and calf muscle functionality, which accelerate the flow by 

reducing the pressure applied on the luminal side of the valve cusps, while the second 

is consequent to the previous by preventing the blood stasis in the valvular parietalis 

side and favouring its exposition to the shear stress effects (Fig. 1.2.3a)72. Furthermore, 

the low pressure of the blood directed jet compared to that of the vortical flow is 

essential to determine the valve leaflets closure, despite the appearance of the 

previously mentioned quick reflux57.  

 

a) 
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b) 

 

 

Fig. 1.2.3 Schematic representation of the shear stress change effects57. The figure in a) shows the 

laminar and steady shear stress effects ensuring the endothelium and venous wall integrity; the figure in 

b) shows the venous wall damages with specific secretive responses to the low and irregular shear stress 

 

The shear stress is a further physiological consequence of the fluid dynamics in the blood 

vessels73. In effects, its relevance might be attributed both to the direct contact with the 

endothelial glycocalyx, which transduces its laminar or low and irregular turn by 

triggering different cellular response pathways, and to the high leucocyte 

responsiveness to its variations (Fig. 1.2.3a,b)74,75. These additional details enable to 

understand the real significance of venous valve functional impairment often associated 

to leaflet structural damages or vein wall alterations (e.g. hypertrophic region with 

dysregulated collagen synthesis, smooth muscle and elastin fibres scatter)57,76. 

Consequently, incompetent venous valves become unable to fragment the blood 

column and to tackle its high pressure induced by muscle pump activity in deep venous 

system by abolishing the two opposite poles of the previously said pressure gradients. 

The immediate result of the knock-on effect sparked off by these last functional and 

structural disturbances, which are reflected in hemodynamic perturbation, consists in 

hypertension development characterizing the different CVeD manifestations76,77. 
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1.3 The cellular and biochemical players of the Chronic Venous Disease 

Despite controversial opinions about the right sequence between the venous valve and 

wall impairment occurrence have followed one another over the years, it might be 

intuitive thinking that a series of preliminary alterations of the vein wall structure induce 

vessel dilation and, thus, valve closure failure. The extracellular matrix (ECM) depletion 

in laminin and elastin concentration accompanied by compromised deposition of 

collagen by the vascular smooth muscle cells and fibroblasts are effectively the 

structural premises of venous hypertension52,57,78. In this regard, the pointed-out 

imbalance between the collagen I and III ratio in favour of the first seems to be coherent 

with the venous loss of elasticity and distensibility characterizing this pathological 

condition79. Hence, the vein walls weak and stiff become unable to handle the whole 

spectrum of physiological pressure and hemodynamic fluctuations with the mechanical 

breakdown of the valvular unidirectional checkpoints. The consequent abolition of the 

previously discussed pressure gradients and the general increase of pressure in all 

districts of lower extremities force to shift the focus on their effects on the venous 

endothelial layer. This acts as a sort of condenser capable of gathering the physiological 

mechanical stress induced by the very blood flow with all its dynamic components and 

transducing them in proliferative, secretive and transcriptional stimuli in the nearby 

cells79,80. However, the real transducer is the glycocalyx consisting in some 

glycosaminoglycans (e.g. heparan and chondroitin sulphate, hyaluronan), proteoglycans 

and glycoproteins which line the luminal side of the vascular endothelial layer73. It 

represents an effective interface between the shear stress effects and the overhanging 

cellular lining, besides a selective permeability barrier able to provide the positive 
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regulation of coagulation and fibrinolysis processes and the necessary hindrances to the 

preliminary inflammatory events81. For all these reasons, the venous wall homeostasis 

can be guaranteed until the glycocalyx integrity is preserved. In fact, the decrease of 

shear stress, induced by the hemodynamic alterations characterizing the venous 

hypertension, firstly results in a dropped synthesis of glycocalyx components by the 

vascular endothelial cells73,82. Thus, the depletion of this functional interface consists in 

the starting point of a vicious circle of maladaptive events favouring the hypertension 

perpetuation in the different CVeD manifestations. The endothelial cells, directly 

exposed to the widespread hemodynamic dysregulation, strengthen the current 

pronounced venous dilatation by the increased synthesis of nitric oxide (NO) through 

the stimulation of the inducible nitric oxide synthase (iNOS) rather than of the 

constitutive and Ca2+-dependent endothelial enzyme isoform (eNOS). In effect, the 

increased release of NO, prostacyclin (PGI2), endothelin-1 (ET-1) and endothelium-

derived hyperpolarizing factor (EDHF) is coherent with the overbalanced vasodilation 

compared to the vasoconstriction mainly revealed in warped varicose vein segments 

(C2)57,79. The correlated venous distension is also sustained by the smooth muscle cell 

relaxation induced by the enhanced release of acetylcholine as further consequence of 

shear stress alteration79. Furthermore, the NO overexpression appears increasingly 

related to the interesting vascular distension mechanism sustained by the up-regulated 

matrix metalloproteinases (MMP)83,84. In fact, these enzymes are able to favour the 

hyperpolarization of the varicose vein vascular smooth muscle cells by involving some 

protease-activated receptors upregulated in endothelial and muscle cells and platelets, 

besides an hyperpolarizing factor and the hypoxia-induced transcription factor-1A and -
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2A (HIF-1A and HIF-2A), which inhibit the cellular Ca2+-intake to reduce the 

contraction85,86.  

Of note, the high responsiveness of MMPs to the hemodynamic impairments and their 

extensive involvement in the numerous vascular remodelling processes mirror their 

variable expression by the different cellular components of the venous wall. They consist 

in a superfamily of 26 zinc-dependent endopeptidases (only 23 expressed in human) 

which are synthesized as pre-pro-MMPs, although the signal peptide is lost during the 

translational process (Tab. 1.3.1)87,88. They share three constant structural features 

consisting in the sequence homology with the collagenase 1 or MMP-1, the pro-domain 

cysteine switch motif PRCGXPD essential to maintaining the enzyme inactive by the 

interaction with the Zn2+ ion of the catalytic domain, and the Zn2+-binding motif 

characterized by three histidine residues in the conserved sequence HEXGHXXGXXH, a 

conserved glutamate and a methionine residue placed in a downstream sequence 

(XBMX) from the catalytic domain and essential as support of its structure89. In addition, 

the repeated type II fibronectin domain, the linker-domain located between the 

catalytic site and the hemopexin domain and this last are differently distributed among 

the family members (Fig, 1.3.1). 
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Fig. 1.3.1 Schematic representation of MMP structure89. The figure represents the main MMP domains 

consisting in the pro-peptide domain characterized by the cysteine switch motif PRCGXPD and associated 

with the signal sequence, the catalytic domain containing the Zn2+-binding sequence HEXGHXXGXXH and 

two or three Ca2+ ions with stabilisation function, the linker domain and the hemopexin domain; three 

type II fibronectin repeats in the catalytic site are showed in the gelatinase structure. Further alternative 

structures are associated to other MMP family members 

 

 

These are usually set in six different groups on the basis of their substrates, including 

the collagenases MMP-1, -8 and -13 which, as their name suggests, mainly interact with 

the collagen I, II and III by releasing fragments of variable length; the gelatinase-A or 

MMP-2 and -B or MMP-9 cleaving the gelatine (consisting in denatured collagen), 

collagen and laminin through their repeated fibronectin II domain in the catalytic site; 

the stromelysin-1 or MMP-3 characterized by more efficient proteolytic activity on 

different collagen types, other ECM structural components (elastin, fibronectin, laminin) 

and numerous proteins than the stromelysin-2 or MMP-10; the matrilysin-1 or MMP-7 

and -2 or MMP-26, which lack hemopexin domain and interact with limited collagen 

types (collagen IV and X) and further non-ECM substrates; the membrane-type MMPs 
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(MT-MMPs) consisting in the type-I transmembrane proteins MT1-MMP (MMP-14), 

which mainly digests collagen I, II and III and is involved in the proMMP-2 activation, and 

the MT2-, MT3- and MT4-MMP (MMP-15, -16, -24) accompanied by the 

glycosylphospatidylinositol (GPI)-anchored proteins MT5- and MT6-MMP (MMP-17, 

MMP-25); and the remaining stromelysin-3 (MMP-11) presenting  different sequence 

and substrate specificity compared to the MMP-3, the metalloelastase (MMP-12) 

cleaving the elastin and other ECM structural components, and the MMP-19, -20 , -22, -

23, -28, some of which characterized by different domain organization or recently 

identified, are just defined as the other MMPs (Tab. 1.3.1; Fig. 1.3.1)86,90. Additional 

metalloproteinase families consisting in ADAMs (A Disintegrin And Metalloproteinases) 

and ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs), which 

are similarly known to exercise their Zn2+-dependent catalytic activity on collagen and 

other different ECM fibrillar components91–93.    
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Tab. 1.3.1 The MMP family members86. The table summarizes the MMP family members associated with 

their tissue expression and their different substrates.  

 

The passage from the pro- to the active MMP is marked by the interruption of Cys-Zn2+ 

coordination and the removal of the hemopexin domain representing the starting point 

of the MMP proteolytic activition94. The enzyme is then ready to interact with its 

substrate through the Zn2+ ion which gives rise to a nucleophilic attack mediated by a 

carbonyl oxygen atom of the substrate by releasing a water molecule. This process is 

primarily due to the presence of a water molecule accompanying the conserved 

glutamate residue, which determines the penta-coordination of the catalytic Zn2+ ion 

with the three histidine, methionine and substrate oxygen atoms. Furthermore, the 

MMP-11, -21 and -28 as well as the MT-MMPs contain a furin domain comprised 

between the pro-peptide and the catalytic site, which is intracellularly cleaved by the 

endopeptidase furin following the recognition of a specific sequence in C-terminus of 

their pro-peptide89,95. These pro-MMP activation mechanisms can involve either 

enzymatic family members, as demonstrated by the MMP-3 and all the MT-MMPs (with 

the only exclusion of the MT4-MMP), or different treatments including heat, pH 

decrease and chemical agents (4-aminophenylmercuric acetate, mercury chloride, 

sodium dodecyl sulphate, reactive oxygen species) by determining structural 

interferences86,96. Interestingly, the proMMP-2 activation requires the concurrent 

involvement of the MT1-MMP (MMP-14) and the tissue inhibitor of matrix 

metalloproteinases 2 (TIMP-2) on the cell membrane. The TIMP-2-proMMP-2 complex 

involving the C-terminal domains can interact through the TIMP-2 N-terminal domain 

with the MT1-MMP anchored on the cell surface. Thus, the pro-MMP2 bound to the 
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membrane might become substrate for another MT1-MMP molecule, which determines 

its activation. However, it might also occur an early interaction between TIMP-2 and 

MT1-MMP on the cell surface, which inhibited binds the hemopexin domain of 

proMMP2 to expose it to a free MT1-MMP which performs the activation84,86,95. The 

mention of this TIMP-2 function allows to make remarks on the other three tissue MMP 

inhibitors TIMP-1, -3 and -4. Each one is characterized by a C-terminal domain and a N-

terminal domain responsible for the MMP inhibition through the direct interaction with 

the protease catalytic site97,98. TIMPs are specifically distributed among the different 

venous wall layers, where exercise their activity on all MMPs, despite some peculiarities 

consisting in the TIMP-1 lack of MT1-MMP interaction, the just mentioned TIMP-2 role 

in the MMP-2 activation, the TIMP-3 ADAM inhibition and the TIMP-4 activity mainly 

localized in cardiovascular systems. Moreover, they are endowed with additional 

functions, as the pro-angiogenic TIMP-1 properties, the endothelial cell proliferation 

inhibition by TIMP-2 and TIMP-3, which may prevent cellular migration and angiogenesis 

by interacting with VEGF receptor86,99.  Further endogenous factors able to interfere 

with the MMP and other different endopeptidase catalytic activity are the α2-

macroglobulins provided of four identical subunits with Zn2+-binding domain 

fundamental to their function. In particular, they determine MMP-complex formation 

which is degraded by endocytosis mechanisms89.  

This overall picture enables to understand both the modulation of MMP targeted 

activity on the main ECM components (e.g. collagens, elastin, fibronectin, vitronectin, 

tenascin, laminin), which explains the intensive involvement in the physiologic and 

pathologic venous wall remodelling, and the protease further interactions with factors, 
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which differentially determine the CVeD functional impairments100,101,102. In these 

functions as well as in the cell proliferation, migration and differentiation control, the 

MMP/TIMP balance is an essential requirement to provide the venous physiological 

homeostasis. In fact, the loss of this mutual counterbalance and the significant venous 

pressure increase effects on MMP transcriptional and post-translational processes 

might be considered determinant in the appearance of both hypertrophic and atrophic 

segments of varicose veins (C2)103,104. Interestingly, this evidence is confirmed by the 

pressure stress on vascular endothelial and smooth muscle cells, which induces them to 

synthesize large amount of MMP-2 following the transcription factor activator protein-

1 (AP-1) activation by the reactive oxygen species (ROS) release96. This event is 

exacerbated by the endothelial mechanical and inflammatory activation, which 

determines an hyperexpression of the NADP(H) oxidases79. A similar MMP-2 

concentration increase is also associated to other CVeD manifestations including 

hyperpigmentation(C4a), lipodermatosclerosis or atrophie blanche (C4b). They share a 

common hypoxic microenvironment accompanied by a huge oxidative stress and 

hemosiderin deposition, which enhance the MMP and the vascular endothelial growth 

factor (VEGF) expression by determining the appearance of typical clinical signs 57,105. In 

addition to the MMP-2 widely present in all venous wall layers, the increase of the MMP-

1, mainly synthesized by fibroblasts, endothelial cells and smooth muscle cells, and the 

MMP-9, highly expressed by endothelial and muscle cells, influences the proliferation 

and migration of venous smooth muscle cells in varicose veins (Tab. 1.3.1)106. In this 

regard, the proteolytic degradation of the ECM components is one of the immediate 

structural assets offered to the varicose vein dedifferentiated muscle cells, which are 
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then induced to migrate. The removal of some adhesion sites and the exposition of 

binding sites for different factors enhanced by the MMP increased secretion potentiate 

the migration process79. This mechanical implication is accompanied by an effective 

smooth muscle cell phenotype switch from contractile to proliferative and secretive 

which materializes through increased ECM-muscle cell interactions and the release of 

growth factors in the hypertrophic regions of varicose veins65. Furthermore, MMP-3, -7 

and -13, equally up-regulated in this pathological condition, might contribute to the 

venous wall weakening by determining the ECM component degradation. Of note, the 

decreased TIMP release and the consequent uncontrolled MMP-3 proteolytic activity 

are responsible of some collagen III post-translational modifications inducing its 

deposition imbalance with the collagen I in thinned and tortuous atrophic regions of 

varicose veins79,84,107. Bearing in mind all these MMP proteolytic activity implications and 

the wide cellular expression of these enzymes in the vascular system, it might result 

expectable to associate their involvement also with the other CVeD stages likewise 

characterized by ECM alterations and diffused inflammation. In effects, this condition is 

further sustained by the MMP effects on the activated endothelial cells interacting with 

similarly activated leucocytes and the modulation of some inflammatory mediators, as 

cytokines, chemokines and growth factors108. In this regard, one of the most 

representative process might consist in the sequence of the four wound healing time-

dependent phases (hemostasis, inflammation, granulation and re-epithelialization). The 

initial inflammatory events and the ECM turnover, facilitating keratinocyte and 

fibroblast migration, pave the way to the progressive granulation tissue formation and 

the angiogenesis stimulation by leading to the endothelial basement membrane and 
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skin barrier restoration109,110. The matrilysin MMP-7, expressed by vascular endothelial 

and muscle cells, takes part to this process through both the activation of the latent 

tumor necrosis factor-α (TNF-α) stimulating chemoattractant mechanisms and 

macrophage infiltration, and the alterations of some cell-cell and ECM-cell interactions 

to promote cellular migration107. Similarly, the MMP-12, mainly secreted by 

macrophages (Tab. 1.3.1), might be involved in the inflammatory processes by triggering 

the TNF-α activation, besides in the reparative phases due to its ECM elastin, fibronectin, 

collagen VI and laminin degradation111,112,113. The restoration of the tissue integrity in 

the final phases of the wound closure is also favoured by the up-regulation of the 

collagenases MMP-1, MMP-8 and MMP-13 which are expressed in endothelial cells, 

smooth muscle cells and fibroblasts and are determinant mainly in promoting the 

proliferation and migration of these last during the ECM remodelling (Tab. 1.3.1)114,115. 

An undebated role in the prolonged inflammatory state is attributed to increased 

concentrations of the MMP-2 and MMP-9 during the healing process, although their 

proteolytic activity are strictly moderated by their inhibitors TIMP-1 and TIMP-299,116,117. 

Thus, their loss might induce the reduction of the angiogenesis and the impairment in 

the correct ECM and tissue deposition characterizing the wound chronicity.  

Furthermore, as reported on several occasions during the chapter, the switch from a 

laminar and pulsatile to an irregular and low shear stress is comparable to squeezing a 

trigger which sparks off self-reinforcing inflammatory events, besides structural 

impairments (Fig. 1.2.3b). In effects, this hemodynamic force acts as a physiological 

modulator of the circulating leucocytes, which undergo their superficial integrin 

CD11b/CD18 (Mac-I) proteolytic shedding and cytoskeleton F-actin depolymerization 
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with consequent pseudopod retraction, if exposed to a laminar blood flow. The shear 

stress drop is then a key event in determining the leucocyte recruitment on the vascular 

endothelial layer through the integrin increased expression, the pseudopod sprouting 

and the loss of the cellular spherical shape to give rise to contact regions118,119,120. 

Although the integrin CD11b/CD18 up-regulation is an effective requirement to the 

leucocyte migration and subsequent penetration in the vascular endothelial layer, 

however further adhesion molecules, as the endothelial E-selectin, the intercellular 

adhesion molecule-1 (ICAM-1), the vascular adhesion molecule-1 (VCAM-1), and the 

leucocyte L-selectin, the lymphocyte function-associated antigen-1 (LFA-1) and the very 

late activation antigen-4 (VLA-4), are determinant in this respect57,110,121. Interestingly, 

the reduced expression of the CD11b/CD18 on leucocyte cellular surface and the 

correspondent increase of soluble L-selectin plasmatic levels might be representative of 

cellular migration into the endothelium110,79. The generalized activation state of the 

endothelium is also prompted by the shear stress-induced glycocalyx damages, which 

unmask the adhesion molecules promoting leucocyte docking and inflammation 

advance57. These events are further exacerbated by the previously mentioned sharp 

reduction of endothelial NO synthesis by the eNOS, which physiologically plays an 

essential anti-inflammatory role, besides inhibiting smooth muscle cell proliferation and 

stimulating their relaxation. The nitric oxide depletion is counterbalanced by the 

endothelial increased levels of the pro-inflammatory agent angiotensin II (AngII), which 

stimulates the ROS production and the adhesion molecule and inflammatory cytokine 

release (Fig. 1.2.3b)57,122. Furthermore, the compromised and activated endothelium 

gives rise to a prothrombotic environment sustained by the presence of plasminogen 
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activator inhibitor-1 (PAI-1), factor VIII (FVIII) and Von Willebrand factor (Vwf), which 

might be considered endothelial disfunction markers. The high concentration of these 

last along with D-dimer, IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1) and C 

reactive protein (CRP) revealed in the lower limb circulating blood might be associated 

with a fibrinolytic profile characterizing the CVeD79. The presence of these just 

mentioned cytokines mirrors the heavy secretion of inflammatory mediators which act 

as constant background of the whole spectrum of the hemodynamic and structural 

impairments approached so far. In this regard, the cytokines consist in a multifaceted 

family of glycoproteins and peptides able to induce their effect on the basis of the timing 

and the environment of their release, the potential presence of inhibitor or synergistic 

factors, the cellular distribution of their receptors and the balance between 

inflammatory and anti-inflammatory family members (Tab. 1.3.2). Cytokines as, 

interleukin (IL) -4, -10, -13, interferon-α (IFN-α) and variously the transforming growth 

factor-β (TGF-β) are known to counteract inflammatory reactions induced by tumour 

necrosis factor-α (TNF-α), other interleukins as IL-1, -6, -8, -11, -12, -19, IFN-β and IFN-γ, 

TGF-β, macrophage inflammatory protein-1α and -1β (MIP-1α, MIP-1β), the regulated 

on activation, normal T-expressed and secreted (RANTES), the platelet factor-4 (PF-4) 

and the monocyte chemoattractant protein-1, -2, -3 (MCP-1, -2, -3)122. This initial 

distinction, manly based on the general functional roles of cytokines, enables to refer to 

their specific organization in subfamilies including the numerous interleukins, the 

tumour necrosis factors (TNF-α and -β), the interferons (IFN-α, -β, -γ), the colony 

stimulating factors (CSF) distinct in granulocyte (G-CSF), monocyte (M-CSF) and 

granulocyte-monocyte (GM-CSF), the transforming growth factors (TGF-β1, - β2, -β3) 
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accompanied by the bone morphogenetic proteins (BMPs), the activins and the inhibins, 

the chemokines (IL-8/CXCL8, PF-4/CXCL4, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, 

MCP-1/CCL2, MIP-2/CCL8, MIP-3, MIP-4), and other members(Tab. 1.3.2). 
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Tab 1.3.2 Cytokine, chemokine and growth factor family members122. The table summarizes some of the 

most representative cytokines, chemokines and growth factors and their corresponding cellular sources 

and targets, receptors and functions 

 

Interestingly, the chemokines, so named in reference to their chemotactic properties, 

are distinct in further 4 groups characterized by the presence or not of a conserved 

cysteine (C) residue in the N-terminus accompanied by a variable region (X). These 

consist in XC group, whose members (XCL1, XCL2) are involved in lymphocyte 

chemoattraction, CC group acting on monocytes, CXC group including ELR+-CXC 

members with a N-terminus sequence glutamic acid-leucine-arginine (ELR motif), which 

interact with neutrophils, and ELR--CXC members lacking in the ELR sequence and mainly 

acting on lymphocytes, and CX3C group including the fractalkine122,123. The pleiotropic 

ability of cytokines to trigger different physiological responses in equally different 
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cellular types is consistent with their variable release by macrophages and T cells, which 

synthesize different inflammatory and anti-inflammatory interleukins (IL-1, -6, -10, -12) 

besides TGF-β, TNF-α, IFN-γ and some chemokines (MCP-1/CCL2, MCP-4/CCL13, IL-

8/CXCL8), platelets, which store in their secretion granules numerous cytokines and 

chemokines (IL-1β, PF4/CXCL4, MIP-1/CCL3, RANTES/CCL5), and other non-

inflammatory cells as the vascular endothelial and smooth muscle cells secreting  IL-1α, 

IL-1β and TNF-α (Tab. 1.3.2). However, the efficacy of their biological functions is 

strongly tied to the interaction with specific receptors which often represent the starting 

point of an activation cascade culminating in the synthesis of new products or in 

mechanisms of transcriptional modulation. Four receptor structures are located on the 

target cellular surface to mediate cytokine effects by binding them through their 

extracellular domains. In particular, the hematopoietin receptor, which is characterized 

by a dimeric or trimeric structure with some conserved cysteine residues in the 

extracellular domain, interacts with different interleukins, as IL-2 and IL-7, and with the 

GM-CSF, the IFN receptors equally presenting some conserved cysteine residues, the 

TNF receptors, and the chemokine receptors which are G-protein coupled and typically 

characterized by seven transmembrane domains122. Numerous ILs, IFNs and CSFs, 

binding their aforementioned receptors, give rise to their dimerization activating the 

JAK-STAT signalling pathway, which involves the Janus kinases (JAK) and the signal 

transducer and activator of transcription proteins (STAT) recruitment. Alternatively, the 

inflammatory IL-1 and IL-18 with the TNFs exploit the NF-kB signalling to influence the 

expression of some adhesion molecules (E-selectin, VCAM-1, ICAM-1), the iNOS and 

some MMPs besides other cytokines and growth factors determinant in the 
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inflammatory process. Instead, the TGF-βs induce numerous endothelial alterations and 

inflammation mediator expression through the Smad-signalling pathway (Tab. 1.3.2). 

The existence of strict regulation systems, as specific inhibitors or phosphatases, is 

required to ensure the appropriate balancing of these transductional mechanisms. In 

this regard, the increased concentrations of the basic fibroblast growth factor (bFGF) in 

the activated endothelium as well as of the TNF-α, IFN-γ, CSFs, MCPs, different 

interleukins and growth factors are evidence of these mediator negative feedback 

system disturbances favouring the uncontrolled inflammatory state which characterizes 

numerous CVeD manifestation. In effects, the association of TGF-β1 enhanced 

expression with the varicose veins (C2) is consistent with its ability to stimulate elastin 

and collagen synthesis and to down-regulate the TIMP expression to determine the 

stiffening of the vein walls57,124. The role of TGF-β1 in promoting the ECM remodelling 

and cellular migration is also compatible with the early phases of the wound healing 

process, in which the reorganization of vascular basement membrane and some 

angiogenic stimulator release occur109. Furthermore, the pro-inflammatory cytokine 

induces the production of bFGF exercising its mitogenic function principally on 

fibroblasts and vascular smooth muscle cells in varicose veins. For their part, muscle cells 

are stimulated to produce IL-6 and the chemokine MCP-1 in presence of thrombin by 

promoting monocyte recruitment122. Furthermore, TGF-β1, as well as TNF-α and IFN-γ, 

seems to be involved in the up-regulation of the iNOS especially in the varicose vein 

tortuous segments122,125. These cytokines are also correlated with the endothelial 

increased permeability, which characterizes the whole CVeD. In particular, TNF-α 

determines a loosening of the endothelial junctions by inducing the up-regulation of the 
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vascular endothelial growth factor (VEGF), bFGF, IL-1α and IL-6, which stimulate the 

MMPs expression, and iNOS which increases the NO levels79,122,126. This structural 

alteration is detectable from the first CVeD sign appearance sustained by a pronounced 

venous hypertension and progressively worsened by the extravasation of some 

macromolecules, as fibrinogen, red blood cell degradation fragments and proteins 

stimulating leucocyte migration and trapping in the fibrin cuff meanwhile accumulated 

in the interstitial space57,109. The consequent edema and the hemosiderosis occurrence 

generate a microenvironment heavily hypoxic which represents an undebated 

stimulator factor for MMP, pro-inflammatory cytokine and growth factor synthesis 

characterizing the different CVI manifestations105,106,127.  The same TNF-α induced by the 

urokinase-type plasminogen activator (u-PA) and accompanied by IL-17 and -19 seems 

to enhance the MMP-9 expression in varicose veins 79,122. However, a similar effect is 

produced by TNF-α and IL-1β on MMP-1, -2, -3, -9, -13 and MT1-MMP to maintain the 

inflammatory state in chronic wound healing. The up-regulation of MMPs is in line with 

the general chemotactic role of the IL-8, which is also able to stimulate angiogenesis, 

besides the proliferation and migration of keratinocytes during the wound closure128. 

Differently, the inflammatory events are moderated by IL-10, which prevents the 

endothelial cell-leucocyte interactions and inhibits the pro-inflammatory cytokine 

release. High expression of this interleukin is consistent with the containing of the 

inflammatory phase to determine the tissue restoration during the healing 

process122,112,126. Overall, an interesting implication of the activation of this complex 

biochemical machine regulated by effective chain reactions involving different cellular 

types and numerous mediators consists in its stimulation of nociceptors located 
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between the endothelial and smooth muscle cells of the venous wall by determining the 

onset of pain52. 

Certainly, this last detail as well as the different aspects approached until now is 

consistent with the aim of this introductive focus on CVeD to provide instruments 

suitable to properly contextualising the implications of the evidences which are 

presenting.   
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Chapter 2 

Thesis aim 

The mechanical and cellular players related to the physiological compartmentalization 

of the micro- and macrocirculation in the lower limbs could be considered them as the 

main agents for ensuring the modulation of the blood dynamics and the venous 

homeostasis58,59. Their mutual influence in pressure gradient and hemodynamical force 

determination are often mirrored by a pleiotropic biochemical environment which 

similarly contributes to the essential blood return to the heart. However, any 

impairment at every level of this complex biologic system characterized by cellular and 

biochemical balances strictly regulated and sensitive may trigger a vicious circle of 

pathological events corresponding to the different CVeD manifestations57,79. The 

multifaceted pathological profile of the CVeD in many respects unexplored contributes 

to exacerbate its worldwide diffusion with profound social, political and economic 

effects3,12.  

In this regard, the study of the different expression and activity profile modulation of 

some of the main mediators involved in the CVeD occurrence represents the general 

aim of this three-year research project to trace the disease progression starting from its 

last to the early clinical manifestations. In particular, four intermediate purposes are 

established in order to reach what just mentioned and they consist in (Fig. 2.1): I)  

biochemical characterization of C6 microenvironment through the determination of the 

three TGF-β isoforms and sEng expression in wound fluid (WF) samples from 

inflammatory (Infl) and granulating (Gran) non-healing venous leg ulcers (VLU), the 
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evaluation of the expression profile of these mediators and MMPs in serum-free 

supernatants from THP-1 monocyte cells stimulated with Infl and Gran WF in presence 

or absence of sulodexide (SDX) and finally,  the MMP-2 and MMP-9 proteolytic activity 

observation in the same serum-free supernatants; II) biochemical characterization of 

C4a/C4b microenvironment through the MMP expression determination in plasma 

samples from C4a/C4b patients underwent three different gravitational conditions 

including wearing under-knee graduated compression stockings (23-32 mmHg, class II); 

III) in vitro characterization of detergent sclerosant biological and cellular effects 

through the study of the MMP proteolytic and expression profile modulation by the 

addition of different concentration of polidocanol and sodium tetradecyl sulphate to 

normal plasma samples, and the observation of human HECV endothelial cell 

morphological changes induced by the same detergents concentrations prepared in 

saline solution and in plasma; IV) biochemical characterization of C1/C2 

microenvironment through the cytokine, chemokine and growth factor expression 

determination in serum samples from C1/C2 patients treated with the sclerosant 

polidocanol.     
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Fig. 2.1 Graphic representation of the study aims. The graph shows the four intermediate study aims 

organized in clockwise direction around the general purpose in the midpoint. The boxes at the side of 

each aim contain its schematic description 
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Chapter 3 

Materials and methods 

3.1 Biochemical characterization of C6 microenvironment: TGF-β isoform, sEng and 

MMP expression profile  

3.1.1 Patient recruitment and sample collection 

The investigation of the TGF-β isoform and its co-receptor soluble Endoglin (sEng) 

expression in inflammatory and granulating wound fluid (WF) has entailed the 

recruitment of thirty patients affected by non-healing venous leg ulcer (VLU) classified 

as C6 stage according with the CEAP classification17.  

Prearranged exclusion criteria, as age less than 18 years, pregnancy or breast-feeding, 

arterial disease, renal insufficiency, insulin-dependent diabetes mellitus, vasculitis, 

autoimmune diseases, cortisone, immunosuppressant or hormonal therapies, previous 

venous surgery or sclerotherapy, are observed to start the study in accordance with the 

ethical standards of the Helsinki Declaration of 1975 (revised in 2000) and after the 

approval by the local ethics committee (Barbantini Clinics of Lucca and University “Carlo 

Bo” of Urbino).  

Patients provided their signed written informed consent and underwent Duplex 

ultrasound scanning (DUS) in standing position with the weight on the contralateral leg. 

Moreover, the calf compression-release manoeuvre and the compression ultrasounds 

respectively allowed to detect venous reflux (> 0.5 s in superficial venous system and > 

1 s in deep venous system) and thrombosis occurrence1,59. On the basis of the clinical 

examination evidences, the WFs collected during the patient admission to the hospital 
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are divided in inflammatory (n= 20, Infl) and granulating (n= 10, Gran). Bacterial analysis 

of the patient ulcer bed is performed through biopsies and the visual analogue scale 

(VAS), based on a numeric scale from 0 = no pain, 1-3 = mild pain, 4-6 = moderate pain 

up to 7-10 = severe pain, is used to determine the intensity of patient pain perception. 

Furthermore, all patients are treated with inelastic multilayer compression (≥ 60mmHg; 

class VI)28 in supine position and differently underwent skin grafting or sclerotherapy 

after WF sample collection.  

This is performed through the application of proper cotton gauzes on the ulcer bed. The 

saturated gauzes were collected in centrifuge tubes without additives or antiproteases 

and centrifuged at 10,000xg for 15 minutes at 4°C. The obtained supernatants are stored 

at -80°C until the TGF-β isoform, sEng and MMP determinations through the multiplex 

suspension immunomagnetic assays (Bio-Plex®, Bio-Rad, Hercules, CA, USA). 

 

3.1.2 Cell culture and treatments 

 

The human monocytic THP-1 cell line (ATCC® TIB-202TM) is used for stimulation with 

inflammatory and granulating WF in presence or absence of Sulodexide (SDX) provided 

by Alfa Wasserman (Milan, Italy). The THP-1 cells, obtained from American Type Culture 

Collection (Manassas, VA, USA), grown in standard conditions (RPMI 1640 

supplemented with 10% heat-inactivated fetal bovine serum, 1% L-glutamine and 1% 

antibiotics) and maintained at 37°C in humidified air with 5% CO2, are seeded at 

1,500,000/mL in serum-free culture media for performing experiments, in order to avoid 

potential interferences due to TGF-b, sEng, or MMPs expressed in fetal bovine serum. 
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The inflammatory and granulating WF pools used in the THP-1 cell treatment are 

obtained from aliquots with the same volume of 10 samples randomly selected from 

each group. The pools, after their filtration (0.45 μm tissue culture filter unit) to remove 

eventual bacteria and cellular debris, are added to the serum free culture media of THP-

1 cells to a final concentration of 5% v/v, in presence or absence of SDX co-treatment 

(0.12 LSU/mL)1 for 24 hours. Each experiment on serum-free conditioned medium was 

performed in triplicate in at least two independent experiments. The trypan blue 

exclusion test is used to evaluate the cell viability. The sterile compounds for cell culture 

are from JET BIOFIL Bio-filtration Products Co (Guangzhou, China) whereas chemicals 

and reagents for cell culture are from Carlo Erba Reagents S.r.l. (Milan, Italy). 

 

3.1.3 Multiplex suspension immunomagnetic assay 

The assay allows to quickly detect up to a hundred analytes in the same sample by 

exploiting signal emitted by fluorescently dyed polystyrene magnetic beads (diameter 

6,5 µm) conjugated with monoclonal antibodies. In particular, the detection of the 

investigated analytes is determined by the specific interaction between the primary 

monoclonal antibody-protein complex, generated on the beads during the assay, and a 

biotinylated secondary antibody which in turn is recognised by streptavidin-

phycoerythrin molecules. The fluorescence produced is dependent on the markers 

loaded in the beads (specific for each analyte) and its intensity is directly proportional 

to the phycoerythrin bound to the analyte. In fact, the Bio-Plex® 200 array reader is 

                                                           
1 The lipasemic units (LSU) are related to the SDX stimulating effects on the lipoprotein lipase activity; 1 
mg = 10 LSU185 
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composed of two lasers, the first determines the fluorescence emission by the marker 

loaded in order to identify the beads involved in the assay, whereas the second is related 

to the phycoerythrin stimulation to obtain a reporter signal detected by a 

photomultiplier integrated in the instrument. The signal is then processed by a Bio-Plex® 

Manager software (6.1 version) which converts it in the concentration value of the 

sample analytes expressed in pg/mL, besides further parameters.  

The kits employed to determine the TGF-β isoform and sEng concentration in WF and in 

serum-free supernatants from cell culture assays respectively consist in the Pro™Human 

TGF-β 3-plex Assay (including the three isoform TGF-β1, TGF-β2 and TGF-β3) and in the 

single-plex Endoglin, which is part of the Pro™Human Cancer-panel 2 Assay. In the same 

samples the MMP expression is evaluated through the Pro™Human MMP 9-plex Assay.  

The effective quantification is based on a standard curve resulting from nine serial 

dilutions (1:3 or 1:4 depending on the panel of analytes considered) of the assay 

standard in a specific diluent both provided by the manufacturer.  

The WF and culture media samples are maintained at room temperature before to be 

centrifuged at 10,000 rpm for 10 minutes (4°C).  

The WF and supernatant samples need to be activated in order to determine the 

immunoreactive TGF-β isoforms (this step is required only for the measurement of TGF- 

β isoforms, all the other quantification assays did not require this step). According with 

the manufacturer instructions, the activation step is performed through the addition of 

10 µl HCl to 50 µl WF samples which are mixed and incubated for 10 minutes at room 

temperature. An immediate neutralization is required by adding 10 µl NaOH to the 

previous solution. The samples are then loaded (50 μl/well) on a 96-well plate containing 
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the beads conjugated with the primary monoclonal antibody (50 μl/well) previously 

resuspended in the assay buffer and washed two times through a magnetic Wash Station 

(Bio-Rad) to remove primary antibodies uncoupled by preventing false negative 

occurrence. The plate incubation in the dark for 1 hour (sEng and MMPs) or 2 hours 

(TGF-β isoforms) on a shaker at 850±50 rpm is followed by three washing steps through 

the magnetic Wash Station to remove the unbound proteins, according to the 

manufacturer instructions. Then, the addition of the biotinylated secondary antibody 

properly diluted in the antibody diluent to each well (25 μl/well) is performed to induce 

the interaction with the analyte-primary antibody complex generated on the bead 

surface in the previous step. In the last step the plate incubated in the dark for 30 

minutes (sEng and MMPs) or 1 hour (TGF-β isoforms) on the shaker at 850±50 rpm is 

washed three times to remove the unbound antibodies and then, loaded with the 

fluorescent marker streptavidin-phycoerythrin (50 μl/well) with a further incubation in 

the dark of 30 minutes (TGF-β isoforms)  or 10 minutes (sEng and MMPs) on the shaker 

(850±50 rpm). The next washing step through the magnetic Wash Station is followed by 

the addition of the assay buffer (125μl/well) in each well and a rapid shake for 30 

seconds to resuspend fluorescently-dyed immunocomplexes before the plate reading 

and the data collection. 

  

3.1.4 Zymography assay 

The serum-free supernatants of THP-1 cells are also used to perform zymography assays 

in order to evaluate the proteolytic activity of the gelatinases MMP-2 and MMP-9 after 

the treatments. The assay, as derivation of the sodium dodecyl sulphate polyacrylamide 
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gel electrophoresis (SDS-PAGE) performed in denaturing and nonreducing conditions, 

consists in inducing the migration of the samples containing MMPs through a SDS-PAGE 

gel copolymerized with a specific substrate (e.g. gelatine) after their treatment with the 

anionic detergent sodium dodecyl sulphate (SDS). This provides them a general negative 

charge directly proportional to their molecular mass. In fact, the SDS binding every two 

amino acids causes the enzyme linearization due to the electronegative repulsion 

between the numerous negative charges. Furthermore, the denaturing detergent is also 

responsible for the cysteine residue dissociation from the active site Zn2+ ion by inducing 

the activation of latent MMPs during the assay.  

The denatured enzymes begin then to move from the electric field cathode (negative) 

to the anode (positive) through the pores of a discontinuous polyacrylamide gel 

composed of a stacking and a separating gel. These resulted from the head-to-tail radical 

polymerization reaction between the acrylamide monomers and the cross-linker bis-

acrylamide or piperazine diacrylamide (PDA) monomers. The reaction is catalysed by the 

catalyser ammonium persulphate (APS) and the initializer N-tetramethylendiamine 

(TEMED). This last induces the APS homolytic decomposition in free sulfuric radical (●SO4
-

), which allows to obtain gel with variable porosity on the basis of the cross-linker 

monomer (bis-acrylamide or PDA) percentage compared to the total monomers 

(acrylamide and bis-acrylamide). The larger pores of the stacking gel than those of the 

separating gel below and their discontinuous pH buffer (lower in stacking than in 

separating) heavily influence the migration of the MMPs from the first, in which are 

induced to concentrate in a very tight zone at the interface with the second, where they 

give rise to bands localized at different heights corresponding to their molecular weight. 
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The presence of these bands is due to the acrylamide co-polymerization with the MMP-

2 and MMP-9 substrate gelatine in the separating gel solution by favouring the 

proteolytic digestion during the overnight gel incubation in enzyme incubation buffer 

(50 mM Tris-HCl, pH 7.5; 5 mM CaCl2; 100 mM NaCl; 1 mM ZnCl2; 0.3 mM NaN3, 0.2 g/l 

of Brij®-35; and 2.5 mL/l of Triton X-100) at 37°C. However, this last phase is following 

to the enzyme renaturation process consisting in two passages in the non-ionic 

detergent Triton X-100 2,5% v/v solution able to remove the SDS and allow the enzyme 

partial renaturation and activity recovery. 

The MMP substrate used in these assays was the 0,3% w/v gelatine 90 bloom 

(PANREAC®) useful to evaluate the gelatinolytic MMP-2 and MMP-9 activity. Generally, 

a separating gel (7.5% acrylamide w/v) and a stacking gel (4% acrylamide w/v) containing 

bis-acrylamide as cross-linker in a 37.5:1 acrylamide:bis-acrylamide ratio are required to 

perform the zymography assay. In the present set of experiments a homemade 100:1 

acrylamide:PDA ratio is used (unless otherwise specified) both for separating and stacking 

gels. The final composition of the separating gel (10 mL) is 0.375 M Tris HCl, pH 8.8; 7.5% 

acrylamide:PDA; 0.3% gelatin; 0.1% SDS, 0.1% APS, TEMED whereas stacking gel (2.5 mL) is 

0.125 M Tris HCl, pH 6.8; 4% acrylamide:PDA; 0.1% SDS, 0.1% APS, TEMED. The separating 

gel solution is loaded between two juxtaposed glass plates previously assembled in their 

proper support to polymerize at room temperature. Afterwards, a polyethylene comb is 

pushed in the stacking gel solution to create the sample wells during the gel 

polymerization on the top of the separating gel at room temperature. The discontinuous 

gel obtained is then located in an electrophoretic chamber filled with a running buffer 

(25 mM Tris, 192 mM glycine, 0.1% SDS), which ensures the continuous passage of 
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charges generated by the chamber connection with an electric power supply (120 Volt) 

for about 2 hours. This passage is crucial for the migration of MMPs contained in the 

serum-free THP-1 cell supernatant samples (20μl) centrifuged at 10,000 rpm for 10 

minutes (4°C) and loaded in the gel wells after the addition of about 6μl of the marker 

dye Zymogram sample buffer (62.5 mM Tris-HCl, pH 6.8, 25% glycerol, 4% SDS, 0.01% 

bromophenol blue). A peripheral blood sample prepared as 1:15 dilution in zymogram 

sample buffer is loaded (20μl) as molecular weight standard. The final visualization of 

clear bands on dark blue background is realised through a first passage in the 0,2% w/v 

staining solution of the Remazol Brilliant blue R250 dye (30% distilled water, 20% glacial 

acetic acid, 50% methanol, 0,2% w/v Remazol Brilliant blue R250)  (VWR international 

srl; Sigma-Merck) for 15 minutes and a second in the Coomassie Brilliant Blue R250 dye 

(30% distilled water, 20% glacial acetic acid, 50% methanol, 0,2% w/v Coomassie Brilliant 

Blue R250)  (VWR international srl; Sigma-Merck) for about 10 minutes. A destaining 

solution (70% distilled water, 10% glacial acetic acid, 20% methanol) (Sigma-Merck, VWR 

international srl) might be necessary to remove the dye excess.  

The digital gel analysis by the specific Lab Image 1D software (Kapelan Bio-Imaging) 

provides both the correspondence between the band localization and its molecular 

weight through the comparison with the standard loaded (peripheral blood sample) and 

the volume band quantification. All chemicals and reagents for the zymography assays 

are obtained from Bio-Rad, unless otherwise specified.
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3.1.5 Statistical analysis 

The variables showed in the graphs are expressed as the mean ± standard error (SEM) 

of the mean.  All the data are statistically analysed through Fisher Exact test, Mann-

Whitney, one-way analysis of variance ANOVA with repeated measures followed by 

Dunn’s post-hoc test according with the variable characteristics. The tests performed 

are two-tailed and the significance is set at p < 0.05. The analyses and the graphs are 

carried out through the Prism software for Windows 7 (version 3.1; Graph-Pad, San 

Diego, CA, USA).  

 

3.2 Biochemical characterization of C4a/C4b microenvironment: MMP expression 

profile 

 

3.2.1 Patient recruitment and sample collection 

The study of the MMP expression profile modulation by different gravitational 

positioning and compression treatment is approved by the London Queen Square 

Research Ethics Committee and is designed in accordance with the STROBE statement 

checklist on the reporting observational studies.  

In particular, it involved fourteen healthy volunteers, members of the Ealing hospital 

(London, UK) staff without clinical evidence of venous disorders and classified as C0 and 

C1 stages in accordance with the CEAP classification, and fourteen C4a/C4b patients 

enrolled in the waiting list to undergo venous laser ablation for primary saphenous 

reflux (>5s) detected through the ultrasound standing method after the calf 

compression-release manoeuvre execution1,17. Varicose veins, skin changes, corona 

phlebectatica paraplantaris and edema occurrence are the exclusion criteria followed in 
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the first group recruitment, whereas leg ulceration, thrombophlebitis and previous 

intervention are those applied in the second. General exclusion criteria are past history 

of deep venous thrombosis, post-thrombotic syndrome, chronic systemic inflammatory 

disease, cancer, pregnancy, anti-inflammatory or anticoagulant pharmacological 

treatments and tissue loss evidences. All participants signed their written informed 

consent and each one represented the own control.  

The collection of their blood samples from the ankle region is immediately performed 

at the end of each of the three gravitational conditions imposed by the study plan. These 

consist in: a) stationary standing position on a paper square (40cm X 40cm) by leaning 

on an orthopaedic aluminium support frame; b) lying down in a supine position with the 

legs elevated at 20° with the knee joint supported by a stuffed platform to preventing 

hypertension; c) stationary standing by wearing a below knee and graduated elastic 

compression stocking (CONFORT medical compression stockings, 23-32 mmHg, class II; 

SIGVARIS, Andover, UK). Each state is maintained for 1 hour in three different 

attendances to favour the correct sample collection without inflammatory events 

related to the previous blood sampling.  

The local blood is preferred because more representative of the functional and 

hemodynamic alterations affecting the lower limb drained tissue than the systemic. The 

samples are centrifuged in citrated collection tubes at 3,500 rpm for 10 minutes to 

obtain the plasma supernatant separated by red cells and stored at -20°C. These study 

phases are took place in London (Ealing Hospital, Ealing; Department of Surgery and 

Cancer, Imperial College, London; West London Vascular and Interventional Centre, 

London North West University Healthcare NHS Trust, Harrow)129. The samples received 
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under ice conditions are stored at -80°C until performing the MMP expression 

evaluation. 

 

3.2.2 Multiplex suspension immunomagnetic assay  

The assay is performed through the Pro™Human MMP 9-plex Assay based on the 

multiplex suspension immunomagnetic assay (Bio-Plex®, Bio-Rad, Hercules, CA, USA), as 

previously described. 

Unlike the previously described sample treatments, plasma samples were diluted 1:4 in 

sample diluent for the execution of the assay, as required by the manufacturer. All the 

analytical steps of the multiplex suspension immunomagnetic assay followed the 

guidelines described in the previous subchapter. 

 

3.2.3 Statistical analysis 

The MMP expression differences between volunteers and patients in the same 

gravitational condition is statistically evaluated through the Mann-Whitney test. The 

Wilcoxon signed-rank test is applied to determine the biomarker differences within the 

same participant between each gravitational condition compared with the stationary 

standing position. The tests performed are two-tailed and the variables are expressed 

as mean ± standard error of the mean (SEM). The significance is set at p < 0.05. The 

analysis and the graphs are obtained through the Prism software for Windows 7 (version 

3.1; Graph-Pad, San Diego, CA, USA).
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3.3 In vitro characterization of detergent sclerosant biological and cellular effects  

 

3.3.1 Sample collection and treatment 

The blood samples of two healthy subjects are collected in citrated collection tubes 

(0,109 M sodium citrate) and centrifuged at 3,200xg for 15 minutes at 24°C to obtain 

plasma samples (Hospital Santa Maria della Misericordia, Urbino). The samples are then 

treated with the two detergent polidocanol (Atossisclerol, Gloria Med Pharma S.r.l.) and 

sodium tetradecyl sulphate (Fibro-Vein, MAC PHARMA S.r.l) as follows: a) 500µL of 3-

0.6% v/v polidocanol previously diluted in distilled water are added to the plasma 

samples (500µL) to reach the final concentrations of 0.3%, 0.6%, 0.9%, 1.2% and 1.5%, 

as showed in table 1 (Tab. 3.3.1); 

 

Tab. 3.3.1 Schematic description of polidocanol concentrations. The table shows the detergent dilution 

set both in dH2O and in plasma to reach the final concentrations 

 

 b) 500µL of 3-0.3% v/v sodium tetradecyl sulphate similarly diluted in distilled water 

and added to the plasma samples (500µL) to reach the final concentrations of 0.15%, 

0.3%, 0.4%, 0.45%; 0.5%, 0.6%; 0.9%; 1.2% and 1.5%, as showed in the following table 

(Tab. 3.3.2).  
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Tab. 3.3.2 Schematic description of sodium tetradecyl sulphate concentrations. The table shows the 

detergent dilution set both in dH2O and in plasma to reach the final concentrations    

 

Aliquots from the treated plasma samples incubated for 30 minutes at room 

temperature are further diluted in distilled water (1:10) to be used for the gelatinases 

MMP-2 and MMP-9 activity determination through the zymography assay and for the 

SDS-PAGE protein analyses.   

 

3.3.2 Zymography assay 

The potential effects of the sclerosant detergents polidocanol and sodium tetradecyl 

sulphate on MMP-2 and MMP-9 gelatinolytic activity in plasma samples are determined 

through the zymographic assay. According with the classical zymography protocol the 

separating gel (7.5% w/v acrylamide, copolymerized with gelatin 0.3%) and the stacking 

gel (4% w/v acrylamide) are characterized by the cross-linker bis-acrylamide in a 37.5:1 

acrylamide:bis-acrylamide ratio and the assay is performed as previously stated by 
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loading 1:10 diluted aliquots (25 µl) of plasma samples treated with each detergent 

concentration.  

 

3.3.3 SDS-PAGE assay  

The same samples are also employed to investigate the potential modulation of protein 

expression after the treatment with the different concentrations of the two sclerosant 

detergents. The electrophoretic assay is performed in reducing and denaturing 

conditions generated by the beta mercaptoethanol (βME) and the heat treatment, 

besides by the SDS. The βME (Bio-Rad) determines the removal of the disulphide bonds 

between the protein cysteine residues by their reduction. It was diluted (1:20) in the 

marker dye Laemmli sample buffer (65,8mM Tris-HCl, pH 6.8, 26,3% glycerol, 2,1% SDS, 

0.01% bromophenol blue; Bio-Rad). The subsequent sample boiling (100°C; 5 minutes) 

in presence of SDS, which is contained in the marker dye Laemmli sample buffer added 

(7µL), speeds up the complete denaturation of the proteins. These sample treatments 

are in accordance with the assay principle to induce the migration of proteins in a gel 

subjected to an electric field on the basis of their molecular weight, as previously 

elucidated. In this regard, the stacking and the separating gel are obtained in accordance 

with the protocol mentioned for the zymography in absence of the gelatine.  

The samples loaded (15µL of 1:10 dilution) give rise to dark blue protein bands on clear 

background after the electrophoretic run and staining. Their visualization is performed 

through the Remazol Brilliant Blue R250 and Coomassie Brilliant Blue R250 staining 

solutions (Bio-Rad) followed by a destaining step, as afore mentioned.  
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The molecular weight standard consists in the standard Plus Protein Unstained (Bio-Rad) 

loaded in the gel according with the manufacturer instructions. The digital analysis is 

performed through the Lab Image 1D software (Kapelan Bio-Imaging). 

 

3.3.4 Cell culture and treatment   

The polidocanol and sodium tetradecyl sulphate effects on cellular membrane are 

evaluated through the treatment of human endothelial vascular cell line HECV cell line 

obtained from Interlab Cell Line Collection (ICLC). The HECV cells are cultured in 

complete high glucose DMEM/F-12 (supplemented with 10% heat-inactivated fetal 

bovine serum, 1% L-glutamine and 1% antibiotics) at 37°C in humidified air with 5% CO2. 

For the assays, they are seeded at 15,000 cells/cm2 in each well of four 24-well plates 

up to reaching the confluence and undergoing the treatments with the previously 

specified sclerosant dilutions in a final volume of 100µL.   

The sclerosant dilutions are obtained as follows: a) 50 µL of 3-0.6% v/v polidocanol 

previously diluted in distilled water are added to plasma samples (50 µL) and saline 

solution (PBS and glucose 0,9g/L) (50 µL) to reach the final concentrations of 0.3%, 0.6%, 

0.9%, 1.2% and 1.5% in a final volume of 100 µL; b) 50 µL of 3-0.15% v/v sodium 

tetradecyl sulphate similarly diluted in distilled water and added to the plasma samples 

(50 µL) and saline solution (50 µL) to reach the final concentrations of 0.075%, 0.15%, 

0.3%, 0.4%, 0.45%; 0.5%, 0.6%; 0.9%; 1.2% and 1.5% in a final volume of 100 µL.  

The polidocanol and sodium tetradecyl sulphate solutions both in saline and in plasma 

are added in each well of the corresponding plate placed under the microscope in order 
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to provide an immediate observation with video captures (OPTIKAM HDMI Pro OPTIKA 

Microscopes).  

The sterile compounds for cell culture are from JET BIOFIL Bio-filtration Products Co 

(Guangzhou, China) whereas chemicals and reagents are from Carlo Erba Reagents S.r.l. 

(Milan, Italy). 

 

3.4 Biochemical characterization of C1/C2 microenvironment: cytokine, chemokine 

and growth factor expression profile 

 

3.4.1 Patient recruitment and sample collection  

The study of the sclerotherapy treatment effects on the expression of some 

inflammatory mediators is performed through the serum sample collection from twelve 

patients affected by the early CVeD manifestations classified as C1/C2 stages of the CEAP 

classification17. The patients come from the Ippocrate clinics of Parma (Italy) where they 

undergo the sclerotherapy treatment based on the Casoni’s method after giving their 

signed written informed consent. This clinical strategy consists in intravenous injection 

of sub-lytic concentrations of polidocanol, which vary on the basis of the treated vessel 

dimensions (0.10% in 15mL; 0.10% in 20mL; 0.05% in 20mL).  

The blood sample collection is performed before the first treatment (T0), after 24 hours 

(T24h), 7 days (T7d) and 30 days (T30d) from the first treatment. In some patients the 

blood collection is also carried out at 30 minutes (T30’), 45 minutes (T45’) and 3 hours 

(T3h) from the first treatment. A second treatment is executed after the blood sampling 

at T7d. All samples are stored at -20°C until the inflammatory mediator determination 
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through the multiplex suspension immunomagnetic assays (Bio-Plex®, Bio-Rad, 

Hercules, CA, USA). 

 

3.4.2 Multiplex suspension immunomagnetic assay  

The assay is performed through the Pro™Human Cytokine 27-plex, group I Assay (Bio-

Plex®, Bio-Rad, Hercules, CA, USA), which provides the simultaneous quantification of 

IL-1β, IL-1ra, IL-2, -4, -5, -6, -7, -8, -9, -10, -12, -13, -15, -17, bFGF, Eotaxin, G-CSF, GM-

CSF, INF-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF. 

The required standard curve is obtained through nine serial dilutions (1:4) of the assay 

standard in a specific diluent both provided by the manufacturer. The serum samples 

are maintained at room temperature before to be centrifuged at 10,000 rpm for 10 

minutes (4°C). Sample diluted 1:4 in sample diluent are loaded (50 μl/well) on the 96-

well plate containing the beads conjugated with the primary monoclonal antibody (50 

μl/well) previously resuspended in the assay buffer and washed two times through a 

magnetic Wash Station (Bio-Rad), as previously explained. The plate incubation in the 

dark for 30 minutes on a shaker at 850±50 rpm is followed by three washing steps 

through the magnetic Wash Station to remove the unbound proteins. Then, the addition 

of the biotinylated secondary antibody properly diluted in the antibody diluent to each 

well (25 μl/well) is performed to induce the interaction with the analyte-primary 

antibody complex generated on the bead surface. In the last step the plate incubated in 

the dark for 30 minutes on the shaker at 850±50 rpm is washed three times to remove 

the unbound antibodies and then, loaded with the fluorescent marker streptavidin-

phycoerythrin (50 μl/well) with a further incubation in the dark of 10 minutes on the 
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shaker (850±50 rpm). The next washing step through the magnetic Wash Station is 

followed by the addition of the assay buffer (125μl/well) in each well and a rapid shake 

for 30 seconds to resuspend fluorescently-dyed immunocomplexes before the plate 

reading and the data collection. 

 

3.4.3 Statistical analysis 

The statistical analysis is performed through the Friedman test followed by Dunn’s 

multiple comparison post-hoc test according with the variable characteristics. The 

significance is set at p < 0.05. Each variable is expressed as mean ± standard error of the 

mean (SEM). The analyses and the graphs are carried out through the Prism software 

for Windows 7 (version 3.1; Graph-Pad, San Diego, CA, USA).
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Chapter 4 

Results 

4.1 Biochemical characterization of C6 microenvironment  

4.1.1 Demographic data 

According with the inclusion criteria, the population of thirty patients involved in the 

study of TGF-β isoform, sEng and MMP expression in WF of venous leg ulcers was 

characterized by adult individuals ranged from 43 to 91 years (mean age 73.7 years) of 

both sexes (10 males and 20 females) among which 11 showed ulcers at the first 

occurrence and 19 are affected by relapse. The ulcers had a mean duration of 41.6-54.5 

moths and an average size of 10.7 cm2 (range 0.2-60 cm2). The collected WF samples 

were respectively divided in inflammatory (n=10) and granulating (n=20) groups on the 

basis of the wound healing process phase (inflammatory or granulating phases) and the 

clinical examinations of the tissues involved. 

 

4.1.2 TGF-β isoform and sEng expression profile in wound fluid  

The results obtained from multiplex suspension immunomagnetic assay allowed us to 

observe the only significant increase of TGF-β3 concentration in Infl WF compared to 

Gran WF samples (p= 0.033). This evidence might be consistent with the antagonist role 

of the TGF-β isoform against the TGF-β1. On the contrary, the TGF-β1 and TGF-β2 

quantification resulted not statistically different between the two groups of WF samples 

(p= 0.947 and p= 0.301, respectively) (Fig. 4.1.1).                          
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Fig. 4.1.1 Quantitative determination of TGFβ isoform concentration. The graphs show the three TGFβ 

isoform concentrations in inflammatory (n= 10) and granulating (n= 20) WF samples; (*= p < 0.05) 

 

With regard of the sEng quantitative levels detected in Gran and Infl WF samples, they 

appeared statistically relevant in the former compared to the latter (p= 0.002) (Fig. 

4.1.2). This implication might be correlated with the proteolytic environment which 

varies during the healing process by influencing the sEng shedding and function.    

 

 

Fig. 4.1.2 Quantitative determination of sEng concentration. The graph reveals the sEng concentration 

in inflammatory (n=10) and granulating (n=20) WF samples; (**= p < 0.01) 

 

4.1.3 TGF-β isoform, sEng and gelatinase expression profile in WF-stimulated THP-1 

co-treated with sulodexide 

 

The Infl and Gran WF pools were also employed as inflammatory stimulation of the 

human monocyte THP-1 cells in order to evaluate the responses produced by monocyte 

during the healing process.  
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The THP-1 cell viability after the treatment with 5% of both WF pools was obtained 

through the previously mentioned trypan blue exclusion test, which showed a cellular 

viability >85% and >95% in presence of Infl and Gran WF, respectively.  

The addition of the 5% v/v WF pools was carried out in presence or absence of the 

glycosaminoglycan mixture sulodexide (SDX) (0.12 LSU/mL) composed of heparin and 

dermatan sulphate and used in the VLU treatment13,54.  All the treatments lasted 24 h. 

However, the TGF-β isoform as well as the sEng release by the monocyte THP-1 cells was 

not significantly modified neither by the Infl and Gran WF stimulation nor by the 

presence or absence of SDX co-stimulation (Fig. 4.1.3; Fig. 4.1.4).  

 

Fig. 4.1.3 Quantitative determination of TGFβ isoform concentration in WF-stimulated THP-1 monocyte 

cells in presence or absence of SDX co-treatment. The TGF-β isoform levels in serum-free culture media 

supernatants from THP-1 cells treated with 5% v/v Infl and Gran WF in presence or absence of SDX (0.12 

LSU/mL) for 24h 

 

An opposite effect was detectable about the sEng concentration, which showed positive 

variations after the co-treatment with both WF pools and SDX, although statistically 

relevant evidences were only pointed out after the association of Gran WF with SDX (p 

< 0.001) (Fig. 4.1.4). This might be consistent with a potential glycosaminoglycan ability 

to enhance the proteolytic sEng shedding, which appeared high in Gran WF, as showed 

in Fig. 4.1.2.    
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Fig. 4.1.4 Quantitative determination of sEng concentration in WF-stimulated THP-1 monocyte cells in 

presence or absence of SDX co-treatment. The sEng concentration in serum-free culture media 

supernatants from THP-1 cells treated with 5% v/v Infl and Gran WF in presence or absence of SDX (0.12 

LSU/mL) for 24h; (** = p < 0.01) 

 

This speculation seems to be sustained by the statistically raised MMP-2 expression 

from THP-1 cells stimulated with the same Gran WF and SDX co-treatment compared 

with the other treatment conditions (p < 0.005). The MMP-9 concentration appeared 

statistically pronounced in presence of Infl WF compared to the Gran WF (p= 0.0001), 

despite a general increase results also evident after the co-treatment with Infl WF and 

SDX (Fig. 4.1.5).     

 

Fig. 4.1.5 Quantitative determination of MMP-2 and MMP-9 in WF-stimulated THP-1 monocyte cells in 

presence or absence of SDX co-treatment. The MMP-2 and MMP-9 concentrations in serum-free 

supernatants from THP-1 cells treated with 5% v/v Infl and Gran WF in presence or absence of SDX (0.12 

LSU/mL) for 24h; (**= p < 0.005; ***= p < 0.0005) 
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4.1.4 Proteolytic activity profile of MMP-2 and MMP-9 in WF-stimulated THP-1 co-

treated with sulodexide  

 

The results of zymography assays of THP-1 cell serum-free culture media supernatants 

enriched the just stated evidences by showing a diffused increase of the MMP-9 (92 kDa 

and 225 kDa isoforms) gelatinolytic activity after the treatment with Gran WF compared 

with the corresponding Infl WF effects. Additionally, the co-treatment with the 

glycosaminoglycan caused a reduction of the gelatinase isoform activity in combination 

with both Infl WF and Gran WF compared with the pools alone (Gran WF/SDX vs Gran 

WF: -53% and -61% for the 92 and 225 kDa isoforms, respectively; Infl WF/SDX vs Infl 

WF: -72% and -96% for the 92kDa and 225 kDa isoforms, respectively) (Fig. 4.1.6).  

 

Fig. 4.1.6 Zymography assay of serum-free culture media supernatants from WF-stimulated THP-1 

monocyte cells in presence or absence of SDX co-treatment. The gel image shows the proteolytic profile 

of MMP-2 (72 kDa) and MMP-9 isoforms (see the arrows) in serum-free culture media supernatants from 

THP-1 cells after the different treatments consistent with the gel lanes read starting from left. The first 

lane (STD) consists in the gelatinolytic activities of the MMP-2 monomer (72kDa) and MMP-9 multimeric 

isoform (225 kDa), NGAL/MMP-9 complex (130 kDa) and MMP-9 monomer (92 kDa) detectable in 

peripheral blood sample; the second lane (CTR) corresponds to a serum-free culture media supernatant 

sample from THP-1 cells without any treatment 

 

However, the MMP-2 gelatinolytic profile seemed to be not affected by the four 

treatments (Fig. 4.1.6)130,131
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These evidences are consistent with the involvement of these enzymes in the different 

healing process phases and with the SDX anti-inflammatory properties. 

 

4.2 Biochemical characterization of C4a/C4b microenvironment 

 

4.2.1 Demographic data 

The study of the biochemical mediators characterizing the CVeD microenvironment 

during its progressive manifestation and their modulation was expanded through the 

investigation of the potential effects induced by some recommended clinical 

treatments, including the gold-standard compression therapy. In this regard, C0 and C1 

adult healthy volunteers (n=14), ranged from 33 to 56 years (mean age 48), and C4a/C4b 

adult patients (n=14), ranged from 38 to 61 (mean age 51) are enrolled, according to the 

specified inclusion and exclusion criteria. Although the patient group was characterized 

by higher height and weight than the volunteer group, there were no differences in the 

body mass index (BMI) value. Patients showed ankle and calf circumference increased 

compared with the volunteers. Additionally, their venous clinical severity score (VCSS) is 

significantly higher than volunteers. 

Each group undergoes three different laboratory conditions, among which wearing 

medical compression stockings providing pressure values at the ankle comprised in the 

manufacturer’s specified range of 23-32 mmHg during the standing position in 

accordance with the study plan. 
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4.2.2 MMP expression profile in plasma samples from healthy volunteers and C4a/C4b 

patients 

 

The Pro™Human MMP 9-plex assay allowed to detect a significant statistical decrease 

of the MMP-2 and MMP-13 expression in plasma samples from patients after the 

compression treatment compared to the stationary standing position (p = 0.0245 and p 

= 0.0171, respectively) (Fig. 4.2.1). 

 

Fig. 4.2.1 Quantitative determination of the gelatinase MMP-2 and the collagenase MMP-13 in plasma 

samples from healthy volunteers (V) and C4a/C4b patients (P). The expression profile of MMP-2 and 

MMP-13 in plasma samples from healthy volunteers (n=14) and C4a/C4b patients (n=14) in stationary 

standing position (VS, PS), standing position by wearing compression stockings (VC, PC) and lying down 

position (VL, PL), respectively; (*= p < 0.05) 

 

The result might be consistent with the gelatinase and collagenase proteolytic 

involvement in the extracellular matrix alterations (collagen degradation) and the skin 

changes associated with the C4a/C4b CVeD stages. A statistical increase is observed in 

MMP-2 expression during the lying down position versus the compression treatment in 

volunteers (p = 0.0245). This might be associated with possible hemodynamic variations 

occurring in the passage from one position to another. 

Additionally, the assay disclosed a general statistically relevant decrease of 

concentration of the other investigated MMPs in plasma samples from both patients 

and volunteers undergoing lying down position compared to stationary standing 
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position and the compression treatment, as shown in figure 4.2.2.  In particular, this was 

observed for MMP-3 (VC vs VL: p = 0.0419; VS vs VL: p = 0.0398) and MMP-7 (VS vs VL: 

p = 0.0419) in volunteers, and for MMP-3 (PC vs PL: p = 0.0295; PS vs PL: p = 0.0017), 

MMP-7 (PC vs PL: p = 0.0203; PS vs PL: p = 0.0006), MMP-8 (PC vs PL: p = 0.0327; PS vs 

PL: p = 0.0012), MMP-9 (PC vs PL: p = 0.0494; PS vs PL: p = 0.0295), MMP-10 (PS vs PL: p 

= 0.0269) and MMP-12 (PC vs PL: p = 0.0785) in patients.    

 

Fig. 4.2.2 Quantitative determination of MMPs in plasma samples from healthy volunteers and C4a/C4b 

patients. The expression profile of the MMP-3, -7, -8, -9, -10 and -12 in plasma samples from healthy 

volunteers (n=14) and C4a/C4b patients (n=14) in stationary standing position (VS, PS), standing position 

by wearing compression stockings (VC, PC) and lying down position (VL, PL), respectively; (*= p < 0.05; **= 

p < 0.01; ***= p < 0.001) 

 

Additionally, by comparing the expression profiles of MMPs observed in patients vs. 

volunteers, within the same group defined by the leg position, some further statistically 

significant differences emerged. In this respect, C4a/C4b patients subjected to standing 

position showed significantly increased levels of MMP-3 (p = 0.0409), MMP-7 (p = 

0.0063), MMP-10 (p = 0.0014) and MMP-13 (p = 0.013) compared to healthy volunteers 
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maintaining the same position (Fig. 4.2.1 and Fig. 4.2.2). Furthermore, MMP-7 levels 

were found significantly increased in PC vs. VC (p = 0.0203) (Fig. 4.2.2). 

The MMP-1 expression data are not available by considering the instrument detection 

limit based on the standard curve.  

In regard of the results showed, the remarkable responsiveness of the MMP expression 

to the physiological hemodynamic fluctuations characterizing the blood supply to the 

lower extremities and their impairment during the CVeD might represent the conceptual 

basis of these evidences. 

 

4.3 In vitro characterization of detergent sclerosant biological and cellular effects  

 

4.3.1 Proteolytic activity profile of MMP-2 and MMP-9 in normal plasma samples 

treated with polidocanol and sodium tetradecyl sulphate 

 

The zymography assays of plasma samples from two healthy subjects after the 

treatment with the different dilutions of the non-ionic sclerosant detergent polidocanol 

(POL) did not reveal evident differences about the gelatinolytic activity of the two 

gelatinases after the treatment with increasing concentrations of POL, as shown in the 

figure 4.3.1.   
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Fig. 4.3.1 Zymography assay of plasma samples from healthy subjects treated with polidocanol. The 

proteolytic profile of MMP-2 and MMP-9 without significant variations after the addition of polidocanol 

dilutions corresponding to the gel lanes; the standard lane (STD) consists in the gelatinolytic activities of 

the MMP-2 monomer (72kDa) and MMP-9 multimeric isoform (225 kDa), NGAL/MMP-9 complex (130 

kDa) and MMP-9 monomer (92 kDa) detectable in peripheral blood sample. The graph on the right shows 

the optical density data of the MMP bands obtained through the Lab Image 1D software analysis 

 

However, the same plasma samples treated with the anionic sclerosant detergent 

sodium tetradecyl sulphate highlighted the appearance of a gelatinolytic band around 

160 kDa and comprised within the 0.3% and 0.6% STS concentrations. No significant 

differences were visible about the MMP-9 and MMP-2 proteolytic activity after the 

treatments (Fig. 4.3.2).   

.  

 

Fig. 4.3.2 Zymography assay of plasma samples from healthy subjects treated with sodium tetradecyl 

sulphate. The MMP-2 and MMP-9 activity determination and the appearance of the gelatinolytic band of 

about 160 kDa between the STS concentrations indicated by the arrows; the standard lane (STD) consists 

in the gelatinolytic activities of the MMP-2 monomer (72kDa) and MMP-9 multimeric isoform (225 kDa), 

NGAL/MMP-9 complex (130 kDa) and MMP-9 monomer (92 kDa) detectable in peripheral blood sample. 

The MMP optical density graph (Lab Image 1D software data) similarly evidences the 160 kDa band 

presence between the 0.3% and 0.6% STS concentrations  

 

These evidences might be correlated with potential interactions between the sclerosant 

agents and the protein contents of the plasma samples by explaining the additional band 
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appearance (possible sclerosant-enzyme complex around 160 kDa) and a potential 

modulation of MMP-2 and MMP-9 activity especially by the STS during the treatment of 

the CVeD manifestations. 

 

4.3.2 Electrophoretic profile of plasma protein content after the treatment with 

polidocanol and sodium tetradecyl sulphate   

 

The property of the detergents to generate potential protein complexes in normal 

plasma samples was deepened through the investigation of the protein profile induced 

by the treatment with different sclerosant concentrations. In this respect, the most 

interesting result consisted in a protein band visible around 100 kDa, which began to 

increase between 0.4% and 0.6% STS concentrations to gradually reducing up to 1.5% 

STS concentration (Fig. 4.3.3).  

 

 

Fig. 4.3.3 SDS-PAGE assay of plasma samples from healthy subjects treated with sodium tetradecyl 

sulphate. The electrophoretic determination of protein content of normal plasma samples treated with 

different STS concentrations; visualisation of the 100 kDa protein band between 0.4% and 1.5% as 

indicated by the arrows 
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However, the results from the SDS-PAGE assays of the normal plasma samples treated 

with the increasing polidocanol concentrations did not show any significant difference 

in the protein profile (Fig. 4.3.4).  

 

 

Fig. 4.3.4 SDS-PAGE assay of plasma samples from healthy subjects treated with polidocanol. The 

electrophoretic determination of protein content of normal plasma samples treated with different 

increasing concentrations of POL 

 

4.3.3 Cellular morphological changes in HECV endothelial cells induced by polidocanol 

and sodium tetradecyl sulphate treatment   

 

According with the literature49, the same POL and STS dilutions prepared both in normal 

plasma samples and in saline solution were employed to observe the potential structural 

effects induced on the human endothelial HECV cells. The addition of the lowest 

polidocanol concentration 0.3% determined cellular size reduction and cytoplasmatic 

condensation more evident in saline preparation than in plasma during the videotaping 

time. Intense cellular blebbing characterized the HECV cells treated with the sclerosant 

preparation in plasma (Fig. 4.3.5c).  
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Fig. 4.3.5 Morphological changes in HECV endothelial cells after the treatment with the lowest POL 

concentration. The video frames relating to 0 (a), 3 (b) and 8 seconds (c) from the addition of the 0.3% 

POL solution prepared in saline (on the lefts) and in plasma (on the right); the arrows allow to focus the 

attention on a single cell to observe the morphological changes described     

 

These morphological alterations were also detected in the following treatments with 

the other polidocanol concentrations (video frames not shown). The modifications 

culminate in a rapid cellular swelling, cytoplasmatic destruction and intense cellular 

degranulation and lysis observed after the addition of both saline and plasma 

polidocanol solutions at the highest concentration of 1.5% (Fig. 4.3.6).   
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Fig. 4.3.6 Morphological changes in HECV endothelial cells after the treatment with the highest POL 

concentration. The video frames relating to 0 (a), 3 (b) and 8 seconds (c) from the addition of the 1.5% 

POL solution prepared in saline (on the lefts) and in plasma (on the right); the arrows allow to focus the 

attention on a single cell to observe the morphological changes  

 

The video frames related to the lowest concentration of the STS corresponding to 

0.075% are representative of the HECV pronounced structural changes due to the 

almost immediate cellular lysis and shrinkage, which appeared delayed when the 

detergent solution was prepared in plasma compared to saline (Fig. 4.3.7b, c). This 

evidence might be related with the plasma modulation of STS lytic function40.   
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Fig. 4.3.7 Morphological changes in HECV endothelial cells after the treatment with the lowest STS 

concentration. The video frames relating to 0 (a), 3 (b) and 8 seconds (c) from the addition of the lowest 

STS concentration (0.075%) in saline (on the lefts) and in plasma (on the right) solutions; the arrows allow 

to focus the attention on a single cell to observe the different timing of the effects induced by the two 

sclerosant preparations 

 

Quick fragmentation, shrinkage and cluster formation of HECV cells at the side margins 

of the plate wells were the structural alterations derived from the treatment with 1.5% 

STS concentration and obtained both in plasma and in saline solutions (Fig. 4.3.8c, d). 

These represented the greater expression of the morphological changes which occurred 

and became increasingly rapid during the treatment with the intermediate STS 

concentrations up to the highest.
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Fig. 4.3.8 Morphological changes in HECV endothelial cells after the treatment with the highest STS 

concentration The video frames relating to 0 (a), 3 (b) and 8 seconds (c) from the addition of the 1.5% STS 

concentration in saline (on the lefts) and in plasma (on the right) solutions; the arrows allow to observe 

the fast degrading effects induced by the treatment on the HECV cells indicated  

 

All the mentioned alterations observed in vitro on the HECV cells might be correlated 

with the chemical nature of the two sclerosant agents which justifies probable 

membrane-sclerosant interactions at the origin of the bleb formation, increased 

membrane permeability and further biological processes as cellular activation or 

death49. 

 

4.4 Biochemical characterization of C1/C2 microenvironment 

 

4.4.1 Demographic data 

The quantitative analysis of the inflammatory mediators in serum samples from twelve 

C1/C2 patients (11 female and 1 male) treated with sub-lytic doses of the sclerosant 
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polidocanol was performed to enrich the biochemical CVeD microenvironment 

characterization. However, a partial group of 11 patients was considered for the 

statistical elaboration of the data obtained through the Pro™Human Cytokine 27-plex 

Assay due to the lack of T30d experimental time in one patient. Furthermore, the T30’, 

T45’ and T3h times available only for three patients were exploited to evaluate a 

potential inflammatory short-term response induced by polidocanol.  

 

4.4.2 Inflammatory mediator expression profile in serum samples from C1/C2 patients 

A general upward trend without statistical significance was detected for inflammatory 

cytokines as IL-1β, IL-7, IL-12, IL-17, IFN-γ, TNF-α around the T30’, but it was followed by 

a rapid decrease. Interestingly, the increment of IL-7 at T30’/T45’ resulted then in a 

gradual and statistically relevant reduction up to T30d (p < 0.05) (Fig. 4.4.1).  

 

 
Fig. 4.4.1 Quantitative determination of pro-inflammatory cytokines in patient serum samples.  The 

expression profile of the pro-inflammatory cytokine IL-1β, -6, -7, -12, -17, IFN-γ and TNF-α in patient serum 

samples (n=3) in all experimental times; (* = p < 0.05) 

 

The inflammatory cytokine IL-6, the anti-inflammatory IL-1ra, IL-4, -5, -9 and -13 showed 

a constant expression profile at short-term, except for the IL-1ra peak at T30’ correlated 
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with the IL-1β trend and the slight increase of IL-9 and IL-13 at T3h and T30’/T45’, 

respectively (Fig. 4.4.1; Fig. 4.4.2).  

 

 
 

Fig. 4.4.2 Quantitative determination of anti-inflammatory cytokines in patient serum samples. The 

expression profile of the anti-inflammatory cytokine IL-1ra, -4, -5, -9 and -13 in patient serum samples 

(n=3) in all experimental times  

 

The maintenance of a nearly unchanged concentration was also observed for G-CSF, the 

chemokine IL-8/CXCL8, IP-10/CXCL10, MIP-1α/CCL3, RANTES/CCL5, Eotaxin/CCL11, MIP-

1β/CCL4 and the growth factor bFGF, PDGFbb and VEGF immediately after the 

sclerosant treatment, although IL-8 and VEGF showed a sharp increase at T30’/T45’ (Fig. 

4.4.3).  
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Fig. 4.4.3 Quantitative determination of chemokines and growth factors in patient serum samples. The 

expression profile of the chemokines IL-8, IP-10, MIP-1α, MIP-1β, Eotaxin, RANTES, the growth factors 

FGFb, PDGFbb, VEGF and the cytokine G-CSF in patient serum samples (n=3) in all experimental times  

 

The data relative to the first experimental times are used to evaluate the occurrence of 

an early potential inflammatory response induced by the sub-lytic concentrations of 

polidocanol. Although a slight increase is evident for most of the mediators, however 

the small number of samples available for these times might explain the absence of 

statistical significance.   

Results statistically significant began to appear at long-term, as showed by the pro-

inflammatory cytokine IL-6, which drastically raises at T7d by considering its expression 

profile within all the experimental times (p < 0.05) (Fig. 4.4.1). The pro-inflammatory 
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mediators including IL-1β, -12, -17, IFN-γ, and TNF-α were characterized by an upward 

trend, which became more evident by considering the only medium- and long-term 

experimental times (Fig. 4.4.4). In fact, IL-12 and IL-17 progressively increased starting 

from T7d up to T30d after the treatment, although a statistical significance can be 

assigned only to IL-12 at T7d and T30d compared to T0 (p < 0.05). This evidence is also 

valid for the IL-1β at T7d (p < 0.05) as well as for IFN-γ and TNF-α, whereas an opposite 

tendency was statistically detectable for IL-7 from T7d up to T30d, as previously 

mentioned (p< 0.01) (Fig. 4.4.4). However, these data represent only preliminary and 

descriptive observations about the potential modulation of the inflammatory reaction 

induced by sub-lytic concentrations of polidocanol.  

 

Fig. 4.4.4 Quantitative determination of pro-inflammatory mediators in patient serum samples. The 

expression profile of the pro-inflammatory cytokines IL-1β, -4, -7, -12, -17, IFN-γ and TNF-α in patient 

serum samples (n=11) at medium- and long-term experimental times; (* = p < 0.05; ** = p < 0.01) 

 

 

The analysis focused on the main medium- and long-term expression profile of the 

considered mediators also highlighted a diffused increase of the anti-inflammatory 

cytokines (Fig. 4.4.5), although it flattened some evidences especially showed about IL-

5 and IL-13 by considering all the experimental intervals (Fig. 4.4.2). Interestingly, IL-1ra 

represented the only anti-inflammatory cytokine up-regulated among each 
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experimental interval by resulting statistically significant at T7d (p < 0.05) (Fig. 4.4.5). 

This observation might be correlated with its antagonist role against IL-1β.  

 

Fig. 4.4.5 Quantitative determination of anti-inflammatory mediators in patient serum samples. The 

expression profile of the anti-inflammatory cytokine IL-1ra, -4, -5, -9 and -13 in patient serum samples 

(n=11) at medium- and long-term experimental time; (* = p < 0.05) 

 

The growth factor bFGF, PDGFbb, VEGF and the chemokine MIP-1β/CCL4 appeared 

gradually raising at long-term, although only VEGF and MIP-1β/CCL4 concentrations 

were statistically relevant at T7d compared to T0 (p<0.01; p< 0.05, respectively) (Fig. 

4.4.6).  

 

Fig. 4.4.6 Quantitative determination of chemokines and growth factors in patient serum samples. The 

expression profile of the chemokine MIP-1β and the growth factor bFGF, PDGF and VEGF in patient serum 

samples (n=11) at medium- and long-term experimental times; (* = p < 0.05; ** = p<0.01) 
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Other mediators as G-CSF and the chemokine Eotaxin/CCL11, IP-10/CXCL-10, 

RANTES/CCL5, IL-8/CXCL8 and MIP-1α/CCL3 continued to show a constant expression 

profile, excepted for the last two which were characterized by an increment at T30d as 

well as IP-10/CXCL-10 at T7d (Fig. 4.4.7; Fig. 4.4.3).       

 

Fig. 4.4.7 Quantitative determination of cytokine and chemokines in patient serum samples. The 

expression profile of G-CSF and the chemokine IL-8, IP-10, MIP-1α, Eotaxin and RANTES in patient serum 

samples (n=11) at medium- and long-term experimental times 

 

The IL-2, -10, -15, GM-CSF and MCP1/CCL2 expression data are not been showed due to 

their concentration lower than the instrument detection limit on the basis of the 

standard curve employed during the assay. 

Additionally, zymography assays of the patient serum samples at the different 

experimental times are performed, though did not reveal significative differences in the 

modulation of the gelatinolytic profile of MMP-2 and MMP-9 after the treatment with 

sub-lytic doses of polidocanol (data not shown). 
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Chapter 5 

Discussion 

The whole sequence of anabolic and catabolic events that follow one another by 

fostering the CVeD progression from the early functional disorders (C1-C2) up to the CVI 

occurrence (C3-C6) represents the pathological framework variably modulated but 

characterized by some constant cellular and biochemical key points17. The venous wall 

intimate structure and its related mechanical dynamics, the blood hemodynamic and 

the involvement of specific lower limb anatomical districts are the driving forces 

vouching their functional balances essential to maintain the physiological blood return 

to the heart. Their reciprocal influence is the main reason of the harmful cascade of 

CVeD pathological events often triggered by the propagation of a single wrong process 

part of this complicated biological machine. In effects, the impairment in collagen 

deposition and in smooth muscle cell organization inducing the venous wall weakening, 

the consequent valvular incompetence accompanied by blood reflux occurrence and 

flow changes give rise to microcirculation disturbances and localized hypertension in the 

lower limbs. Overall, these events result in endothelial dysfunction and activation with 

a heavy increased venous wall permeability which allows leucocyte infiltration and the 

onset of a self-reinforcing inflammatory reaction. The chemoattractant role exercised 

by macromolecules, interstitial proteins and red blood cell degradation debris 

extravasated in the dermal interstitium is crucial for the leucocyte recruitment in this 

district52. The presence of white blood cells and their release of ROS and different 
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inflammatory mediators leads to skin changes and ulceration which represent the 

extreme CVeD manifestations80,104.  

Focusing the attention on the just hinted inflammatory state becomes interesting due 

to its crossroads function during the venous leg ulcer (VLU) progression in the healing 

process. In fact, the impairment of the closely modulated balances among the different 

biochemical mediators involved in the VLU inflammatory phase as well as in the 

progression to the next ones can determine the stop of the healing process in a 

persistent inflammatory state causing the VLU chronicity. 

The absence of wound closure at least within six months represents a common factor 

between the inflammatory chronic venous leg ulcer (CVLU) characterized by the just 

mentioned condition and the granulating CVLU which, as its definition suggests, 

achieves the healing process without accomplishing it112,110,117.   

Bearing in mind these keys to the reading, the study results about the expression of TGF-

β isoforms and their co-receptor sEng contribute to deepen their functions in the whole 

CVLU microenvironment, whose soluble mediators are differently modulated during the 

healing process. The TGF-β is member of a superfamily including its three isoform TGF-

β1, -β2 and -β3, the bone morphogenetic proteins (BMP), the activin A, B and C, the 

inhibins and the anti-Müllerian hormone variously involved in development, 

homeostasis, disease and repair processes126,128. In this regard, the three TGF-β isoforms 

are secreted as latent precursors bound to the latent TGF-β-binding protein (LTBP) by 

fibroblasts, keratinocytes, platelets, macrophages and in low amount by bone cells and 

placental tissue126,132. The LTBP extracellular proteolytic cleavage makes them available 

to interact with their specific receptor complexes consisting in the heteromeric 
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organization of type I (five type I TGF-β receptors known) and type II TGF-β serine-

threonine kinase receptors (seven type I TGF-β receptors known). However, the binding 

of TGF-β to the type II receptor occurs after its exposition by a type III receptor 

(betaglycan) and this event may determine either the mediator translocation on the 

flanked type I receptor becoming phosphorylated and inducing the downstream 

activation of Smad-signaling pathway or the inhibition of TGF-β functions through its 

interaction with transmembrane glycoprotein endoglin132,133. This represents a non-

signaling homodimeric co-receptor of type II TGF-β receptors and is similarly 

characterized by cytosolic, transmembrane and extracellular domains among which this 

last is directly involved in the TGF-β binding. Furthermore, the RGD motif (Arg-Gly-Asp 

tripeptide) located in the zona pellucida of the extracellular domain is the structural 

feature which enables the auxiliary receptor to interact with the leucocyte αvβ1-integrin 

favoring the white blood cell transmigration134,135,136. The endoglin extracellular domain 

is amenable to a proteolytic shedding by different proteases, also including MMP-14, 

which allows to distinguish between a membrane-anchored long endoglin (L-endoglin) 

and a soluble short endoglin (S-endoglin) characterized by a cytoplasmic domain of only 

14 residues135. The sEng seems to exercise anti-angiogenic effects contrary to the pro-

angiogenic membrane isoform of the TGF-β co-receptor, which also contributes to the 

physiological vascular homeostasis through the eNOS structural stabilization136–138. 

According with the general sEng function to antagonize its membrane-anchored 

opposite, its increase detected in Gran VLU WF samples seems to be consistent with a 

potential inhibition of TGF-β1 by binding and sequestering it away from the receptor 

complex (Fig. 5.1). Additionally, this implication might be strictly correlated with both 
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the necessary TGF-β1 and -β2 down-regulation and the sEng property to interact with 

the leucocyte αvβ1-integrin adhesion molecules to limit the proliferative stimuli and the 

leucocyte endothelial trans-migration promoting the wound repair. In fact, these TGF-β 

isoforms are up-regulated and widely released in the early phases of the wound healing 

process, immediately after the clotting cascade activation, the platelet-induced 

vasoconstriction and the subsequent vasodilation with release of chemotactic factors 

involved in the leucocyte recruitment (hemostasis phase). Firstly, the neutrophils, which 

are active in the local bacteria killing and in the necrotic tissue proteolytic debridement, 

and then the macrophages, which sustain the phagocytic activity and secrete growth 

factors, chemokines and cytokines, pave the way to the next proliferative and reparative 

phases. These phases (hemostasis and inflammation) of the healing process effectively 

provide a storage of cytokines, as TNF-α, IL-1α, IL-1β, IL-6, the chemokine IL-8/CXCL8, 

and growth factors, as bFGF, VEGF, PDGF, EGF and TGF-β, ensuring the migration of 

leucocytes, fibroblasts, keratinocytes and endothelial cells on the provisional matrix and 

the wound resolution128,139,140. These events are also sustained by an intense expression 

of MMPs which are involved in the activation of some cytokines released in latent form 

(e.g TNF-α) and in the structural orchestration of the wound healing progression113,141 

(Fig. 5.1). However, a corresponding TIMP down-regulation is necessary to ensure these 

processes142,99. Although the study results have not shown significative differences in 

the TGF-β1 and -β2 expression between Infl and Gran WF samples, both the mediator 

isoforms take part in these overlapped healing process phases as well as in the next re-

epithelialization. They stimulate fibroblast proliferation and a renewed matrix 

deposition (collagen II and III, fibronectin, vitronectin, tenascin and proteoglycans) 
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characterized by a balanced relation between collagen synthesis and fibroblast presence 

in order to provide a structural support to the next keratinocytes organization 

(granulation and re-epithelialization phase)109,139,143. These last similarly induced to 

proliferate by both mediator isoforms are able to migrate on the collagen and 

fibronectin fibers moving from the wound edges to the center through the proteolytic 

destruction of their intercellular desmosomes also involving MMPs, and the actin fiber 

synthesis144,145. This keratinocyte shuffling process regulated by the release of some 

inflammatory mediators, as the cytokine IL-1, culminates with the conjunction of the 

opposite wound edges accompanied by new adhesion molecules appearance and the 

ECM reorganization139. Furthermore, the TGF-β1 and -β2 are also involved in the 

vascularization and final remodeling of the new tissue. They stimulate the release of 

specific growth factors as VEGF, PDGF and bFGF which interact with their receptors on 

the endothelial cell membrane of pre-existent vessels by inducing the secretion of 

proteases destroying their basal membrane. The activated endothelial cells migrate 

through their membrane adhesion molecules to organize themselves in tubular 

structures in the wound progressively reinforced by smooth muscle cells and pericytes 

and interconnected with each other. However, the angiogenic process as well as the 

cellular proliferation progressively slow down and give way to the ECM strengthening 

through collagen III replacing with collagen I and the wound contraction through the 

myofibroblast activity109,139. These events further involve TGF-β1 and -β2128,145.  

The physiological sequence of these overlapped phases modulating each other through 

a time-dependent regulation of their specific cellular and biochemical 

microenvironment appears impaired in chronic venous ulcers in which prevails a cellular 
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hyperproliferative and a biochemical inflammatory profile109. In this regard, the Infl WF 

sample analysis allowed to observe the increased expression of TGF-β3 which might be 

correlated with the previously stated inflammatory CVLU features (Fig. 5.1). This TGF-β 

isoform is well-known for its ability to counteract the TGF-β1 effects for determining a 

fibroblast and keratinocyte proliferation slowdown accompanied by a senescent 

phenotype development and the new ECM deposition delay109,128,132. These effects are 

coherent with the VLU chronicity.  

 

 

Fig. 5.1 Graphical summary of the evidences about the characterization of the C6 biochemical 

microenvironment134. The graph shows the different TGF-β3 isoform, sEng and MMP expression profile 

modulation during the inflammatory and granulating phase of the wound healing process   

 

Additionally, the MMP-2 and -9 high expression by monocyte THP-1 cells stimulated 

with Infl WF might be considered as further factors contributing to this pathological 

condition. The statistically significant increase of MMP-9 seems to be in line with the 

TGF-β3 up-regulation due to the mediator positive effect on the gelatinase 

expression146,147. This TGF-β isoform promotes the ECM proteolytic degradation and the 



Discussion 
 

 
92 

chronic inflammatory state through the release of TNF-α, IL-1, IL-6 and the chemokine 

IL-8/CXCL8 and MCP-1/CCL2, which may be activated by TNF-α and regulate the 

neutrophil and macrophage recruitment, besides their involvement in the angiogenic 

processes139,148. However, the reduced levels of the MMP-9 observed after the THP-1 

monocyte cells co-treatment with the Infl WF and SDX counterbalance these evidences. 

The glycosaminoglycan mixture is known to have anti-inflammatory properties which 

justify the MMP-9 reduced release mainly by platelets and leucocytes widely involved in 

the early phases of the wound healing process as well as in the iterative CVLU 

inflammatory state130,131,146. This result is consolidated by the gelatinolytic profile 

determined through the zymographic assay which shows the decreased activity of 

MMP-9 in supernatants from THP-1 monocyte cells treated with both Infl and Gran WF 

in presence of SDX. Although MMP-2 is strongly involved in the ECM collagen 

component degradation during the healing process, however it is known to be mainly 

released by fibroblasts, which have a prominent role in the matrix reorganization during 

more advanced phases than the early ones146,110,106. This might explain its similarly 

expression in THP-1 cells stimulated with Infl and Gran WF. In addition, the afore-

mentioned SDX anti-inflammatory properties in association with Gran WF potentially 

causes a negative modulation of some mediators, also including TGF-β1, able to 

promote MMP-2 expression, as highlighted by the study results131,149. This last evidence 

might be also correlated with the sEng increased expression in THP-1 monocyte cells 

supernatants in presence of SDX and Gran WF. The glycosaminoglycan mixture may 

enhance the TGF-β co-receptor shedding by stimulating the proteolytic environment 

and influencing the TGF signaling134. This is also sustained by the SDX role of inducing 
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the expression of mediators, as the growth factor bFGF, which is able to interact with 

endothelial receptors and induce a cellular activation resulting in protease 

secretion131,139,150. Overall, these evidences highlight some of the potential imbalances 

of mediators which might contribute to the impaired wound healing process.  

According with the declared aim of this work to deepen the biochemical players involved 

in the pathophysiologic progression of CVeD, the results related to the modulation of 

MMP expression in C4a/C4b patients allow to add a further piece to the investigated 

pathological framework. The pronounced fibrosis associated with an irregular 

fibrinolytic activity and a heavy hypoxic environment characterizing the 

lipodermatosclerosis (C4) show an effective correlation with the leucocyte-induced 

inflammatory reactions and MMP involvement110,151. However, the hemodynamic 

impairments and the diffused hypertension may be considered as the common 

denominator of these events which contribute to the pathologic state occurrence. As 

the denomination lipodermatosclerosis suggests, the typical features of this condition 

consist in broad changes in subcutaneous adipocytes and reticular dermis ECM 

organization. In fact, the leucocyte infiltration triggering intense inflammatory reactions 

through the release of various mediators induces adipocyte necrosis in the fat lobules 

localized in this dermis district followed by vacuole appearance and consistent 

lipomembranous alterations152. These events are exacerbated by the influence of pro-

fibrinolytic factors which degrade the fibrinogen extravasated in the dermal interstitium 

afterwards the generalized increasing of venous wall permeability to promote the 

anomalous deposition of a perivascular fibrin cuff52,152. The limited oxygen availability 

and the ROS release by leucocytes chemoattracted in this dermis district result in the 
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hypoxic environment which promotes microthrombotic and necrotic events 

characterizing this pathological condition. Furthermore, the dermal interstitium 

revealed the presence of abundant hemosiderin accumulation strictly correlated with 

the erythrocyte diapedesis followed by an intense red blood cell degradation and 

release of Fe3+ ions153. Different studies speculated on the primary involvement of the 

hemosiderin in the C4 skin pigmentation occurrence. However, its role seems to be only 

marginal compared to the hypermelanisation process determining a dysregulated 

melanin accumulation in the dermal keratinocytes. The alteration of melanogenesis 

occurring in melanocytes may be induced by the plentiful release of inflammatory 

cytokines and growth factors exactly sustained by the hemosiderin154,155,156. This 

evidence is also consistent with the enhanced MMPs expression in the subcutaneous 

district which is liable to fibrotic changes due to the abnormal deposition of collagen I 

and III and ECM components counterbalanced by the lack of elastic fibers127,152. 

Moreover, the edematous state may contribute to the MMP proteolytic activity by 

providing them a mechanical stimulus which worsens the already considerable tension 

associated with the dermal structural impairments. In this regard the high concentration 

of the collagenase MMP-13 and the gelatinase MMP-2 in plasma samples of C4 patients 

in stationary standing position is consistent with their heavy involvement in the 

pathological condition (Fig. 5.2). In particular, the first is often associated with the 

proteolytic activation of inflammatory cytokines released in latent form, as the TNF-α, 

besides with the degradation of ECM component mainly consisting in collagen I, II, III 

and IV111.  Most of these are abundantly deposited in the venous wall by the proliferating 

fibroblasts stimulated by the presence of inflammatory mediators also including TNF-α 
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and TGF-β. The same substrates are fragmentated by the gelatinase which appears also 

active in the cleavage of some endothelial intercellular junction components, as the 

occludine111. All these evidences highlight the MMP-2 role both in the vascular 

permeability increase and in the skin weakening by contributing to the clinical signs of 

lipodermatosclerosis89,106. Furthermore, the hypoxic stress, ROS and ferric ion release 

specifically characterizing the sclerotic dermis represent known biochemical 

mechanisms influencing the gelatinase expression profile127,154,157. The same effect may 

be also reported about the MMP-9 which results similarly modulated in the C4 plasma 

samples related to the standing position. The pronounced inflammatory environment 

and the ECM collagen abundance represent the favourable conditions which might 

explain this evidence. Furthermore, the MMP-9 cooperates with the other gelatinase in 

promoting the vascular permeability and the cellular transmigration through the 

depletion of the intercellular adhesion systems89,111,127. These functions are also 

ascribable to both the matrilysin MMP-7 and the macrophage metalloelastase MMP-12. 

The first, normally involved in the tissue remodeling processes, may contribute to the 

widespread ECM proteoglycan and fibrous component degradation coherent with the 

structural impairment of the C4 stage. However, this matrilysin might also promote the 

proteolytic release of syndecan-1 and E-cadherin influencing cellular interaction111,158. 

This function allows to consider its increased expression correlated with the similar 

effects induced by some of the just mentioned MMPs. In this regard, the MMP-12 role 

in ECM elastin cleavage and in modulation of macrophage transmigration might justify 

the results revealed. The collagenase MMP-8 and the stromelysin MMP-3 and MMP-10, 

responsible of the activation of the MMP-1, -7, -8, -9, are similarly encompassed in the 
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speculated functional associations between the results showed about the other MMPs 

and their potential involvement in the C4 sequence of pathological events. These results 

might be effectively consistent with the occurrence of the typical C4 clinical signs in 

lower extremities which show the characteristic aspect of an inverted champagne 

bottle. In fact, the affected limb initially exhibits an intense reddish aspect accompanied 

by diffused pain and high sensitiveness which evolves in a real fibrotic induration of the 

skin appearing hyperpigmentated due to the melanin accumulation in the keratinocytes 

and very stretched. This clinical evolution strictly mirroring the biochemical and 

structural dysregulation is consistent with the transition from a lipodermatosclerosis 

acute to chronic phase152,78. Furthermore, the different manifestation of the cutaneous 

alterations identifying the C4 stage justifies the distinction between the pigmentation 

(C4a) and the more deep tissue damages as dermal sclerosis and  skin atrophy (C4b)17,155. 

As previously mentioned these aspects are accompanied by the persistent occurrence 

of the interstitial edema induced by the hypertension. The physiological hemodynamic 

force restoration determining the correct modulation of the blood flow and the different 

pressure gradients are some of the effects induced by the compression therapy28,159. 

This clinical strategy is effectively recommended in lipodermatosclerosis edema 

treatment, although the existence of numerous therapeutic alternatives including 

devices aimed to produce specific leg movements and pumping systems applying a 

defined compressive force159. The edema prevention or resorption appears more 

effective during the application of low-stretch compression wraps (30-40 mmHg) than 

the graduated compression stockings in the treatment of acute lipodermatosclerosis. 

This evidence is consistent with a prolonged mechanical effect induced on the 
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subcutaneous tissue resulting in the modulation of the interstitial fluid filtration152,159. 

However, the intense pain characterizing the pathological condition is often 

incompatible with a lasting and strong compression by explaining the alternative 

garment (class I and II) use160,29. 

The decrease of the subcutaneous pressure following the venous dimension reduction, 

the restoration of the regulated venous wall permeability and the blood hemodynamic 

induced by the compression treatment might be also associated to the modulation of 

the biochemical environment of lipodermatosclerosis. Although this observation is 

statistically confirmed only by the MMP-2 and MMP-13 expression results, the 

decreased levels of the other MMPs observed in plasma samples of C4 patients in supine 

lying down position suggest that the hemodynamic fluctuations are a preponderant 

influencing factor (Fig. 5.2). The same consideration might be also extended to the 

results about the volunteer plasma samples, though they show only MMP-2, -3 and -7 

expression modulation after the compression treatment and the lying down position 

correlated to the standing position. Additionally, this last evidence allows to confirm 

that the MMPs expressed under physiological conditions are strongly sensitive to the 

pressure gradient alterations (Fig. 5.2). 



Discussion 
 

 
98 

 

Fig. 5.2 Graphical summary of the evidences about the characterization of the C4a/C4b biochemical 

microenvironment129. The graph shows the MMP expression profile modulation by the three different 

gravitational conditions   

 

As afore mentioned, the MMPs, which are physiologically involved in tissue remodeling 

and repair, may head up different inflammatory events by degrading the ECM 

components and generating cytokine, chemokine and growth factor gradients 

associated with the CVeD manifestations111,89. Although the ECM is often considered as 

a passive structural scaffold for the vascular tissues and cells, its composition makes it a 

real operations room for cellular migration, differentiation and signaling pathways 

triggered by MMPs during the pathophysiologic evolution of CVeD. In effects, collagen 

I, II, III, IV, V, VI, VII, VIII, IX, X, and XIV as well as laminin, fibronectin, vitronectin, 

entactin, tenascin, aggrecan and elastin are well-known MMP substrates86,161. 

Considering their wide distribution in the vein walls, the concomitant MMP proteolytic 
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activity may be strictly influenced by systemic factors as pressure and hemodynamic 

fluctuations with their mechanical implications and inflammatory states often 

associated with oxidative stress and hypoxia89. However, the speculation about the 

potential effects induced by some clinical treatments on the MMP expression and 

activity might be useful to better understand the biochemical dynamics characterizing 

the CVeD microenvironment. This observation certainly refers to the results showed 

about the modulation of the MMP-2 and -9 gelatinolytic profile by different POL and STS 

detergent concentrations.  

The clinical use of these sclerosant agents recommended for the treatment of 

intradermal, subcutaneous and transfascial reticular veins or telangiectasies (C1) and 

varicose veins (C2) is aimed to destroy the vessel endothelial lining to determine the 

ECM fibrillar component exposition and the smooth muscle cells contraction17,39. The 

resultant vasospasm promotes the treated vessel isolation from the lower extremities 

blood circulation by reducing it in a fibrous cord. Although side effects with different 

degree of medical significance are evidenced, including tissue necrosis, stroke, transient 

ischemic attack (TIA), deep venous thrombosis (DVT), pulmonary embolism, headache 

and migraine, chest tightness, matting, pigmentation, the sclerotherapy is a moderately 

invasive and an alternative strategy to the surgery able to ensure the restoration of the 

venous functional integrity and the prevention of the CVeD progression with a 

remarkable impact on the patient quality of life39. Nevertheless, the sclerotherapy 

treatment is often followed by wearing suitable graduated compression stockings of 

class I (20-30mmHg) for a variable period from one week to one month39,38,162. This 

allows to avoid haematoma occurrence, pain and adverse outcomes, besides to provide 
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a better sclerosant displacement long the vessel and a prolonged contact with the 

endothelial lining38,. 

Most of the two detergent effects depend on their chemical nature and their physical 

form at the moment of the intravascular injection. According with the European 

guideline, liquid sclerotherapy is strongly recommended as C1 reticular varicose vein 

treatment, whereas the foam sclerotherapy represents its potential alternative mainly 

indicated for the C2 varicose veins39. The diameter and the general dimensions of the 

treated vessel are the structural features determining this distinction and the POL and 

STS different concentrations which are included in 0.1-1% and 1-3% ranges for the C1 

and C2 treatment by POL and in 0.05-1%  and 1-3% ranges for the same treatments by 

STS39,46. On the basis of these technical observations the foam sclerotherapy is suitable 

in the treatment of medium and large vessels to effectively displace the blood content 

and favor the direct interaction of the surfactants with the vascular endothelial cells40,41. 

Several strategies have been described to obtain foams different both in air-liquid ratio 

and in sclerosant concentrations, although one of the most employed is the so-called 

Tessari’s method nowadays. This consists in one part of the STS sclerosant dispersed in 

four parts of room air through a dual syringe system characterized by a three-way 

stopcock162. The resultant foam is defined wet due to its lower air content (1 + 4) 

compared to the opposite composition of the dry foams (1 + 8). It shows bubbles with 

variable dimensions (foam coarseness) and stability based on the sclerosant 

concentration and the dilution solvent nature43,47.  

Furthermore, POL and STS are defined surfactants due to their ability to counteract the 

surface tension characterizing the structural organization of various substances and 
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their interactions with the surrounding microenvironment. Interestingly, the non-ionic 

and anionic nature of polidocanol and sodium tetradecyl sulphate, respectively 

determined by the absence of charges and the presence of a negative charge on their 

hydrophilic head, allow them to differently exercise their surfactant role46. This is 

additionally influenced by their organization in micellar structures when are dispersed 

in an aqueous or non-aqueous solution correspondent to their critical micellar 

concentration (CMC) above which detergent micelles and monomers coexist in a 

differently regulated balance. Reaching the CMC is the essential step for the POL and 

STS membrane solubilization activity46. The first sclerosant, consisting in an alcohol 

ethoxylate and commonly known as anesthetic agent, is characterized by a lower CMC 

(0.002% both in saline and in water) than the CMC of the sodium tetradecyl sulphate 

(0.075% in saline; 0.2% in water) often employed to enhance the antiseptic properties 

of some pharmaceutical preparations46,47. 

On the basis of this observation, the polidocanol is able to solubilize more efficiently the 

cellular membrane components giving rise to toroidal structures without inducing any 

protein structural modifications compared to the STS. In fact, its negative charge and 

small dimensions make its membrane crossing hard and delayed with protein 

denaturation and phospholipid insertion in its micelles46.  

According with these literature evidences, the zymography assay of STS-treated normal 

plasma samples, showing the appearance of a gelatinolytic band (160 kDa) between 

0.3% and 0.6% STS concentrations in normal plasma samples, might be consistent with 

a detergent-enzyme interaction to generate a high molecular weight product with 

gelatinolytic activity. The band might be considered as the result of the just mentioned 
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STS denaturation properties on the plasma protein content. The same speculation might 

be advanced about the protein band (100 kDa) revealed by the SDS-PAGE assay and 

corresponding to the STS concentrations from 0.4% up to 1.5% in normal plasma 

samples. In particular, the gel analysis allows to pinpoint that the band gradually 

increases between 0.4% and 0.6% and then begins to decrease up to 1.5%. This might 

reflect the reaching of a potential equilibrium-zone between the STS molecules and the 

proteins present in plasma samples only in that concentration range (0.4% - 0.6%) by 

promoting the association in a transient complex. However, no significant evidences 

appear after the plasma sample treatment with different POL concentrations in the 

same experimental conditions. It might be supposed that the plasma components also 

including the albumin are responsible for a consumption effect on the sclerosant by 

sequester it40,41. 

Noteworthy, different target cells are exposed to the sclerosant agents after their 

injection in the vessel. In this regard, several literature evidences exist about the POL 

and STS pro-coagulant properties at low concentrations mainly due to their interaction 

with the membrane of platelets by inducing their cytosolic Ca2+ increase from the 

intracellular store and exposition of the phospholipid phosphatidylserine on cellular 

surface inducing platelet activation and fragmentation in platelet-derived microparticles 

(PMP) provided of pro-coagulant functions41,46,48. This sequence of events is commonly 

observed both at long distance from the injection point and after the early phases of the 

treatment by justifying its association with the sclerosant low concentrations50,48. An 

opposite effect is accompanied by the denaturation of some clotting factors and the 

destruction of PMP induced by STS besides a generalized cellular lysis affecting platelets, 
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red blood cells, leucocytes and endothelial cells at the higher detergent 

concentrations41,49. The results obtained from the HECV endothelial cell treatment with 

POL and STS high doses (1.5%) confirm these lytic effects respectively consisting in a 

rapid cellular swelling with consequent cytoplasmic degranulation and membrane 

fragmentation with cluster formation. These evidences might be coherent with the afore 

mentioned sclerosant chemical properties which induce the potential membrane 

protein denaturation and phospholipid disorganization resulting in cellular destruction 

after the STS addiction. The same observation might be useful to explain the effects 

caused by the POL high concentrations potentially associated with the sclerosant ability 

to cooperatively interact with the membrane component culminating in a cellular 

volume increase. Additionally, the cytoplasmic condensation and the cellular emptying 

observed respectively after the treatment with the lowest POL and STS concentrations 

(0.3% and 0.075%) continue to be in line with the just stated evidences, though these 

effects seem to be quite delayed by eventual interactions occurring between detergents 

and plasma components40,41,163.  

Moreover, as fully discussed on several occasions, the vicious circle of hemodynamic, 

structural and functional events traced in the progression among the different CVeD 

manifestations is strictly associated with the leucocyte recruitment and the concurrent 

inflammatory microenvironment. This is triggered by the general impairment of blood 

pressure gradient in lower limbs resulting in a low and irregular shear stress able to 

affect the endothelial cell homeostasis as well as the leucocyte inflammatory responses. 

The increased expression of leucocyte integrin CD11b/CD18 and L-selectin as well as the 

endothelial adhesion molecule ICAM-1, VCAM-1 and E-selectin accompanied by the 
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glycocalyx depletion are key events to promote the white blood cell infiltration in venous 

walls119,164. The concomitant eNOS activity decrease and iNOS induction worsen this 

event, besides contributing to the venous wall relaxation/contraction imbalance and the 

smooth muscle cell switch from contractile to proliferative phenotype165,166. Also, the 

fibroblast stimulation and the irregular ECM remodeling by the up-regulated MMP 

proteolytic activity are responsible for the increased collagen I/collagen III ratio and 

elastin depletion inducing venous wall weakening165,167. The resultant appearance of 

both vascular atrophic and hypertrophic tortuous regions accompanied by an abnormal 

dilation represent the structural distinctive signs of varicose veins79,165,13. These 

morphological features sustained by the venous hypertension resultant from 

hemodynamic alterations and valvular incompetence with their cellular and biochemical 

implications appear from the early CVeD manifestation consisting in reticular veins or 

telangiectasies (C1). This last aspect supports the intention to evaluate the inflammatory 

microenvironment characterizing this CVeD stage and its potential modulation by the 

recommended sclerotherapy treatment39. In particular, the results achieved concern 

the use of the sclerosant polidocanol at sub-lytic doses compared to those indicated by 

the European guideline in treatment of reticular veins (0.25-1%)39. Literature evidences 

associate these detergent concentrations with procoagulant effects through the platelet 

activation. In fact, the POL monomers are able to interact with the platelet membrane 

without compromising its structure but promoting the cellular activation through the 

phosphatidylserine exposition and the subsequent release of PMP48,168,169. This might be 

consistent with the increased expression of the pro-inflammatory IL-6 and IL-1β 

characterized by procoagulant properties and strictly correlated with the platelet 
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reactivity122,170.  In the same way the chemokine IL-8 which shows similar function and 

appears increased both at short- and long-term170. These evidences might be associated 

with the time- and distance-dependent pro-coagulant function of the low doses of 

detergent, besides with a potential inflammatory reaction induced by the release of 

platelet-derived microparticles48,171,172.  

Furthermore, the POL sub-lytic doses seems to be also responsible for the leucocyte 

oncosis consisting in a cellular death mechanism correlated with the membrane ionic 

transport impairment culminating in cellular destruction and release of the 

inflammatory mediators41,173,49. This might be consistent with the enhancement of the 

variegate inflammatory environment revealed.  

Although, the evaluation of the inflammatory profile among all experimental intervals is 

only related to three C1/C2 patients, however this allows to observe its potential 

modulation at short-time. Interestingly, the pro-inflammatory IL-1β and the chemokine 

IL-8 result increased immediately after the sclerosant injection. This seems to be 

correlated with the involvement of these mediators in the early inflammatory response 

associated with the neutrophil recruitment174,123. Additionally, they are also involved in 

the up-regulation of some MMPs, as MMP-1, -3, -7 and -9, in the vascular smooth muscle 

cells and fibroblasts to promote the ECM remodeling79,122,175.  

The pro-inflammatory cytokine IL-6 shows a spike at one week from the first treatment 

appearing coherent with its release during an initial acute inflammation, besides the 

stimulation of other inflammatory factors, as IFN-γ, similarly involved in the neutrophil 

activation, and VEGF with angiogenic and ECM remodeling properties 122,174,176. Also, the 

increase of IL-17 and TNF-α observed in the early experimental intervals might concern 
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the release of IL-6, IL-8/CXCL8, G-CSF, besides the up-regulation of MMPs and some 

cellular adhesion molecule, as ICAM-1122,175,126. The progressive decrease of the cytokine 

IL-7 among the different experimental intervals from T30’/45’ might be correlated with 

its role in lymphocyte homeostasis and maturation and in modulation of the innate 

immunological response177–179. The release of this cytokine often associated with the 

vascular endothelial tissue and involved in various inflammatory skin, cardiovascular and 

autoimmune diseases appears strongly influenced by the POL treatment allowing to 

speculate a potential immune-modulator role of the sclerosant detergent177,179,180.   

Although these mediators show an overall up-ward trend immediately after the 

treatment, however responses statistically significative are observed from T7d. In this 

regard, the pro-inflammatory cytokine IL-12 reveals an evident up-regulation at long-

term consistent with its role to stimulate both the immune response induced by IFN-γ 

responsible for macrophage activation176,181. It contributes to enhance the inflammatory 

reaction similarly to IL-6172. Interestingly, the anti-inflammatory cytokine IL-1ra exerting 

a protective role towards the vascular tissue increases in line with its opposite pro-

inflammatory IL-1β182. The rising levels of the chemokines IL-8/CXCL8, IP-10/CXCL10, 

MIP-1β/CCL4 and RANTES/CCL5 involved in the monocyte/macrophage recruitment as 

well as in the stimulation of fibrotic processes and angiogenesis might be consistent with 

the hypothesis of a  potential delayed inflammatory response to the treatment172,175. 

The growth factor PDGFbb, bFGF and VEGF result increased and strictly correlated with 

the smooth muscle cell and fibroblast proliferation besides with the angiogenesis and 

ECM remodeling by the MMP modulation122,176,183,184.    
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Overall, these evidences seem to reveal the absence of a consistent endothelial damage 

induced by the sclerosant polidocanol, which triggers a delayed inflammatory reaction 

also correlated with its procoagulant properties at low concentration.  

The study represents a preliminary attempt to characterize the biochemical 

microenvironment of the CVeD and its modulation by tracing its progression from the 

last to the initial manifestations. In this regard the future perspective lies in outdoing 

the weak point consisting in the limited patient cohort by expanding it in order to 

reproduce the evidences obtained and correlate them with potential clinical 

implications.
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Chapter 6 

Conclusions 

The main aim of this three-year research project to investigate the biochemical 

microenvironment modulation of CVeD allowed to correlate the different mediators 

examined with their potential roles in the disorder progression along its pathological 

manifestations.  

In particular, the statistically significant increased expression of the TGF-β3 in 

inflammatory wound fluid is representative of its well-known role to counteract the TGF-

β1 effects enhancing the release of inflammatory mediators and MMPs, including the 

gelatinase MMP-9, by contributing to the healing process impairment and the ulcer 

chronicity. Also, the raised concentration of the sEng in granulating wound fluid 

confirms its anti-inflammatory functions by interfering with its membrane-bound form 

and TGF-β signaling to promote the wound resolution. The TGF-β co-receptor seems to 

be sustained in this role by the SDX anti-inflammatory effects, which modulate the 

proteolytic environment, as shown by the in vitro qualitative and quantitative results. 

All these evidences lead to conclude that the different expression of the TGF-β isoforms, 

its accessory receptor endoglin and gelatinases are probably a faithful mirror of their 

distinct roles in the healing process. Furthermore, the quantitative determination of the 

MMP profile during the gravitational study, also including the wearing of below-knee 

compression stockings (class II), confirms the mediator susceptibility to the 

hemodynamic fluctuations, which result more evident in lying down position compared 

to the stationary standing position both in volunteer and in patients. This evidence might 



Conclusions 
 

 
109 

be representative of the MMP modulation induced by the venous hypertension 

characterizing the pathological condition, besides by the physiological blood dynamics, 

as demonstrated by the volunteer group.  

Interestingly, the in vitro assays of normal plasma samples treated with increasing 

concentrations of polidocanol and sodium tetradecyl sulphate highlighted differences 

both in the MMP proteolytic profile and in the plasma protein expression consistent 

with interactions based on the different chemical nature of the sclerosant agents. This 

last aspect is also implicated in the morphological changes induced in HECV endothelial 

cells and associated with increased cellular permeability probably accompanied by 

cellular activation and different cellular death mechanisms. The final step of this 

observational investigation leads to observe the absence of an early and acute 

inflammatory response to the sub-lytic concentration of the polidocanol. This evidence 

is in accordance with the time- and concentration-dependence of the pro-coagulant, 

pro-angiogenic and pro-inflammatory effects of these detergent doses able to induce 

only mild endothelial damages and a delayed inflammatory reaction. This might be also 

associated with the detergent interaction with circulating cells, including platelets and 

leucocytes, by stimulating them to secrete inflammatory mediators.    

This study produced evidences useful to set all the investigated mediators in the 

biochemical framework characterizing the CVeD progression, in which take place mutual 

interactions responsible for the impairment of physiological balances essential for the 

venous homeostasis. In this regard, it might be favourable to deepen the mechanisms 

which are triggered by both the involved mediators and some of the recommended 
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clinical treatments to prevent irreversible impairments and select the most suitable 

approach.
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