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Motivations 

The present thesis was carried out in the frameworks of a collaboration with Enel Green 

Power and of a Memorandum of Understanding between the Department of Pure and Applied 

Sciences (DiSPeA) of the University of Urbino and the Faculty of Physical and Mathematical 

Sciences of the Universidad de Chile (Santiago). 

The Cerro Pabellón geothermal system, located in Northern Chile, which is the main object of 

this work, is classified as a blind (or hidden) geothermal field. In fact, the only hydrothermal 

manifestations are represented by two fumaroles located on the top of the Apacheta volcano, 

set to the west and about 600 m higher than the Cerro Pabellón geothermal area. 

The aim of this PhD research project was to deepen the knowledge concerning the heat source 

and the evolution of the related magmatic plumbing system, define the clay-cap units and 

constrain its role and importance in the circulation of fluids toward the surface, producing an 

update conceptual model. A multidisciplinary approach was involved and focused on three 

complementary scientific studies: 

• A petrological, geochemical and isotopic study on the Apacheta-Aguilucho Volcanic 

Complex and on the most recent volcanic products of the Altiplano-Puna Volcanic 

Complex, represented by the dacitic domes of Chanka, Chac-Inca and Pabellón. The 

main purpose was, after the identification of the amphibole crystallization depth (i.e. the 

depth of the heat source/s), to define the evolution of the magmatic plumbing system, 

and the mixing/mingling processes of the different magmas. 

• A mineralogical study through X-Ray Powder Diffraction analysis of samples from a 

production geothermal well and an exploration drill core, besides clay-rich samples 

from the Cerro Apacheta fumarolic field (adjacent to the project area). The purpose of 

this work was to examine the vertical and superficial distribution of the clay minerals 

forming the hydrothermal system of the Cerro Pabellón active geothermal field, in order 

to identify the minerals associations, define the clay-cap units and characterize the type 

of hydrothermal alteration. 

• A geochemical study of the diffuse CO2 soil flux and temperatures measurements, 

coupled with soil temperature gradients carried out at the fumarolic field, in order to 

define the sealing capacity of the clay-cap units and their importance in preventing the 

rise of the fluids toward the surface.  

 

The final goal of this investigations was to give a multidisciplinary concept of geothermal 

exploration combining geological, volcanological, mineralogical, petrological and geochemical 

investigations, applying it to a blind (or hidden) geothermal system. The primary characteristic 

of a blind (or hidden) geothermal system is related to the lack of classic high-enthalpy-related 

superficial manifestations, such as geysers, fumaroles, sinter deposits, and hot springs. 
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Obviously, blind or hidden geothermal systems have not been extensively developed, as they 

are difficult to confirm in absence of drilling programs that can confirm the productivity of the 

reservoirs. Thus, the presence of the first geothermal power plant of South America, related to 

such a blind geothermal system, gave us a great opportunity to study and deepen the main 

features characterizing this system. A major comprehension of the processes involved in the 

formation of these geothermal areas is essential to extend geothermal exploration to other 

feasible areas where no surface manifestations are recognized. 

 

1.1. Geothermal energy: current World situation 

The continuous growth of energy consumption, the gradual and rapid depletion of oil 

reserves, coal and, more generally, fossil fuels, coupled with the consequent and constant 

increase in greenhouse gas emissions, requires the use of renewable sources for sustainable 

development and environmental protection. Therefore, on a local and global scale, energy 

plans must provide a policy focused on improving energy efficiency and exploiting renewable 

sources. Among the others, geothermal represents a promising energy source to satisfy the 

growing energy needs. Geothermal is the natural heat of the Earth. The temperature at the 

Earth’s centre is estimated to reach up to 5,500 °C. This heat is derived from the original 

formation of the planet and from the decay of the radioactive elements in the Earth’s crust. It 

is transferred to the subsurface mainly by conduction and convection. 

For centuries, geothermal springs have been used for bathing, heating and cooking, 

but only in the early 20th century people started to consider the heat from inside the Earth as a 

practical source of energy with huge potential. In fact, the use of geothermal resources for 

energy purposes celebrated its centenary in 2013. In 1904 in Larderello (Italy) Prince Piero 

Ginori Conti powered five bulbs from a dynamo driven by a reciprocating steam engine using 

geothermal power. This success opened the way to a commercial development of the 

geothermal electricity, and in 1913 the first geothermal power plant started its operations with 

a capacity of 250 kWe. The Italian experience waked-up the interest on geothermal electricity 

in other countries. Geothermal energy is now used to produce electricity, to heat and cool 

buildings as well as for other industrial purposes like zootechnics, paper processing, fruit and 

vegetable cultivation, soil warming and many others. The exploitable geothermal resources 

are found throughout the world and are utilized nowadays in 83 countries, 27 of which also 

produce electrical energy (IGA Geothermal Energy Database, 2015). Surprisingly, until 2017 

none of the South American countries was included in this list (Fig. 1.1). Only a small fraction 

of geothermal has been used so far and there is still much to do for development in both 

electricity generation and direct use applications.  
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Figure 1.1 - Global map of the use of the geothermal resource (from IGA Geothermal Energy 
Database, 2015). 

 

The electric production from geothermal sources covers about 0.5% of the world's 

energy needs (Chamorro et al., 2012), but the development of new technologies for its 

exploitation and the numerous new studies concerning sites of potential interest, ensure that 

the growth margins of geothermal production are wide. It has been passed from about 11,000 

MW of installed capacity in 2010, to about 14,000 MW in 2017 (Pan et al., 2019; Fig. 1.2), with 

an estimated further increase up to about 21,000 MW in 2020 (Bertani, 2015). 
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Figure 1.2 - Global map of the installed capacity of geothermal energy plant for electricity 
production in 2017 (14.3 GWe; Pan et al., 2019). 

 

The main producers of energy from geothermal sources are represented by the USA, 

the Philippines, Indonesia, Mexico, New Zealand and Italy.  

In the most industrialized countries, it is unlikely that large investments will be directed towards 

this energy sector, whereas in developing countries, characterized by lower energy 

consumption and with suitable geological and geodynamic features for exploitation of this 

source, geothermal energy can constitute a significant renewable, competitive with 

conventional non-renewable sources. Another important development desirable for the 

geothermal source is that related to non-electrical uses, therefore linked to the direct use of 

natural hot water, or to the production of thermal energy from plants with geothermal heat 

pumps, which can play a decisive role in the energy saving produced by fossil fuels. 

Among the countries with a significant geothermal potential for electric production, as they 

cover geologically favourable areas, we found all the countries that include the Andean regions 

of South America, such as Colombia, Ecuador, Peru, Argentina and Chile. This latter in 

particular shows a remarkable potential and currently, almost completely unexpressed 

(Procesi, 2014; Lahsen et al., 2015; Aravena et al., 2016). 
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1.2. Geothermal exploration in Chile 

Chile is the World's leading state in copper production and the mining industry is the 

country's main economic resource. The mining industry, however, imports more than 75% of 

the energy it needs (Lahsen et al., 2015) and in recent years the Chilean Government, also in 

collaboration with Enel Green Power Latin America, has therefore started to promote on its 

territory (in addition to hydroelectric) renewable sources of energy such as wind, photovoltaic 

and geothermal with the specific Cerro Pabellón project.  

In Chile the demand for electricity increases by 5% every year, which is why an annual increase 

of approximately 1,000 MWe is required (Lahsen et al., 2015). The increase in the production 

of electricity from renewable sources is an important objective for the Chilean Government, to 

try to reduce the dependence on the importation of fossil fuels and to reduce greenhouse gas 

emissions in atmosphere. Geothermal resources could provide a clean source for electricity 

generation, since the country needs to import nearly 85% of fossil fuels for electricity 

production. Among the South American geothermal potential, Chile’s one has been estimated 

to be more than 1,300 MWe (Procesi, 2014; Aravena et al., 2016), equivalent to ∼4.4% of the 

total installed electric capacity in Chile (Aravena et al., 2016). 

Early geothermal exploration in the country began in 1921 with the drilling of two ~80 

m deep wells at the El Tatio geothermal field (Tocchi, 1923; Lahsen et al., 2005; Bona and 

Coviello, 2016). A prefeasibility investigation, funded at the end of ‘60s by the Chilean 

Development Corporation (Corporación de Fomento de la Producción, CORFO) and the 

United Nations Development Program (UNDP) (Procesi, 2014), was followed by geological 

(Lahsen, 1969; Trujillo, 1971), geophysical (McDonald, 1969, 1974; Hochstein, 1971; ELC, 

1980) and geochemical (Mahon, 1974; Lahsen, 1976; Cusicanqui, 1978a,b) surveys. Six 600 

m-deep exploration wells, drilled between 1969 and 1971, encountered temperatures up to 

250 °C (Tassi et al., 2010). Between the ‘70s and the ‘80s numerous supplementary 

explorations, drilling and feasibility studies have been conducted (Lahsen 1988; Hauser, 1997; 

Peréz, 1999; Procesi, 2014), also in other geothermal prospects, such as Puchuldiza-Tuja and 

Surire, with good results (i.e. geothermometric calculations of reservoir temperatures up to 166 

and 230 °C, respectively; JICA, 1979, 1981; Cusicanqui, 1979). Geothermal exploration was 

abandoned in 1982 because of both the remote location of the hydrothermal systems and 

economic factors. By early 2000, a new impulse was given by the issue of a Chilean law 

providing the framework for the exploration and development of geothermal energy. In that 

period (2005) the Italian ENEL enterprise made joint ventures with the Chilean enterprise 

ENAP (National Oil Company) starting a new company, i.e. Empresa Nacional de Geotermia 

(ENG), and also becoming shareholder in the Geotermica del Norte enterprise (2007) in order 

to develop geothermal exploration both in northern and central-southern Chile. Lately, during 

the first half of 2011, the Chilean Government founded the Andean Geothermal Center of 
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Excellence (Centro de Excelencia en Geotermia de Los Andes, CEGA), a FONDAP-CONICYT 

project hosted at the Universidad de Chile, aimed at improving geothermal knowledge and 

promoting its use in the Andean countries (Aravena et al., 2016). Nowadays, geothermal 

exploration is currently active and is driven by the need for energy security. In the country there 

are more than 300 geothermal areas associated with Quaternary volcanism (Lahsen et al., 

2015). During the last 8 years, fourteen private companies were involved on exploring 

operations in 76 geothermal concession areas with the aim to identify areas of highest 

technical and commercial potential. In all these areas current exploration activities involves 

geological and structural surveys, volcanological studies, and geophysical and geochemical 

studies to find areas with high geothermal potential where exploratory drilling will be conducted 

(Lahsen et al., 2015). 

 

1.3. Chilean main geothermal systems 

The high-temperature areas in Chile are located along the Andean Cordillera in close 

spatial relationship with active volcanism, primarily controlled by the convergence of the Nazca 

and South American Plates. The main geothermal systems occur in the northern (17-28 °S) 

and central-southern part (33-46 °S) of Chile (Fig. 1.3). The flat slab geometry of the 

subducting oceanic plate (i.e. Nazca plate) beneath the continental plate (i.e. South American 

plate) generates areas of volcanic gaps (Barazangi and Isacks, 1976) between 28 and 33 °S, 

and 46 and 48 °S. In these gaps thermal manifestations are scarce and their temperature are 

usually lower than 30 °C (Lahsen et al., 2010). 

The Northern Chile geothermal zone (Fig.1.3a) has about 90 identified hot-spring areas 

(Hauser, 1997), and 45 exploration concessions are being surveyed (Lahsen et al., 2015). In 

this region, the most advanced exploration programs have been carried out in the Colpitas, 

Apacheta, Pampa Lirima and El Tatio-La Torta geothermal prospects (e.g. Urzua et al., 2002; 

Aguirre et al., 2011; Soffia and Clavero, 2010). Exploratory (or exploitation as in the case of 

Apacheta, i.e. Cerro Pabellón project) wells have been drilled in all of these four prospects. 

Their estimated combined power potential of exploitable geothermal energy is between 400 

and 1,000 MWe (Lahsen et al., 2015). Exploitation concessions have been granted for the 

Apacheta and El Tatio geothermal fields, and the environmental assessment for the installation 

of a 50 MWe power plant has been approved for Apacheta. The El Tatio project was the most 

advanced but, has been cancelled in 2013 due to the company failing to comply with 

environmental and safety requirements (source: http://www.thinkgeoenergy.com).  

In the Central-Southern Chile geothermal zone (Fig. 1.3b) there are more than 200 

geothermal areas (Hauser, 1997) and 31 explorations concessions are underway. The most 

advanced exploration surveys have been completed at the Tinguiririca, Calabozos, Laguna 



 

11 
 

del Maule, Nevados de Chillán, Tolhuaca, and Cordón Caulle geothermal areas (e.g., Clavero 

et al., 2011; Soffia and Clavero, 2010; Melosh et al., 2010, 2012; Hickson et al., 2011; Aravena 

et al., 2016). Exploratory wells have been drilled in all these prospects and the estimated 

combined power potential for the five areas ranges from 650 to 950 MWe (Lahsen et al., 2015). 

Exploration concessions were granted for the Laguna del Maule area (Mariposa sector) and 

Tolhuaca (San Gregorio) prospects, where production-size wells have been drilled. An 

environmental impact assessment was submitted to the authorities for the approval of the 

installation of a 70 MWe power plant at Tolhuaca where well Tol-4 has an output of 12 MWe 

based on flow testing data (Lahsen et al., 2015). 

 

Figure 1.3 - Main geothermal prospects of a) Northern Chile, and b) Central-Southern Chile; 
modified from Lahsen et al. (2015). 

 

1.4. Cerro Pabellón geothermal project 

The Cerro Pabellón geothermal power generation project is located in the Ollagüe 

municipality, Antofagasta region, Northern Chile, ~100 km NE from city of Calama, and at 

4,520 meters a.s.l. The concession is owned by a joint project between ENEL Latin-America 

(Chile) Ltd., and the National Oil Company (ENAP). The project, currently under production, 

involves the operation of an Organic Rankine Cycle (ORC) binary geothermal power plant, 

consisting of two units with an installed capacity of 48 MWe (source: https://www.enelchile.cl). 
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The site was luckily discovered by CODELCO at the end of ‘90s during water-related exploring 

operations (Urzua et al., 2002). Magnetotelluric (MT) and time domain electromagnetic 

(TDEM) surveys detected a low resistivity boundary (<10 ohm-m) extending over an area of 

25 km2 and geochemical survey indicated reservoir temperature of 250-260 °C (Urzua et al., 

2002). Temperature >200 °C was successively measured at depth > 500 m in a 557 m-deep 

core-hole carried out by the Empresa Nacional de Geotermia in October 2007. 

The geothermal system is located upon a large zone of silicic volcanism occupying the 

21-24 °S segment of the Andean Central Volcanic Zone (de Silva, 1989; de Silva et al., 1994) 

and it is hosted by a ~4 km wide NW-SE trending graben where on the SW fault the Pliocene-

Pleistocene lavas and pyroclastic products of the Apacheta-Aguilucho Volcanic Complex were 

erupted, while in the NE fault the Pleistocene Pabellón dacitic dome was extruded. Nowadays, 

this graben-hosted system has six deep wells platforms (Fig. 1.4), that allowed to exploit the 

liquid-dominate geothermal reservoir. The thickness of the reservoir is constrained by the 

convective regime in wells CP-1 (880 m) and CP-2 (1,120 m), starting at 900 and 820 m depth, 

respectively (Aravena et al., 2016). Wells CP-4 and CP-3 show a conductive regime (ENEL, 

2012). The minimum horizontal extension of the reservoir (4 km2) is given by the distance 

between wells. Maximum extension in the NE-SW orientation is given by the projected distance 

between the graben main faults at the depth of the reservoir. In the NW-SE direction, maximum 

extension will be considered as the linear projection of thickness vs. distance for wells CP-1 

and CP-2 (∼5 x 5 km2). Minimum and maximum temperatures of the reservoir are reached in 

wells CP-2 (212 °C) and CP-1 (256 °C) respectively, which are consistent with gas 

geothermometry estimates of around 250 °C reported by Urzua et al. (2002), and Tassi et al. 

(2010). 
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Figure 1.4 - Production and re-injection platforms of the power plant. Red lines: production 
platforms and pipeline system of hot fluid toward the plant. Blue squares and line: re-injection 
platforms and pipeline system to re-injection wells. Green squares: platforms that have already 
been constructed in the context of the exploration stage. Nowadays, six platforms have been 
constructed (i.e. CP-1, CP-2, CP-3, CP-4 and CP-5). CP-7, CP-8, CP-9, CP-10 and CP-11 
were not constructed yet, related to a possible future implementation of the power plant (ENEL, 
personal communication). Source: http://cdm.unfccc.int. 

 

1.5. Summary and structure of the thesis 

The structure of this PhD thesis has been thought as a compendium of scientific papers, 

represented by the main chapters (i.e. 2, 3 and 4), exposed in a consequential and 

complementary way. In fact, after this short introduction on geothermal energy and on the main 

features of the Cerro Pabellón project, the chapters present three main subjects, in order to 

highlight the multidisciplinary purpose of the study. 
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1.5.1. Chapter 2 

It deals with the main petrological processes affecting the magmatic plumbing system 

of the Apacheta-Aguilucho Volcanic Complex and the nearby dacitic domes. Moreover, a brief 

synthesis of the amphibole thermobarometry results is also given. These latter have been 

obtained during two previous PhD projects carried out at the University of Urbino (Piscaglia, 

2011; Gorini, 2017), and completed during this PhD work, so they are not extensively reported. 

Abstract 

The evolution of the magma plumbing system of the Pleistocene Apacheta-Aguilucho 

Volcanic Complex and the nearby young dacitic domes, located in the Central Andean 

Volcanic Zone (Northern Chile), above one of the thickest crusts in the world (>70 km), was 

investigated through petrographic, geochemical and isotopic studies of representative lavas 

and related enclaves. Updated available dates of these products, both from the Apacheta and 

Aguilucho stratovolcanoes and nearby domes, allow us to define the activity during the last 1 

Ma. This investigation showed that the andesitic magmas were affected by processes of 

Assimilation plus Fractional Crystallization (AFC, with a significant role played by amphibole 

fractionation) during their ascent through the upper crust, presumably by the interaction with 

the Altiplano-Puna Magma Body (APMB). The APMB is a voluminous (∼500,000 km3) igneous, 

partially-molten body located at a crustal depth of 15-20 km. These andesitic magmas were 

erupted with no or minor additional contamination at shallower levels, or experienced 

plagioclase-dominated Fractional Crystallization (FC) to dacite within shallower crustal magma 

chambers (4-8 km depth). The constructional phase of the Apacheta and Aguilucho 

stratovolcanoes (≥ 1 to ca. 0.6 Ma) reflect a transition from high-flux (i.e. flare-ups) to steady 

state magmatism, as also documented in other Pleistocene volcanic complexes of the 

Altiplano-Puna Volcanic Complex. During this stage the mafic magma recharge was high 

enough to permit a large spectrum of hybridization of the resident magmas in the upper crust 

to form the abundant andesites and dacites lavas. In contrast, at ∼150-100 ka, the magmatism 

turned to a new stage of recharge (waning stage?) and the episodic intrusion of small-volumes 

of andesitic magmas permitted the remobilization of the crystal-rich dacites, triggering the 

extrusions of the Chanka, Chac-Inca and Cerro Pabellón domes. The andesitic enclaves in the 

domes studied here represent a snapshot of the magmatic processes of interaction that 

occurred in the shallower reservoir at the interface of the resident dacite with the ascending 

andesitic magma. A revised petrogenetic model, firstly reported by Coombs et al. (2002), well 

constrains the textural and geochemical variation in observed enclaves, which are strongly 

influenced by the location of crystallization with respect to the andesite-dacite interface. 

Nevertheless, as there are no dated volcanic products from the area between 0.6 and 0.1 Ma, 

the youngest dacitic domes could also be interpreted as the beginning of a new magmatic 
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pulse of the Altiplano-Puna Volcanic Complex. Independently from the significance of the mafic 

recharge at 150-100 ka (waning stage vs. new pulse) the youngest investigated domes share 

similar geochemical features and crustal depth constraints (4-8 km) with the ignimbrites of the 

Altiplano-Puna Volcanic Complex, therefore suggesting that the remobilized magmas erupted 

as the domes are possibly remains of older plumbing systems left over from the last magmatic 

flare-up of the Altiplano-Puna Volcanic Complex. 

1.5.2. Chapter 3 

In this chapter the mineralogical associations present at the Cerro Pabellón geothermal 

system, both deep and superficial, were investigated through X-Ray Diffraction (XRD) 

analyses. The purpose of this section was to examine the vertical and superficial distribution 

of the clay minerals forming the hydrothermal system of the Cerro Pabellón active geothermal 

field, in order to identify the minerals associations, define the clay-cap units and characterize 

the type of hydrothermal alteration. The first preliminary results from the fumarolic deposits of 

the Cerro Apacheta fumarolic field are here presented, although further works and analyses 

need to be done on these samples, to define in detailed the physico-chemical processes that 

affected the fluid-rocks interactions. The data presented in this chapter are the results of a 

jointed collaborative investigation carried out by the PhD candidate (CP-1 well and fumarolic 

field samples) and the C.E.G.A. researchers (PexAP-1). The results, the discussion and the 

conclusions are the outcome of a scientific debate between these researchers. 

Abstract 

Mineralogical studies on the vertical and superficial distribution of the clay minerals 

forming the hydrothermal system of the Cerro Pabellón active geothermal field, were carried 

out. From the mineral assemblages recognized in the fumarolic field and in two boreholes 

located in the Pampa Apacheta, the system seems to be characterized by both acid-sulfate 

(fumarolic field) and adularia-sericite (boreholes) alteration types. The acid-sulfate alteration 

characterizes the upper parts of the Apacheta volcano, where the rising magmatic gases are 

mixed with shallower aquifer, producing acid-sulfate waters. Here, two main subzones are 

recognized: i) one characterized by high amounts of smectite, mainly coupled with cristobalite 

and feldspar, and ii) one characterized by kaolinite, mainly coupled with halloysite and 

subordinate smectite. It has been constrained how these subzones show a good 

correspondence with the location of the thermal manifestations, and a moderate accordance 

with the soil temperatures measured in the sampling locations. Conversely, a not-fitting with 

the pH conditions of stability for the smectite clay minerals group was observed. Although a 

unique explanation to this controversy is difficult, our preliminary data indicate the involvement 

of neutralization processes in the active vents areas in order to explain the presence of 
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smectite in such an acid environment (i.e. pH = 3.5), and typical acid-fluids leaching processes 

in the far-from-vents areas, where kaolinite represents the main mineralogical phase. 

The geothermal reservoir is characterized by an adularia-sericite alteration and, from the 

mineralogical assemblages recognized, is possibly related to fluids with near-neutral pH. The 

blind nature of the Cerro Pabellón geothermal system might be linked to the thickness and low 

permeability of the clay-cap units (∼300 m). Two main clay minerals transitions were detected 

in the clay-cap: the smectite to illite and the smectite to chlorite. In fact, the illite and chlorite 

only prevail in rock samples from the reservoir domain, where mixed-layer illite-smectite and 

chlorite-smectite are almost absent. In both reaction series, a continuous and slow reduction 

of the proportion of smectite layers in mixed-layer clays with depth was observed. The 

impermeability of the clay-cap of the geothermal system, would not favour the advance of illite-

smectite and chlorite-smectite reaction series. 

 

1.5.3. Chapter 4 

It deals with the lack of superficial thermal manifestations of the blind geothermal 

system. The sealing capacity of the clay-cap units defined in chapter 3, was investigated 

through CO2 soil flux and temperature measurements with the accumulation chamber 

methodology. Soil temperature gradients were also measured at the fumarolic field on the top 

of the Apacheta volcano, where the only active hydrothermal manifestations are present. 

Abstract 

The sealing capacity of the clay-cap units was investigated in the geothermal area 

through systematic diffuse CO2 soil flux and temperature measurements (~500 points), using 

the accumulation chamber method. The low CO2 flux and the relatively large areas of thermal 

anomalies identified, demonstrate the efficiency of the thick clay-cap to prevent the resurgence 

of fluids up to the surface. The low CO2 effluxes measured in the main geothermal areas 

suggest that contribution by deep-seated CO2 (magmatic origin) to soil degassing is almost 

negligible. In fact: i) the majority of the soil CO2 flux measurements are below background 

levels and most shallow soil temperatures are higher than the temperature condition of air-

saturated soil. No correlation between soil temperature and CO2 flux is recorded, and the only 

significant thermal anomalies is registered at the active fumarolic field. The lack of soil CO2 

anomalies above the existing pressurized reservoir, can be due to two main factors: i.e. the 

continuous, thick, and impervious clay-cap, and the magmatic gas scrubbing processes in the 

liquid-dominated environment, that produce the removal of CO2 and acidic magmatic 

compounds (i.e. SO2 and HCl), with the consequent ascent of CO2-depleted steam, heating 

the shallower aquifer/s. The latter resulting at the surface as a diffuse, slight thermal anomaly, 

recognized by a geostatistical approach, and at 187 m below the surface (i.e. at the bottom of 
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an exploratory well and above the clay-cap units) as a wispy flow of steam with measured 

temperature of 88 °C. As a matter of fact, the active fumarolic area, located at the summit of 

the Apacheta volcano, is the only visible evidence of the hidden geothermal reservoir in the 

Cerro Pabellón area. 

1.5.4. Chapter 5 

In this final chapter general conclusions and consideration on the 3 years PhD course 

are given, considering the main results obtained during this project. An update conceptual 

model of the Cerro Pabellón geothermal system and possible outlooks are also presented. 
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CHAPTER 2 
 

PETROLOGICAL EVOLUTION OF THE APACHETA-AGUILUCHO VOLCANIC 

COMPLEX AND CONSTRAINTS FOR THE MAIN HEAT SOURCE 
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2.1. Introduction 

The Altiplano-Puna Volcanic Complex (APVC) is an ignimbritic plateau situated 

between 21° and 24°S and straddling Chile, Bolivia and Argentina (de Silva, 1989) in the 

Andean Central Volcanic Zone (CVZ; Fig. 2.1a). The 10–1 Ma ignimbrite flare-ups that 

occurred in this plateau are characterized by an episodic spatiotemporal pattern of eruptions 

at rates much higher than typical of continental arcs (de Silva and Gosnold, 2007). Large 

volumes (~15,000 km3; de Silva and Kay, 2018) of dacitic to rhyolitic magmas, erupted in four 

major pulses at ∼10, 8, 6, and 4 Ma increased in intensity until 4 Ma (Salisbury et al., 2011) 

and followed by a sharp decrease. Quaternary volcanism has a periodicity of ~1 Ma and 

exploits relict magmas produced earlier (de Silva et al., 2015). This tempo is controlled by the 

thermomechanical evolution of the upper-crustal magma reservoirs. As magma accumulates 

in the upper crust, feedbacks between temperature, host-rock mechanics and chamber 

pressurization results in ductile host-rock rheologies, which promote storage and growth over 

eruption and lead to reservoir growth under conditions of constant recharge flux and/or 

crystallization (de Silva and Gregg, 2014; de Silva et al., 2015; de Silva and Kay, 2018).  

The area of the APVC investigated in the present work is represented by the 

Pleistocene Apacheta-Aguilucho Volcanic Complex (AAVC; Aguilera et al., 2008; Mercado et 

al., 2009; Fig. 2.1), and three late Pleistocene dacitic domes associated with the last eruptive 

pulse of the APVC: Chanka, Chac-Inca and Cerro Pabellón (hereafter Pabellón) (Fig. 2.1b). 

Between the AAVC and the Pabellón dome, the high-enthalpy geothermal field of the “Proyecto 

Cerro Pabellón” (previously called Apacheta project by Urzua et al., 2002), was developed. 

This part of the Central Volcanic Zone has been affected by tectonic shortening that began 

about 35 Ma with strong acceleration during the last 10 Ma (Freymuth et al., 2015; Wörner et 

al., 2018), producing an anomalously thick crust (>70 km; Beck et al., 1996). The 

overthickened crust below the APVC hosts a partially-molten amalgamated igneous body 

(Zandt et al., 2003; Ward et al., 2014), the Altiplano-Puna Magma Body (APMB; sensu 

Chmielowsky et al., 1999). This magmatic body has been well constrained by seismic (Ward 

et al., 2014), gravimetric (del Potro et al., 2013) and magnetotelluric studies (Comeau et al., 

2015, 2016), and is interpreted as a batholith (de Silva and Gosnold, 2007; Kern et al., 2016) 

corresponding to a zone of melting, assimilation, storage and homogenization (MASH, sensu 

Hildreth and Moorbath, 1988) at upper crustal levels (Ward et al., 2014; Godoy et al., 2014; 

Burns et al., 2015; de Silva and Kay, 2018), which fed the shallower sub-volcanic systems (de 

Silva and Gosnold, 2007). This partially molten igneous body represents a “mush” column (de 

Silva et al., 2006; Muir et al., 2014, 2015; Gottsmann et al., 2017), which contaminates the 

mantle-derived magmas with different degrees of assimilation (e.g. Kay et al., 2010; Burns et 

al., 2015; Godoy et al., 2017a; Maro et al., 2017; de Silva and Kay, 2018). The youngest 

volcanic products (< 2 Ma) show an increasing degree of contamination with location of the 
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partially molten body, going from the margins towards its centre located in correspondence to 

the Uturuncu volcano (Bolivia) (Michelfelder et al., 2013; Godoy et al., 2017a). In this context, 

the extrusion of the young dacitic domes, which represent the most recent phase of the APVC 

(de Silva et al., 1994; Tierney et al., 2016), together with monogenic edifices of other recent 

eruptions, such as La Poruña scoria cone (Bertin and Amigo, 2015)  located about 30 km West 

of the studied area (Fig. 2.1c), may represent a window into pluton assembly during low 

eruptive flux stages of a magmatic flare-up that characterized the evolution of the APVC in the 

Quaternary period (de Silva and Gregg, 2014; Tierney et al., 2016). The present chapter is 

focused on the AAVC lavas, the Chanka, Chac-Inca and Pabellón dacitic domes and their 

enclaves, in order to explore (i) the Pleistocene magmatic plumbing system working in this 

area and (ii) the role played by the APMB in the evolution of the erupted magmas. 

The aim of this chapter is to give a petrographic, geochemical (major and trace 

elements) and isotopic (87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb; 207Pb/204Pb; 208Pb/204Pb) 

characterization of representative samples from the extrusive products of the AAVC and the 

nearby enclave-hosting dacitic domes of Chanka, Chac-Inca and Pabellón. This dataset was 

applied to petrological modelling in order to investigate the intra-crustal magmatic processes 

in the last 1 Ma span time. These constrains, coupled with the results of the amphibole 

thermobarometry published in Gorini et al. (2018), can give a better comprehension of the 

intra-crustal magmatic evolution of the volcanic plumbing systems, and a characterization of 

the possible heat source/s of the geothermal area. 
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Figure 2.1 - Location map of the Apacheta-Aguilucho Volcanic Complex and the domes. a) 
The small white rectangles indicate the locations of the studied areas reported in (b) and (c), 
in the framework of the Andean Central Volcanic Zone (CVZ; inset figure); the white dashed 
line delineates the Altiplano-Puna Volcanic Complex (APVC), black dashed line indicates the 
surface projection of the Altiplano-Puna Magma Body (APMB), after Zandt et al. (2003); yellow 
line indicates the national border between Chile and Bolivia. b) Simplified geological map of 
the Apacheta-Aguilucho Volcanic Complex showing the main volcanic and structural features 
of the area (after Ahumada and Mercado, 2009, Godoy et al., 2017b, and Sellés and 
Gardeweg, 2017). c) Enlarged view of the La Poruña scoria cone. Coordinates of b) and c) in 
WGS84, UTM 19S. Figure from Taussi et al. (2019). 
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2.2. Geological background 

2.2.1 Apacheta-Aguilucho Volcanic Complex and dacitic domes 

The Pleistocene Apacheta-Aguilucho Volcanic Complex (21,84°S; 68,20°W) and the 

nearby young dacitic domes (Chanka, 21,78°S; 68,31°W - Chac-Inca, 21,80°S; 68,21°W - 

Pabellón, 21,84°S; 68,15°W) are located about 100 km NE of the city of Calama and about 55 

km NW of the El Tatio geothermal field, near the international border between Chile and Bolivia 

(Fig. 2.1a). Based on the NW–SE alignment of the APVC centres, Davidson and de Silva 

(1992) and de Silva et al. (1994) suggested that the principal volcanic features are controlled 

by a series of NW-striking faults, an association that can also be recognized in the study area. 

This sector is tectonically characterized by the presence of two major faults with converging 

dips, characterized by 50-150 m high scarps which form a NW-oriented symmetric graben, ~4 

km wide and ~20 km long (Pabellóncito graben; Francis and Rundle, 1976). This structure was 

formed during a Late Pliocene-Quaternary extensional phase (Tibaldi et al., 2009), and has 

been linked by Tibaldi and Bonali (2018) to gravity spreading of the Pliocene-Pleistocene aged 

Palpana-Inacaliri volcanic chain (Wörner et al., 2000; Sellés and Gardeweg, 2017). The young 

dacitic domes of Chanka, Chac-Inca and Pabellón were emplaced along this extensional 

structure, beside the AAVC and the Cerro del Azufre volcano, this latter being still active in the 

late-glacial period (de Silva and Francis, 1991). Both the AAVC and the dacitic domes overlay 

an Eocene-Miocene basement, made up of a sequence of andesitic lava flows, conglomerates, 

breccias, sandstones, limestones and gypsum formations (Ramírez and Huete, 1981). Over 

this basement, Miocene ignimbrites and andesitic lava flows (7.5 ± 0.6 Ma, and 6.7 ± 0.3 Ma, 

respectively; Rivera et al., 2015) are exposed. The AAVC is mainly characterized by andesitic, 

dacitic and rhyolitic products (Piscaglia, 2012). Its magmatic history has been divided into two 

main eruptive periods (Mercado et al., 2009; Piscaglia, 2012): a Middle Pleistocene phase that 

involved the building of the Apacheta stratovolcano and a Mid-Upper Pleistocene phase when 

the Aguilucho stratovolcano formed. The first phase is constrained by the ages of the Aguilucho 

ignimbrite (1.024 ± 0.033 Ma, that despite the name pertains to the Apacheta activity; Sellés 

and Gardeweg, 2017), and of a dacite lava flow (0.91 ± 0.14 Ma; Rivera et al., 2015) (Fig. 

2.1b). Conversely the second phase is made up by two dacite lava flows of the Aguilucho 

volcano in the western (0.7 ± 0.2 Ma; Rivera et al., 2015) and northern (0.652 ± 0.012; Sellés 

and Gardeweg, 2017) flanks (Fig. 2.1b). The domes of this area (Fig. 2.1b) correspond to 

crystal-rich dacitic flows, with occasional andesitic enclaves, erupted during Upper 

Pleistocene, with ages obtained for Chanka (119.8 ± 5.4 ka; Tierney et al., 2016), Chac-Inca 

(114.0 ± 37.0 ka; Rivera et al., 2015) and Pabellón (80.0-130.0 ka according to Renzulli et al., 

2006 and 50.0 ± 10.0 ka according to Urzua et al., 2002). La Poruña represents a monogenetic 
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andesitic scoria cone with a ~8 km long lava flow (Fig. 2.1c), dated 103.0 ± 1.1 ka (Wörner et 

al., 2000). 

2.2.2 Altiplano-Puna Magma Body  

The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest known 

zone of partial melting in the continental crust, spanning a region 200 km in diameter (Fig. 

2.1a), at 4-25 km b.s.l. and with an estimated volume of 500,000 km3 (Ward et al., 2014). The 

APMB anomaly has been described by magnetotelluric (MT) surveys (Comeau et al., 2015, 

2016) as a low-resistivity zone with the top at ~15 km below sea level (defined at 3 Ω·m) due 

to the presence of andesitic melts with a melt fraction up to 25% (Schilling et al., 2006; Ward 

et al., 2014; Comeau et al., 2015) and an estimated temperature of ∼1000 °C (Comeau et al., 

2016). The top of the APMB has been constrained about 5 km deeper than originally reported 

by Ward et al. (2014), probably due to the low spatial resolution of ambient noise tomography, 

because of the long wavelengths of the seismic waves used, or to the possibility that the 

materials between ~4-15 km b.s.l. really do have a low seismic velocity but relatively high 

resistivity compared to the APMB (Pritchard and Gregg, 2016). The maximum thickness of the 

APMB seismic anomaly from the joint analysis of ambient noise tomography and receiver 

functions used by Ward et al. (2014) is ~11 km, defined through shear waves velocity (Vs) of 

2.9 km/s, because velocities below this value clearly imply partial melting (Ward et al., 2014). 

An isostatic residual gravity field (Götze et al., 1994; Götze and Krause, 2002) reveals also a 

strong negative anomaly that supports an extensive low-density area beneath the APVC, 

centred in southern Bolivia under the Uturuncu volcano, and a dense grid of observations and 

new models have produced a range of plausible shallower low-density structures, interpreted 

as diapiric columns of partially molten rock that connect the APMB with putative shallow-level 

magma storage regions (Annen et al., 2015) constrained by experiments and melt inclusions 

(del Potro et al., 2013; Muir et al., 2014). S-wave velocities indicate an increase in melt/fluid 

percentage from the margin to the center of the partially molten body from ∼4% for zones with 

S-velocities of 3.2 km/s, to ∼10% (2.9 km/s), and up to 25% in zones with velocities <1.9 km/s 

(Ward et al., 2014). This variation, in the Western margin of the anomaly, is emphasized by 

the different degree of contamination of the erupted magmas that pass through the APMB and 

present a lateral variation of Sr- and Nd-isotope compositions (Michelfelder et al., 2013; Godoy 

et al., 2017a). The interaction between less differentiated magma and this crystal-rich mush 

increases from the margins to the center of the anomaly, where crustal assimilation is more 

significant as magmas interact along the entire mush column (Muir et al., 2014; 2015). 

2.3. Sampling and analytical methods 

Representative samples from the Apacheta-Aguilucho Volcanic Complex and the 

dacitic domes (lavas and enclaves) were collected during several field trips, between 2007 and 
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2017. The sample locations are shown in Figure 2.1b. A total of 27 samples were prepared for 

major oxides and trace element geochemical analyses; 15 samples were also prepared for 

isotopic analyses. One sample was prepared for 40Ar/39Ar analyses at the Servicio Nacional de 

Geología y Minería, Chile (SERNAGEOMIN) (additional information is given in Appendix - C2-

1). Geochemical analyses of major and trace elements were carried out at Acme Analytical 

Laboratories Ltd. (ACMElab; Canada) with Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) and Mass Spectrometry (ICP-MS), at Activation Laboratories Ltd. 

(Actlabs; Canada) with ICP-OES and ICP-MS, and at the University of Cape Town (South 

Africa) with X-ray fluorescence (XRF). Sr-, Nd- and Pb-isotope analysis were performed at the 

“Istituto di Geoscienze e Georisorse” - National Research Council (IGG-CNR) in Pisa (Italy) 

with a TIMS Finnigan MAT 262, and at the University of Cape Town (South Africa) using a 

NuPlasma HR multicollector-ICP-MS (MC-ICP-MS). A detailed description of the analytical 

methods is reported in Appendix - C2-1. 

 

2.4. Results 

All the sampled and investigated volcanic products were classified based on major 

oxides whole rock compositions (Table 2.1, from Taussi et al., 2019) and modal mineralogy. 

All the compositions reported below are normalized to an anhydrous base. Geochronological 

analysis on the andesitic lava flow outcropping on the Apacheta volcano (Fig. 2.1b) returned 

a value of 0.97 ± 0.11 Ma, thus in agreement with the Apacheta activity phase. Detailed 

geochronological results from Taussi et al., (2019) are given in Appendix - C2-2. 

2.4.1 Petrography and mineral assemblages 

2.4.1.1 Apacheta-Aguilucho Volcanic Complex lavas 

The AAVC is mainly characterized by extrusives of the high-K calc-alkaline series 

(andesites to rhyolites; Fig. 2.2). Andesites (57.7-62.4 wt% SiO2) show a porphyritic index (P.I.) 

ranging from 10 to 25 vol.%, with a modal mineralogy consisting of plagioclase, orthopyroxene, 

clinopyroxene, amphibole, biotite, Fe-Ti oxides and rare olivine. Subhedral olivine, mostly 

replaced by goethite, hematite and clay minerals (i.e. iddingsite), is found in the less silicic 

sample (AA-047). Plagioclases have variable sizes; bigger sized crystals (1-2 mm) show 

resorption and sieve textures with intense zoning, while smaller crystals (<1 mm) generally do 

not show these textures. Groundmass is micro- to cryptocrystalline to glassy, with the same 

mineralogical paragenesis as phenocrysts. Dacites (63.1-65.4 wt% SiO2) are the most 

abundant products of the AAVC; they are partially vesiculated with porphyritic textures (P.I. = 

10-20 vol.%), and contain plagioclase, amphibole, biotite, sanidine, quartz, clinopyroxene, 

orthopyroxene and Fe-Ti oxides, in decreasing order of abundance. Plagioclase frequently 

shows disequilibrium features, such as sieve textures and zonings. Amphibole and biotite are 
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often characterized by breakdown rims consisting of plagioclase, pyroxene ± oxides. 

Groundmass varies from micro- to cryptocrystalline and consists of plagioclase, alkaline 

feldspar, and amphibole microlites. Rhyolitic composition is represented only by sample AA-

064, which is the most evolved magma erupted in the AAVC (69.6 wt% SiO2). It has a 

porphyritic texture (P.I. = 20 vol.%) with convoluted banded textures consisting of lighter and 

darker-coloured sections. The modal mineralogy is represented by plagioclase, sanidine, 

amphibole, quartz, biotite, orthopyroxene, clinopyroxene, Fe-Ti oxides and titanite as 

accessory phase. The groundmass is micro-cryptocrystalline with interstitial devitrified glass 

and a locally pilotaxitic texture. Plagioclase phenocrysts show inverse and oscillatory zoning. 

Quartz crystals show rounded edges and are sometimes strongly embayed. Clinopyroxenes 

represent the most abundant mafic phase. Hydrous minerals are always affected by 

breakdown textures or secondary alteration processes.  

 

Figure 2.2 - a) Total-Alkali vs. Silica (TAS) diagram for sampled lavas of the Apacheta-
Aguilucho Volcanic Complex, and the domes and enclaves therein (after Le Bas et al., 1986). 
Lava samples show a well-defined trend, varying from andesitic to rhyolitic in composition; b) 
K2O vs. SiO2 diagram for the same samples as in a) (after Peccerillo and Taylor, 1976). 
Samples SP1 (Mamani et al., 2008) and POR-10-01 (Godoy et al., 2014) from La Poruña 
scoria cone are also shown. The grey field represents the composition of Central Andes lavas 
(after Mamani et al., 2010); while the dashed line separates alkaline and sub-alkaline lavas 
(after Irvine and Baragar, 1971). Figure modified from Taussi et al. (2019). 

 

2.4.1.2 Domes 

Chanka, Chac-Inca and Pabellón domes are classified as high-K dacites (66.7-68.0 

wt% SiO2; 3.6-3.7 wt% K2O; Fig. 2.2) with a porphyritic and partially seriate texture (P.I. = 16-

23 vol.%). The phenocrysts, in order of abundance, consist of plagioclase, amphibole, biotite, 

quartz, pyroxene, titanite and Fe-Ti oxides, plus micro-phenocrysts of apatite and zircon as 

accessory phases (Fig. 2.3a). The groundmasses are micro-cryptocrystalline (with the same 

mineral assemblage as the phenocrysts), slightly glassy and characterized by perlitic cracks 

and interstitial devitrified glass. Plagioclase phenocrysts are variable in size with oscillatory 
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zoning, sometimes with coarse-sieve textures and smooth edges (Fig. 2.3b). Besides the 

frequent enclaves, the dacitic domes contain portions of a “cryptic” mafic-intermediate 

component characterized by microlites mainly consisting of plagioclase and amphibole (Fig. 

2.3c). Quartz crystals have rounded edges. Hydrous minerals show euhedral to subhedral 

habits, with the larger sized crystals (up to 2 mm) sometimes affected by intense breakdown 

that occasionally replaces the entire mineral with pseudomorph assemblages made of 

plagioclase + pyroxene ± oxides. Accessory phases are frequently hosted as inclusions in 

hydrous minerals. The contact between the dacite and the enclaves is irregular, crenulated 

and cuspidate (Fig. 2.3d). 

 

Figure 2.3 - Photomicrographs showing typical textures of the dacitic domes. a) a 
representative mineral assemblage composed of a micro-cryptocrystalline groundmass with 
abundant plagioclase (plg), amphibole (amp) and biotite (bt); b) plagioclase phenocrysts of 
variable sizes locally showing coarse-sieve texture and smooth edges, the contact between 
the hosting dacite and the andesitic enclave is also highlighted; c) portions of groundmass 
microlites mainly consisting of plagioclase and amphibole, texturally compatible with the 
andesitic enclaves; d) an irregular, crenulated and cuspidate contact between the hosting 
dacite and the andesitic enclave. Figure from Taussi et al. (2019). 
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2.4.1.3 Micro-vesiculated enclaves 

All the lava domes contain frequent fine-grained and micro-vesiculated high-K andesitic 

enclaves (58.1-61.8 wt% SiO2; 2.3-2.7 K2O; Fig. 2.2b). They range from 2 up to 20 cm (Fig. 

2.4a,b) in size and show a very low P.I. (3-5 vol.%). Different colouration on a mesoscopic 

scale can be found even within the same enclave (Fig. 2.4c). This is probably due to 

differences in content and degree of interconnection of the vesicles, since no geochemical 

(see Table 2.1 for sample CKA1a_ch lighter portion, CKA1b_sc, darker portion of the enclave), 

mineralogical or petrographic variations were recognized (e.g. modal mineralogy; core-to-rim 

variations in crystallinity). The crystal assemblage of the enclaves consists of plagioclase, 

pyroxene, amphibole, biotite, olivine and quartz. The groundmass is characterized by 

quenched and acicular phases of plagioclase, pyroxene, amphibole and rare biotite and Fe-Ti 

oxides, arranged in a diktytaxitic-like texture. This texture is constituted by abundant angular 

interstitial gas cavities between the plagioclase laths (Fig. 2.4d) and variable amount of glass. 

Although the general mineral assemblages are almost the same for all the analysed enclaves, 

we observed some peculiar differences which have allowed to distinguish two petrographic 

types independent of the size of the enclave. The first type, “Type-A” (Fig. 2.4d,e,f), show a 

very fine-grained texture with small and acicular micro-phenocrysts and widespread vesicles. 

Xenocrysts assemblages are mostly represented by embayed quartz with rim overgrowths of 

pyroxene and amphibole, and large-sized plagioclases (up to 3 mm) with sieve textures limited 

to crystal rims or absent. Olivine crystals are scarce or absent in these enclaves. The second 

type of micro-vesiculated enclaves, “Type-B” (Fig. 2.4g), show a slightly coarser texture and 

are mainly characterized by plagioclase xenocrysts with extensive sieve and resorbed 

textures, and the presence of olivine phenocrysts. Scarce or no quartz xenocrysts is 

recognized among this type. 
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Figure 2.4 - Micro-vesiculated enclaves within the dacitic domes and photomicrographs 
showing typical petrographic textures; a) and b) show enclaves of different sizes; c) shows 
colour difference inside the enclaves themselves, dashed red line mark the contact between 
the enclave (E) and the dacite (D); d) microphotograph showing the diktytaxitic-like texture of 
the groundmass of the enclaves with angular vesicles (ves) between plagioclase (plg) and 
amphibole (amp) laths; e) microphotograph showing a very fine-grained micro-vesiculated 
groundmass with orthopyroxene (opx) phenocrysts (Type-A enclave); f) microphotograph 
showing large sized plagioclases with no sieve textures and embayed quartz (qz) in a very-
fine micro-vesiculated groundmass of a Type-A enclave; g) microphotograph showing olivine 
phenocrysts and plagioclase with extensive sieve and resorbed textures in a slightly coarser 
groundmass, typical of Type-B enclaves. Figure from Taussi et al. (2019). 
 
 
2.4.2 Data on major-trace element and Sr-Nd-Pb isotopes 

Results of geochemical analyses are summarized in Table 2.1 (from Taussi et al., 2019). 
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Table 2.1          

Major and trace element compositions of domes, enclaves and lava samples from the Apacheta-Aguilucho Volcanic Complex area. 

Location  
Chanka      

Chac-Inca    

Sample  CKA1 CKA1a_ch CKA1a_sc  C-INKA1 C-INKA1f  

Unit  Dacite Enclave (A) Enclave (A)  Dacite Enclave (A)  

Age  0.1198 ± 0.054 Ma1  0.114 ± 0.37 Ma2  

Coordinates 
WGS84 19S 

 569389 569383 569383  582287 582120  
 7589334 7589771 7589771  7587947 7587957  

Major oxides (wt%)       
SiO2 

 65.81 59.62 59.99  66.92 61.02  

Al2O3 
 15.08 16.38 15.85  14.98 16.03  

Fe2O3(tot) 
 3.29 6.18 6.11  4.22 5.63  

MgO  1.47 3.32 3.37  1.54 3.29  

CaO  3.39 5.57 5.62  3.49 5.54  

Na2O  3.54 3.60 3.56  3.58 3.84  

K2O  3.55 2.48 2.42  3.60 2.38  

TiO2 
 0.46 0.83 0.84  0.50 0.78  

P2O5 
 0.12 0.29 0.28  0.12 0.22  

MnO  0.06 0.09 0.09  0.07 0.08  

LOI  1.99 1.09 1.55  0.48 1.29  

Sum  98.75 99.45 99.67  99.50 100.11  
         
Trace elements (ppm)  

V  70 144 141  81 139  

Cr   90 90  40 70  

Co  7.0 15 15  8.0 14  

Ga  18 19 20  17 20  

Rb  175 73 73  181 63  

Sr  342 526 533  366 580  

Y  13 15 14  13 13  

Zr  139 161 155  147 169  

Nb  10 8.0 8.0  10 7.0  

Sn  2.0 2.0 1.0  2.0 1.0  

Cs  13 3.3 3.1  13 2.2  

Ba  671 794 809  692 829  

La  32 26 26  35 29  

Ce  61 53 54  66 58  

Pr  6.5 6.2 6.2  7.0 6.7  

Nd  22 23 23  24 25  

Sm  3.9 4.6 4.6  4.5 4.9  

Eu  0.83 1.1 1.2  0.83 1.2  

Gd  3.0 3.8 4.1  3.2 3.8  

Tb  0.40 0.50 0.60  0.50 0.50  

Dy  2.4 3.0 3.0  2.6 2.9  

Ho  0.50 0.50 0.50  0.50 0.50  

Er  1.3 1.4 1.5  1.4 1.5  

Tm  0.18 0.19 0.19  0.21 0.20  

Yb  1.4 1.3 1.3  1.4 1.3  

Lu  0.23 0.20 0.22  0.22 0.21  

Hf  3.8 3.8 3.7  4.4 4.0  

Ta  1.4 0.70 0.70  1.3 0.60  

Tl  0.80 0.40 0.40  0.90 0.30  

Th  32 9.5 9.3  32 7.2  

U  11 3.1 2.9  10 2.1  

Be  3.0 2.0 2.0  3.0 2.0  

Ni   20   40   

Cu   10 20  20 20  

Zn  60 90 80  70 90  

As  12 7.0 10  12   

Pb  20 12 12  21 12  

Sc   7.0 14 14   8.0 14   
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Table 2.1  

(continued)             

Location Cerro Pabellón         

Sample AA003 CPB1 AA001 ICP16 ICP22 ICP24 

Unit Dacite Dacite Enclave (B) Enclave (B) Enclave (A) Enclave (B) 

Age 0.08 - 0.13 Ma3       

Coordinates 
WGS84 19S 

587826 587232 587826 587562 587562 587562 

7584239 7584266 7585104 7584075 7584075 7584075 

Major oxides (wt%)      
SiO2 64.80 66.37 57.33 57.33 61.69 57.23 

Al2O3 15.49 15.12 17.06 15.98 16.46 16.22 

Fe2O3(tot) 3.90 3.55 6.22 7.35 5.93 7.31 

MgO 1.71 1.60 3.66 4.68 3.10 4.01 

CaO 3.53 3.65 5.72 6.84 5.32 6.57 

Na2O 3.41 3.65 3.42 3.14 3.70 3.25 

K2O 3.53 3.56 2.60 2.33 2.48 2.29 

TiO2 0.54 0.47 0.89 0.76 0.82 0.78 

P2O5 0.15 0.14 0.25 0.20 0.22 0.17 

MnO 0.06 0.06 0.09 0.11 0.08 0.11 

LOI 3.11 1.67 1.89 1.16 0.96 1.01 

Sum 100.23 99.84 99.13 99.88 100.76 98.95 
       
Trace elements (ppm) 
V 87 73 157 176 138 171 

Cr 20 24 80 210 80 80 

Co 9.0 7.0 16 22 14 18 

Ga 20 18 23 17 19 18 

Rb 191 172 85 85 81 74 

Sr 376 354 630 503 601 542 

Y 11 13 14 15 13 16 

Zr 139 152 163 120 164 137 

Nb 11 12 8.0 6.0 8.0 6.0 

Sn 2.0 2.0 2.0 1.0 2.0 2.0 

Cs 13 14 3.1 3.5 3.3 3.1 

Ba 707 688 813 581 812 667 

La 35 32 29 19 28 26 

Ce 66 57 59 41 59 50 

Pr 6.2 6.3 6.3 4.6 6.8 5.6 

Nd 24 22 27 18 25 21 

Sm 3.9 4.1 5.1 3.8 4.9 4.2 

Eu 0.89 0.83 1.3 1.0 1.2 1.1 

Gd 3.1 3.0 4.0 3.3 3.7 3.6 

Tb 0.50 0.40 0.60 0.60 0.50 0.60 

Dy 2.6 2.6 3.0 3.1 2.8 3.3 

Ho 0.50 0.50 0.60 0.60 0.50 0.60 

Er 1.4 1.4 1.6 1.7 1.4 1.8 

Tm 0.21 0.22 0.22 0.25 0.20 0.28 

Yb 1.4 1.4 1.4 1.7 1.3 1.9 

Lu 0.22 0.22 0.21 0.26 0.21 0.29 

Hf 3.9 4.8 4.2 3.1 4.2 3.4 

Ta 1.4 1.4 0.70 0.50 0.60 0.60 

Tl 1.2 1.1 0.70 0.40 0.30 0.40 

Th 30 31 8.6 6.7 8.3 8.0 

U 10 10 2.5 2.1 2.5 2.4 

Be 3.0  2.0 1.0 2.0 2.0 

Ni    40 20 20 

Cu 20  20 30 30 40 

Zn 60  100 90 100 90 

As 7.0 14  6.0 6.0 5.0 

Pb 13  8.0 11 20 11 

Sc 7.0   15 21 14 21 
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Table 2.1  

(continued)              

Outcrop 
Cerro 
Pabellón 

 Apacheta - Aguilucho Volcanic Complex     

Sample CPAB-ENC-1  AA-007 AA-023 AA-024 AA-047 AA-050 

Unit Enclave (B)  Dacite Andesite Dacite Andesite Dacite 

Age    0.91 ± 0.14 
Ma2 

Middle 
Pleistocene4 

0.91 ± 0.14 
Ma2 

0.97 ± 0.11 
Ma5 

0.91 ± 0.14 Ma2 

Coordinates WGS84 
19S 

587081  588670 586495 586495 584937 587346 

7585275  7586793 7585794 7585794 7584092 7579885 

Major oxides (wt%)        
SiO2 57.06  62.05 61.31 62.10 56.22 63.92 

Al2O3 16.77  16.47 17.02 16.69 18.07 16.48 

Fe2O3(tot) 6.65  5.09 5.21 5.13 6.59 4.62 

MgO 4.01  2.29 2.27 2.25 3.18 2.07 

CaO 6.32  4.69 4.92 4.82 6.76 4.32 

Na2O 3.50  3.60 3.49 3.45 3.35 3.79 

K2O 2.26  2.79 2.99 3.07 2.16 3.32 

TiO2 0.84  0.73 0.72 0.69 0.78 0.63 

P2O5 0.24  0.19 0.18 0.19 0.24 0.15 

MnO 0.09  0.08 0.08 0.08 0.11 0.07 

LOI 1.19  1.01 1.60 1.30 2.30 0.40 

Sum 98.93  98.99 99.79 99.77 99.76 99.77 

Trace elements 
(ppm)    

    

V 161  117 107 100.00 155 77 

Cr 101  20  20   

Co 49  12 11 11 18 9.9 

Ga   20 19 19 19 19 

Rb 64  113 122 123 104 139 

Sr 641  444 466 450 551 448 

Y 19  21 19 18 19 15 

Zr 174  173 181 187 147 159 

Nb 12  11 12 13 8.0 11 

Sn   1.0 1.0 2.0 2.0 2.0 

Cs   3.9 7.4 7.1 2.6 5.6 

Ba 933  742 679 683 607 655 

La   39 33 32 21 30 

Ce   78 64 60 41 56 

Pr   8.2 8.0 7.7 5.3 6.9 

Nd   33 29 28 21 23 

Sm   6.0 5.2 5.0 4.0 4.3 

Eu   1.2 1.0 1.0 1.0 0.92 

Gd   4.9 4.7 4.4 4.0 3.4 

Tb   0.70 0.66 0.63 0.61 0.54 

Dy   4.0 3.9 3.5 3.7 2.9 

Ho   0.80 0.67 0.66 0.80 0.54 

Er   2.2 2.0 1.7 2.2 1.5 

Tm   0.33 0.33 0.31 0.36 0.25 

Yb   2.1 1.9 1.9 2.3 1.6 

Lu   0.29 0.29 0.27 0.32 0.24 

Hf   4.7 5.6 4.8 3.7 4.4 

Ta   1.3 1.2 1.4 0.60 1.2 

Tl   0.50     

Th   23 23 22 5.9 23 

U   7.5 7.7 7.9 1.2 7.8 

Be   2.0 2.0 2.0 2.0 1.0 

Ni 12   2.4 1.8 6.0 1.8 

Cu 24  40 17 12 33 9.3 

Zn 83  90 27 23 30 16 

As     1.3  1.5 

Pb 9       

Sc 23   12         
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Table 2.1  

(continued)             

Outcrop Apacheta - Aguilucho Volcanic Complex       

Sample AA-054 AA-055 AA-056 AA-058 AA-064 AA-067 

Unit Dacite Dacite Dacite Dacite Rhyolite Andesite 

Age 
0.91 ± 0.14 
Ma2 

0.91 ± 0.14 
Ma2 

Lower 
Pleistocene4 

0.70 ± 0.2 
Ma2 

Middle 
Pleistocene4 

0.97 ± 0.11 Ma5 

Coordinates WGS84 
19S 

586848 586588 582845 579850 580225 581521 

7581446 7582077 7578792 7584178 7583868 7583555 

Major oxides (wt%)       
SiO2 63.33 63.85 62.08 63.98 68.44 58.49 

Al2O3 16.52 16.23 16.65 16.58 14.75 18.12 

Fe2O3(tot) 4.58 4.11 4.61 4.71 2.87 6.10 

MgO 1.92 1.86 2.30 2.11 1.15 1.29 

CaO 4.30 3.92 4.78 4.49 2.78 4.22 

Na2O 3.33 3.57 3.68 3.78 3.32 3.26 

K2O 3.19 3.57 3.18 3.17 4.46 2.66 

TiO2 0.59 0.57 0.64 0.63 0.38 0.88 

P2O5 0.17 0.13 0.15 0.15 0.08 0.24 

MnO 0.07 0.07 0.07 0.07 0.06 0.04 

LOI 1.80 1.90 1.60 0.10 1.50 4.50 

Sum 99.80 99.78 99.74 99.77 99.79 99.80 
       
Trace elements 
(ppm) 

      

V 94 109 129 127 78 80 

Cr 21   34  21 

Co 9.3 9.9 12 12 6.1 13 

Ga 19 19 21 20 19 20 

Rb 147 179 129 152 293 80 

Sr 418 409 507 467 273 435 

Y 18 20 18 19 23 17 

Zr 192 180 167 171 189 153 

Nb 14 13 11 12 18 9.1 

Sn 3.0 2.0 2.0 2.0 3.0 7.0 

Cs 11 13 9.0 6.9 25 1.1 

Ba 628 680 743 696 541 659 

La 35 35 31 33 52 22 

Ce 66 69 61 65 98 45 

Pr 8.2 8.4 7.5 7.9 11 5.9 

Nd 29 27 25 27 34 22 

Sm 5.0 5.0 4.8 4.9 5.6 4.3 

Eu 0.96 0.95 1.0 1.0 0.80 1.2 

Gd 4.5 4.0 3.7 4.0 4.4 3.7 

Tb 0.61 0.67 0.61 0.66 0.72 0.60 

Dy 3.3 3.4 3.4 3.4 3.7 3.1 

Ho 0.62 0.66 0.62 0.68 0.78 0.65 

Er 1.9 1.9 1.7 1.9 2.2 1.8 

Tm 0.31 0.32 0.29 0.32 0.37 0.28 

Yb 1.8 2.0 1.8 2.1 2.4 1.7 

Lu 0.29 0.29 0.27 0.30 0.37 0.24 

Hf 5.4 5.8 5.2 5.5 7.0 4.4 

Ta 1.6 1.5 1.0 1.3 2.4 0.60 

Tl 0.20 0.20   0.20  

Th 32 33 21 25 57 4.5 

U 10 12 7.4 9.1 23 1.2 

Be 3.0 2.0 1.0 2.0 4.0 1.0 

Ni 3.7 3.1 2.7 4.4 3.2 6.5 

Cu 11 17 17 20 19 45 

Zn 38 33 30 25 18 32 

As  0.80  0.80 1.3  

Pb       

Sc             

 
 
     



 

33 
 

Table 2.1  

(continued)         

Apacheta - Aguilucho Volcanic Complex     

Sample AA-077 AA-081 AA-083 AA-094 

Unit Dacite Dacite Dacite Andesite 

Age Pleistocene4 
0.652 ± 0.012 
Ma4 

Pleistocene4 
1.024 ± 0.033 
Ma4 

Coordinates WGS84 
19S 

581045 582405 584711 579434 

7585154 7587497 7585422 7579884 

Major oxides (wt%)     
SiO2 62.80 63.15 64.65 59.97 

Al2O3 16.21 16.26 15.90 16.65 

Fe2O3(tot) 4.53 4.61 4.28 6.12 

MgO 2.10 2.07 2.05 3.97 

CaO 4.53 4.60 4.30 6.03 

Na2O 3.57 3.15 3.52 3.46 

K2O 3.10 3.70 3.29 2.02 

TiO2 0.61 0.67 0.58 0.75 

P2O5 0.15 0.17 0.15 0.16 

MnO 0.07 0.07 0.07 0.10 

LOI 2.10 1.30 1.00 0.50 

Sum 99.77 99.75 99.79 99.73 
     
Trace elements 
(ppm) 

   
 

V 109 118 106 122 

Cr 27 14  103 

Co 11 11 10 17 

Ga 19 20 19 19 

Rb 158 169 173 85 

Sr 451 475 418 437 

Y 19 21 18 20 

Zr 161 175 173 156 

Nb 12 13 13 11 

Sn 2.0 2.0 2.0 4.0 

Cs 11 11 13 7.9 

Ba 683 737 681 570 

La 31 35 36 28 

Ce 63 69 70 57 

Pr 7.5 8.5 8.2 7.1 

Nd 24 28 27 23 

Sm 4.7 5.3 4.9 4.9 

Eu 0.99 1.1 0.99 1.0 

Gd 3.9 4.4 3.8 4.2 

Tb 0.64 0.71 0.60 0.70 

Dy 3.3 3.5 3.3 3.8 

Ho 0.66 0.71 0.60 0.73 

Er 1.7 2.1 1.7 2.0 

Tm 0.28 0.34 0.26 0.32 

Yb 1.9 2.0 1.7 2.0 

Lu 0.27 0.32 0.25 0.29 

Hf 5.3 5.1 5.4 5.4 

Ta 1.2 1.2 1.4 0.90 

Tl     

Th 24 26 31 17 

U 8.9 8.9 10 5.8 

Be 2.0 2.0 2.0 3.0 

Ni 2.0 2.4 2.8 4.0 

Cu 16 12 18 25 

Zn 16 33 28 11 

As 0.90   0.90 

Pb    
 

Sc         

Ages from: 1 - Tierney et al. (2016); 2 - Rivera et al. (2015); 3 - Renzulli et al. (2006); 
4 - Sellés and Gardeweld (2017); 5 - Taussi et al. (2019) 
 (A) and (B) indicates Type-A and Type-B enclaves, respectively 
 Values not shown were not analysed or are below the detection limit. 
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Lavas from AAVC and from the domes, including the enclaves, display a broad range 

in SiO2 content, from 57.7 to 69.6 wt%, and relatively low MgO contents (<5 wt%), with the 

higher MgO values for the enclaves (3.1-4.7 wt%) and for sample AA-094 (4.0 wt%). Almost 

all the samples studied (lavas, domes and enclaves) form a uniform trend in most of the 

bivariate diagrams (Figs. 2.5 and 2.6). There is an evident gap in SiO2 content between the 

enclaves and the domes (~4.0 wt%), which is filled by the dacites of the AAVC. SiO2 has a 

negative correlation with Fe2O3 (Fig. 2.5a), MnO (not shown), MgO (Fig. 2.5b) and CaO (Fig. 

2.5c). TiO2 and Al2O3 show negative correlations in lavas and domes (Fig. 2.5d,e); in the 

enclaves an initial increase in TiO2 and Al2O3 in the less differentiated samples (<59 wt% SiO2; 

Type-B enclaves) is followed by a decrease in the more evolved ones (Type-A enclaves). Na2O 

vs. SiO2 (Fig. 2.5f) shows an almost flat pattern, while P2O5 vs. SiO2 diagram shows a scattered 

trend (not shown). K2O shows a positive correlation with SiO2 in the AAVC lavas, showing 

almost the same values for all the enclaves (2.3-2.7 wt%) and all the domes (3.6-3.7 wt%) (Fig. 

2.2b). 

 

Figure 2.5 - Major oxides vs. SiO2 diagrams for sampled lavas of the Apacheta-Aguilucho 
Volcanic Complex, domes and enclaves therein. Figure from Taussi et al. (2019). 

 

Selected trace element against SiO2 concentrations are reported in Figure 2.6. In the 

enclaves-domes series, Cr content decreases from the enclaves toward the dome lavas (Fig. 
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2.6a), whereas Rb, Nb, La, Th and U have a positive correlation with SiO2 (Fig. 2.6b,c,d,e,f). 

Sr and Ba show similar patterns with an initial scattered pattern in the less differentiated 

samples (<59 wt% SiO2), followed by an abrupt decrease toward the most differentiated 

products (Fig. 2.6g,h). In the AAVC lavas, Sr shows a general decrease (in absolute values) 

from the andesites to the rhyolite, but an almost stable plateau for the dacites (Fig. 2.6g). Rb, 

Nb, La, Th and U increase in concentrations with SiO2 enrichment (Fig. 2.6b,c,d,e,f) while Ba 

shows no correlation (Fig. 2.6h).  

 

Figure 2.6 - Trace elements vs SiO2 diagrams for sampled lavas of the Apacheta-Aguilucho 
Volcanic Complex, domes and enclaves therein. Figure from Taussi et al. (2019). 
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Concerning the patterns of the incompatible elements and REE (normalized to Primitive 

Mantle and Chondrite, respectively; Fig. 2.7), all the studied samples are within the range of 

the Central Volcanic Zone field (Mamani et al., 2010). They exhibit a marked enrichment in Cs, 

Rb, K, Th and U, combined with a marked depletion in Nb, Ta, P and Ti, and a flatter pattern 

of REE (low LREE/HREE) than most of the other erupted products in the Central Volcanic 

Zone (Mamani et al., 2010). Their low LREE/HREE ratios are relatively similar to that of the 

Basaltic-Andesite (BA) end-member (Blum-Oeste and Wörner, 2016), which has been linked 

to an evolved product of a typical primary arc magma that is generally ubiquitous in the sub-

Andean mantle wedge. 

 

Figure 2.7 - a) Trace elements normalized to primitive mantle, and b) REE normalized to 
chondritic values (after Sun and McDonough, 1989) for representative lava samples of 
Apacheta-Aguilucho Volcanic Complex (green lines), dacitic domes (blue lines), the enclaves 
(red lines) and La Poruña scoria cone samples from Mamani et al. (2008) and Godoy et al. 
(2014) (orange lines). Grey areas represent normalized compositions of lavas erupted in the 
Central Volcanic Zone of the Andes (data after Mamani et al., 2010). End-members for the 
Central Andean magmatism as defined by Blum-Oeste and Wörner (2016) are shown by thick 
dashed lines (EB, enriched basalt in green; BA, basaltic-andesite in black; RD, rhyodacite in 
blue). Figure from supplementary material in Taussi et al. (2019). 
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Table 2.2 
87Sr/86Sr, 143Nd/144Nd, 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb isotopic analyses for selected samples. 
Unit Sample 87Sr/86Sr ± 143Nd/144Nd ± 208Pb/204Pb ± 207Pb/204Pb ± 206Pb/204Pb ± 

Chanka 

Dacite CKA1 0.707016 8 0.512313 11 38.7542 9 15.6461 4 18.7914 4 

Enclave (A) CKA1a_ch 0.707046 10 0.512303 10 38.8333 17 15.6849 6 18.8159 7 

Enclave (A) CKA1a_sc 0.707078 11 0.512297 25 38.7465 13 15.6588 5 18.7973 6 

Chac-Inca 

Dacite C-INKA1 0.707013 8 0.512298 13 38.8406 13 15.6726 5 18.8081 6 

Enclave (A) C-INKA1f 0.706953 10 0.512302 4 38.7718 20 15.6667 8 18.7801 9 

Cerro Pabellón 

Dacite AA003 0.706928 5 0.512308 9 38.8593 340 15.6779 100 18.8151 90 

Enclave (B) ICP16 0.706495 7 0.512354 16 38.6150 13 15.6343 5 18.6847 6 

Enclave (A) ICP22 0.706919 7 0.512335 41 38.3109 14 15.6367 6 18.3439 6 

Enclave (B) ICP24 0.706631 6 0.512330 13 38.6911 31 15.6456 13 18.7475 15 

Enclave (B) CPAB-ENC-1 0.706642 11 0.512342 16       

Apacheta-Aguilucho Volcanic Complex 

Andesite AA-023 0.706947 6 0.512319 6 38.8098 340 15.6656 100 18.8015 90 

Andesite AA-047 0.706579 8 0.512392 19 38.7783 340 15.6509 100 18.7790 90 

Dacite AA-055 0.706962 6 0.512325 8 38.8672 340 15.6736 100 18.8180 90 

Dacite AA-056 0.706898 6 0.512332 8 38.7880 340 15.6520 100 18.7991 90 

Dacite AA-083 0.707006 8 0.512325 12 38.8822 340 15.6868 100 18.8196 90 

 

87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values are summarized 

in Table 2.2 (from Taussi et al., 2019). In general terms, 87Sr/86Sr (0.7065 - 0.7071) and 

143Nd/144Nd (0.5123 - 0.5124) ratios are comparable to the lavas of the Central Volcanic Zone 

reported in Mamani et al. (2010) (Fig. 2.8). In the investigated samples, 87Sr/86Sr shows an 

initial increase with SiO2 in the less evolved products (SiO2 <60 wt%) to then stabilize at the 

higher values (Fig. 2.8a); conversely 143Nd/144Nd shows a slight decrease from the less silicic 

samples to the most differentiated (Fig. 2.8b).  
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Figure 2.8 - a) 87Sr/86Sr vs. SiO2 and b) 143Nd/144 Nd vs. SiO2 for the studied samples. 
Assimilation and Fractional Crystallization (AFC) and Fractional Crystallization (FC) trends 
related to open- and close-system differentiation suggested by Davidson et al. (1991) for the 
Central Andean magmatism. Grey areas represent the compositional variations of Central 
Volcanic Zone lavas (data from Mamani et al., 2010). Figure from Taussi et al. (2019). 

The 206Pb/204Pb and 208Pb/204Pb ratios are > 18.68 and 38.60 respectively (Table 2.2), 

which is in agreement with the Antofalla Domain values where 208Pb/204Pb ratios > 38.50 and 

206Pb/204Pb ratios > 18.55 (Aitcheson et al., 1995; Mamani et al., 2008, 2010). The only 

exception is sample ICP22 (Pabellón enclave; Table 2.2), which has lower values (206Pb/204Pb 

= 18.34; 208Pb/204Pb = 38.31), better fitting with the Southern Transition zone to the Arequipa 

domain (sensu Mamani et al., 2010) (Fig. 2.9). 

 

Figure 2.9 - 206Pb/204Pb vs. Latitude South (°) plot for the studied samples and other lavas 
erupted within the Paracas, Arequipa and Antofalla domains (after Mamani et al., 2010). Figure 
from supplementary material in Taussi et al. (2019). 
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2.5. Discussion 

2.5.1 The origin of the enclaves 

The irregular, crenulated and cuspate contacts between the host domes (dacitic 

magmas) and the enclaves (andesitic magmas) (Fig. 2.3d), and the diktytaxitic-like texture 

recognized in the enclaves (Fig. 2.4), indicate that the origin of these latter is magmatic (liquid-

liquid interaction) and that they were quenched during mixing/mingling processes between 

magmas with different compositions, temperatures and water contents (Bacon, 1986). 

Furthermore, the presence in the enclaves of crystals inherited from the dacite (i.e. resorbed 

quartz and large plagioclases) is an evidence of physical mixing between the magmas. In fact, 

habits, sizes, disequilibrium features and textural relationships of the larger crystals found in 

the enclaves with respect to the groundmass (Fig. 2.4f,g), suggest that they originated in the 

hosting dacite and were subsequently embedded by the andesitic enclave (i.e. xenocrysts). 

This is particularly visible in the Type-A enclaves, showing the presence of large crystals of 

plagioclase and quartz (i.e. up to 3 mm and 2 mm, respectively; Fig. 2.4f) with few signs of 

resorption. The above features were also found in the enclaves of other dacitic domes of the 

Altiplano-Puna Volcanic Complex province (e.g. de Silva et al., 1994; Watts et al., 1999; Burns 

et al., 2015). In addition, the enclaves have different SiO2 content, increasing from ~57 wt.% 

(Type-B) to ~61 wt.% (Type-A) (Table 2.1). This indicates that the Type-A enclaves show a 

moderate degree of hybridization with the dacite, partially filling the gap of SiO2 between the 

Type-B enclaves and the dacitic domes (~66 wt.%). Type-A samples also show higher 87Sr/86Sr 

ratios (~0.7070, i.e. equal to the isotopic signature of the dacite) compared to Type-B samples 

(~0.7065). We relate the higher silica content, and isotopic signatures of the Type-A enclaves 

to a higher degree of mixing between these latter and the dacitic magma, which therefore 

permit a major interaction, coupled with the exchange of more material coming from the dacite 

(i.e. plagioclase and quartz xenocrysts) that affected the isotopic value. Nevertheless, both 

types of enclaves show crystallization of similar mineral assemblage, with a marked change 

on their crystallinity, which varies from fine- (Type-A) to relatively coarser-grained (Type-B) 

crystals (Fig. 2.4), showing no correlation with the size of the enclaves (Fig. 2.4). Thus, we 

envisage the interaction between dacitic and andesitic magmas (domes and enclaves therein), 

in a scenario that implies different crystallinity textures, reflecting different depth of 

crystallization from the interface andesite-dacite, in a way according to “Model B” by Coombs 

et al. (2002) (Fig. 2.10). In this model, the andesitic magma ponds and forms an 

intermediate/silicic interface below the dacitic magma (Fig. 2.10a). This permits the dacite to 

be remobilized, allowing for mixing in this layer. The andesite cools at different rates depending 

on its position below the interface (Fig. 2.10b), producing vesicles and consequently 

decreasing its bulk density, permitting flotation as discrete enclaves (e.g. Eichelberger, 1980; 
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Coombs et al., 2002). Crystallization and cooling start before disaggregation, thus permitting 

different crystallinity textures, function of the depth below the interface and independent of 

eventual enclave size (Fig. 2.10c) (Coombs et al., 2002). This two-stage process (Fig. 2.10b,c) 

is consistent with a near-interface crystallization for the fine-grained textured samples with the 

highest degree of interaction and mixing between the different magmas (Type-A), and a 

faraway crystallization for the slightly coarser textured enclaves (Type-B) (Fig. 2.10b). 

 

Figure 2.10 – Interaction model between andesitic (A) and dacitic (D) magmas for the origin 
of mafic enclaves. a) Andesite influx occurs and a mafic-silicic interface forms; b) crystallization 
and vapor exsolution proceed within the andesite layer forming minerals of different sizes that 
increase moving away from the interface, which is reflected in the petrographic characteristics 
of the enclaves; c) flotation of enclaves occurs due to decreased density of the andesite, 
resulting in different ranges of crystallinities with no correlation to enclave size (Type-A and 
Type-B). Type-A and Type-B enclaves incorporate “silicic” xenocrysts during cooling. Modified 
after “model B” in Fig.10 of Coombs et al. (2002). Figure from Taussi et al. (2019). 
 
 
2.5.2 Depth of interaction between andesitic and dacitic magmas 

The presence of garnet, amphibole and plagioclase affects the REE profiles of magmas 

interacting with, or generated in a thickened crust of different depths in different ways (Kay et 

al., 1999; McMillan et al., 1993; Macpherson et al., 2006). Since Sr and La have a strong affinity 

for plagioclase whereas Y and Yb prefer garnet and amphibole, the Sr/Y, Sm/Yb, La/Yb and 

Dy/Yb ratios were plotted versus SiO2 (Fig. 2.11), as these ratios are particularly sensitive to 

the presence of garnet and amphibole against plagioclase. The enclaves show the highest 

values of Sr/Y ratios (Fig. 2.11a) of the entire suite of the studied rocks (Sr/Y range = 33.5-

46.2). The lowest values are associated with the AAVC lavas (Sr/Y range = 11.9-29.7) and the 

intermediate values with the domes (Sr/Y range = 26.3-34.2) and La Poruña (19.5-33.1). In 

comparison with the Central Volcanic Zone lavas erupted during the last 3 Ma (Fig. 2.11a), 

these values can be considered low (Mamani et al., 2010). This, coupled with the low Sm/Yb 

values (enclaves < 3.8; AAVC lavas < 2.9; domes < 3.2; La Poruña < 3.6; Fig. 2.11b), can 

exclude a “thick crust assimilation” garnet signature (Wörner et al., 2004; Mamani et al., 2010). 
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Moreover, while La/Yb increases during garnet and amphibole fractionation, garnet 

fractionation will also increase Dy/Yb, whereas amphibole and titanite fractionation will 

decrease this ratio (Tiepolo et al., 2002; Macpherson et al., 2006). In the analysed samples, 

La/Yb shows a positive correlation with SiO2 (Fig. 2.11c), but the Dy/Yb ratio increases only 

from the Type-B toward the Type-A enclaves. Conversely, a negative correlation between 

Dy/Yb and differentiation is recorded for the domes and the AAVC lavas (Fig. 2.11d), 

consistent with significant amphibole and titanite fractionation, in a garnet-free differentiation 

environment (Tiepolo et al., 2002; Davidson et al., 2007).  

Using the amphibole thermobarometer of Ridolfi et al. (2010) and Ridolfi and Renzulli 

(2012), Piscaglia (2012) and Gorini et al. (2018) defined two distinct zones of crystallization for 

magmas erupted at both the AAVC and the dacitic domes. In fact, it was proposed due to 

polybaric crystallization, that the feeding systems mainly consist of (i) shallow (∼4-8 km) 

magma chambers filled with silicic magma (∼740-840°C), which gave rise to the more 

differentiated lavas of the AAVC and the magmas that generated the dacitic domes; and (ii) 

deeper levels (∼15-20 km) of amphibole crystallization, calculated for an andesite lava flow 

(∼940°C; Gorini et al., 2018). For the enclaves, Gorini et al. (2018) obtained, for few 

amphiboles crystallized in equilibrium conditions, pressures mainly related to shallow magma 

chambers (4-8 km) and temperatures akin to the dacites (i.e. ∼750-850°C). However, 

crystallization pressures (∼15-20 km) and temperatures (∼950-1,000°C) of deeper crustal 

levels were also found (Gorini et al., 2018). This suggests that andesitic magmas started to 

crystallize amphibole during their ascent from garnet-free mid-upper crustal levels (∼15-20 km) 

to the shallower crustal levels (∼4-8 km), where the massive crystallization and quenching 

occurred. 
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Figure 2.11 - Plots of Sr/Y (a), Sm/Yb (b), La/Yb (c) and Dy/Yb (d) ratios versus SiO2 for the 
domes, the enclaves, the Apacheta-Aguilucho Volcanic Complex lavas and La Poruña scoria 
cone (sample SP1 from Mamani et al., 2008; sample POR-10-01 from Godoy et al., 2014). 
Grey fields represent the younger (<3 My) Central Volcanic Zone lavas (after Mamani et al., 
2010). Arrows of differentiation trends (with relative mineral contribution) after Mamani et al. 
(2010). Figure from Taussi et al. (2019). 

 

2.5.3 Petrological model for evolution of lavas and domes of the Apacheta-Aguilucho Volcanic 
Complex area 

The Altiplano-Puna Magma Body played a significant role in the magmatic plumbing 

systems of the erupted magmas in the Altiplano-Puna Volcanic Complex. Rising parental 

magma interacted with this voluminous magmatic body, resulting in strong contamination 

(Michelfelder et al., 2013; Godoy et al., 2017a). This produced an AFC trend line for the 

Neogene and Quaternary mafic-to-intermediate erupted products (MgO content ≥ 3.0%) at the 

surface projection of the Altiplano-Puna Magma Body (data from Hawkesworth et al., 1982; 

Wörner et al., 1992; Matthews et al., 1994; Feeley and Davidson, 1994; Mattioli et al., 2006; 

Mamani et al., 2008; Godoy et al., 2014, Michelfelder et al., 2014; Maro et al., 2017), with 

increasing values of 87Sr/86Sr ratios and a slight increase in the Rb/Sr ratio from the margins 
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toward the centre of the Altiplano-Puna Magma Body (Fig. 2.12a). Above the partially-molten 

igneous body, the magmas can undergo subsequent stagnation and FC differentiation coupled 

with mixing/mingling and minor contamination, which occur at shallower levels (~4-8 km, e.g. 

Burns et al., 2015; Kern et al., 2016; Gorini et al., 2018). This is reflected in the stable 87Sr/86Sr 

ratio (~0.7070) and the increase of the Rb/Sr ratio (Fig. 2.12a). By contrast, all the samples 

from the Uturuncu volcano (dacites and enclaves; Michelfelder et al., 2014) fall along the AFC 

line and reach the highest values of the considered dataset (Fig. 2.12a). This is coherent with 

a strong influence of these processes in the evolution of magmas (Sparks et al., 2008; 

Michelfelder et al., 2014) at this location (i.e. at the centre of the Altiplano-Puna Magma Body), 

which hence suggests large crustal contributions derived from the interaction within the 

maximum thickness of the Altiplano-Puna Magma Body (Muir et al., 2014; 2015; Godoy et al., 

2017a). 

 

Figure 2.12 – Plots of Rb/Sr vs. 87Sr/86Sr. a) Shows an AFC trend line along which all the 
mafic-intermediate products (MgO > 3.0 wt%) of the Altiplano-Puna Volcanic Complex lie, 
including the enclaves studied in this work. The values of both Rb/Sr and 87Sr/86Sr increase 
with increasing degree of interaction with the partially molten Altiplano-Puna Magma Body. 
The more evolved rocks represented by the domes form vertical trends defined by FC-
dominant process. The Apacheta-Aguilucho Volcanic Complex lavas fall in the between the 
enclaves and the domes. The AFC and FC trends are also visible for the Lascar, Ollagüe, 
Cerro Chascon, Chao lava, Chillahuita and La Torta products reported for comparison, while 
all the Uturuncu rocks (both enclaves and dacites) lie on the AFC trend. Grey field represents 
the Central Volcanic Zone stratovolcano values (Mamani et al., 2010). b) Central Volcanic 
Zone ignimbrite values from Brandmeier and Wörner (2016). Figure from Taussi et al. (2019). 
 

Based on the geochemical and isotopic compositional variations, a petrological 

evolution has been conceived for lavas erupted in the AAVC area. To assess these different 

processes an AFC-type petrological model (DePaolo, 1981) was developed (Table 2.3 from 

Taussi et al., 2019; Fig. 2.13). We selected a sample from the Lascar volcano (Table 2.3), 
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which has a low Sr-isotope ratio (~0.7057) (Matthews et al., 1994), corresponding to the 

isotopic baseline values of MASH-magmas derived from the lower crust (0.705; sensu 

Davidson et al., 1991) and akin with the Sr-isotope composition of the basaltic-andesite (BA) 

end-member of Blum-Oeste and Wörner (2016). As contaminant we used a bulk felsic upper 

crustal composition (i.e. gneiss) derived from samples of the Palaeozoic Andean basement 

from the zone outcropping NE of the studied area, that corresponds to the northern Sierra de 

Moreno (Lucassen et al., 2001; Table 2.3). For the AFC-model calculations, mineral 

assemblages were generated by taking into consideration the petrographic characteristic of 

the enclaves (Table 2.3). The first evolutionary stage is characterized by dominant crustal 

contamination at middle-upper crustal levels where processes occur in an open-system 

(87Sr/86Sr increase from ~0.7065 to ~0.7070; Figs. 2.8a and 2.13). 

Table 2.3 
AFC-type model parameters (after DePaolo, 1981) for erupted magmas at Apacheta-Aguilucho Volcanic Complex. Bulk D 
according to partitioning coefficients from Rollinson (1993) for basaltic melts. Mineral assemblage according to petrographic 
characterization of the enclaves reported in Gorini et al., 2018 and in this work). 

  Initial Contaminant Mineral assemblage 
Model 1 
(% vol) 

Model 2 
(% vol) 

      

Location Lascar volcano Sierra de Moreno Plagioclase 45 60 

Reference Matthews et al. (1994) Lucassen et al. (2001) Amphibole 30 40 

Sample LA123 3/291 Clinopyroxene 10  

SiO2 (wt%)a 57.55 68.80 Orthopyroxene 10  

Al2O3 (wt%)a 17.10 13.41 Olivine 5  

CaO (wt%)a 7.11 2.72    

Na2O (wt%)a 3.64 3.20 DSr (bulk) 0.84 1.1 

K2O (wt%)a 1.55 1.64   
 

MgO (wt%)a 3.78 1.94   
 

FeOt (wt%)a 6.36 5.93 Conditions   

Sr (ppm) 711 271 r = Ma/Mc 0.6  

87Sr/86Sr 0.705765 0.721843      

t = total Fe as Fe2+.    
 

a Recalculated 100% water free. 

   

 

 

The contamination happens at garnet-free shallow levels (Fig. 2.11) and is likely 

enhanced by assimilation of the partially melted Altiplano-Puna Magma Body (Fig. 2.12) 

located at about 15-20 km of depth (Chmielowsky et al., 1999; Zandt et al., 2003; Ward et al., 

2014). After assimilation of the partially melted upper crustal layer, a second stage of FC and 

mixing between the dacitic and the andesitic magmas occurs. This stage represents the main 

processes occurring in the shallow magmatic chambers at the Apacheta-Aguilucho Volcanic 

Complex area (~4-8 km depth; Gorini et al., 2018), characterized by plagioclase fractionation 

(Sr starts to decrease from samples with > 63 wt% SiO2) and small contamination (87Sr/86Sr 

slightly increase) (Fig. 2.13).  

In the petrological model (Fig. 2.13), evolution of analysed samples runs from the 

composition of the less-evolved magmas (enclaves) towards more differentiated compositions 

(domes), passing through the intermediate compositions of the analysed AAVC lavas. This 
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suggests that these latter are associated to mixing between andesitic and dacitic magmas, 

that occurred at shallow crustal levels (~4-8 km). Additionally, published ages of the volcanic 

products indicate that the AAVC lavas were erupted prior the dacitic domes (Urzua et al., 2002; 

Renzulli et al., 2006; Rivera et al., 2015; Tierney et al., 2016; Sellés and Gardeweg, 2017). As 

complete hybridization can only occur when the magmas both behave as liquids at the same 

temperature, and formation of the enclaves occurs when there is a large temperature 

difference between the magmas or a large proportion of silicic magma (e.g. Sparks and 

Marshall, 1986; Lesher, 1990), we propose that a thermal change occurred before eruption of 

the dacitic domes. Thus, during evolution of magmas erupted throughout the formation of the 

Apacheta and Aguilucho stratovolcanoes (i.e. ~1.0 to ~0.6 Ma), the thermal conditions of 

andesitic and dacitic magmas were similar, allowing mixing between both end-members (Figs. 

2.5 and 2.6). By contrast, during eruption of the dacitic domes (i.e. ~150-100 ka), the thermal 

differences were significant, preventing mixing and allowing mingling and the extrusion of the 

domes with the observed enclaves (Fig. 2.10). 

 

Figure 2.13 - 87Sr/86Sr vs. Sr (ppm) diagram showing the isotopic distribution of lavas from the 
AAVC area and La Poruña scoria cone. Black, bold lines represent plagioclase-dominated 
AFC-type (DePaolo, 1981) evolution models taking into account samples from Sierra de 
Moreno basement (3/291; Lucassen et al., 2001), and Lascar volcano (LA 123; Matthews et 
al., 1994) as contaminant and initial end-members, respectively (Table 2.3). Italic numbers 
indicate the remaining melt fraction (F). D indicates bulk partitioning coefficients of Sr 
according to the crystallizing mineral assemblage of Table 2.3 and mineral partitioning 
coefficients of Rollinson (1993). The enclaves follow AFC trends, involving mixing/mingling 
processes (dashed lines) starting from different possible batches of less-differentiated 
magmas toward the dacitic domes samples. The AAVC samples follow a linear trend similar 
to FC plus mixing paths. La Poruña, SC2 Poruñita-near sample, Ollagüe and Lascar enclaves 
are plotted for comparison (Godoy et al., 2014, 2017a; Mattioli et al., 2006; Feeley and 
Davidson, 1994; Matthews et al., 1994). Figure from Taussi et al. (2019). 
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2.5.4 The youngest dacitic domes in the framework of the Altiplano-Puna Volcanic Complex 

Similarly to other young dacitic systems of the Altiplano-Puna Volcanic Complex (e.g. 

Chao lava, Cerro Chascon-Runtu Jarita, La Torta, Chillahuita, and Cerro Chascon; de Silva et 

al., 1994; Watts et al., 1999; Burns et al., 2015), the magmas erupted by Chanka, Chac-Inca 

and Pabellón lava domes were in an advanced stage of evolution (high porphyricity, high 

viscosity), and therefore it seems very unlikely that they would have been erupted without 

some trigger process. As injection of less-evolved magmas in a more silicic magma chamber 

is a common mechanism for triggering volcanic eruptions (e.g. Sparks et al., 1977; Murphy et 

al., 1998; Pritchard et al., 2013), we therefore propose that the interaction between the shallow 

dacitic crystal-mushes and uprising andesitic magmas produced quenching and vesiculation 

of the higher temperature magma (Fig. 2.10), enhancing the extrusion of the long-steady 

magmas originating the dacitic domes within the AAVC area (Fig. 2.14). In addition, bulk 

composition, mineralogical and isotopic characteristics of these domes, resemble those of the 

ignimbrites erupted during the flare-up phases (de Silva et al., 1994; Watts et al., 1999; 

Salisbury et al., 2011; Burns et al., 2015). The vertical trends marked by the APVC domes in 

the Rb/Sr plot (Fig. 2.12a) runs from the Central Volcanic Zone stratovolcanoes field to the 

ignimbrites field (Fig. 2.12b). Such features suggest that the formation of these dacitic magma 

chambers required a thermal history within a magmatic system of super-eruption scale with a 

vigorous plutonic system feeding these chambers for hundreds thousand years prior to 

eruption (Tierney et al., 2016; Kern et al., 2016). Finally, also phase petrology of the Altiplano-

Puna Volcanic Complex ignimbrites indicate that magmas were stored pre-eruptively over a 

depth range from about 3 km to 8 km (e.g. Lindsay et al., 2001; Schmitt et al., 2001; de Silva 

et al., 2006; Burns et al., 2015; Grocke et al., 2017) and therefore the shallow crystal-mushes 

represented by the youngest domes can be associated to remnant ignimbrite magmas of the 

Altiplano-Puna Volcanic Complex, produced during earlier magmatic stages. 

 

2.6. Summary and conclusions 

A polybaric upper crustal magma plumbing system has been working during the ~1 Ma 

span time of activity of the AAVC area, with two distinct reservoirs (Fig. 2.14). The deeper 

reservoirs were located at mid-crustal levels (15-20 km) and are akin to the location given for 

the Altiplano-Puna Magma Body (Godoy et al., 2014; 2017a; Ward et al., 2014; Burns et al., 

2015; Comeau et al., 2015, 2016), involving AFC processes with a dominant role played by 

amphibole fractionation. Shallower magma chambers were located at depth of 4-8 km (Burns 

et al., 2015; Gorini et al., 2018) allowing further differentiation of the erupted magmas through 

FC processes, mainly dominated by plagioclase crystallization. 
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The concept of different “magmatic regimes” in a trans-crustal magma system may help 

to better understand the high variability of different types of volcanoes in the Central Andes, 

from building of andesite-dacite composite cones (steady-state regime) to dominantly large-

scale ignimbrites and caldera complexes (flare-up regime; de Silva and Kay, 2018 and 

references therein). Nevertheless, the magmatic regimes may change back-and-forth from one 

extreme to the other depending on the rate of mafic recharge and the size and temperature of 

resident, evolved magmas at shallow levels (Wörner et al., 2018 and references therein). In 

the evolution of the AAVC area we can envisage a transition of the magmatic regimes from 

flare-up mode (about 1 Ma; Fig. 2.14a) to steady state (1-0.6 Ma; Fig. 2.14b). This latter 

magmatic regime characterized by decreasing, but still relatively high rates of mafic magmas 

recharges for at least 0.4 Ma, kept the upper crustal reservoirs thermally “fertile”, allowing 

mixing between the new higher temperature magmas with the older, lower-temperature silicic 

resident magmas to form the abundant andesites and dacites lavas of the composite cones of 

Apacheta and Aguilucho (Fig. 2.14b). At about 150-100 ka, i.e. the age of the youngest domes, 

the flux magmatism in the Altiplano-Puna Volcanic Complex had to be already diminished as 

no MASH processes could occur in the upper crust. In this way, a different magmatic stage 

could be hypothesized with inputs of basaltic-andesite magmas into the shallower dacitic 

chambers, leading to triggering the extrusion of the domes rather than complete mixing and 

hybridization (Fig. 2.14c). The enclaves represent a snapshot of this process at the interface 

of interactions of the magmas (Fig. 2.10). Nevertheless, as no age data of volcanic products 

in the studied area fall in the 0.6-0.15 Ma interval, an open question is if the extrusion of the 

dacitic domes correspond to the final stages of an expiring magmatic system (i.e. waning 

stage), or to the beginning of a new pulse of the Altiplano-Puna Volcanic Complex (Fig. 2.14c). 

The presence of the enclaves in many of the youngest domes and eruption of coeval less-

evolved magmas (e.g. La Poruña) with similar geochemical and isotopic compositions in the 

last 150 ka within the Altiplano-Puna Volcanic Complex province, suggests a new period of 

mafic recharge, enabling the triggering of scattered eruptions within this volcanic province. 

 

Some considerations about the main heat source of the Cerro Pabellón are necessary. 

According to numerical studies of convective cooling intrusions (Garcia-Estrada et al., 2002), 

high temperatures (about 300 °C) in hydrothermal systems can only exist if the magmatic heat 

source is less than a few hundred thousand years old (around 0.4 Ma for typical size rhyolitic 

intrusions at 4 km depth). Because the emission of silicic volcanic products at the AAVC ended 

about 0.6 ± 0.1 Ma ago, the present-day high temperatures measured in the geothermal 

boreholes (i.e. > 250 °C; Aravena et al., 2016) cannot be related to the known magmatic activity 

of the composite stratovolcanoes-forming events. Therefore, these temperatures should be 

associated with the area’s youngest (80-130 ka) dacitic magmatic episode, which led to the 
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emplacement of the small Cerro Pabellón dome. Nevertheless, as extensively discussed 

above, the dacitic domes of the studied area seems to be left-overs of previous magmatic 

phases (i.e. about 1 Ma), thus it is unlikely to ascribe the main heat source driving the active 

geothermal area of Cerro Pabellón to the dome magma chamber. However, as no age data of 

nowadays studied volcanic products in the AAVC fall in the 0.6-0.15 Ma interval, a univocal 

explanation cannot be defined. What is worth to mention is that the presence, the areal 

extension, and the volume of the huge APMB in the upper crust is not negligible and cannot 

be ruled out as the main heat source of this and the other geothermal systems of the APVC. 

 

Figure 2.14 – A schematic model of the magma plumbing system processes in the upper crust 
at the Altiplano-Puna Volcanic Complex, focussing on the Apacheta-Aguilucho area, through 
the last ~1.0 Ma. a) Flare-up stage with high rate of mafic recharge accumulates in the 
Altiplano-Puna Magma Body (APMB); this produced a high intermediate-felsic magma flux 
towards the pre-eruptive levels (3-8 km) where the magmas (with high crustal assimilation, i.e. 
87Sr/86Sr ≥ 0.708; Burns et al., 2015) feed ignimbrite eruptions. At this time the Aguilucho 
ignimbrite was erupted. b) A decrease of mafic recharge is recorded at ~1.0-0.6 Ma, but the 
thermal conditions of the magmas involved still permitted the hybridization and mixing of the 
magmas forming the Apacheta-Aguilucho Volcanic Complex (AAVC; steady state conditions; 
sensu de Silva et al., 2015). c) A new phase (waning stage vs. new pulse) of mafic recharge 
is recorded at ~0.15 Ma; magmas ascended from depth into the upper crust with less mid-
crustal interactions (87Sr/86Sr = 0.7065), where could: remobilize the dacitic magmas leftovers 
from previous magmatic stages, triggering the extrusion of the domes, or be erupted with slight 
contamination (e.g. La Poruña). The CVZ 87Sr/86Sr baseline is according to Davidson et al. 
(1991). Depths of the magma chambers according to Gorini et al. (2018). Depth of the 
Altiplano-Puna Magma Body as in Ward et al. (2014). Modified after de Silva et al. (2015) and 
arranged according to the present results of the Apacheta Aguilucho Volcanic Complex area. 
Figure from Taussi et al. (2019). 
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CHAPTER 3 
 
 

CLAY MINERALS ASSOCIATIONS FROM THE ACTIVE HYDROTHERMAL SYSTEM 
 
 
THE PART OF THIS CHAPTER RELATED TO THE CLAY-CAP UNITS HAS BEEN PUBLISHED IN: 

 

Maza, S.N., Collo, G., Morata, D., Lizana, C., Camus, E., Taussi, M., Renzulli, A., 

Mattioli, M., Godoy, B., Alvear, B., Pizarro, M., Ramírez, C., Rivera, G., 2018. Clay mineral 

associations in the clay cap from the Cerro Pabellón blind geothermal system, Andean 

Cordillera, Northern Chile. Clay Minerals Journal of Fine Particle Science, 54 (2), pp. 117-141. 

https://doi.org/10.1180/clm.2018.9. 

 

THE PART OF THIS CHAPTER RELATED TO THE FUMAROLIC FIELD ALTERATION WILL BE PREPARED 

FOR THE SUBMISSION WITH THE PROVISIONAL TITLE: 
 

Dynamics of a fumarolic alteration in the Apacheta volcano associated with the Cerro Pabellón 

geothermal system, Northern Chile. 
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3.1. Introduction 

 Hydrothermal activity is a general term used to describe a complex set of interactions 

in which fluids, circulating within Earth’s continental and oceanic crust, transfer heat energy 

and chemical mass toward the surface (Lowell et al., 2014). These processes produce 

mineralogical, textural and chemical variations of the host rocks, as a response to the changing 

thermal and chemical environment, by the presence of hot water, steam or gases (Henley and 

Ellis, 1983). Some chemical constituents may be removed from the fluid to the solid earth, 

while others may be extracted from the rock; these reactions are reflected in the transformation 

of primary to secondary rock-forming minerals. The formation of these hydrothermally altered 

minerals is usually dependent on the temperature, permeability, pressure, fluid composition, 

initial composition of the rock, the duration of the hydrothermal activity and the fluid:rock ratio. 

These factors are largely independent, but the effects of one or more of them can exert a 

dominant influence in the location and extent of hydrothermal alteration (Lagat, 2010). In 

volcanic environments, two main possible sources of hydrothermal fluids, or a combination of 

them, could be defined: i) near-surface groundwater (i.e. meteoric water); or ii) water and gases 

exsolving from the magma. 

 The two main types of alteration associated with volcanic geothermal systems are i) 

the acid-sulfate and ii) the adularia-sericite (Wohletz and Heiken, 1992). The acid-sulfate facies 

usually occurs within the uppermost parts of an active or dormant volcano, or along its ring 

fractures where there is abundant cool groundwater that could interact with the rising magmatic 

gases, producing acid-sulfate waters. By contrast, the adularia-sericite alteration type occurs 

within a flow regime, above or adjacent to a deep heat source, mostly linked to older volcanic 

plumbing systems, and is usually characterized by neutral pH and alkali-chloride waters (Heald 

et al., 1987). By mapping alteration mineral assemblages at the surface and/or along the drill-

holes, it is possible to locate zones with high temperatures, as well the most impermeable and 

suitable subsurface rocks that can maintain steady conditions of temperature, pressure and 

enthalpy of the geothermal reservoir through time (Todesco and Giordano, 2010; Maffucci et 

al., 2016; Sánchez-Alfaro et al., 2016). This is of paramount importance in geothermal 

exploration and exploitation (Wohletz and Heiken, 1992). In fact, i) the cap-rock units, ii) the 

heat source, iii) the reservoir, and iv) the recharge areas, represents the four main elements 

in hydrothermal convective geothermal systems (Corrado et al., 2014). In volcanic and 

volcaniclastic systems, the development of large, thick cap-rocks is favoured by intense argillic 

alteration which leads to the formation of the clay-cap. The efficiency of these cover units is 

controlled to a significant extent by the intensity of the hydrothermal alteration. Di- and 
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trioctahedral clay minerals such as smectite, illite, corrensite, chlorite and chlorite-smectite, 

chlorite-corrensite and illite/smectite mixed layers are widespread hydrothermal alteration 

products in volcanic/subvolcanic geothermal systems (Inoue et al., 2004; Meunier 2005; 

Stimac et al., 2015). Geochemical and mineralogical processes leading to clay minerals and, 

in particular, transformation to mixed-layer phases (e.g. smectite to illite and smectite to 

chlorite) have been widely studied in many fossil and active hydrothermal systems (Inoue, 

1995; Inoue et al., 2004; Meunier et al., 2008a,b; Vázquez et al., 2014; Inoue and Kogure 

2016). Consequently, these studies are fundamental in understanding the spatial distribution 

of the clay minerals and their relationship with temperature. This can allow to estimate the 

efficiency of the clay-cap where other subsurface data are scarce, as in the case of blind 

geothermal systems, characterized by lack of surface thermal manifestations (e.g. Corrado et 

al., 2014). 

 In this chapter the hydrothermal mineralogical associations occurring at the Cerro 

Pabellón geothermal system (Fig. 3.1), both deeply and superficially, were investigated 

through X-Ray Diffraction (XRD) analyses. A total amount of 27 drill-cuttings samples from the 

1,821.1 m deep production CP-1 well (21.8490°S, 68.1567°W, 4,546 m a.s.l.; Figs. 3.1b and 

3.2) located in the Pampa Apacheta, and 16 clay-rich samples from the active fumarolic field 

of the Cerro Apacheta, were examined (Fig. 3.2). Moreover, XRD results from a 557 m long 

exploration drill core (PexAP-1; 21.8471°S, 68.1559°W, 4.545 m a.s.l.; Figs. 3.1b and 3.2) 

carried out by the C.E.G.A. (Centro de Excelencia en Geotermia de los Andes) group of the 

Universidad de Chile are also reported. The purpose of the present chapter is to examine the 

vertical and superficial distribution of the clay minerals forming the hydrothermal system of the 

Cerro Pabellón active geothermal field, in order to identify the minerals associations, define 

the clay-cap units and characterize the hydrothermal alteration type. The first preliminary 

results from the fumarolic deposits of the Cerro Apacheta fumarolic field are here presented 

and discussed. Anyway, further work and analyses need to be done on these samples, to 

define the minerogenesis, and the physico-chemical processes that affected the fluid-rocks 

interactions.
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Figure 3.1 -  a) Central Volcanic Zone (CVZ) in the Andean Cordillera showing the Altiplano-
Puna Volcanic Complex (APVC; de Silva, 1989), the main Pleistocene to Holocene volcanoes 
and the location of the Cerro Pabellón geothermal system; b) simplified geological map of the 
Cerro Pabellón geothermal field (modified from Godoy et al., 2017b); c) general view of the 
Cerro Pabellón geothermal power plant with the 80-130 ka Cerro Pabellón dacitic dome in the 
background. Figure from Maza et al. (2018). 

 

3.2. Geological setting 

 The Central Volcanic Zone (CVZ) is an active volcanic region with heat-flow values 

between 50 and 180 mW/m2 measured in the active magmatic arc and in the Altiplano 

(Springer and Forster, 1998). This region comprises abundant Quaternary volcanoes and its 

geodynamic setting is favourable to the development of several geothermal areas (Aravena et 

al., 2016). The CVZ has been developing under a complex tectonic regimes since the Early 

Cretaceous, and is associated with the subduction of the Nazca Plate under the South 

American Plate, which gives rise to magmatic and hydrothermal activity (e.g. Lahsen, 1988; 

Brasse et al., 2002; Farías et al., 2005; Charrier et al., 2007; Tassi et al., 2010; Sánchez-Alfaro 

et al., 2015; Herrera et al., 2017). In northern Chile, the magmatism generated Middle 

Cretaceous–Late Miocene andesitic to rhyolitic volcanic rocks overlain by Late Miocene-

Pleistocene ignimbrite deposits (Lahsen and Trujillo, 1975; Francis and Rundle, 1976; 

Marinovic and Lahsen, 1984; de Silva, 1989; Ahumada and Mercado, 2009). These volcanic 

rocks constitute the Altiplano-Puna Volcanic Complex (APVC), a volcano-tectonic silicic 
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magmatic province generated by the partial melting and interaction of the thickest continental 

crust in the world (de Silva, 1989; Beck et al., 1996) with mantle-derived basaltic andesite 

magmas. Over these units, different Pleistocene to Holocene arc volcanoes have been 

emplaced. In the studied area, the CVZ is characterized by several NW-SE oriented eruptive 

centers dominated by the polygenetic Palpana-Inacaliri volcanic chain of Pliocene-Pleistocene 

age (Wörner et al., 2000; Sellés and Gardeweg, 2017), where stratovolcanoes of basaltic-

andesite to dacitic composition, such as the Apacheta-Aguilucho Volcanic Complex (AAVC) 

and dacitic domes of Pabellón and Chac-Inca are recognized (Fig. 3.1b). Locally, the different 

geological units have been identified by surface geological mapping and recorded from four 

commercial wells drilled by Geotermia del Norte S.A. (GDN) (Rivera et al., 2015). They mainly 

correspond to Pliocene-Pleistocene andesitic to dacitic lava, breccias and tuffs, capped by a 

100 m-thick welded ash flow, whereas the recent volcanic activity is associated with the 

Pleistocene dacitic lava domes of Pabellón (80.0-130.0 ka, Ar-Ar; Renzulli et al., 2006; 50.0 ± 

10.0 ka, K-Ar; Urzua et al., 2002) and Chac-Inca (114.0 ± 37.0 ka, Ar-Ar; Rivera et al., 2015) 

(Fig. 3.1b). A local Pliocene extensional phase, within a regional compressional regime related 

to the subduction of the Nazca Plate under the South American Plate, took place in the area 

(e.g. González et al., 2003; Tibaldi et al., 2009). This phase generated a NW-striking normal 

fault system which extends from Azufre volcano in the NW to Inacaliri volcano to the SE (Tibaldi 

et al., 2017). 

 In the investigated zone, a topographically depressed area of ∼100 km2 (Tibaldi et al., 

2009; Rivera et al., 2015), ∼20 km long and ∼4 km wide, is well defined by two major 

lineaments with converging dips and pronounced scarps (∼100-150 m), which form a 

symmetric graben. This NW-SE Pabellóncito graben structure, affects the NW-SE aligned 

Pliocene stratovolcanoes. In fact, the structural weakening of the AAVC by the local 

extensional setting and hydrothermal alteration is confirmed by the presence on the eastern 

flank of a debris avalanche deposit, morphologically emphasized by small hummocks, levées 

and ridges, and mainly consisting of fragments of andesitic-to-dacitic lavas and hydrothermally 

altered lava blocks (Godoy et al., 2017b). This deposit has recently been interpreted to be 

triggered by the partial collapse of this volcanic edifice 100-700 ka ago (Godoy et al., 2017b). 

Conversely, the main NE fault bounding the graben was sealed by the Pabellón dome (Fig. 

3.1c), whose extrusion was favored by the structural weakness related to the normal faults of 

the graben (Tibaldi et al., 2009). On the surface, the Cerro Pabellón active geothermal system 

only exhibits two superheated fumaroles, a mud pool, and some minor vents, located in a 0.3 

km2 area on the summit of the Cerro Apacheta volcano (5,150 m a.s.l.) at about 3 km western 

from the Pabellón dome. This fumarolic field is imposed on intercalation of grey andesitic lavas 

and highly vesiculated, scoria-rich pyroclastic flows (Piscaglia, 2012; see also Chapter 2). 

Wide areas of hydrothermal alteration also outcrop on the north, west, southwest and eastern 
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flanks of the volcano edifice and are partially related to past and present fumarolic activity 

(Aguilera et al., 2008). The gas geochemistry of the two superheated fumaroles suggests their 

relationship with a high-temperature geothermal system, with a reservoir consisting of biphasic 

fluids (liquid and vapor, in proportions of 80% and 20%, respectively; ENEL personal 

communication), at temperatures of 250-325°C (Urzua et al., 2002; Tassi et al., 2010). 

Nevertheless, the only surface alteration related to the active Cerro Pabellón geothermal 

system is the presence of discontinuous altered clay zones, spatially related to an acid-sulfate 

alteration, including native sulfur and clay minerals affecting the Pliocene volcanic units (Fig. 

3.1b; Ramírez and Huete, 1981; Urzua et al., 2002; Tibaldi et al., 2009). 

 

3.3. Sampling and analytical methods 

 The fumarolic field, the CP-1 production well and the PexAP-1 locations are reported 

in Figure 3.2. Representative fumarolic field samples from the Apacheta Volcano (21.8457°S; 

68.1853°W; 5,179 m a.s.l), which is part of the AAVC, were collected during two field trips, in 

November 2016 and November 2017. Samples location is shown in Figure 3.2b, while the 

coordinates and the related measured temperatures, are reported in Table 3.1. The fumarolic 

field has an extension of about 0.03 km2, and it is characterized by various types of 

hydrothermally-altered volcanic rocks, showing whiteish to yellow to reddish to purplish 

colorations (Fig. 3.3).  

The samples studied from the drilling cuttings of the CP-1 well were collected every 25 meters, 

from 175 m to 825 m of depth, for a total amount of 27 samples. The shallower 10 cutting-

samples, preliminary studied in Piscaglia (2012), were re-elaborated as well. The samples 

studied along the PexAP-1 well correspond to depths between 165 and 557 m, with a spacing 

of ∼30 m, for a total amount of 25 samples.
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Figure 3.2 – a) Global view of the Apacheta-Aguilucho Volcanic Complex with the location of 
the fumarolic field, of the CP-1 production well platform, and of the PexAP-1 exploratory well; 
b) detailed map of the fumarolic field with the location of the samples, and of the main thermal 
features. Coordinates in WGS84 UTM19S, modified from Google Earth™. 
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Table 3.1. 
Representative samples from the fumarolic field 

ID SAMPLE EAST NORTH HEIGHT (m a.s.l.) 

FA47 584233 7584018 5,159 
FA49 584265 7584034 5,166 
FA65 584096 7583935 5,181 
FA68 584089 7583897 5,190 
FA72 584064 7583912 5,190 
FA80 584108 7583972 5,172 
FA81 584116 7583975 5,171 
FA82 584118 7583983 5,170 
FA83 584136 7583986 5,165 

FA101a 584206 7583995 5,150 
FA101b 584204 7583994 5,151 
FA101c 584209 7583991 5,151 
FA102 584178 7584004 5,156 
FA103a 584184 7584015 5,152 
FA103b 584184 7584015 5,152 
FA103c 584184 7584015 5,152 

 

 

 The XRD data were obtained with a Bruker D8 Advance diffractometer with Cu-Kα 

radiation and a Bragg-Brentano geometry at the Department of Physics in the Facultad de 

Ciencias Físicas y Matemáticas of the Universidad de Chile (Chile) and a Philips PW1830 

diffractometer with PW3710 generator and Cu-cathode at 30 mA and 40 kV at the Università 

degli Studi di Urbino Carlo Bo (Italy). Samples for bulk-rock analysis were dried at room 

temperature and powdered in an agate mortar, and successively mounted in aluminum holders 

for the bulk composition analysis, and glass holders for clay minerals analyses. 

The minerals in the clay fraction (<2 μm) were identified according to the position of the basal 

reflections of air-dried (AD), ethylene-glycol solvated (EG), and heated to 355°C (355) and 

550°C (550) XRD patterns, using the criteria of Moore and Reynolds (1997). Smectite was 

identified by the peak shift from ~14 Å to ~17.5 Å after EG solvation, and collapse to 10 Å after 

the heat treatments (Moore and Reynolds, 1997).  

 The presence in the boreholes of illite-smectite (I-S) mixed layers and their illite 

proportions were determined by the reflection near 16-17°2θ and the ordering types (R0, R1 

and R3) by the position of the reflection from 5 to 8.5°2θ in the AD and EG preparations. Illite 

was identified by the 10.1 Å, 5.0 Å and 3.33 Å reflections on AD preparations, which are not 

displaced after the EG and 355 and 550 treatments. Chlorite was identified by the 14, 7, 4.76 

and 3.53 Å reflections in AD and EG samples. Kaolinite was identified by the ~7 Å peak in the 

AD, EG and 355 analyses, followed by the disappearance in the 550 X-ray diffractogram. 

Mixed-layer chlorite-smectite (C-S), corrensite and chlorite-corrensite (C-Cor) were identified 

following the recommendations of Beaufort et al. (1997), and Moore and Reynolds (1997). The 

CP-1 cuttings between 175 m and 400 m of depth were analysed by Piscaglia (2012), over a 

2θ angle of 2-75°, steps of 0.02° and a scan-step of 1 sec for bulk composition, a 2θ angle of 

2-50°, steps of 0.02° and a scan-step of 1 sec for AD and a 2θ angle of 2-30°, steps of 0.02° 
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and a scan-step of 1 sec for EG. No thermal treatments were carried out on these samples. 

The cuttings between 425 m and 825 m of depth were analysed over a 2θ angle of 5-70°, steps 

of 0.02° and a scan-step of 1 sec for the bulk composition, while a 2θ angle of 2-40° in steps 

of 0.02° and a scan-step of 1 sec for AD, and a 2θ angle of 2-30° in steps of 0.02° and a scan-

step of 1 sec for EG, 355 and 550 compositions. PexAP-1 samples were analysed over a 2θ 

angle of 5-70°, steps of 0.02° and a scan-step of 1 sec for the bulk composition, while clay 

mineral analyses were carried out between 2 and 40°2θ, with a step size of 0.02°2θ and a 

scanning time per step of 47.25 s for each treatment. The fumarolic field samples were 

measured over a 2θ angle of 2-65° in steps of 0.02° and a scan-step of 1 sec for bulk 

composition, a 2θ angle of 2-40° in steps of 0.02° and a scan-step of 1 sec for AD, and a 2θ 

angle of 2-30° in steps of 0.02° and a scan-step of 1 sec for EG, 355 and 550 compositions. 

All the data were collected by the software X’Pert Quantify and then elaborated by the software 

X’Pert High Score. 
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Figure 3.3 – Field photographs. a) General view of the Apacheta fumarolic field from North-
West, with indicated the main thermal features; b) view of the two super-heated fumaroles; c) 
mud pool; d-e) minor vents with different distinguishable different colorations varying from 
whiteish to yellowish to reddish; f) sampling procedure near the fumarole, where whiteish-
yellowish colorations and crusts are visible. 

 

3.4. Results 

3.4.1 Subsoil hydrothermal system 

 The stratigraphic sequence of both wells is summarized in figure 3.4. The different 

lithologies recorded from PexAP-1 and CP1 wells are comparable (Rivera et al., 2015): the 

first ∼190 m consists of unconsolidated sediments (0-65 m), recent volcanic rocks (65-125 m) 

and whitish tuffs (125-190 m); from ∼190 to 737 m the sequence is characterized by an 

alternation of breccias and andesitic lavas; from ∼737 to 900 m red-whitish tuffs were 

recognized. Finally, from 900 to 1755 m a series of andesitic-dacitic lavas with intercalations 

of tuffs were distinguished. Secondary alteration minerals were studied in the continuous drill 

core PexAP-1 well and in the cuttings from the CP1 well (Fig. 3.4). 

 Similar mineral assemblages were recognized from XRD analyses along both wells 

(Fig. 3.4). Smectite is the main clay mineral in the ∼165-250 m interval which is also 

characterized by the absence of quartz and the presence of clinoptilolite, calcite, alunite, pyrite 

and hematite. From ∼250 to ∼500 m, mixed-layer I-S and C-S linked to albite, calcite, hematite, 

quartz, stilbite and laumontite were identified. At about 375 m starts to appear corrensite, which 

is found in different samples until 575 meters. From ∼400 m smectite group minerals rapidly 

decrease, while chlorite is intimately associated with hematite, adularia, albite, calcite, quartz, 

epidote, while illite was identified from ∼500 m. The Ca-zeolites (clinoptilolite-stilbite-

laumontite-wairakite sequence) are present from 165 m in a relatively discontinuous way. From 

∼500 m, it is possible to recognize epidote, sporadically at first and then in a persistent way 

from 625 m. 
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Figure 3.4 - Simplified lithological columns of the Cerro Pabellón geothermal field obtained 
from the CP-1 (left) and the PexAP-1 (right) wells, showing measured temperature profiles (°C) 
and the main alteration minerals identified through petrography and bulk-rock XRD. Figure 
from Maza et al. (2018). 
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 A detailed analysis of the clay minerals was carried out in the PexAP-1 well.  Smectite, 

I-S, illite, C-S, corrensite, C-Cor and chlorite were identified, showing a zonation with depth 

(Fig. 3.5, Table 3.2 from Maza et al., 2018). Smectite is present continuously from the 

shallower parts of the borehole down to a depth of 251 m and reappears at a depth of 319 m 

(Table 3.2, Figs. 3.4 and 3.5a). At greater depths, smectite disappears and is replaced by 

mixed-layer I-S: R0-type I-S with ∼10% illite layers at 346 m depth, R1-type I-S with 55-66% 

illite layers at ∼433 m and R3-type I-S with >90% illite layers occurring continuously from 

depths of ∼451 to ∼493 m. Then, to the bottom of the well, R3 I-S (>90% illite) was identified. 

Samples CP273 and CP401 contain R3-type I-S with illite contents which are not in agreement 

with those from the nearby samples. Mixed-layer C-S appears together with smectite in 

shallower levels between 213 and 346 m (Fig. 3.5a). Corrensite is also present discontinuously 

with R1 and R3-type I-S between 273 (Fig. 3.5b) and 434 m depth, whereas from 400 m to the 

bottom of the well, mixed-layer C-Cor coexists with chlorite and illite (Fig. 3.5c).

 

Figure 3.5 - XRD patterns in the <2 μm fraction of representative samples in the PexAP-1 well. 
Red: air dried; blue: after ethylene glycol solvation; green: heated at 500°C. Numbers indicate 
d-spacing in (Å). Figure from Maza et al. (2018). 
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Table 3.2. 
Clay mineralogy of the PexAP-1 well. Sm: smectite; I-S: illite-smectite; Ilt: illite; C-S: chlorite-smectite; Cor: corrensite; C-Cor: 

chlorite-corrensite; Chl: chlorite. % of illite in I-S and in situ measured temperature are also shown. 

Sample 
Clay minerals 

T ºC Sm (R0) I-S  (R1) I-S  (R3) I-S  Illt C-S Cor C-C Chl 

CP165 95 x            
 

CP170 97 x        
 

CP173 100 x        
 

CP181 103 x        
 

CP184 106 x        
 

CP197 110 x        
 

CP212 117 x        
 

CP213 124 x     x   
 

CP228 141 x     x   
 

CP240 148 x     x   
 

CP251 154 x     x   
 

CP273 172    88   x x 
 

CP317 173 x     x   
 

CP319 173 x     x   
 

CP346 176  10    x   
 

CP401 180    85   x x x 

CP432 183   56     x x 

CP433 183   64    x x x 

CP434 183   66    x x x 

CP451 184    80    x x 

CP467 185    90    x x 

CP494 190    90    x x 

CP512 208     x   x x 

CP534 222     x   x x 

CP557 238     x   x x 

 

 

 

3.4.2 Clay-rich fumarolic field samples 

 The semiquantitative mineralogical compositions of the fumarolic field samples, and the 

relative soil temperatures are reported in Table 3.3, representative XRD patterns are presented 

in Figure 3.6. From the comparison of the mineralogical assemblages three groups and three 

samples with distinct modal mineralogy were distinguished (Table 3.2). 

 

 



 

63 
 

Table 3.3. 
 Semi-quantitative mineralogical compositions of analyzed samples and related soil temperatures 

Samples Kao Sm Ver I/M mixed Hal Feld Op Cr Qz Cpx AlOx Al 
Temperature 
at 10 cm (°C) 

GROUP 1  

FA47 ++ +       +++ +       +     71.8 

FA65 ++ ++       ++ +       +     46.7 

FA72 +++ +       +       +       30.1 

FA103a ++ +++       +               47.5 

FA103b + +++       +     +         47.5 

GROUP 2  

FA68   +++         ++   +         83.0 

FA80   ++   +     ++   ++         41.8 

FA82   +++   +   + +             34.3 

FA101a   +++         +   + +       66.5 

FA102   +++   +     +   +         56.2 

GROUP 3  

FA101b   ++                     +++ 68.4 

FA101c  + ++       + +   +       ++ 81.3 

FA103c   +++   +     +           + 47.5 

DISTINCT SAMPLES  

FA49   +     +   + +++ ++         82.8 

FA81   +++ ++                     65.1 

FA83   +   +     +     ++   +++   80.7 

Legend: Kao = kaolinite; Sm = smectite; Ver = vermiculite; I/M = illite/mica; Inter = mixed layer clay minerals; Hal = halloysite; 

Feld = feldspar; Op = opal; Cr = cristobalite; Qz = quartz; Cpx = clinopyroxene; AlOx = aluminum hydroxides; Al = alunogen. 

Amount: + = less abundant; ++ = abundant; +++ = very abundant. 

 

  Samples of group 1 (Table 3.3; Fig. 3.6a) are characterized by the presence of kaolinite 

(up to very abundant) and smectite (from low to abundant) group minerals, and halloysite (from 

less to very abundant). Specifically, the smectite group minerals are montmorillonite and 

nontronite, whereas the kaolinite group minerals are represented by kaolinite, nacrite and 

dickite. These minerals are associated with variable amounts but always subordinated, of 

clinopyroxene, feldspar, cristobalite and quartz. Samples of group 2 (Table 3.3; Fig. 3.6b) are 

characterized by the dominance of the smectite group minerals (from abundant to very 

abundant) and feldspar (from less to abundant). The smectite group minerals are represented 

by montmorillonite, nontronite and volkonskoite. Fewer amounts of cristobalite, halloysite, 

illite/mica and quartz are also present. No kaolinite was found in these samples. Samples of 

group 3 (Table 3.3) are characterized by the presence of alunogen, coupled with abundant 

smectite, probably represented by nontronite and montmorillonite. Subordinate feldspar, 

kaolinite, halloysite, cristobalite and mica (muscovite) are also found in small amounts. 
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Figure 3.6 - XRD patterns of representative samples of the fumarolic field. Black: bulk 
composition; blue: air dried; green: after ethylene glycol solvation; yellow: heated at 355°C; 
red: heated at 550°C. Numbers indicate d-spacing in (Å). 
 

 Finally, samples FA49, FA81 and FA83 show, each one, peculiar mineralogical 

compositions (Table 3.3). FA49 (Fig. 3.6c) is the only one, among the analysed samples, 

dominated by the presence of silica phases, both as amorphous (opal, very abundant) and 

crystalline phase of high-T (cristobalite, abundant), associated to less amount of smectite 

group minerals, high-T feldspar and mixed layer minerals. Sample FA81 is characterized by a 
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simple composition, pointed out by the presence of abundant vermiculite, related to the high 

amount of smectite group minerals, such as montmorillonite, nontronite and volkonskoite. 

Sample FA83 (Fig. 3.6d) is distinguishable by abundant Al-hydroxides [AlO(OH)] and quartz, 

coupled with the minor amount of the smectite group minerals (beidellite), feldspar 

(plagioclase) and illite/mica. 

 

3.5. Discussion 

3.5.1 Clay mineral associations in the boreholes and related temperatures of formation 

 The present study differentiates several mineral assemblages down the borehole that can 

be grouped into three main hydrothermal alteration zones: (i) argillic zone; (ii) sub-propylitic 

zone; and (iii) propylitic zone. The argillic zone mainly affects the shallow part of the system, 

from 165 m to 315 m in the PexAP-1 well and from 175 m to 350 m in the CP-1 well. In this 

interval, an intensive, pervasive alteration dominated by smectite is observed, associated with 

hematite, zeolites, calcite, alunite and quartz. The smectites are mainly represented by 

montmorillonite, typical of smectites associated with the early alteration products of volcanic 

glass (e.g. Bauluz et al., 2002; Guisseau et al., 2007). Discrete smectite disappears completely 

at depths below 345 m, being replaced by I-S. Although kaolinite group minerals were found 

in none of the investigated samples, the presence of alunite could referrers this shallower part 

of the system to an advanced argillic alteration facies (Fulignati et al., 1998). 

 The sub-propylitic zone operates over the depth interval 315-490 m in the PexAP-1 well 

and over 360-420 m depth in the CP-1 well. This zone is dominated by mixed-layer I-S with 

R0, R1 and R3 ordering, C-S, corrensite, C-Cor and chlorite, plagioclase, quartz, calcite, 

hematite, stilbite and laumontite. The amount of I-S and C-Cor decrease with increasing depth 

and temperature (Table 3.2), with random ordered R0 I-S type identified at 345 m depth, and 

regularly ordered R1 I-S type at 432-434 m depth. Some exceptions to this trend were 

observed, as illite-rich R3 I-S appears at ∼270 and ∼400 m depth (Table 3.2).  

From a depth of ∼450 m until the propylitic zone (∼510 m) mixed-layer I-S with R3 ordering 

dominates. Finally, the propylitic zone, from depths of 490 to 557 m in the PexAP-1 well and 

from 420 to 825 m in the CP-1 well, is characterized by illite and chlorite as the main 

phyllosilicates, associated with mixed-layer C-Cor, epidote, plagioclase, adularia, quartz, 

calcite, pyrite, chalcopyrite and titanite. The argillic and sub-propylitic zones, dominated mostly 

by clay minerals, represent a thick clay-cap (∼300 m thick), while the propylitic zone should 

represents the beginning of the reservoir domain of the Cerro Pabellón geothermal system. 

 The transition of smectite to illite, via mixed-layer has been reported widely in hydrothermal 

systems, as the transition between the two end-member clays involved changes in chemical 

composition that might be related to temperature. In geothermal systems, the ranges of 



 

66 
 

temperature recorded for the appearance of smectite, illite/smectite and illite are ∼75-220°C, 

∼130-220°C and ∼130-300+°C (Wohletz and Heiken, 1992; Day-Stirrat et al., 2010; Vázquez 

et al., 2014). At Cerro Pabellón, the clay-cap consists of the argillic and sub-propylitic zones, 

characterized by low permeability and temperatures lower than ∼190°C. This is also in 

accordance to Piscaglia (2012), that determined the clay-cap units with field methods (i.e. 

methylene blue, using the methodology described in AFNOR 1993) and with the semi-

quantitative analyses of the clay minerals abundance (Biscaye, 1965), although reporting a 

minor thickness of these units (i.e. ~50-75 m). The argillic zone is characterized by the 

occurrence of clinoptilolite and smectite as index minerals and temperatures between 90 and 

175°C (from depths of 175 to 315 m; Fig. 3.7). The transition from the argillic to the sub-

propylitic zones, with the replacement of smectite for R1 I-S, and the appearance of chlorite 

and laumontite takes place at 180-185°C. The sub-propylitic zone (315 and 490 m depth; Fig. 

3.7), characterized by (R1-R3) I-S, is related to borehole temperatures between 175 and 

190°C. Finally, the propylitic zone, with the chlorite-epidote-illite association (from about 500 

m downwards), records temperatures >200°C (Fig. 3.7). In the PexAP-1 well two levels at 273 

and 400 m containing R3 I-S are outside the observed illitization trend. Sample CP273 belongs 

to the argillic zone, dominated by smectites, whereas sample CP400 corresponds to the sub-

propylitic zone in the transition from R0 to R1 I-S (Fig. 3.7). There is no relationship between 

the lithological variations in the well and the appearance of R3 I-S at these levels. The 

occurrence of R3 I-S in these levels, >100 m apart on the vertical scale, might be explained by 

local fluctuations in fluid:rock ratios, mentioned above as a significant variable in the formation 

of clay minerals. The andesitic levels at which the specific R3 I-S occurs are interlayered in an 

area dominated by polymictic breccias (Fig. 3.4), possibly leading to zones of greater 

permeability in the system, associated with hydrostatic fracturing. The presence of minerals 

such as adularia, chlorite, epidote and illite represent some of the most typical phases 

occurring in an adularia-sericite alteration type, usually formed in geothermal systems where 

surficial waters mix with deeper, heated saline waters in a lateral flow regime, high above and 

probably offset from a heat source at depth (Heald et al., 1987).
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Figure 3.7 - Simplified conceptual model for the Cerro Pabellón geothermal system: a) west 
to east simplified profile of the Cerro Pabellón area showing temperature isotherms and MT 
(magnetotelluric) resistivity data from Urzua et al. (2002). Following these authors, the <10 
Ω·m low resistivity layer was interpreted as a smectite clay cap overlying rocks at temperatures 
of >200°C as expected over geothermal reservoirs; the lowest (<2 Ω·m) resistivities detected 
in very shallow smectite clay zones were associated with parched fossil aquifers. b) Clay-
mineral evolution along the clay-cap showing the variation in I-S content (blue line) and 
temperature (red line) along the profile (data referred to the PexAP-1). Figure from Maza et al. 
(2018). 

 

3.5.2 Superficial hydrothermal alteration 

The different types of mineralogical associations recognized in the AAVC fumarolic 

area are referable to an intermediate argillic alteration facies (sensu Fulignati et al., 1998), 
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controlled by the presence of clay minerals, which is a common feature of all the analysed 

sample. The main phase is represented by smectite, commonly associated to feldspar and 

silica polymorphs (e.g., cristobalite, quartz). Kaolinite is present only in group 1 samples, 

strictly associated with halloysite and the absence of illite/mica, variously present in the other 

groups.  The only exceptions, due to the scarceness of clay minerals, are represented by the 

samples FA49, being rich in silica phases (also microcrystalline, like opal) and poor in clay 

minerals, and FA83 dominated by Al-hydroxides (6.09 Å, 3.16 Å, 2.35 Å and 1.86 Å peaks; 

Fig. 3.6d), showing features better fitting with silicic facies (Fulignati et al., 1998; Balić-Žunić 

et al., 2016). The intermediate-argillic alteration is usually linked to weakly acid fluids (pH 4-6) 

and characterized by the presence of smectite and kaolinite group minerals, while the silicic-

alteration, marked by the nearly complete hydrothermal alteration of the host rocks to silica 

phases, due to the interaction with extremely acid fluids (pH <2) (Wohletz and Heiken, 1992). 

These types of hydrothermal alteration facies are typical of an acid-sulfate condition, 

associated with acid waters that contain residual magmatic volatiles (Heald et al., 1987). Only 

the earlier phases (i.e. low-T) were recognized, while the high-T ones, such as the sericitic and 

propylitic facies, are completely absent. 

From a general view of the overall data, it is interesting to note a good correspondence 

between the mineralogical composition of the samples and the sampling locations with respect 

to the main vents. Smectite-rich samples mainly accompanied by cristobalite, feldspar and 

alunogen, are located near or in proximity to the vents (both mains and minors), where 

pervasive alteration, fluids with pH of ~3.5 at temperatures of 108-119°C and soil temperatures 

up to ~70°C, are recognized; while the kaolinite-rich samples, accompanied by halloysite and 

subordinate smectite (FA47-FA65-FA72), lies far from the main thermal features (Fig. 3.2b), 

where soil temperatures of up to ~45 °C are reached. In the smectite-rich zone, samples 

FA103a and FA103b, could represent transitional facies between the two subzones (i.e. 

smectite-rich and kaolinite-rich zones), testified by the richness of smectite, coupled with the 

less amount of kaolinite and halloysite. Transitional facies can be considered the group 3 

samples too (Table 3.3), representing a mineralogical assemblage moderately found near the 

vents (Fig. 3.2b), as testified by the presence of alunogen, frequently related to evaporation of 

acid water in low-temperature fumaroles (around 100°C) contexts (Balić-Žunić et al., 2016). 

Only two samples do not fit with this general interpretation, as the FA49 (silica-rich and 

smectite-poor; Table 3.3 and Fig. 3.6c) lies right above a diffuse degassing area (Fig. 3.3a) 

where the highest soil temperatures are reached (i.e. ~83°C), and the FA83 shows a 

mineralogical assemblage where clay minerals are almost totally absent (Table 3.3; Fig. 3.6d). 

These latter two samples could represent conditions associated with peculiar local characters. 

The mineralogical association of the FA49 is indicative of low-crystallinity, possibly associated 

to an extremely rapid crystallization or to secondary events of decreasing grade of organization 
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of the silica crystalline structure, like "silica flooding" (Lagat, 2010), maybe related to a past 

fumarolic activity. In fact, this area is located in the most north-easterly part of the area, where 

a NE-striking discontinuity is recognized (Fig. 3.8). 

If on one side, a moderate agreement is found for mineralogical assemblages and 

related soil temperatures, on the other side the clay-minerals assemblages do not fit with the 

pH conditions proposed for the smectite group minerals, that would require higher pH than 

those found in the fumarole’s fluids (e.g. Patrier et al., 2003; Amram and Ganor, 2005). This 

inconsistency could be associated with the reaction between the fluids of the vents (pH 3.5) 

and the primary minerals consuming H+ through a hydrolysis process, generating the pH of the 

fluids in the porous host rock to a more neutral condition and thus allowing the formation of 

smectite minerals. In this context, kaolinitic soils can be interpreted as ancient zones with a 

longer time of fluid circulation and development of leaching processes, with the consequent 

decrease of the pH, while the smectitic soils would represent the current active hydrothermal 

discharges, with the presence of neutralization processes. From the mineralogical zones and 

their extensions, the samples-related soil temperatures and the areal distribution of the main 

thermal features (i.e. fumaroles, mud pool, minor vents and the degassing area), the presence 

of two main lineaments NW-striking and NE-striking is pointed out (Fig. 3.8). 

 

Figure 3.8 - Schematic model of the mineralogical zonation, based on the main minerals 

recognized in the fumarolic field. For each sample the relative soil temperature is reported; 

yellow dotted lines indicate the smectite-rich areas; white dotted lines indicate the kaolinite-

rich areas; blue dotted lines indicate the sample where a silicic alteration facies is recognized. 

Two main lineaments, NW-striking and NE-striking, based on the thermal features position, 

soil temperatures and on the extensions of the distinct mineralogical zones, are highlighted. 
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3.7. Final remarks 

Mineralogical studies on the vertical and superficial distribution of the clay minerals 

forming the hydrothermal system of the Cerro Pabellón active geothermal field, where carried 

out. From the mineral assemblages recognized in the fumarolic field and in the two boreholes 

located in the Pampa Apacheta, the system seems to be characterized by both acid-sulfate 

(fumarolic field) and adularia-sericite (production well) alteration types, which represent the 

two most typical hydrothermal alteration assemblages linked to geothermal systems in active 

or recent volcanic areas (Wohletz and Heiken, 1992). 

The acid-sulfate alteration characterizes the upper parts of the Apacheta volcano, 

where the rising magmatic gases are mixed with shallower aquifer, producing acid-sulfate 

waters (Tassi et al., 2010). Two main subzones are recognized: (i) one characterized by high 

amounts of smectite, mainly coupled with cristobalite and feldspar, and (ii) one characterized 

by kaolinite, mainly coupled with halloysite and subordinate smectite. It has been constrained 

how these subzones show a good correspondence with the thermal features’ location, and a 

moderate accordance with the soil temperatures measured in the sampling locations. 

Conversely, a not-fitting with the pH conditions of stability for the smectite clay minerals group 

is observed. Although a unique explanation to this controversy is difficult, our preliminary data 

indicate the involvement of neutralization processes in the active vents areas to explain the 

presence of smectite in such acid environment (i.e. pH 3.5), and typical acid-fluids leaching 

processes in the far-from-vents areas, where kaolinite is the main mineralogical phase. 

The adularia-sericite alteration characterizes the geothermal reservoir and, from the 

mineralogical assemblages recognized, is possibly associated with fluids with neutral pH 

(Heald et al., 1987). Two main clay minerals transitions were detected in the thick and 

impermeable clay-cap units: the smectite to illite and the smectite to chlorite. In fact, the illite 

and chlorite, only prevail in rock samples from the reservoir domain, where mixed-layer I-S and 

C-S are almost absent. In both reaction series, a continuous and slow reduction of the 

proportion of smectite layers in mixed layers with depth was observed. The impermeability of 

the clay cap of the geothermal system, would not favour the advance of I-S and C-S reaction 

series.  

Detailed studies by XRD of clay minerals might help to understand the formation 

processes of the hydrothermal minerals and how these mineralogical transformations might 

be controlled not only by temperature (and depth) but also by kinetics related to 

permeability/porosity that might enhance (or prevent) mineral transformations. Consequently, 

detailed studies of alteration minerals in continuous drill cores, cuttings and superficial 

alteration zones, should improve the data available for better understanding of the processes 

that control the development of alteration zones in active geothermal fields and thus the 

reliability of conceptual models.  
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CHAPTER 4 
 
 

SEALING CAPACITY OF CLAY-CAP UNITS OF THE GEOTHERMAL RESERVOIR 

 

THE MAIN PARTS OF THIS CHAPTER ARE IN PREPARATION FOR THE SUBMISSION AS: 
 

Taussi, M., Nisi, B., Pizarro, M., Morata, D., Veloso, E.A., Tassi, F., Vaselli, O., 

Renzulli, A. Sealing capacity of clay-cap units above the blind geothermal system of Cerro 

Pabellón (northern Chile). 
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4.1. Introduction 

The Cerro Pabellón geothermal power generation project is a high enthalpy geothermal 

system (T>200 °C; Aravena et al., 2016) located in the Antofagasta region (Northern Chile; 

21,86°S; 68,15°W; 4,520 m) (Fig. 4.1). The commercial operations started in March 2017, 

involving the production of electrical energy through a binary power plant (Organic Rankine 

Cycle) with an installed capacity of 48 MWe (ENEL, 2012). The project area is set in the 

downward block of the Pabellóncito graben, delimited by two NW-SE oriented major 

lineaments (Fig. 4.1). This tectonic structure hosts the geothermal reservoir, whose thickness 

is estimated to be between 900 and 1,100 m (Aravena et al., 2016), with an area ranging 

between ~4 and ~25 km2 (Urzua et al., 2002; Aravena et al., 2016). The geothermal system is 

sealed by a thick (~300 m) argillic zone (the clay-cap), which covers the deeper propylitic zone. 

According to the mineralogical assemblage (Chapter 3), the propylitic facies is likely associated 

with near-neutral pH fluids (Heald et al., 1987), and linked to shallow heat sources (~4-8 km; 

Chapter 2). The site was discovered by CODELCO (Chilean national mining company) at the 

end of ‘90s during water-related exploring surveys (Urzua et al., 2002). At the surface, the sole 

evidences of hydrothermalism are represented by relatively large areas of argillic alteration, 

related to past and present fumarolic activity (Aguilera et al., 2008), mainly distributed on the 

western, north-eastern and eastern flanks of the Apacheta-Aguilucho Volcanic Complex 

(AAVC), i.e. to the west of the Cerro Pabellón geothermal area (Fig. 4.1b). The scarceness of 

hydrothermal manifestations in the studied area has been ascribed to the presence of the thick 

clay-rich zone that prevents the ascent of geothermal fluids, masking the typical features of 

active high enthalpy geothermal systems (Chapter 3). The presence of a clay-cap (or cap-rock) 

is one of the key components of geothermal systems to guarantee adequate fluids pressure 

and temperature conditions at depth (Corrado et al., 2014). Seal integrity of the impermeable 

units through surface monitoring of CO2 flux from the ground may provide useful information 

of gas leakage from active hydrothermal system (Chiodini et al., 2005; Annunziatellis et al., 

2008; Todesco and Giordano, 2010; Carapezza et al., 2015). Flux measurements of CO2 in 

blind or hidden geothermal systems, i.e. when hot springs, fumaroles, mud pools, and geysers 

are absent, are commonly coupled with complementary methodologies (e.g. δ13C-CO2 

isotopes; Hanson et al., 2014). In geothermal areas or in active volcanic systems, diffuse CO2 

soil degassing is frequently associated with heat anomalies of the ground (Giammanco et al., 

2016) since CO2 and high-enthalpy fluids, such as steam, often have similar origin and both 

follow the same transport mechanisms (Aubert and Baubron, 1988; Chiodini et al., 2001, 2005; 

Fridriksson et al., 2006). Thus, soil temperature is a useful parameter to evaluate how 

efficiently the geothermal fluids are transported to the surface in relation to the depth of the 

gas source, even when CO2 soil fluxes are low. The blind geothermal system of Cerro Pabellón 

is a suitable example where the CO2 flux and temperature pair can be applied to verify (i) the 
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sealing capacity of the clay-cap units and (ii) the occurrence of active geological structures. 

Soil temperature and CO2 measurements (~500 points) were conducted during stable and dry 

conditions in November 2016 and September and November-December 2017, respectively. 

 

Figure 4.1 - a) Central Andes NW–SE trending main lineaments associated with magmatic 
activity (dashed lines); these include the Lipez‐Coranzuli (LC), Calama–Olacapato–El Toro 
(COT), Archibarca‐Galan (AG), Culumpaja–Farallon Negro (CF), and Ojos del Salado (OS) 
(modified from Acocella et al., 2011); b) location map of the Cerro Pabellón geothermal area. 
The red lines define the Pabellóncito graben main faults. The yellow line is the national border 
with Bolivia. 

 

4.2. Geological background 

The Cerro Pabellón area is located at the base of the eastern flank of the AAVC, a 

Pliocene-Pleistocene composite stratovolcano (Aguilera et al., 2008; Mercado et al., 2009), 

mainly characterized by andesitic, dacitic to rhyolitic products belonging to the high-K calk-

alkaline series (Chapter 2). The products of the AAVC were emplaced on a volcanic basement 

consisting of Miocene andesitic-to-dacitic eroded volcanoes and dacitic-to-rhyolitic pyroclastic 

flows (Ramírez and Huete, 1981), over which ignimbrites and andesitic lava flows are partially 

exposed subaerially. On the flanks of the AAVC, large areas of hydrothermal alteration are 

present, partially associated with past and present fumarolic activity (Urzua et al., 2002; 

Aguilera et al., 2008). The mineralogical association in the active fumarolic area is related to 

argillic alteration processes, dominated by clay minerals belonging to the smectite and kaolinite 
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groups, with subordinate cristobalite and halloysite (Chapter 3). The mineralogical assemblage 

is referred to an acid-sulfate alteration facies, due to the interaction between the rising 

magmatic gases of the AAVC with shallow aquifers (Tassi et al., 2010). The Cerro Pabellón 

project area is characterized by a thick argillic clay-cap (~300 m), set above a sub-propylitic 

and a propylitic alteration zone (Chapter 3). The superficial alteration zones are weakening 

structures of the volcanic edifice, as also confirmed by the presence of a debris avalanche 

deposit, morphologically emphasized by small hummocks, in the eastern flank, and mainly 

consisting of hydrothermally-altered lava fragments (Godoy et al., 2017b). 

As concerning the tectonic setting of the studied area, a series of NW-SE-oriented 

morphological lineaments are present. Two major lineaments form the ~4 km wide and ~20 

km long Pabellóncito graben (Fig. 4.1b). This Late Pliocene-Quaternary structure (Tibaldi et 

al., 2009; Tibaldi et al., 2017) shares the same direction of a series of NW-SE-trending faults 

and lineaments that crosscut the Andean Belt at several latitudes, such as the Lípez-Coranzuli, 

the Calama-Olacapato-El Toro, the Archibarca‐Galan, Culumpaja–Farallon Negro, and Ojos 

del Salado regional lineaments affecting the Paleozoic rocks (Fig. 4.1a; Salfity, 1985; Marrett 

et al., 1994; Riller et al., 2001; Tibaldi et al., 2009; Acocella et al., 2011). Individual faults along 

these large NW-SE-trending faults suggest left-lateral displacements over NW-trending faults 

and left-lateral/normal displacement over subsidiary W-trending faults forming a duplex-like 

structure (Giordano et al., 2013). Volcanoes, monogenetic cones and hydrothermal systems 

are commonly located and built atop the trace of NW-trending faults and lineaments (e.g. 

Davidson and de Silva, 1992; de Silva et al., 1994; Giordano et al., 2013; Godoy et al., 2014; 

Rivera et al., 2015; Tibaldi and Bonali, 2018), suggesting that these structures act as fluid 

conduits towards shallower crustal levels (e.g. Chernicoff et al., 2002).  

 

4.3. Fluid geochemistry at AAVC 

Presently, the hydrothermal activity at the Cerro Pabellón geothermal system is 

represented by two super-heated fumaroles with temperatures of 108 and 118 °C (boiling point 

of water at that elevation is ~84 °C) (Urzua et al., 2002; Tassi et al., 2010), mud pools, a diffuse 

degassing zone and numerous minor gas vents, located in an area of about 0.03 km2 on the 

top of the Apacheta Volcano at about 5,150 m. 

Fumarolic gas discharges showed very low gas/H2Ovap ratio (0.01) with 2.5 wt% of non-

condensable gases (NCG) dominated by CO2 and N2. These values were similar to those of 

the liquid-dominated geothermal reservoir (i.e. 20% of steam, 80% of liquid; ENEL, personal 

communication) of sampled from the production wells, as the gas/H2Ovap ratio was of 0.007 

(mean between 0.004 and 0.012; ENEL, personal communication). Among the acidic gases 

discharged from the fumaroles, the concentrations of H2S were between 5,996 and 7,987 

μmol/mol, with those of HCl and SO2 varying from 563 to 607 and from 110 to 146 μmol/mol, 
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respectively, i.e. higher with respect to those recorded from other geothermal systems from 

northern Chile (Tassi et al., 2010). Conversely, in the 187 m-depth PAE-1 exploration well, 

located in the Pampa Apacheta at about 4.5 km E of the AAVC fumaroles (Fig. 4.2), no HCl 

and SO2 were detected, and much lower contents of H2S were measured (<0.0106 mole 

fraction of total NGC; Urzua et al., 2002). Low methane abundances (4.0-9.6 μmol/mol) and 

relatively high ratios of N2/Ar (388-442), indicating the presence of extra-atmospheric N2 (Urzua 

et al., 2002), were measured. The isotopic signatures of CO2 provided evidence of mantle gas 

contribution to the hydrothermal system, as a matter of fact the δ13C–CO2 values (−4.76‰, 

expressed in V-PDB; Tassi et al., 2010) overlapped the typical range of mantle CO2 (Rollinson, 

1993; Hoefs, 1997; Ohmoto and Goldhaber, 1997). 

The helium isotopic vales (expresses as R/Ra) ranged between between 1.65, in the PAE-1 

well (Urzua et al., 2002) and up to 1.85 in the fumaroles (Urzua et al., 2002; Tassi et al., 2010), 

i.e. significantly lower than those expected for an active subduction environment (i.e. >5; 

Mason et al., 2017). These low values were related to a possible dilution of the primary mantle-

derived 3He-rich magmatic component by 4He produced in the thick crust of this part of the 

Andes (>70 km; Beck et al., 1996), or to an aggressive alteration of host rocks in a magmatic–

hydrothermal environment that enhanced the release of 4He from the AAVC extrusive and 

subvolcanic rocks (Christenson et al., 2002). 

The thermal waters discharging from the AAVC fumarolic field presented temperatures 

at about 83-84 °C, low pH (<3.57), and calcic-sulfate composition (Tassi et al., 2010), likely 

representing steam-heated acidic-sulfate waters, produced by shallow aquifers heated by 

inputs of deep vapor phases rich in S-bearing compounds. According to Tassi et al. (2010), 

the water isotopic compositions (δ18O and δD) was interpreted as the result of a mixture 

between meteoric and magmatic fluids. The thermal waters showed a Total Dissolved Solids 

(TDS) content of < 2700 mg/L with low contents of boron, lithium and silica (0.1-1.7, 0.1, and 

51-59 mg/L, respectively). This evidence coupled with the high temperatures constrained by 

gas geothermometers (from 200 up to 350 °C, in a slightly oxidizing environment; Urzua et al., 

2002; Tassi et al., 2010), and consistent with those measured from the production wells (i.e. 

212-256 °C; Aravena et al., 2016), suggested a significant contribution from a magmatic-

related source to the surface manifestations. As a matter of fact, the fluids of AAVC seem to 

be produced by a non-conventional hydrothermal system still directly linked to the recent 

volcanic activity, due to the high temperature associated with a significant amount of magmatic 

gas species (Tassi et al., 2010). 
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4.4. Material and methods 

4.4.1. Soil CO2 fluxes measurements at the Cerro Pabellón area 

In September and November-December 2017 (with dry and stable atmospheric 

conditions), 498 diffuse CO2 flux measurements were carried out along some of the principal 

morphological and/or structural lineaments of the Cerro Pabellón geothermal field and AAVC, 

as follows: (i) western flank of AAVC, (ii) eastern sector of Pampa Apacheta and (iii) NE-fault 

and (iv) SW-fault systems of the Pabellóncito graben (Fig. 4.2). Soil CO2 flux measurements 

were carried out following the accumulation chamber method (e.g. Nisi et al., 2013; Rodrigo-

Naharro et al., 2013; Tassi et al., 2013; Elío et al., 2016), by simultaneously using two 

instruments. The instruments were calibrated before each survey and have a company 

reported lower detection limit of 0.044 g·m-2·day-1 (https://www.westsystems.eu/it). The 

equipment, operating in a dynamic mode, consisted of a metal cylindrical vessel (the 

accumulation chamber), an Infra-Red spectrophotometer, an analog-digital converter, and a 

palmtop computer. The accumulation chamber had a volume of ~2.8 L and was equipped with 

a ring-shaped perforated manifold to re-inject the circulating gas through a low-flux pump (20 

mL s-1) thus, ensuring the mixing of the soil gas into the chamber. The Infra-Red spectrometer 

consisted of a LICOR Li-820 detector equipped with a sensor operating in the range 0-20,000 

ppm of CO2. The soil gas circulated from the chamber to the Infra-Red sensor and vice versa 

by a pump (~1 L min−1). The signal was converted by the analog-digital converter and 

transmitted to a palmtop computer, where a CO2 concentration vs. time diagram was plotted 

in real time. Soil temperature was measured at each site, within 0.01 m from the accumulation 

chamber, using a Hanna HI-935005N K-Thermocouple (accuracy of ± 0.1 °C) in the first 10 

cm. The different areas were covered as much as possible with a regular grid, whose nods 

were located with a portable GPS Garmin Etrex 10, at a 20–30 m grid spacing. Few 

measurements (< 60) were conducted in the Pampa Apacheta, due to a) work in progress at 

the geothermal power plant, b) presence of gas-pipelines, and c) absence of geological 

structures recognized from Landsat images (Fig. 4.2). The spatial distribution of the diffuse 

CO2 soil gas spots, as well as their density, was strongly affected by logistics and the lack of 

a soil cover in several zones where compact hard lavas were cropping out. Ambient air 

temperature and barometric pressure were recorded for every sample site. 

 

4.4.2 Soil temperatures measurements at the AAVC fumarolic field 

Soil temperatures at the fumarolic alteration zone were measured in November 2016. 

The rectangular-like-shaped field, located on the top of the Apacheta stratovolcano at about 

5,150 m a.s.l., is striking NE-SW with a length of ~400 m, and a width of ~80 m (Fig. 4.2). 

Temperature soil profiles at 10, 20 and 30 cm depths (99 points), located with the same 
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portable GPS described above (i.e. Garmin Etrex 10), were carried every ~15 meters with a 

Hanna HI 98509 thermocouple (accuracy of ± 0.3 °C). 

 

Figure 4.2 - Map of the Cerro Pabellón geothermal field. Red lines represent the main 
structural and morphological lineaments available in the literature (Ahumada and Mercado, 
2009; Rivera et al., 2015; Sellés and Gardeweg, 2017), photo-interpretation and field survey. 
Location of the investigated sites described in the text and in the following figures is reported. 
The dotted boxes are referred to the maps in Figures 4.6, 4.7 and 4.9.  

 

4.4.3 Soil CO2 fluxes and temperature data processing 

Soil CO2 flux values in hydrothermal areas are characterized by complex statistical 

distributions, which generally reflect the coexistence of different CO2 sources, e.g. biogenic 

and endogenous (e.g. Cardellini et al., 2003; Nisi et al 2013; Tassi et al; 2013). These complex 

distributions result on a curve with different inflection points that allow to discriminate different 

populations. The CO2 flux values, as well as the superficial soil temperatures, were analyzed 

using the Graphical Statistical Analysis (GSA) method (Chiodini et al., 1998), performed 

according to the graphical procedure proposed by Sinclair (1974). Rosner’s test (Rosner, 

1983) was also applied to estimate the background value of the CO2 efflux and to discretize 

the possible outlier values of the dataset with a significance level of 1%. Distribution 

temperature maps in the fumarolic field were obtained using the ordinary kriging of the values 

in ArcGIS® software by Esri, using the Geostatistical Analyst tool. Kriging allows to estimate 
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the variable of interest at unsampled locations through a weighted linear combination of 

neighboring observations over a regularly spaced grid. 

 

4.5. Results  

4.5.1 Soil CO2 flux and soil temperatures 

Soil CO2 efflux values ranged from < detection limit values (detection limit: d.l. < 0.044 

g·m-2·day-1) to about 25.00 g·m-2·day-1, with an arithmetic mean of 0.83 g·m-2·day-1, standard 

deviation of ± 1.99 g·m-2·day-1 and a median of 0.56 g·m-2·day-1. A non-parametric distribution 

with a strongly positive skewness (9.06) and only few anomalous detectable values, is 

highlighted from the frequency plot (Fig. 4.3a) and the Shapiro-Wilk (Royston 1982a; 1982b), 

and Lilliefors (1967) statistics tests used to examine the normality (or lognormality) of the data 

set. The cumulative probability plot of the CO2 flux data (Fig. 4.3b) indicates two inflection 

points, at the 91.7 and 98.6 percentiles, respectively, suggesting the presence of at least three 

different populations. The average soil CO2 efflux values of the three populations (A, B and C) 

are 0.56, 1.89, and 15.33 g·m-2·day-1, respectively. According to the Rosner’s test (Rosner, 

1983), only one possible inconsistent value (24.96 g·m-2·day-1) was recognized. The 

background threshold value (BTVs) and the upper tolerance limit (UTL) were calculated by 

either considering or not considering the 47 values below the instrumental detection limit. The 

results are similar, with a BTVs ranging between 1.9 and 2.1 g·m-2·day-1. The main statistical 

parameters of the different populations of CO2 flux are resumed in Table 4.1. 

 

Figure 4.3 - a) Histogram of distribution frequency of the CO2 efflux values from Cerro Pabellón 
area; inset table shows the main statistical parameters of the distribution; b) cumulate 
probability plot of soil CO2 flux measurements of Cerro Pabellón area where the main inflection 
points and the three different populations (A, B and C) are highlighted. 
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Table 4.1      

Estimated parameters of the partitioned populations of CO2 (GSA method)  

Population CO2 flux (g m-2 day-1) Measurements (no.) Frequency Mean (g m-2 day-1) Median (g m-2 day-1) 

B.d.l. < 0.044 49 9.8% - - 

A (background) 0.05 - 1.42 411 82.5% 0.56 0.48 

B 1.42 - 2.67 31 6.2% 1.89 1.82 

C 2.67 - 24.97 7 1.4% 15.33 16.60 

Total 0.00 - 24.97 498 100.0% 0.83 0.56 

 
Similar results are obtained from the analysis of soil temperature data, which 

occasionally were lower than the atmospheric temperature, ranged from -1.1 to 29.8 °C (with 

the exception of one site where a temperature of 33.2 °C was measured) with an arithmetic 

mean of 17.6 °C, standard deviation of ± 6.4 °C and a median of 18.6 °C. The non-parametric 

distribution of these values, calculated with the Shapiro-Wilk (Royston 1982a; 1982b), and 

Lilliefors (1967) tests, is shown in the histogram of Figure 4.4a. Although the shape of their 

distribution is apparently more regular than that of the soil CO2 effluxes, the soil temperature 

values also have a polymodal distribution, as confirmed by the cumulative probability plot (Fig. 

4.4b). Two main inflection points are recognized, at the 12.4 and 97.3 percentiles, respectively, 

suggesting the presence of at least three distinct populations. The average soil temperature 

values of the three populations (A, B and C) are 4.5, 19.2 and 28.2 °C, respectively. The main 

statistical parameters of the different populations of CO2 flux are resumed in Table 4.2. 

 

Figure 4.4 - a) Histogram of distribution frequency of the soil temperature values 
corresponding to the CO2 flux measurement points; inset table shows the main statistical 
parameters of the distribution; b) cumulate probability plot of soil temperature measurements 
where the main inflection points and the three different populations (A, B and C) are 
highlighted. 
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Table 4.2      

Estimated parameters of the partitioned populations of Soil Temperature (GSA method)  

Population Soil T (°C) Measurements (no.) Frequency Mean (°C) Median (°C) 

A -1.1 - 10.5 62 12.4% 4.6 3.8 

B 10.6 - 26.9 423 84.9% 19.2 19.3 

C 27.0 - 33.2 13 2.6% 28.2 28.2 

Total 0.00 - 24.97 498 100.0% 17.6 18.6 

 

4.5.2 Soil temperatures at the AAVC fumarolic field 

 On the basis of the statistical tests (Royston 1982a; 1982b; Lilliefors, 1967) and the 

analysis of soil temperature data at the fumarolic field, only the 10 cm depth measurements 

seem to show a parametric (log-normal) distribution as evidenced in the histogram of Figure 

4.5a, being defined by a positive skewness (0.79). The 20 cm (Fig. 4.5b) and 30 cm depths 

(Fig. 4.5c) measurements are characterized by a non-parametric distribution, with a negative-

trending asymmetry, as demonstrated by the skewness values (0.31 and 0.07, respectively). 

The soil temperatures seem to have polymodal distribution, as also indicated by the cumulative 

probability plot for the three temperature datasets (Fig. 4.5d,e,f). Two main inflection points 

are recognized in each dataset, at the 6.1 and 80.8 percentiles for the 10 cm depth (Fig. 4.5d), 

at 17.2 and 85.8 percentiles for the 20 cm depth (Fig. 4.5e), and at 27.7 and 81.8 percentiles 

for the 30 cm depth (Fig. 4.5f), suggesting, once again, the presence of at least three distinct 

populations. The average soil temperature values of the three populations (A, B and C) for the 

10 cm depth are 8.4, 27.1 and 70.7 °C, respectively; for the 20 cm depth are 9.0, 40.0 and 

82.3 °C, respectively and finally, for the 30 cm depth are 11.6, 48.6 and 82.4 °C, respectively. 

The main statistical parameters of the different populations of soil temperatures at each depth 

(i.e. 10, 20 and 30 cm) are resumed in Table 4.3. 



 

81 
 

 

Figure 4.5 - a), b) and c) Histograms of distribution frequency of soil temperature values at 
10, 20 and 30 cm depths, respectively; inset tables report the main statistical parameters of 
the distributions; d), e) and f) cumulate probability plots of soil temperature measurements 
where the main inflection points and the three different populations (A, B and C) for each depth 
are highlighted. 

 

Table 4.3  
    

Estimated parameters of the partitioned populations of Soil Temperature at the AAVC fumarolic field (GSA method) 

Populations Soil T (°C) Measurements (no.) Frequency (%) Mean (°C) Median (°C) 

10 cm      

A 7.0 - 11.3 14 14.1% 9.8 10.5 

B 11.4 - 49.7 66 66.7% 29.3 29.1 

C 49.8 - 83.1 19 19.2% 70.7 71.8 

Total 7.0 - 83.1 99 100% 34.3 29.6 

20 cm      

A 6.0 - 11.0 16 16.2% 8.9 8.9 

B 12.0 - 74.6 69 69.7% 39.6 39.1 

C 80.4 - 83.2 14 14.1% 82.3 82.9 

Total 6.0 - 83.2 99 100% 40.7 38.4 

30 cm      

A 6.0 - 17.5 27 27.3% 11.6 10.8 

B 22.0 - 76.7 54 54.5% 48.6 49.4 

C 79.4 - 83.4 18 18.2% 82.4 83.0 

Total 6.0 - 83.4 99 100% 44.7 45.7 



 

82 
 

4.6. Discussion 

Based on the GSA analysis related to the CO2 flux values, three different populations 

were recognized and possibly related to different sources or geochemical processes. The low 

values of the population A (<1.50 g·m-2·day-1; Fig. 4.3b), can be referred to CO2 fluxes 

associated with soil respiration. In fact, this value is similar to that obtained from Rosner’s test 

used to estimate the background (i.e. ~2.00 g·m-2·day-1). Considering the unique features and 

the scarceness of vegetation of the Atacama Desert, coupled with the low atmospheric 

pressure at these altitudes (i.e. between 4,500 and 5,150 m a.s.l., corresponding to 543-591 

hPa) that should have increased the fluxes (Cannata et al., 2010), a background value of 1.50 

g·m-2·day-1 can be considered realistic. To the best of our knowledge, no flux data in this sector 

of the Andes are available in the literature. Consequently, the only comparable values are 

those reported by Raich and Schlesinger (1992) and referred to desert scrubs from Utah and 

New Mexico (USA), for which an estimated soil respiration values of about 2.25 g·m-2·day-1 

was computed and therefore, in agreement with that reported in the present study. According 

to the maps reported in Figure 4.6, the sites belonging to the population B and C show a 

scattered distribution, although they appear to be slightly grouped at the base of the volcanic 

edifice, at the connection with the Pampa Apacheta (Fig. 4.6a). Consequently, tracing a real 

diffuse degassing structures is not possible. 

As a matter of fact, < 10% of the CO2 flux measurements values from the study area is 

higher than the background value. Of these exceeding values, the ranges and the mean 

pertaining to the populations B and C, show a possible correlation with an endogenous, or at 

least an intermediate (i.e. mixing between endogenous and biogenic) source or geochemical 

process. In fact, similar ranges and means of values have been recognized in other geothermal 

and/or active volcanic areas and related to endogenous source/s (e.g. Etna, Vesuvio, Vulcano, 

Ohaaki hydrothermal field; Giammanco et al., 2016; Cardellini et al., 2003; Chiodini et al., 1998; 

Rissmann et al., 2012). Nevertheless, no carbon isotopic analyses were carried out, so a clear 

discrimination of the presence of a deep-seated source of carbon dioxide cannot be defined 

(Chiodini et al., 2008; Hanson et al., 2014; Venturi et al., 2017). 
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Figure 4.6 - Dot-map of soil CO2 efflux values in the studied area. The main 
structural/morphological lineaments (dashed when uncertain), sampling points with the relative 
range of values and population are reported; a) Western flank of the Apacheta-Aguilucho 
Volcanic Complex; b) Pabelloncito graben NE-fault and eastern sector of the Pampa Apacheta; 
c) Pabelloncito graben SW-fault. 
 

Unlike the CO2 efflux values, soil temperatures display a different behavior. The lowest 

values (<10 °C) related to population A are approaching those of ambient temperature and 

thus, reflecting temperature condition of air-saturated soil. It is worth to mention that population 

A is represented by 13% of total temperature measurements and the major frequency (~85%) 

pertaining to population B. Population C is only represented by ~2% of the total values. 

Although population B and C are not characterized by high CO2 fluxes, they are possibly 

recording increasing inputs of heat from high-enthalpy fluids (mostly water vapor; Giammanco 

et al., 2016), derived from the underneath geothermal system. The spatial distribution of the 

measured temperatures, distinguished in the three populations, is reported in Figure 4.7. A 

relatively homogeneous distribution of the intermediate temperatures (population B) is 

highlighted. The highest temperatures appear to be randomly distributed in the western flank 

of the Apacheta volcano (Fig. 4.7a), whereas the sites included in the population A are 

concentrated in the fossil alteration zone (Fig. 4.7a), in the southern part of the Pampa 

Apacheta (Fig. 4.7b) and Pabellóncito graben SW-fault (Fig. 4.7c). 
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Figure 4.7 - Soil temperature dot-map in the studied area. Sampling points with the relative 

range of values are reported; a) Western flank of the Apacheta-Aguilucho Volcanic Complex; 

b) Pabellóncito graben NE-fault and eastern sector of the Pampa Apacheta; c) Pabellóncito 

graben SW-fault. 

 

Even though the presence of three populations was recognized for both soil CO2 

emissions and soil temperatures, no spatial correlation between them was observed (Fig. 4.8). 

This assumption implies a decoupling between the two parameters, defining that the volcano-

tectonic structures do not play a key role in the distribution of the CO2 flux and temperature 

(e.g. Chiodini et al., 2015; Giammanco et al., 2016; Rolleau et al., 2017). 
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Figure 4.8 - Soil temperature vs. CO2 flux binary diagram for all the data measured in the 

Cerro Pabellón area. No spatial correlation between the two parameters is observed. 

 

 As expected, at the fumarolic field of the AAVC the largest heat and mass transfer 

occurs, indicating a close association and a direct structural link between the surface and the 

magmatic gas source. As a matter of fact, this area is located right above the up-flow zone 

identified by magnetotelluric studies (Urzua et al., 2002). In the fumarolic field, beside the 

background (A) and intermediate (B) populations, it is worth to note that temperatures 

approaching that of the boiling water at this altitude are achieved in some sites (population C), 

indicating therefore heat input from a high-T fluid (Giammanco et al., 2016). The soil 

temperature maps at 10, 20 and 30 cm depth in correspondence of the AAVC fumarolic field 

are reported in Figure 4.9, while the main parameters for the modeled maps are summarized 

in Table 4.4. 

 

Table 4.4. 

Relevant parameters of ordinary kriging application 

Depth Variogram model Transformation Nugget Range (m) N. lags Lag size (m) 

10 cm Spherical Log 0.130 56.5 8 18.0 

20 cm Spherical Box-cox 0.275 53.9 8 18.0 

30 cm Spherical Box-cox 0.290 59.3 8 18.0 
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Figure 4.9 - Iso-soil temperature distribution maps at the fumarolic field of the AAVC at a) 10 
cm, b) 20 cm, and c) 30 cm. The main thermal features and the measurement sites (black 
dots) are also reported. The temperature anomaly becomes wider at increasing depth. 
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 The thermal anomalies are oriented according to two main trends: NE-SW and NW-

SE, which are likely associated with structural discontinuities, along which the main vents and 

the degassing areas are located (Figs. 4.9 and 4.10). The NE-SW-trending lineament could 

represent a local transtentional pull-apart area in a major strike-slip faults zone (sensu Faulds 

and Hinz, 2015), that favours the resurgence of the geothermal fluids, acting as the only 

degassing pathway from the still active magmatic gas source (Tassi et al., 2010). The highest 

temperatures (up to ~83 °C) are found in the NE portion of the investigated area, where a 

diffuse degassing zone is present (Figs. 4.9 and 4.10a). Near the fumaroles, the temperatures 

remain high, although they do not reach those measured in the degassing zone. Nevertheless, 

the thermal anomaly gradually broadens when passing from 10 to 30 cm depth (Fig. 4.9). 

 

 

Figure 4.10 – Main thermal features at the AAVC fumarolic field. a) View toward West; it is 
possible to note: the two main fumaroles, the diffuse degassing area where the highest 
temperatures were recorded, and the site characterized by minor steam/gas vents; b) a 
detailed photo of the minor vents; c) small fumarole located at the SW margin of the studied 
area. 

 

Few data about the hydrological setting of the Pampa Apacheta sector are available. 

From the MT-survey a perched condensate aquifer has been constrained by Urzua et al. 

(2002) at a depth of ~200-300 m, where the iso-resistivity lines reach the lowest values (i.e. 2 

Ω·m). Even though it seems unlikely the presence of a perched aquifer (strictu sensu) of this 

size (i.e. ~100 m), the presence of shallow, even if discontinuous, aquifer/s has been confirmed 
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during drilling operations in the first ~400 m of the stratigraphic sequence, where different 

losses of circulation associated to the presence of water, were recorded (ENEL personal 

communication). Moreover, the presence of illite mixed layer (Chapter 3) at about 270 m and 

400 m of depths, could be related to the presence of variable amounts of water. No data related 

to the thickness of this/these aquifer/s are available. Water boiling temperature at this elevation 

(~88 °C, at about 4,500 m a.s.l.) is reached at the bottom of the 187 m-depth PAE-1 exploration 

well, located in the eastern margin of the geothermal system (Urzua et al., 2002; Fig. 4.2) and 

thus above the clay-cap units identified in Chapter 3. Soil CO2 degassing in the peripheral 

volcanic areas is likely related to the input of magmatic CO2, although the CO2 flux and the 

groundwater volume involved are not to be neglected (Inguaggiato et al., 2017). The presence 

of an impervious clay-cap and the negligible role of the volcano-tectonic structures, coupled 

with the involvement of “scrubbing” processes (Symonds et al., 1994, 2001) within the liquid-

dominated environment (i.e. reservoir) overlying the degassing magma, may explain the lack 

of strong acidic gas compounds at the surface (Tassi et al., 2010) and the ascent of CO2-

depleted steam in the permeable and unconsolidated deposits characterizing the first 200 m 

of the Pampa Apacheta stratigraphic sequence (Rivera et al., 2015). As a consequence, those 

sites belonging population B and C (Figs. 4.4 and 4.5), could be derived from the heating of 

the shallower aquifer/s, and dispersed laterally over large areas, likely by advective processes. 

Probably, the aquifer/s maintain such a high temperature due to the scarceness of water 

recharge characterizing the Atacama Desert (average annual rains < 2mm; Azua-Bustos et 

al., 2012). A high recharging volume would indeed have produced a relatively low 

temperatures waters (Minissale, 2018), able to minimize the soil temperature anomaly. 

Considering the absence of surface hydrothermal features in the geothermal area, the fluids 

volume involved in the process (i.e. ascending geothermal fluid and shallow aquifer/s) is 

expected to be small, confirming once more the effectiveness of the clay cover. 

 

4.7. Concluding remarks 

Shallow geochemical signals are often able to provide useful information concerning 

the presence of high-enthalpy geothermal reservoirs or mark changes in the magmatic and/or 

geothermal systems. Some difficulties may be faced when these signals are hidden or masked 

by different processes. At Cerro Pabellón, the low CO2 effluxes measured in the main 

geothermal areas suggest that contribution by deep-seated CO2 (magmatic origin) to soil 

degassing is almost negligible. In fact: (i) the majority (~92%) of the soil CO2 flux 

measurements are below background levels (i.e. 1.50 g·m-2·day-1); (ii) most shallow (10 cm) 

soil temperatures are higher than the temperature condition of air-saturated soil (i.e. ~10 °C); 

(iii) no correlation between soil temperature and CO2 flux is recorded; and (iv) the only 

significant thermal anomalies is that registered at the active fumarolic field. 
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The lack of soil CO2 anomalies, even above the existing pressurized reservoir, can be 

due to two main factors: 1) the continuous, ~300 m thick and impervious clay-cap that lies 

above the propylitic zone, and 2) the magmatic gas scrubbing processes in the liquid-

dominated environment, that produce the removal of CO2, SO2, and HCl compounds, and the 

consequent ascent of CO2-depleted steam, thus permitting the heating of the shallower 

aquifer/s. The latter resulting at the surface as a diffuse, slight thermal anomaly, recognized 

by a geostatistical approach, and at 187 m below the surface (i.e. at the bottom of the PAE-1 

well) as a wispy flow of steam with measured temperature of 88 °C (Urzua et al., 2002). As a 

matter of fact, the active fumarolic area, located at the summit of the Apacheta volcano, is the 

only visible evidence of the hidden geothermal reservoir in the Cerro Pabellón area. This work 

highlights the significance of the sealing capacity of the thick and impermeable clay-cap able 

to confine the high enthalpy geothermal fluid of Cerro Pabellón, and confirm the importance of 

soil temperature and diffuse CO2 measurements for the detection of possible thermal 

anomalous areas, thus suggesting that this approach can be extended to other areas of the 

Andes where the typical thermal manifestations are not present. 
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CHAPTER 5 
 
 

OVERALL FINAL REMARKS AND FURTHER WORKS 
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5.1. Overall final remarks 

In order to produce an update conceptual model of the Cerro Pabellón blind (or hidden) 

geothermal system, where the only evidence of active hydrothermalism is represented by two 

fumaroles, different methodological approaches were used during the present PhD project. To 

accomplish the main goals of the research, a multidisciplinary study was involved. The main 

results achieved, corroborated by previously published data, are resumed as follow. 

 

A polybaric upper crustal magma plumbing system has been working during the ~1 Ma 

span time of activity of the AAVC area, with two distinct reservoirs (Fig. 5.1). The deeper 

reservoirs were located at mid-crustal levels (15-20 km) and are akin to the location given for 

the APMB, involving AFC processes with a dominant role played by amphibole fractionation. 

Shallower magma chambers were located at depth of 4-8 km allowing further differentiation of 

the erupted magmas through FC processes, mainly dominated by plagioclase crystallization. 

In the evolution of the AAVC area we envisaged a transition of the magmatic regimes from 

flare-up mode (about 1 Ma; Fig. 5.1a) to steady state (1-0.6 Ma; Fig. 5.1b). This latter magmatic 

regime characterized by decreasing, but still relatively high rates of mafic magmas recharges 

for at least 0.4 Ma, kept the upper crustal reservoirs thermally “fertile”, allowing mixing between 

the new higher temperature magmas with the older, lower-temperature silicic resident magmas 

to form the abundant andesites and dacites lavas of the composite cones of Apacheta and 

Aguilucho (Fig. 5.1b). At about 150-100 ka, a change in the magmatism occurred, with inputs 

of basaltic-andesite magmas into the shallower dacitic chambers, leading to triggering the 

extrusion of the domes (Fig. 5.1c), which enclaves represent a snapshot of this process at the 

interface of interactions of the magmas. A revised petrogenetic model, well constrains the 

textural and geochemical variations in the observed enclaves, which are strongly influenced 

by the location of crystallization with respect to the andesite-dacite interface. 



 

92 
 

 

Figure 5.1 – A schematic model of the magma plumbing system processes in the upper crust 
at the Altiplano-Puna Volcanic Complex, focussing on the Apacheta-Aguilucho area, through 
the last ~1.0 Ma. The detailed description of the model is reported in Chapter 2, Paragraph 
2.6, Figure 2.14. 

The absence of dated products between 0.6 - 0.1 Ma in the studied area do not allowed 

to define a univocal, main heat source. Neither the petrological history of the dacitic domes, 

permitted to constrain their magma chamber as the main thermal engine of the Cerro Pabellón 

geothermal system. What is undoubted is that the presence of the huge APMB in the upper 

crust is not negligible and cannot be ruled out as the main heat source of this and other 

geothermal systems of the APVC. 

The magmatic fluids released from the heat source/s during their rise to the surface, 

started to interact with the host rocks, producing mineralogical, textural and chemical variations 

of these latter, as a response to the thermal and chemical changes. 

Mineralogical studies on the vertical and superficial distribution of the clay minerals forming 

the active hydrothermal system of the Cerro Pabellón geothermal field, revealed that the 

system is characterized by both acid-sulfate (fumarolic field) and adularia-sericite (boreholes) 

alteration types, which represent the two most typical hydrothermal alteration assemblages 

linked to geothermal systems in active or recent volcanic areas. The acid-sulfate alteration 

characterizes the upper parts of the Apacheta volcano, where the rising magmatic gases are 

mixed with shallower aquifer, producing acid-sulfate waters. Here two main subzones were 

recognized: i) one characterized by high amounts of smectite, mainly coupled with cristobalite 

and feldspar, and ii) one characterized by kaolinite, mainly coupled with halloysite and 

subordinate smectite. These subzones show a good correspondence with the thermal 

manifestations position, and a moderate accordance with the soil temperatures measured in 
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the sampling locations. Conversely, a not-fitting with the pH conditions of stability for the 

smectite clay minerals group was observed.  

The adularia-sericite alteration characterizes the geothermal reservoir and was 

possibly linked to fluids with near-neutral pH. Two main clay minerals transitions were detected 

in the upper parts of the investigated boreholes: the smectite to illite and the smectite to 

chlorite. The illite and chlorite, only prevail in rock samples from the reservoir domain (i.e. 

deeper parts of the boreholes), where mixed-layer illite-smectite and chlorite-smectite are 

almost absent. In both reaction series, a continuous and slow reduction of the proportion of 

smectite layers in mixed layers with depth, was recognized. The impermeability of the clay cap 

of the geothermal system, would not favour the advance of illite-smectite and chlorite-smectite 

reaction series. Thus, the blind nature of the Cerro Pabellón geothermal system might be 

related to the thickness and very low permeability of the clay cap (∼300 m). 

The sealing capacity of these clay-cap units was finally investigated through systematic 

diffuse CO2 soil flux and temperature measurements, using the accumulation chamber 

method. The low CO2 flux and the relatively large areas of thermal anomalies identified, 

demonstrate the efficiency of the thick clay-cap to prevent the resurgence of fluids up to the 

surface. Moreover, the efficient magmatic gas scrubbing processes within the liquid-dominated 

environment of the reservoir produced both the removal of CO2 and the subsequent heating of 

the perched shallow aquifer. The thermal behaviour of the aquifer resulted at the surface as a 

slight and diffused thermal anomaly (recognized by a geostatistical approach) and as a wispy 

flow of steam with measured temperature of 88 °C at the bottom of the 187 m depth PAE-1 

well. The low CO2 effluxes measured in the main geothermal areas suggest that contribution 

by deep-seated CO2 (magmatic origin) to soil degassing is almost negligible. In fact: i) the 

majority (91.7%) of the soil CO2 flux measurements are below background levels (i.e. 1.50 

g·m-2·day-1); ii) most shallow (10 cm) soil temperatures are higher than the temperature 

condition of air-saturated soil (i.e. ~10 °C); iii) no correlation between soil temperature and CO2 

flux is recorded; and iv) the only significant thermal anomalies is registered at the active 

fumarolic field. Finally, the decoupling between soil temperature and CO2 flux, defined that the 

volcano-tectonic structures did not play a key role in the distribution of the CO2 flux and 

temperature at surface, with the active fumarolic area representing the only visible evidence 

of the blind (or hidden) geothermal reservoir in the Cerro Pabellón area (Fig. 5.2).  
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Figure 5.2 – Simplified conceptual model for the Cerro Pabellón geothermal field. a) West to 
east simplified profile of the Cerro Pabellón area showing temperature isotherms, regional 
water table depth and MT resistivity data (in Ω·m) from Urzua et al. (2002); the 100°C 
temperature isotherm has been modified taking in account new data of soil temperatures at 
the fumarolic field. The greenish area represents the clay-rich zone identified in Chapter 3, 
while the yellowish area represents the possible shallow aquifer identified by Urzua et al. 
(2002) with MT. The main volcanic and tectonic features are also report. The dacitic magma 
depth and temperatures are according to Gorini et al. (2018). b) Schematic evolution of rising 
of the geothermal fluids to the surface. Scrubbing processes characterized the liquid-dominant 
reservoir, resulting in the lack of acidic compounds at surface; the CO2-depleted steam can 
rise in the permeable and unconsolidated deposits heating the perched aquifer. Black 
rectangles report the main compounds detected by Tassi et al. (2010) and Urzua et al. (2002) 
in the fumaroles and in the PAE-1 well, respectively. 

 

5.2. Further works 

Many arguments of the Cerro Pabellón geothermal system were deepened during this 

work, whereas some points still need further investigations.  

Some possible starting points for further studies are resumed hereafter. 

Chapter 2 focused on the ascent of the different magmas erupted at the AAVC only 

within the shallower parts of one of the thickest continental crusts of the world (up to 70 km). 

What is still unknown is the origin of the less differentiated magmas (i.e. basalts-andesites) 

sporadically found in different sector of this Andean sector (Altiplano-Puna Volcanic Complex). 

It is not clear if these magmas are directly “produced” by the Altiplano-Puna Magma Body or if 

they come from the lower crust. A good starting point is to work mainly with petrographic and 

geochemical composition of primitive mineralogical phases (i.e. pyroxene) from the mafic 

enclaves and from other similar lavas found near the AAVC area (e.g. La Poruña scoria cone) 

to determine if they were generated under the same petrological conditions. In fact, they share 

similar eruption ages (~100 ka), geochemical and isotopic characters. The pyroxene 

compositions could give the P-T conditions on which these magmas generated and could be 

more reliable than the olivine. Information given by this latter mineralogical phase would not 

give useful constraints, because of disequilibrium processes involved during the interaction 

with a > 70 km thick crust of the mantle-derived magmas. Moreover, deepen the 

mixing/mingling processes could be useful to clarify the timing of the domes’ eruptions, defining 

how long the two different magmas interacted (without homogenization) before being erupted. 

Another possible theme that could be developed thanks to the new chronological ages (Sellés 

and Gardeweg, 2017; Chapter 2), is the calculation of the eruption rates and recharge volumes. 

In fact, the timing and the evaluation of the volumes erupted can be used to define the rates 

of eruption in the volcanic complex, giving a summary idea of the heat flux from the magmatic 

chambers towards the surface, and possibly unravelling the main heat source of the 

geothermal system. 
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A critical point emerged in Chapter 3 is that related to the not-fitting conditions of 

stability of the smectite clay minerals group with the strongly acid conditions characterizing the 

Apacheta-Aguilucho Volcanic Complex fumarolic field. The involvement of neutralization 

processes can, at least partially, explain the presence of smectite in such acid environment. 

Further XRD detailed analyses to distinguish di- and trioctahedral clay minerals, coupled with 

SEM and FTIR analyses to constrain the morphology of the minerals and the crystallinity index, 

as well the chemical compositions, could help to understand the physico-chemical processes 

of the fluid-rocks interaction. Moreover, a detailed study on the fossil alteration zone, located 

about 600 m North from the fumarolic field, could give insights on the temporal and spatial 

evolution of the superficial alteration related to the resurgence of hydrothermal fluids. One main 

objective could be to compare the main characters of the fossil alteration zone with those of 

the active alteration area (i.e. fumarolic field).  

The investigation of the fossil alteration zone is currently under development, in the framework 

of a collaborative research between the Centro de Excelencia en Geotermia de los Andes 

(C.E.G.A.) and the University of Urbino. 

 

In Chapter 4, the investigated areas were limited with respect of the whole extension 

of the geothermal area. The difficulties to cover large portions of the geothermal concession 

were due: i) to the scarceness of structural lineaments evidences, ii) to the hard-working 

conditions (i.e. altitude), iii) to the power-plant-related structures and infrastructures work in 

progress, and iv) to the lack of a soil-cover in several zones, where compact hard lavas 

cropped out. A critical topic that could be really useful to deepen is that related to the origin of 

the CO2 in the interstitial gases. An extensive sampling campaign to determine the δ13C-CO2 

isotopic contents could shed light on the origin of the source/s or geochemical processes 

affecting the geothermal fluids. 
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CHAPTER 2 

Appendix - C2-1 

Ar-Ar geochronology 

A new 40Ar/39Ar age was obtained from unaltered groundmass from one sample (CP 01 05) of 

the Apacheta-Aguilucho Volcanic Complex. This age was measured at Servicio Nacional de 

Geología y Minería (Chile). Crushing and mineral separation, and sample preparation were 

carried out following the procedures and parameters established by Salazar et al., 2018. 

Analysis were done using an ARGUS VI mass spectrometer, with characteristics as indicated 

at www.sernageomin.cl/laboratorio-geocronología, and parameters indicated in Klug et al., 

2018. 

Geochemical and isotopic analysis methodology 

- Geochemical analyses on samples AA-010, AA-011, AA-023, AA-024, AA-047, AA-050, 

AA-054, AA-055, AA-056, AA-058, AA-064, AA-067, AA-077, AA-081, AA-083, AA-094 were 

carried out at Acme Analytical Laboratories Ltd. (ACMElab; Canada). The concentrations of 

major and trace elements were determined by inductively coupled plasma mass spectrometry 

(ICP-MS) after fusion by metaborate and aqua regia digestion at the Acme Analytical 

Laboratories Ltda (Vancouver, Canada). The analytical errors are less than 4% for oxides and 

of ~5% for trace elements. 

- Samples AA-001, AA-003, AA-006, AA-007, CKA1, C-INKA1, CPB1, ICP16, ICP22, ICP24, 

CKA1a_ch, CKA1a_sc, C-INKA1f were analysed at Activation Laboratories Ltda. (Actlabs; 

Canada). Whole-rock major and trace element analyses were determined by Inductively 

Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-

Mass Spectrometry (ICP-MS), after lithium metaborate and lithium tetraborate fusion. The 

resulting molten bead is digested in a weak nitric acid solution. The analytical errors are less 

than 1% for oxides and of ~5% for trace elements. 

Sr, Nd and Pb isotope analysis on samples CKA1, C-INKA1, AA003, CKA1a_ch, CKA1a_sc, 

C-INKA1f, ICP16, ICP22, ICP24, AA-023, AA-047, AA-055, AA-056, AA-083 were performed 

at the Istituto di Geoscienze e Georisorse - National Research Council (IGG-CNR) of Pisa 

(Italy). Rock powders were dissolved in HF + HNO3 and, after complete drying, Sr and rare 

earth elements (REE) were purified in an HCl solution through ion-exchange chromatography 

columns. Nd was then separated from the other REE using a diluted HCl solution passing 

through Eichrom Ln resin. Lead was extracted from the matrix with conventional 

chromatographic ion exchange in Dowex 1 anion resin, using standard HBr and HCl elution 

procedures. Once separated chromatographically, Sr, Nd and Pb were loaded onto Re 

filaments and successively analysed using a Finnigan Mat 262 thermal ionization mass 

spectrometer. 

The geochemical analysis on the sample CPAB-ENC-1 was carried out using an X-ray 

fluorescence (XRF) and a Quadrupole Inductively Coupled Plasma – Mass Spectrometry (ICP-

MS) for major and trace elements, respectively, following the procedures, standards and 

parameters detailed in Frimmel et al. (2001). 87Sr/86Sr and 143Nd/144Nd compositions were 

measured using a NuPlasma HR multicollector-ICP-MS (MC-ICP-MS). Full details for these 

analyses were published by Harris et al. (2015). Both analyses were undertaken at the 

Department of Geological Sciences, University of Cape Town (South Africa). Two-sigma 

analytical errors were <2% for XRF, <3% for ICP-MS, and <0.003% for 87Sr/86Sr and 
143Nd/144Nd ratios. 
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Appendix - C2-2 

From Taussi et al., 2019 - supplementary material 

Geochronological results 

Table S2.1          
Summary of the CP 01 05 40Ar/39Ar step-heating data, and plateau ages obtained from Servicio Nacional de 
Geología y Minería (Chile).   

          

Sample location        
Eastern flank of the Apacheta 
Volcano        

          
 Watts 40Ar/39Ar 36Ar/39Ar 40Ar (%) Ca/K Cl/K 

39Ar 
(%) 

Age (ka) ± Age 

A 3.00 0.34849 0.012452 8.6 0.458783 0.011824 4.7 969.40363 77.17753 

B 6.00 0.35045 0.002971 28.9 0.748494 0.010947 30.8 974.85515 30.76360 

C 9.00 0.34426 0.003058 28.4 1.254484 0.011328 37.4 957.65040 47.76509 

D 12.00 0.35717 0.003382 28.0 2.480980 0.010629 13.8 993.53770 94.10200 

E 15.00 0.32860 0.003229 27.2 2.335226 0.013119 6.7 914.08786 92.60572 

F 18.00 0.34019 0.004099 23.2 2.732973 0.012959 4.2 946.32389 111.97611 

G 22.00 0.35140 0.004071 25.0 4.495062 0.016342 1.7 977.48973 197.96048 

H 30.00 0.34777 0.003720 26.8 4.493088 0.016326 0.6 967.41359 306.35516 

          
Integrated age    Age spectrum (Plateau)       

Age (ka) 
Error 
(2σ) 

 Age (ka) 
Error 
(2σ) 

Number of 
data used 

MSWD 
   

970.00 110.00  967.0277 44.6402 8 0.08    
       

   

          
MSWD          

mean square of weighted deviates        

 


