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Abstract

James Koziol, in his 1987 and 1989 papers, proposed to use the sums of either the squared fourth-order cumulants
or moments as test statistics for multivariate normality. His proposals are by far less popular than Mardia’s measure
of multivariate kurtosis, that is the fourth moment of the Mahalanobis distance of a random vector from its mean.
We investigate some properties of Koziol’s measures of multivariate kurtosis which motivate their use in statistical
practice. Firstly, we show some of their connections with Mahalanobis angles. Secondly, we use inequalities to
highlight their connections with other measures of multivariate skewness and kurtosis. Thirdly, we obtain their ana-
lytical formulae for some well-known multivariate statistical models. Simple examples illustrate the interpretation of
Koziol’s measures of multivariate kurtosis and detect a wrong statement abouth them which appeared in the statistical
literature. We suggest that Mardia’s and Koziol’s measures of kurtosis should be used together to detect interesting
data structures.
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1. Introduction

The kurtosis of a random variable X with mean µ, variance σ2 and finite fourth moment is its fourth standardized
moment

β2 (X) = E
{(X − µ
σ

)4}
.

Since the kurtosis of a normal random variable equals three, it is sometimes more convenient to work with the excess
kurtosis, that is the fourth standardized cumulant γ2 (X) = β2 (X)− 3. Distributions whose excess kurtosis is negative,
null or positive are commonly referred to as to platykurtic, mesokurtic and leptokurtic distributions. The random
variables X and aX + b have the same kurtosis, where a and b are constants with a being nonnull. The kurtosis attains
its minimum, that is one, if and only if the corresponding distribution assigns probability 0.5 to two real values.
Kurtosis also gives some insight into the tails of a distribution, as shown by the inequality

Pr
(∣∣∣∣∣X − µσ

∣∣∣∣∣ ≥ λ) ≤ β2 (X) − 1
λ4 − 2λ2 + β2 (X)

,

where λ > 1 (see [33]).
Generalization of kurtosis to the multivariate case is not straightforward: a p-dimensional random vector might

have up to p (p + 1) (p + 2) (p + 3) /24 distinct fourth-order moments and cumulants. Let x =
(
X1, ..., Xp

)⊤
be a

p−dimensional random vector with mean µ, nonsingular variance Σ and finite fourth order moments: E
(
X4

i

)
< +∞

for i ∈ {1, . . . , p}. Also, let z = Σ−1/2 (x − µ) be the standardization of x, where Σ−1/2 is the symmetric, positive definite
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square root of the concentration matrix Σ−1. A fourth-order, standardized moment of x is the expected product of any
four components of z: µi jhk = E

(
ZiZ jZhZk

)
, i, j, h, k ∈ {1, . . . , p}. The expectation µi jhk is commonly referred to as to

the i jhk-th standardized moment of x. The i jhk-th standardized cumulant of x is the derivative evaluated at t = 0

κi jhk = (ι)4 ∂
4 log E

[
exp

(
ιt⊤z

)]
∂ti∂t j∂th∂tk

∣∣∣∣∣∣
t=0

,

with 0 being the p × 1 zero vector, ι =
√
−1 and t⊤ =

(
t1, ..., tp

)
. Assume that i ≤ j ≤ h ≤ k for i, j, h, k ∈

{1, . . . , p} without loss of generality. Then the i jhk-th standardized cumulant of x equals its i jhk-th standardized
moment diminished by (i) 3, (ii) 1 and (iii) 0 when (i) i = j = h = k, (ii) i = j < h = k and (iii) the remaining cases
occur, respectively.

Since the number of possibly distinct fourth-order moments and cumulants grows very quickly with the vector’s
dimension, it is convenient to summarize them by appropriate scalar functions. Mardia [24] proposed to measure the
kurtosis of a random vector with the fourth moment of its Mahalanobis distance from the mean:

β2,M (x) = E
[{

(x − µ)⊤ Σ−1 (x − µ)
}2
]
=

∑
i, j

µii j j,

which equals p (p + 2) for a p-dimensional, normal random vector. Mardia [25] proposed to measure excess kurtosis
with the difference

γ2,M (x) = β2,M (x) − p (p + 2) =
∑
i, j

κii j j.

Mardia’s overall index of multivariate (excess) kurtosis is the sum of the excess kurtoses when each of κii j j, for
i, j ∈ {1, . . . , p}, is seen as a multivariate excess kurtosis. Mardia’s (excess) kurtosis of a random variable coincides
with the (excess) kurtosis of the random variable itself. Moreover, the above mentioned properties of univariate
kurtosis naturally generalize to Mardia’s kurtosis. Firstly, Mardia’s kurtosis is invariant with respect to one-to-one,
affine transformations. Secondly, Mardia’s kurtosis of a random vector is never smaller than the squared number of the
vector’s components, with equality holding if and only if the distribution is symmetric and its support is an ellipsoid.
Thirdly, the following inequality holds for any real ε greater than p, according to [21]:

Pr
{
(x − µ)⊤ Σ−1 (x − µ) ≥ ε

}
≤ β2,M (x) − p2

ε2 − 2pε + β2,M (x)
.

Mardia’s kurtosis is the best known and most used measure of multivariate kurtosis [8, 13, 39]. The popularity
of Mardia’s kurtosis is partly due to its analytical tractability in many well-known statistical models [25, 39]. Its
popularity is also due to its close connection with measures of multivariate skewness, which has been extensively
investigated by means of inequalities [14, 29, 32].

Despite its merits and popularity, Mardia’s kurtosis suffers from several limitations. Koziol [16] noticed that not
all fourth-order standardized moments are taken into account in Mardia’s kurtosis. Koziol [17] illustrated the problem
with a bivariate, folded normal distribution with some nonnull fourth-order cumulants but with null Mardia’s excess
kurtosis. The problem might be conveniently addressed by considering the sum of all squared fourth-order cumulants,
as proposed in Koziol [15]:

γ2,K (x) =
∑
i, j,h,k

κ2i jhk.

Koziol [15] motivated this kurtosis measure within the framework of Neyman’s smooth goodness of fit tests ([31]).
It often appears in projection pursuit ([30]), multivariate normality testing ([27]) and in the asymptotic distribution of
the likelihood ratio statistic for testing hypotheses on covariance matrices ([38]). Koziol [16] proposed to summarize
fourth standardized moments, rather than cumulants, with the sum of their squares:

β2,K (x) =
∑
i, j,h,k

µ2
i jhk.

2



We shall refer to β2,K (x) and γ2,K (x) as to Koziol’s kurtosis and Koziol’s excess kurtosis. Also, we shall refer to both
β2,K (x) and γ2,K (x) as to Koziol’s kurtoses. The phrasing “Koziol’s excess kurtosis” is not completely satisfactory.
It makes the unaware reader think that fourth standardized moments are higher than expected under normality, while
the opposite might be true, as it happens with the multivariate uniform distribution. It would be better to refer to
β2,K as to Koziol’s moment kurtosis and to γ2,K as to Koziol’s cumulant kurtosis. The choice of referring to γ2,K (x)
as to Koziol’s excess kurtosis is consistent with the widely used notation and terminology used for univariate excess
kurtosis γ2 and Mardia’s excess kurtosis γ2,M . Moreover, it is instrumental for highlighting the mutual connections
between these kurtosis measures.

The sample counterparts of Koziol’s kurtoses are defined as follows. Let m and S be the sample mean vector and
the nonsingular sample covariance matrix of the n × p data matrix X. Also, let x⊤i and x⊤j be the i-th and j-th rows of
X, for i, j ∈ {1, . . . , p}. The sample counterpart of β2,K (x) is

b2,K (X) =
1
n2

n∑
i=1

n∑
j=1

{
(xi −m)⊤ S−1

(
x j −m

)}4
.

Similarly, the sample counterpart of β2,M (x) is

b2,M (X) =
1
n

n∑
i=1

{
(xi −m)⊤ S−1 (xi −m)

}2
.

The sample counterpart of γ2,K (x) can be obtained from b2,K (X) and b2,M (X):

g2,K (X) = b2,K (X) − 6b2,M (X) + 6p + p2.

Best and Rayner [5] used simulations to compare powers of the bivariate normality tests based on b2,M (X) and
g2,K (X). Henze [8] investigated the asymptotic behaviour of b2,K (X) under fairly general conditions and in some rele-
vant special cases, including normality, ellipticity and mixing. Klar [12] derived the asymptotic distribution of b2,K (X)
and g2,K (X) both under multivariate normality and under distributions with nonnull fourth cumulants, using orthog-
onal multivariate polynomials. Henze [9] surveyed previous literature on b2,K (X) and g2,K (X) within the framework
of invariant tests for multivariate normality. The statistic g2,K (X) is often used in conjunction with Mardia’s skewness
([24]) when testing multivariate normality [15, 27, 36].

The literature on Koziol’s kurtoses is much more limited than the literature on Mardia’s kurtosis. The only paper
deriving closed form expressions for Koziol’s kurtosis of some nonnormal distributions appears to be Henze [8].
Finally, to the best of our knowledge, only Franceschini and Loperfido [6] investigated the connections between
Koziol’s kurtosis and other measures of multivariate kurtosis. This paper addresses these problems by investigating
some properties of Koziol’s measures of multivariate kurtosis which will hopefully motivate their use in statistical
practice. In particular, the paper shows some of their advantages over Mardia’s kurtosis, uses inequalities to highlight
their connections with other measures of shape and obtains their analytical formulae for some well-known multivariate
statistical models. Simple examples illustrate the interpretation of Koziol’s measures of multivariate kurtosis and
detect a wrong statement about them which appeared in the statistical literature.

The paper is structured as follows. Section 2 and Section 3 deal with the interpretation and the representation
of Koziol’s kurtosis, including a counterexample to a wrong statement which appeared in the literature. Section 4
connects Koziol’s kurtoses to other measures of multivariate kurtosis and to Mardia’s skewness. Section 5 gives
analytical formulae for Koziol’s kurtoses of some well-known multivariate distributions. Section 6 and 7 contain a
simulation study and concluding remarks. Theorems’ proofs are in the Appendix.

2. Interpretation

This section deals with the interpretation of Koziol’s kurtosis, with special emphasis on its comparison with
Mardia’s kurtosis. Theory is illustrated with simple examples based on bivariate distributions with finite support.

In order to get a better insight into Mardia’s and Koziol’s kurtoses, we consider the bivariate random vector
u = (U1,U2)⊤ whose distribution places equal probability mass on the bivariate real vectors
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(
cosω
sinω

)
,
(

cosω
− sinω

)
,
(
− cosω

sinω

)
,
(
− cosω
− sinω

)
,

(
sinω
cosω

)
,
(

sinω
− cosω

)
,
(
− sinω

cosω

)
,
(
− sinω
− cosω

)
,

where ω is a real value. The marginal distribution of the i-th component of u is

Pr (Ui = ± cosω) = Pr (Ui = ± sinω) = 0.25,

where Pr (X = ±x) = κ ∈ R is shorthand for Pr (X = x) = Pr (X = −x) = κ. The mean, variance, skewness (that is the
third standardized moment) and kurtosis of Ui are

E (Ui) = 0, V (Ui) = 0.5, γ1 (Ui) = 0 and β2 (Ui) = 2 − sin2 (2ω) .

The fourth-order standardized moments of u are

µ1111 = µ2222 = 2 − sin2 (2ω) , µ1122 = µ1212 = µ1221 = µ2211 = µ2121 = µ2112 = sin2 (2ω) ,
µ1222 = µ2122 = µ2212 = µ2221 = µ2111 = µ1211 = µ1131 = µ1112 = 0.

Mardia’s kurtosis of u equals four regardless of the value taken by the parameter ω:

β2,M (u) = 2
{
2 − sin2 (2ω)

}
+ 2 sin2 (2ω) = 4.

Despite that, ω controls the clustering of the vectors in the support of u: for ω = π/8 the vectors are evenly spaced on
the unit circle, for ω = π/2 four pairs of vectors overlap on opposite sides of both axes, for ω = π/16 there are four
clusters of two vectors symmetrically placed around the origin. Does this mean that fourth-order moments of u are
unable to discriminate between different patterns of its outcomes? In other words, does multivariate kurtosis give an
insight into the cluster structure of u?

We address the problem by considering the cosines of the angles between two vectors in the support of u. Let v
be a bivariate random vector independent of u and identically distributed. The cosine of the angle between u and v is

u⊤v
√

(u⊤u) (v⊤v)
= u⊤v.

The distribution of u⊤v is

Pr
(
u⊤v = ±1

)
= Pr

{
u⊤v = ± cos (2ω)

}
= Pr

{
u⊤v = ± sin (2ω)

}
=

Pr
(
u⊤v = 0

)
2

=
1
8

.

The mean, variance, skewness and the kurtosis of u⊤v are

E
(
u⊤v

)
= 0, V

(
u⊤v

)
= 0.5, γ1

(
u⊤v

)
= 0, β2

(
u⊤v

)
=

cos (8ω) + 7
4

.

The first and the second derivatives of the kurtosis of u⊤v with respect to ω are

∂β2
(
u⊤v

)
∂ω

= −2 sin (8ω) ,
∂2β2

(
u⊤v

)
∂2ω

= −16 cos (8ω) .

The kurtosis of u⊤v achieves its minimum 1.5 when ω = π/8, that is when the vectors in the support are evenly spaced
on the unit circle. On the other hand, the kurtosis of u⊤v achieves its maximum 2 when ω = π/2, that is when four
pairs of vectors in the support overlap on opposite sides of the axes. Koziol’s kurtosis is exactly four times the kurtosis
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of u⊤v, as it happens for any symmetric and bivariate distribution whose support is the unit circle:

β2,K (x) = 2
{
2 − sin2 (2ω)

}2
+ 6 sin4 (2ω) = cos (8ω) + 7.

We conclude that Koziol’s kurtosis gives some insight into the clustering structure of u, while Mardia’s kurtosis does
not.

We generalize the above argument to any dimension using angles between random vectors. The Mahalanobis angle
between two random outcomes x and y from a p-dimensional distribution with mean µ and nonsingular covariance Σ
is

(x − µ)⊤ Σ−1 (y − µ)√
(x − µ)⊤ Σ−1 (x − µ) (y − µ)⊤ Σ−1 (y − µ)

,

that is the cosine of the standardizations of x and y ([26]). High values of Mahalanobis angles indicate that the random
vectors belong to the same orthant, while low values indicate that the random vectors belong to opposite orthants with
respect to the origin. As a direct consequence, nonnegligible probabilities of Mahalanobis angles with high absolute
values suggest the presence of linearly separable clusters. Mardia [26] introduced Mahalanobis angles to help the
interpretation of its measure of multivariate skewness and kurtosis, while Juan and Prieto [11] used them for outlier
detection.

Unfortunately, both moments and the distribution of Mahalanobis distances do not seem to be analytically tractable.
We address the problem by replacing the denominator of a Mahalanobis angle with its expectation, that is the di-
mension of the random vector, and refer to this ratio as to the quasi-Mahalanobis angle. More formally, the quasi-
Mahalanobis angle between two random outcomes x and y from a p-dimensional distribution with mean µ and non-
singular covariance Σ is

(x − µ)⊤ Σ−1 (y − µ)
p

.

When the variance of (x − µ)⊤ Σ−1 (x − µ) gets smaller, that is when Mardia’s kurtosis gets closer to the squared
dimension of the random vector, the approximation of a Mahalanobis angle with a quasi-Mahalanobis angle improves.
In particular, Mahalanobis and quasi-Mahalanobis angles coincide whenever the support of the distribution is the p-
dimensional unit sphere, as it happens with the von Mises-Fisher distribution.

The mean, variance, skewness and kurtosis of quasi-Mahalanobis angles have a straightforward interpretation,
since

E
{
(x − µ)⊤ Σ−1 (y − µ)

}
= 0, E

[{
(x − µ)⊤ Σ−1 (y − µ)

}2
]
= p,

E
[{

(x − µ)⊤ Σ−1 (y − µ)
}3
]
= β1,M (x) , E

[{
(x − µ)⊤ Σ−1 (y − µ)

}4
]
= β2,K (x) .

The first two identities are derived in the proof of Theorem 1. The third and fourth moments of (x − µ)⊤ Σ−1 (y − µ)
are just Mardia’s skewness ([24]) and Koziol’s kurtosis, respectively. Koziol’s kurtosis is then p2 times the kurtosis
of a quasi-Mahalanobis angle of the corresponding distribution. Consistently with the interpretation of univariate kur-
tosis, high values of Koziol’s kurtosis indicate that extreme quasi-Mahalanobis angles may occur with nonnegligible
probability.

The following inequality highlights another connection between quasi-Mahalanobis angles and Koziol’s kurtosis.
It basically states that extreme values of the former are less likely to occur when the latter is low.

Theorem 1. Let x be a p−dimensional random vector with mean µ, nonsingular covariance Σ and finite fourth-order
moments. Also, let y be a random vector independent of x and identically distributed. Then the following inequality
holds true for any real value α > 1/

√
p:

Pr
{∣∣∣∣∣∣ (x − µ)⊤ Σ−1 (y − µ)

p

∣∣∣∣∣∣ ≥ α
}
≤ β2,K (x) − p2

α4 p4 − 2α2 p3 + β2,K (x)
.
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As mentioned before, Mahalanobis angles and quasi-Mahalanobis angles coincide when the support of the un-
derlying distribution is the p-dimensional unit sphere. When the same distribution is symmetric its Mardia’s kurtosis
equals p2 and therefore provides very little information on the distribution itself. Koziol’s kurtoses do not suffer from
the same limitation, due to their connections with quasi-Mahalanobis angles. We conclude that Mardia’s and Koziol’s
kurtoses complement each other and that the latter should be used when dealing with symmetric distributions on the
p-dimensional unit sphere, as for example the von Mises-Fisher distribution. Ley and Verdebout [18] thoroughly
review directional distributions and directional statistics. Koziol’s kurtoses and Mahalanobis angles also give some
insights into the interpretation of kurtosis as a measure of peakedness. Problems with this interpretation have been
discussed in the univariate case [4, 22] but not in the multivariate one. The examples and the theorems in this section
show that it is quite easy to compare the Mahalanobis angles of two symmetric distributions on the p-dimensional
unit sphere by means of Koziol’s kurtoses. On the other hand, there is not a natural and intuitive way to define the
peakedness of a distribution whose support is the p-dimensional unit sphere.

As remarked by several authors [3, 10] the interpretation of kurtosis is not straightforward. This is particularly true
for Koziol’s and Mardia’s kurtoses, whose algebraic nature gives only a limited geometric insight. As an example,
consider the fourth-order standardized moments which are components of Koziol’s, but not Mardia’s, measure of
multivariate kurtosis: E

(
ZiZ jZhZk

)
and E

(
Z2

i Z jZh

)
, where z =

(
Z1, ..., Zp

)⊤
is a p−dimensional random vector, the

indices i, j, h, k differ from each other and range from 1 to p. At present time, there is not a simple distributional
property associated to either low or high values of these components. The interpretation of kurtosis is even more
difficult in the presence of skewness, given the close connections between the two concepts. The problem has been
addressed with quantile-based measures of kurtosis ([10]) and with symmetrizing linear projections [20, 22] in the
univariate and the multivariate case, respectively. Unfortunately, the first approach is not easily generalizable to the
multivariate case, while the second approach implies some loss of information.

3. Representation

Koziol’s kurtoses admits several meaningful and useful representations. This section reviews them and shows a
new one. Koziol’s excess kurtosis γ2,K (x), that is the sum of all squared fourth-order cumulants, does not have a
straightforward interpretation in terms of quasi-Mahalanobis angles, but it may be recovered from Mardia’s kurtosis
β2,M (x), Koziol’s kurtosis β2,K (x) and the vector’s dimension p via the identity ([16])

β2,K (x) = γ2,K (x) + 6β2,M (x) − 6p − 3p2.

For example, Koziol’s excess kurtosis of the vector u defined in the previous section is

γ2,K (x) = cos (8ω) + 7 − 6 · 4 + 6 · 2 + 3 · 22 = cos (8ω) + 7,

which equals Koziol’s kurtosis, as it happens for all bivariate distributions whose support is an ellipse.
Both Mardia’s and Koziol’s kurtoses are simple functions of the fourth standardized moment matrix

M4,z = E
(
z ⊗ z⊤ ⊗ z ⊗ z⊤

)
,

where ⊗ denotes the Kronecker (tensor) product ([13]). For example, the fourth standardized moment matrix of u is
2 − sin2 (2ω) 0 0 sin2 (2ω)

0 sin2 (2ω) sin2 (2ω) 0
0 sin2 (2ω) sin2 (2ω) 0

sin2 (2ω) 0 0 2 − sin2 (2ω)

 .

Mardia’s kurtosis coincides with the trace of the fourth standardized moment ([14]) while Koziol’s kurtosis coincides
with the trace of the fourth squared standardized moment ([13]):

tr
(
M4,z

)
= β2,M (x) , tr

(
M2

4,z

)
= β2,K (x) .
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Similarly, Mardia’s excess kurtosis coincides with the trace of the fourth standardized cumulant while Koziol’s excess
kurtosis coincides with the trace of the fourth squared standardized cumulant:

tr
(
K4,z

)
= γ2,M (x) , tr

(
K2

4,z

)
= γ2,K (x) .

The fourth standardized cumulant is the p2 × p2 block matrix K4,z =
{
Kpq

}
where

Kpq =
∂4 log E

[
exp

(
ιt⊤z

)]
∂tp∂tq∂t∂t⊤

∣∣∣∣∣∣
t=0
.

Equivalently, the element in the i−th row and in the j−th column of the (h, k)−th block is the i jhk−cumulant κi jhk. For
example, the fourth standardized cumulant matrix of u is

−


sin2 (2ω) + 1 0 0 cos2 (2ω)

0 cos2 (2ω) cos2 (2ω) 0
0 cos2 (2ω) cos2 (2ω) 0

cos2 (2ω) 0 0 sin2 (2ω) + 1

 .

Computation of Koziol’s kurtosis and excess kurtosis with the above representations require the standardization of the
random vector. The fourth central moment and the fourth cumulant of x are the p2 × p2 matrices

M4,x = E
{
(x − µ) ⊗ (x − µ)⊤ ⊗ (x − µ) ⊗ (x − µ)⊤

}
, K4,x =M4,x − vec (Σ) vec⊤ (Σ) −

(
Ip2 + Cp,p

)
(Σ ⊗ Σ) ,

where Ip2 is the identity matrix of size p2, Cp,p is the p2× p2 Commutation matrix and vec (Σ) is the vectorization of Σ.
The matrices M4,x, K4,x and Σ−1 might be used to compute Koziol’s kurtoses of a random vector without standardizing
it, as shown in the following theorem.

Theorem 2. Let Σ, M4,x and K4,x be the nonsingular covariance matrix, the fourth central moment and the fourth
cumulant of the p-dimensional random vector x. Then Koziol’s kurtosis and Koziol’s excess kurtosis are

β2,K (x) = vec⊤
(
Σ−1

)
M4,x

(
Σ−1 ⊗ Σ−1

)
M4,xvec

(
Σ−1

)
,

γ2,d (x) = vec⊤
(
Σ−1

)
K4,x

(
Σ−1 ⊗ Σ−1

)
K4,xvec

(
Σ−1

)
.

Scalar functions of either the fourth standardized moment or the fourth standardized cumulant, such as Mardia’s
and Koziol’s kurtoses, may not retain enough information about the kurtosis structure of the underlying distribution.
Kollo [13] addressed the problem by summarizing these p2 × p2 matrices with the p × p matrix

B =
∑
i, j

E
(
ZiZ jzz⊤

)
,

that is the sum of the matrices Mi j = E
(
ZiZ jzz⊤

)
which constitute the blocks of the fourth standardized moment

M4,z =
{
Mi j

}
. For example, Kollo’s kurtosis matrix of u is

2
(

1 sin2 (2ω)
sin2 (2ω) 1

)
.

Its squared Euclidean norm is cos (8ω)−4 cos (4ω)+11 , cos (8ω)+7 = β2,K (u). Hence the distribution of u provides
a counter example to the incorrect statement β2,K (x) = ∥B∥2 which appears in Kollo [13].
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4. Inequalities

This section focuses on some inequalities between Koziol’s kurtoses and the measure of multivariate kurtosis in
Malkovich and Afifi [23] and the measure of multivariate skewness in Mardia [24]. It also investigates lower bounds
for Koziol’s kurtoses.

The following inequality holds true for a random variable X with mean µ, variance σ2 and finite fourth moment:

β2 (X) = E
{(X − µ
σ

)4}
≥ 1 + E2

{(X − µ
σ

)3}
= 1 + β1 (X) .

Its extensions to the multivariate case and to specific classes of multivariate distributions are thoroughly reviewed in
Ogasawara [32]. Special emphasis has been given to inequalities between Mardia’s (excess) kurtosis and measures
of multivariate skewness [14, 29, 32]. To the best of our knowledge, inequalities involving Koziol’s kurtosis and
measures of multivariate skewness have never been derived.

Mardia [24] generalized β1 (X), that is the square of the third standardized moment, to the multivariate case as
follows:

β1,M (x) = E
[{

(x − µ)⊤ Σ−1 (y − µ)
}3
]
,

where x and y are independent and identically distributed p−dimensional random vectors with mean µ, nonsingular
variance Σ and finite third-order moments. Several authors [14, 29, 32] independently showed that Mardia’s kurtosis
is never smaller than the sum of Mardia’s skewness and the vector’s dimension:

β2,M (x) ≥ β1,M (x) + p.

The following inequality shows that Mardia’s skewness of a random vector is never greater than the product of its
Koziol’s kurtosis and its dimension.

Theorem 3. Let x be a p-dimensional random vector with finite fourth moments and positive definite covariance
matrix. Then the squared Mardia’s skewness of x is never greater than p times its Koziol’s kurtosis:

β2
1,M (x) ≤ p · β2,K (x) .

Data projections achieving either maximal or minimal kurtosis appear in independent component analysis, projec-
tion pursuit, outlier detection, cluster analysis and normality testing (see [7]). Mardia’s kurtosis of a random vector is
never smaller than the maximum kurtosis achievable by a linear projection of the random vector itself ([6]). Similarly,
the following inequality shows that Koziol’s excess kurtosis is never smaller than Malkovich and Afifi’s kurtosis [23],
that is the maximum value of the squared fourth cumulant achievable by a linear projection of the random vector itself:

γ2,A (x) = sup
c∈Rp

0

γ2

(
c⊤x

)
,

where Rp
0 is the set of p-dimensional and nonnull real vectors ([23]).

Theorem 4. Let x be a p−dimensional random vector with finite fourth-order moments and positive definite covari-
ance matrix. Then Malkovich and Afifi’s kurtosis is not greater than Koziol’s excess kurtosis:

γ2,A (x) ≤ γ2,K (x) .

We illustrate the above inequality with the random vector u. An argument similar to the one in Franceschini and
Loperfido [7] implies that the fourth standardized cumulant of a linear projection of u might be represented as

−


cos2 θ

sin θ cos θ
sin θ cos θ

sin2 θ


⊤ 

sin2 (2ω) + 1 0 0 cos2 (2ω)
0 cos2 (2ω) cos2 (2ω) 0
0 cos2 (2ω) cos2 (2ω) 0

cos2 (2ω) 0 0 sin2 (2ω) + 1




cos2 θ
sin θ cos θ
sin θ cos θ

sin2 θ

 ,
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where θ ∈ [0, 2π] is a real vaue. It might be simplified into

cos (4θ − 4ω) + cos (4θ + 4ω) − 6
4

,

whose square is always smaller than the Koziol’s kurtosis of u, consistently with the inequality in Theorem 4:{
cos (4θ − 4ω) + cos (4θ + 4ω) − 6

4

}2

< 7 + cos (8ω) .

We conclude this section with a remark on a lower bound for Koziol’s kurtosis. Results in the previous section
imply that the kurtosis of a quasi-Mahalanobis angle is

β2

{
(x − µ)⊤ Σ−1 (y − µ)

p

}
=

E
[{

(x − µ)⊤ Σ−1 (y − µ)
}4
]

E2
[{

(x − µ)⊤ Σ−1 (y − µ)
}2
] = β2,K (x)

p2 .

Since univariate kurtosis is never smaller than one, Koziol’s kurtosis of a random vector is never smaller than the
squared dimension of the random vector itself. Equality holds true if and only if the distribution assigns equal proba-
bility to the two real vectors with identical norm which constitute its support.

5. Models

This section derives analytical expressions for Koziol’s kurtosis and Koziol’s excess kurtosis of two well-known
statistical models, thus providing a better insight into their connections with Mardia’s kurtosis, as well as into their
relative merits for testing nonnormality.

Independent component analysis (ICA) is a multivariate statistical technique aimed at recovering independent,
unobserved signals by appropriate data projections. Default ICA methods rely on multivariate kurtosis ([28]). The
basic ICA model is x = b + As, where x is a p-dimensional random vector, b is a p-dimensional real vector, A is a
p × p invertible real matrix and the components of s =

(
S 1, ..., S p

)⊤
are mutually independent, standardized random

variables of which at most one is normal ([28]). The following theorem connects Koziol’s kurtosis of x, Koziol’s
excess kurtosis of x and Mardia’s kurtosis of x.

Theorem 5. Let β2 (S 1),..., β2

(
S p

)
be the fourth standardized moments of the mutually independent random variables

S 1,..., S p. Also, let x be an affine, one-to-one transformation of s =
(
S 1, ..., S p

)⊤
: x = b + As, where b is a p-

dimensional real vector and A is a p × p matrix of full rank. Then Koziol’s kurtosis, Mardia’s kurtosis and Koziol’s
excess kurtosis of x are

β2,K (x) = 3p (p − 1) +
p∑

i=1

β2
2 (S i) , β2,M (x) = p (p − 1) +

p∑
i=1

β2 (S i) , γ2,K (x) =
p∑

i=1

{β2 (S i) − 3}2 .

The above results allow for a better insight into the limitations of β2,M , β2,K and γ2,K when checking normality.
Let S 1 and S 2 be two independent random variables whose distribution is

Pr (S i = −1) = P (S i = 1) =
1

2αi
, Pr (S i = 0) = 1 − 1

αi
,

where αi ≥ 1 and i ∈ {1, 2}. The first four moments of S i are

E (S i) = E
(
S 3

i

)
= 0, E

(
S 2

i

)
= E

(
S 4

i

)
=

1
αi

,
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so that the kurtosis of S i is β2 (S i) = αi. Also, let

X1 = b1 + a11S 1 + a12S 2, X2 = b2 + a21S 1 + a22S 2,

where b1, b2, a11, a12, a21, a22 ∈ R and a11a22 , a12a21. Mardia’s kurtosis, Koziol’s kurtosis and Koziol’s excess
kurtosis of x = (X1, X2)⊤ are

β2,M (x) = α1 + α2 + 2, β2,K (x) = α2
1 + α

2
2 + 6 and γ2,K (x) = (α1 − 3)2 + (α2 − 3)2 .

Despite x being a nonnormal random vector, these measures of multivariate kurtosis equal the values of the corre-
sponding measures for a bivariate normal random vector when α1 + α2 = 6, α2

1 + α
2
2 = 18 and α1 = α2 = 3. However,

β2,M (x) and β2,K (x) might equal Mardia’s kurtosis and Koziol’s kurtosis of a bivariate normal random vector if some
fourth-order cumulants of x differ from zero, while the same does not happen with γ2,K (x).

The probability density function of an extended skew-normal distribution (ESN) is

ϕd (x; ξ,Ω)
Φ (τ)

Φ
(
τ
√

1 + α⊤Ωα + α⊤x − α⊤ξ
)

,

where Φ (·) is the cumulative distribution function of a standard normal distribution and ϕd (x; ξ,Ω) is the probability
density function of a p-dimensional normal distribution with mean ξ and nonsingular variance Ω. The parameters α
and τ are a real p-dimensional vector and a real scalar, respectively ([2]). We write x ∼ ESN (ξ,Ω,α, τ) to denote a
p-dimensional random vector with the above probability density function, which is normal if and only if α is a null
vector. The following theorem shows that Koziol’s excess kurtosis of an extended skew-normal random vector is just
the square of its Mardia’s excess kurtosis.

Theorem 6. Let γ2,M (x) and γ2,K (x) be Mardia’s and Koziol’s excess kurtoses of an extended skew-normal random
vector x ∼ ESN (ξ,Ω,α, τ). Then the following identities hold true:

γ2,K (x) = γ2
2,M (x) = ζ2

4 (τ)
{

δ⊤Ω−1δ

1 + ζ2 (τ) δ⊤Ω−1δ

}4

,

ζ2 (τ) =
∂2 logΦ (τ)
∂2τ

ζ4 (τ) =
∂4 logΦ (τ)
∂4τ

, δ =
Ωα

√
1 + α⊤Ωα

and Φ (·) denotes the cumulative distribution function of a standard normal random variable.

6. Simulations

The paper by Best and Rayner [5] contains the only simulation study assessing the performance of Koziol’s excess
kurtosis as a test statistic for multivariate normality. It is limited to the bivariate case and comparisons are made
only with respect to Mardia’s kurtosis test for normality. To the best of our knowledge, the kurtosis-based tests for
multivariate normality proposed by Mardia [24], Malkovich and Afifi [23], Koziol [15] and Koziol [16], have never
been compared by means of simulation studies. This section addresses the problem within the framework of skew-
normal distributions and independent components models.

Best and Rayner [5] simulated 5000 samples of size not greater than 50 from several bivariate, nonnormal dis-
tributions and compared the powers of several tests for bivariate normality, including those based on Koziol’s excess
kurtosis and Mardia’s kurtosis. They concluded that the former should be preferred over the latter. The simulation
study in this section overcomes several limitations of the one in [5]. First, it addresses multivariate normality in di-
mensions higher than two. Second, it uses sample sizes greater than 50. Third, it also considers the performance of
Malkocich and Afifi’s kurtosis test of multivariate normality.

We simulated 10000 samples of n = 25, 50, 75, 100 units and p = 2, 4, 6, 8, 10 variables from the skew-normal
distribution and from an ICA model. The parameters indexing the sampled densities have been chosen to account
for different degrees of nonnormality. For each sample we computed the test statistics of Koziol’s excess kurtosis,
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Koziol’s kurtosis, Mardia’s kurtosis and Malkovich and Afifi’s kurtosis tests of multivariate normality. Finally, for
each combination of units, variables and parameters we computed the percentage of sample rejected at the 0.05 level
by the four tests.

First we simulated from the skew-normal distribution S Np

(
0p, Ip, α1p

)
, where 0p, Ip and α1p are the p-dimensional

null vector, the p-dimensional identity matrix and the p-dimensional vector of ones. The parameter α has been set
equal to either 5, 15 or 25 to account for increasing degrees of kurtosis. Next we simulated from the ICA model
x = As, where A is the product of a Helmert matrix and a diagonal matrix, s is a p-dimensional random vector whose
i-th component is a chi-square random variable with ωi degrees of freedom (ω = 20, 40, 60), with higher degrees of
freedom leading to higher kurtoses.

Tables 1 and 2 report the simulations’ results, which are very similar to each other and might be summarized
as follows. For each combination of units, variables and parameters the percentages of rejected samples do not
change much from one test to another and no test is uniformly most powerful. The performances of the tests improve
when the number of units increase and the number of variables decrease. The powers of the tests increase with the
nonnormality of the sampled distribution, but only slightly so. Finally, the present simulations suggest that the four
tests are unbiased.

7. Conclusion

This paper reviews and investigates the properties of Koziol’s measures of multivariate kurtosis. Koziol’s kurtoses
are invariant with respect to one-to-one affine transformations. They are strictly related to Mahalanobis angles and
might be meaningfully represented by means of the fourth standardized moment and cumulant matrices. Moreover,
Koziol’s kurtosis might be represented as a quadratic form involving the concentration matrix and the fourth central
moment matrix. Koziol’s kurtoses are related to other skewness and kurtosis measures by means of inequalities.
Finally, they have simple analytical expressions in some well-known statistical models.

Despite their merits, Koziol’s kurtoses suffer from several limitations. They are not defined for distributions whose
fourth moments do not exist, as it might happen for the multivariate Pareto distribution ([34]). Moreover, Koziol’s
kurtoses might be unable to detect nonnormality, as it happens for the shape mixture of skew-normal distributions
described in Loperfido [19]. Finally, Yanagihara [37] pointed out some limitations of the kurtosis measure in Koziol’s
kurtosis when estimating the residuals’ kurtosis, within the framework of a multivariate, nonnormal regression model.

We recommend the joint use of Koziol’s and Mardia’s kurtoses in order to have a better insight into data structures.
In the first place, Mardia’s and Koziol’s kurtoses are strictly related to large sample values of Mahalanobis distances
and angles, which might be used to detect outliers ([11]). In the second place Koziol’s kurtosis might be able to
detect nonnormality when Mardia’s kurtosis does not and vice versa, as illustrated in Section 5 with a simple ICA
example. In the third place, they appear together when testing for multivariate normality ([27]). However, Koziol’s
and Mardia’s tests for multivariate normality should be used cautiously. As remarked by Henze [9], any test for
multivariate normality should be affine invariant as well as consistent. Koziol’s and Mardia’s measures fail to satisfy
the latter property, even when used together with skewness measures as test statistics for multivariate normality.

The simulations studies in this paper are limited to two parametric families of multivariate distributions. Simu-
lations studies with other distributions are needed to assess, understand and compare the performances of the main
kurtosis-based tests for multivariate normality. A simulation study might consider a multivariate, symmetric and
unimodal distribution, as for example the multivariate t distribution. Another simulation study might consider a mul-
tivariate, possibly skewed and multimodal distribution, as for example the multivariate beta distribution. Follow-up
studies might consider hybrid approaches based on both distributions. The interpretation of simulations’ results is
easier when Koziol’s and Mardia’s kurtoses of the simulated distributions have symple analytical forms, as it is likely
to happen with the multivariate t and beta distributions, since their higher moments have simple analytical forms, too.
We hope that this paper will encourage further research along this line.
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Table 1: Integer parts of the percentages of skew-normal samples rejected at the 0.05 level by Koziol’s test of excess kurtosis (γ2,K ), Koziol’s
kurtosis test (β2,K ), Mardia’s kurtosis test (β2,M) and Malkovich and Afifi’ kurtosis test (γ2,A) for n = 25, 50, 75, 100 units, p = 2, 4, 6, 8, 10
variables and parameter’s values α = 5, 15, 25.

Units Variables α = 5 α = 15 α = 25

25

2
4
6
8

10

γ2,K β2,K β2,M γ2,A

11 11 10 11
8 8 7 8
7 7 6 6
6 5 5 6
5 5 5 5

γ2,K β2,K β2,M γ2,A

12 11 11 11
8 8 7 8
8 8 7 7
6 6 6 6
5 5 5 5

γ2,K β2,K β2,M γ2,A

11 11 11 11
8 8 7 8
7 6 7 6
6 6 6 6
5 5 5 5

50

2
4
6
8

10

15 15 15 15
11 11 11 11
9 9 8 8
8 7 8 7
7 7 7 7

17 18 17 17
11 11 10 11
9 9 9 9
8 8 7 6
7 6 6 6

17 18 17 17
11 11 10 11
9 9 9 9
8 8 7 6
7 6 6 6

75

2
4
6
8

10

20 20 19 20
13 13 12 13
10 10 9 10
8 8 7 7
8 8 7 7

21 22 21 22
14 14 12 14
11 11 10 11
9 9 9 8
8 8 7 7

21 22 20 22
14 14 13 13
11 11 10 11
8 9 8 8
8 8 7 7

100

2
4
6
8

10

22 24 21 24
16 15 14 15
12 12 11 12
9 10 9 9
9 8 8 7

24 25 23 26
17 17 15 17
12 12 11 12
9 9 9 8
8 8 8 7

24 25 23 26
17 17 15 17
13 13 11 12
9 10 9 9
8 8 9 8
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Table 2: Integer parts of the percentages of ICA samples rejected at the 0.05 level by Koziol’s test of excess kurtosis (γ2,K ), Koziol’s kurtosis test
(β2,K ), Mardia’s kurtosis test (β2,M) and Malkovich and Afifi’ kurtosis test (γ2,A) for n = 25, 50, 75, 100 units, p = 2, 4, 6, 8, 10 variables and
parameter’s values ω = 20, 40, 60.

Units Variables ω= 20 ω= 40 ω= 60

25

2
4
6
8

10

γ2,K β2,K β2,M γ2,A

7 7 7 7
7 7 6 7
6 6 6 6
6 6 5 5
5 5 5 6

γ2,K β2,K β2,M γ2,A

6 6 6 6
6 6 5 5
6 6 6 6
5 5 5 5
5 5 5 5

γ2,K β2,K β2,M γ2,A

5 5 5 5
5 6 5 5
5 5 6 5
5 5 5 5
5 5 5 5

50

2
4
6
8

10

10 10 10 10
10 9 9 9
8 8 8 8
7 7 7 6
7 6 6 6

7 7 7 7
7 7 7 7
6 6 6 6
5 5 6 5
6 5 6 5

6 7 7 6
6 6 6 6
6 5 6 5
5 5 5 4
5 5 5 5

75

2
4
6
8

10

13 13 13 14
11 10 10 10
10 10 9 9
8 8 8 6
7 7 7 7

9 9 9 9
8 8 8 8
7 7 6 7
6 6 6 6
6 6 6 6

7 7 7 8
7 7 6 7
6 6 6 6
5 5 5 5
5 5 5 5

100

2
4
6
8

10

14 15 14 15
12 12 12 12
11 11 11 10
9 9 8 7
8 8 8 7

9 9 8 10
8 8 7 8
8 7 7 7
6 6 6 5
6 6 6 5

7 8 7 8
7 6 7 6
7 7 7 6
5 6 5 5
6 5 6 5
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Appendix

Proof of Theorem 1. Let z = Σ−1/2 (x − µ) and w = Σ−1/2 (y − µ) be the standardization of x and y, where Σ−1/2

is the positive definite symmetric square root of the concentration matrix Σ−1. Also, let E2 (X) denote the squared
expectation of the random variable X: E2 (X) = {E (X)}2. The following identities are direct implications of z and w
being independent, standardized, p-dimensional random vectors:

E
(
z⊤w

)
= E

 p∑
i=1

ZiWi

 = p∑
i=1

E (ZiWi) =
p∑

i=1

E (Zi) E (Wi) =
p∑

i=1

E2 (Zi) = 0,

E
{(

z⊤w
)2
}
=

p∑
i, j=1

E
(
ZiWiZ jW j

)
=

p∑
i, j=1

E
(
ZiZ j

)
E

(
WiW j

)
=

p∑
i=1

E
(
Z2

i

)
E

(
W2

i

)
= p.

From Ogasawara [33] we know that the inequality

Pr (|U | ≥ λ) ≤
E

(
U4

)
− 1

λ4 − 2λ2 + E
(
U4)

holds true for a standard random variable U and a real value λ not smaller than one: E (U) = 0, E
(
U2

)
= 1, λ ≥ 1. By

assumption α > 1/
√

p and z⊤w/√p is a standard random variable. Hence we might let U = z⊤w/√p and λ = α
√

p
to obtain

Pr
(∣∣∣∣∣∣z⊤w
√

p

∣∣∣∣∣∣ ≥ α√p
)
≤

E
{(

z⊤w/√p
)4
}
− 1(

α
√

p
)4 − 2

(
α
√

p
)2
+ E

{(
z′w/√p

)4
} = E

{(
z⊤w

)4
}
− p2

α4 p4 − 2α2 p3 + E
{
(z⊤w)4

} .

The definitions of z and w, together with the results in Koziol [16] imply the identities z⊤w = (x − µ)⊤ Σ−1 (y − µ)
and β2,K (x) = E

{(
z⊤w

)4
}
. Thus

Pr
{∣∣∣∣∣∣ (x − µ)⊤ Σ−1 (y − µ)

p

∣∣∣∣∣∣ ≥ α
}
≤ β2,K (x) − p2

α4 p4 − 2α2 p3 + β2,K (x)
.

Proof of Theorem 2. Let z = Σ−1/2 (x − µ) be the standardized version of x, where µ is the mean of x and Σ−1/2

is the symmetric, positive definite square root of the concentration matrix Σ−1. Koziol’s kurtosis of x coincides with
the trace of the squared fourth moment of z ([13]): β2,K (x) = tr

(
M2

4,z

)
. The trace of the fourth moment M4,w of

any p-dimensional random vector w admits the representation vec⊤
(
Ip

)
M4,wvec

(
Ip

)
, where Ip is the p-dimensional

identity matrix. Also, the fourth moment of Qw is (Q ⊗Q) M4,w
(
Q⊤ ⊗Q⊤

)
, where Q is a k × p real matrix ([6]).

Hence the fourth moment M4,z of z is a simple function of the fourth moment of y = x − µ, i.e. the fourth central
moment of x:

M4,z =
(
Σ−1/2 ⊗ Σ−1/2

)
M4,x

(
Σ−1/2 ⊗ Σ−1/2

)
.

Hence Koziol’s kurtosis of x might be represented as

vec⊤
(
Ip

) (
Σ−1/2 ⊗ Σ−1/2

)
M4,x

(
Σ−1/2 ⊗ Σ−1/2

) (
Σ−1/2 ⊗ Σ−1/2

)
M4,x

(
Σ−1/2 ⊗ Σ−1/2

)
vec

(
Ip

)
.

We recall a fundamental property of the Kronecker product and the vectorization operator (see [35], 201): vec (ABC) =(
C⊤ ⊗ A

)
vec (B), where A ∈ Rp ×Rq, B ∈ Rq ×Rr and C ∈ Rr ×Rs. This property and the identity Σ−1/2Σ−1/2 = Σ−1

imply
vec

(
Σ−1

)
=

(
Σ−1/2 ⊗ Σ−1/2

)
vec

(
Ip

)
and vec

(
Σ−1

)
= vec⊤

(
Ip

) (
Σ−1/2 ⊗ Σ−1/2

)
.

The identity (A1 ⊗ A2) (A3 ⊗ A4) = A1A3 ⊗ A2A4, where A1 ∈ Rp × Rq, A2 ∈ Rs × Rt, A3 ∈ Rq × Rv, A4 ∈ Rt × Ru
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(see [35], 194) implies (
Σ−1/2 ⊗ Σ−1/2

) (
Σ−1/2 ⊗ Σ−1/2

)
=

(
Σ−1 ⊗ Σ−1

)
.

Hence we have
β2,K (x) = vec⊤

(
Σ−1

)
M4,x

(
Σ−1 ⊗ Σ−1

)
M4,xvec

(
Σ−1

)
and this completes the first part of the proof. The second part of the proof is very similar. It suffices to recall that
γ2,K (x) = tr

(
K2

4,z

)
and that the fourth cumulant of Qw is (Q ⊗Q) K4,w

(
Q⊤ ⊗Q⊤

)
.

Proof of Theorem 3. Let µ and Σ be the mean vector and the covariance matrix of x. Also, let y be a random
vector independent of x and identically distributed. Finally, let z = Σ−1/2 (x − µ) and w = Σ−1/2 (y − µ) be the
standardization of x and y, where Σ−1/2 is the positive definite symmetric square root of Σ. We shall first apply the
Cauchy-Schwarz inequality:

E2
{(

z⊤w
)3
}
= E2

{(
z⊤w

)2 (
z⊤w

)}
≤ E

{(
z⊤w

)4
}

E
{(

z⊤w
)2
}
.

According to [25] and [16] Mardia’s skewness and Koziol’s kurtosis of x might be represented as β1,M (x) = E
{(

z⊤w
)3
}

and β2,K (x) = E
{(

z⊤w
)4
}
. Then the above inequality might be restated as

β2
1,M (x) ≤ β2,K (x) E

{(
z⊤w

)2
}
.

Let u =
(
U1, ...,Up

)⊤
be a random vector whose i-th component is Ui = WiZi, so that

E (Ui) = 0, E
(
U2

i

)
= 1, E

(
UiU j

)
= 0, z⊤w = U1 + ... + Up.

The second moment of z⊤w is then

E
{(

z⊤w
)2
}
=

p∑
i=1

E
(
U2

i

)
+ 2

p∑
i=1

∑
j,i

E (Ui) E
(
U j

)
= p.

As a direct consequence, we can write β2
1,M (x) ≤ p · β2,K (x) and complete the proof.

Proof of Theorem 4. By definition, Malkovich and Afifi’s kurtosis of x is, see [23],

γ2,A (x) = sup
c∈Rp

0

γ2
2

(
c⊤x

)
,

where Rp
0 is the set of p-dimensional and nonnull real vectors . It is invariant with respect to one-to-one affine

transformations, so that
γ2,A (x) = sup

u∈Sp−1
γ2

2

(
u⊤z

)
,

where Sp−1 is the set of p-dimensional real vectors with unit norm, z = Σ−1/2 (x − µ) is the standardization of x,
µ is the mean of x and Σ−1/2 positive definite symmetric square root of the concentration matrix Σ−1. The fourth
cumulant of Ax + b is (A ⊗ A) K4,x

(
A⊤ ⊗ A⊤

)
, where K4,x is the fourth cumulant of x, A is k × p real matrix and b is

a k-dimensional real vector. The Malkovich and Afifi’s kurtosis of x is then

γ2,A (x) = sup
u∈Sp−1

{
(u ⊗ u)⊤K4,z (u ⊗ u)

}2
.

Koziol’s excess kurtosis of x might be represented as the trace of its squared fourth standardized cumulant: γ2,K (x) =
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tr
(
K2

4,z

)
. Let λ be the dominant eigenvalue of K4,z, that is its eigenvalue with maximum modulus:

λ2 = sup
v∈Sp2−1

(
v⊤K4,zv

)2
,

where Sp2−1 is the set of p2-dimensional real vectors with unit norm. Let w be a real, p-dimensional vector with unit
norm, so that w ⊗ w is a p2-dimensional real vector with unit norm: w ∈ Sp−1 and w ⊗ w ∈ Sp2−1. Then the following
inequality holds: {

(w ⊗ w)⊤K4,z (w ⊗ w)
}2 ≤ λ2.

As a direct consequence, the Malkovich and Afifi’s kurtosis of x is never greater than λ2: γ2,A (x) ≤ λ2. The scalar
λ2 is an eigenvector of the symmetric, positive semidefinite matrix K2

4,z. Therefore λ2 never exceeds the trace of K2
4,z:

λ2 ≤ tr
(
K2

4,z

)
. By definition, Koziol’s excess kurtosis of x is the sum of all squared fourth-order cumulants of z, that

is the trace of K2
4,z: γ2,K (x) = tr

(
K2

4,z

)
. This identity and the above inequalities imply that the Malkovich and Afifi’s

kurtosis of x is never greater than its Koziol’s excess kurtosis, γ2,A (x) ≤ γ2,K (x).

Proof of Theorem 5. Without loss of generality we can assume that S 1,..., S p are standardized random variables,
so that E(x) = b = µ and cov (x) = AA⊤ = Σ. Also, let y = b + Az, where z =

(
Z1, ..., Zp

)⊤
is a random vector

independent of s and identically distributed. Finally, let x̃ = Σ−1/2 (x − µ) and ỹ = Σ−1/2 (y − µ) be the standardization
of x and y, where Σ−1/2 is the positive definite symmetric square root of Σ. It was shown in [16] that Koziol’s kurtosis
of x might be represented as

β2,K (x) = E
{(̃

x⊤ỹ
)4
}
.

Simple matrix algebra, together with the above definitions, lead to the identities

x̃⊤ỹ = (x − µ)⊤ Σ−1/2Σ−1/2 (y − µ) = (As)⊤
(
AA⊤

)−1
Az = s⊤z.

Let w =
(
W1, ...,Wp

)⊤
be a random vector whose i-th component is Wi = S iZi, so that s⊤z = W1 + ... +Wp. First we

expand the fourth power of s⊤z into the sum of products of four elements of w:

(
s⊤z

)4
=

p∑
i=1

W4
i + 4

p∑
i=1

∑
j,i

W3
i W j + 3

p∑
i=1

∑
j,i

W2
i W2

j .

Next, we shall take expectations and recall that the components of w are mutually independent:

E
{(

s⊤z
)4
}
=

p∑
i=1

E
(
W4

i

)
+ 4

p∑
i=1

∑
j,i

E
(
W3

i

)
E

(
W j

)
+ 3

p∑
i=1

∑
j,i

E
(
W2

i

)
E

(
W2

j

)
. (a)

By assumption s and z are independent and identically distributed random vectors whose components are mutually
independent and standardized random variables. Hence the mean, the variance and the kurtosis of Wi are

E (Wi) = 0, E
(
W2

i

)
= 1, E

(
W4

i

)
= β2

2 (S i) .

The expectation in the right-hand side of (a) might then be simplified into

E
{(

s⊤z
)4
}
=

p∑
i=1

β2
2 (S i) + 3p (p − 1) ,

which equals Koziol’s kurtosis, and this completes the first part of the proof.
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By definition, Mardia’s kurtosis of x is

β2,M (x) = E
[{

(x − µ)⊤ Σ−1 (x − µ)
}2
]
.

Mardia’s kurtosis is invariant with respect to affine, one-to-one transformations:

β2,M (x) = E
{(

s⊤s
)2
}
=

p∑
i=1

p∑
j=1

E
(
S 2

i S 2
j

)
=

p∑
i=1

E
(
S 4

i

)
+

p∑
i=1

p∑
j,i

E
(
S 2

i S 2
j

)
.

By assumption, S 1,..., S p are independent and standardized random variables whose fourth moments are β2 (S 1),...,
β2

(
S p

)
, thus implying the identities

β2,M (x) =
p∑

i=1

E
(
S 4

i

)
+

p∑
i=1

p∑
j,i

E
(
S 2

i

)
E

(
S 2

j

)
=

p∑
i=1

β2 (S i) + p (p − 1) .

We shall now prove the third part of the the theorem. The identity β2,K (x) = γ2,K (x)+ 6β2,M (x)− 6p− 3p2 ([16]) and
the results in the previous part of the proof imply the following:

γ2,K (x) = β2,K (x) − 6β2,M (x) + 6p + 3p2 =

p∑
i=1

β2
2 (S i) + 3p (p − 1) − 6

p∑
i=1

β2 (S i) − 6p (p − 1) + 6p + 3p2

=

p∑
i=1

β2
2 (S i) − 6

p∑
i=1

β2 (S i) + 9p =
p∑

i=1

{β2 (S i) − 3}2 .

Proof of Theorem 6. The mean, the variance and the fourth cumulant of an extended skew-normal random vector
x ∼ ESN (ξ,Ω,α, τ) are

µ = ξ + δζ1 (τ) and Σ = Ω + ζ2 (τ) δδ⊤, K4,x = ζ4 (τ) δ ⊗ δ⊤ ⊗ δ ⊗ δ⊤,

where (see [1])

ζi (τ) =
∂i logΦ (τ)
∂iτ

, δ =
Ωα

√
1 + α⊤Ωα

.

The multivariate extended skew-normal class is closed under affine transformations, so that the distribution of the
standardized random vector z = Σ−1/2 (x − µ) is also extended skew-normal distributed: z ∼ ESN (ξz,Ωz,αz, τ), with

δz =
Ωzαz√

1 + α⊤z Ωzαz
= Σ−1/2δ.

The Kronecker product is associative: (A ⊗ B) ⊗C = A ⊗ (B ⊗ C) = A ⊗ B ⊗C ([35], page 194). Also, if a and b are
two vectors, then ab⊤, a ⊗ b⊤ and b⊤ ⊗ a denote the same matrix ([35], page 199). Hence the fourth cumulant of z is

K4,z = ζ4 (τ) δz ⊗ δ⊤z ⊗ δz ⊗ δ⊤z = ζ4 (τ)
(
δz ⊗ δ⊤z

)
⊗

(
δz ⊗ δ⊤z

)
= ζ4 (τ)

(
δ⊤z δz

)
⊗

(
δzδ
⊤
z

)
.

Mardia’s excess kurtosis of x is just the trace of its fourth standardized cumulant K4,z. Also, the trace of the Kronecker
product of two square matrices is the product of their traces ([35], page 195). We can then write

γ2,M (x) = tr
{
ζ4 (τ)

(
δzδ
⊤
z

)
⊗

(
δzδ
⊤
z

)}
= ζ4 (τ)

(
δ⊤z δz

)2
.
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Mardia’s excess kurtosis of x is (see [1])

γ2,M (x) = ζ4 (τ)
{

δ⊤Ω−1δ

1 + ζ2 (τ) δ⊤Ω−1δ

}2

,

The squared fourth standardized cumulant of x might be represented as follows, by recalling that for matrices A, B, C
and D of appropriate size, the identity (A ⊗ B) (C ⊗ D) = AC ⊗ BD holds true ([35], page 194):

K2
4,z = ζ

2
4 (τ)

{(
δzδ
⊤
z

)
⊗

(
δzδ
⊤
z

)} {(
δzδ
⊤
z

)
⊗

(
δzδ
⊤
z

)}
= ζ2

4 (τ)
{(
δzδ
⊤
z δzδ

⊤
z

)
⊗

(
δzδ
⊤
z δzδ

⊤
z

)}
= ζ2

4 (τ)
(
δ⊤z δz

)2 {(
δzδ
⊤
z

)
⊗

(
δzδ
⊤
z

)}
.

Koziol’s kurtosis of x is just the trace of its squared fourth standardized cumulant. The above identities imply the
following relations:

γ2,K (x) = tr
(
K2

4,z

)
= ζ2

4 (τ)
(
δ⊤z δz

)4
= γ2

2,M (x) = ζ2
4 (τ)

{
δ⊤Ω−1δ

1 + ζ2 (τ) δ⊤Ω−1δ

}4

.
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