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Abstract

We analyse an elliptic equation with critical growth set on a d-dimensional (d ≥ 3) Hadamard manifold 
(M, g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions 
invariant under the action of a specific family of isometries. Our result remains valid when the original 
nonlinearity is singularly perturbed. Preserving the same variational approach, but considering other groups 
of isometries, we finally show that when M = Rd , d > 3, and the nonlinearity is odd, there exist at least 
(−1)d +

[
d−3

2

]
pairs of sign-changing solutions.
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1. Introduction

In the present paper we address the existence and multiplicity of solutions to the problem

−�gw + w = |w| 4
d−2 w + λα(σ)f (w), σ ∈M, w ∈ H 1

g (M), (Pλ)
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where (M, g) is a d-dimensional, d ≥ 3, Hadamard manifold, �g is the usual Laplace-Beltrami 
operator on (M, g), expressed in local coordinates (x1, . . . , xd) by

�gw := gij

(
∂2w

∂xi∂xj

− �k
ij

∂w

∂xk

)
,

(�k
ij denotes as usual the Christoffel’s symbols), the function α : M → R satisfies suitable inte-

grability and symmetry conditions, λ is a positive real parameter and f : R → R plays the role 
of a subcritical perturbation.

It is immediate to recognise in (Pλ) a Yamabe-type equation, though set in a non-compact 
framework and subcritically perturbed. As largely known, the Yamabe problem on a compact d-
dimensional (d > 2) boundaryless Riemannian manifold (M, g), consists in finding a metric g̃
on M with constant scalar curvature k̃ and pointwise conformal to g. If one sets g̃ := w4/(d−2)g, 
where w > 0 is the conformal factor, the existence of such a metric is equivalent to the existence 
of a positive solution to the semilinear equation

−�gw + d − 2

4(d − 1)
k(σ )w = k̃w

d+2
d−2 . (1)

The resolution of (1), obtained by techniques spanning differential geometry, functional analysis 
and partial differential equations, was obtained by the efforts, in chronological order, of Yamabe 
[1], Trudinger [2], Aubin [3] and Schoen [4].

Passing from the compact to the non-compact framework, the situation, as expected, gets 
much more delicate and, as shown by Jin [5], it is possible to exhibit examples of complete 
non-compact manifolds for which the Yamabe problem does not have any solution. The lit-
erature on the subject contains only partial results, mainly related to the case of non-positive 
scalar curvature, and the issue of the existence is not settled in full generality. Among the papers 
which require the non-positivity of the scalar curvature, it is worth mentioning [6] by Aviles and 
McOwen. In [7] and [8], Kim introduced the so-called Yamabe constant at infinity to deal with 
the non-compact Yamabe problem on manifolds of positive scalar curvature and his existence 
result was later improved in [9]. Other interesting contributions in which no explicit assumptions 
on the curvature are required, are instead [10–12]. In particular, in the recent [11], instead of as-
suming the positivity of the scalar curvature, the author requires the infimum of the L2-spectrum 
of the conformal Laplacian with respect to the complete metric g to be positive. We also point 
out that recent results for parametric equations and systems related to (1) have been established 
in [13] and [14], where, by Liapunov-Schmidt reduction procedures, concentration phenomena 
of positive solutions are investigated as the parameter approaches zero.

In this paper, still working in the non-compact setting, we basically perturb equation (1) by 
a subcritical term which, as shown later, may very well include singularities, and focus on the 
existence and multiplicity of solutions to (Pλ) by variational techniques. The main obstruction 
in this direction is evidently represented by the loss of compactness which we try to regain by 
investigating the presence of group symmetries. If G is a compact subgroup of isometries of a 
non-compact homogeneous Riemannian manifold (M, g), Skrzypczak and Tintarev [15] have 
recently proved that, under very general conditions, the G-invariant subspace of a normed vector 
space embeds compactly into Lp(M), p ∈ (1, ∞), if and only if G is coercive, i.e. has no orbits 
with a uniformly bounded diameter in a neighbourhood of infinity (see [15, Theorem 1.3]). As 
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a plain consequence of this result, if G fixes only a point σ0 ∈ M, the subspace of the functions 
radially symmetric with respect to σ0 is still compactly embedded in Lp(M).

As said at the beginning, we restrict our attention to a class of manifolds for which the group 
G meeting the last condition can be made explicit in several cases, i.e. to Hadamard manifolds 
(complete, simply connected and with everywhere non-positive sectional curvature). By virtue 
of Cartan-Hadamard’s theorem, every Hadamard manifold (M, g) is diffeomorphic to Rd , d =
dimM, but there exist other interesting geometric objects having this structure, for instance, the 
hyperbolic space and the cone of symmetric positive-definite matrices endowed with a suitable 
metric, as shown in the next section; see also [16] and the references therein.

Settled the compactness issue by means of this group-theoretical approach, we are going to 
apply variational techniques to establish existence and multiplicity of solutions to (Pλ). The main 
ingredients are a local lower semicontinuity property of the energy, which opens the way for the 
direct minimization, and some estimates for the functional

w �→
sup

‖z‖≤�

Ẽλ(z) − Ẽλ(w)

�2 − ‖w‖2 , w ∈ H 1
g (M), (2)

where � > 0 is small enough, ‖·‖ is the standard norm on H 1
g (M) and

Ẽλ(w) := d − 2

2d

∫
M

|w| 2d
d−2 dσg + λ

∫
M

α(σ)

⎛⎝ w∫
0

f (s)ds

⎞⎠dσg,

for all w ∈ H 1
g (M). By assuming that the nonlinearity f is merely subcritical and with an appro-

priate asymptotic behaviour at 0, and that λ falls within the positive range of a suitable rational 
function, we prove that the energy associated with (Pλ) and restricted to the subspace of H 1

g (M)

of the G-symmetric functions, admits a local minimum. Palais’ principle of symmetric criticality 
allows us finally to get our existence result. This approach can be traced, for instance, to the 
recent papers [17–19], where it has been applied in different contexts and, in particular, to [20]
where the compact counterpart of problem (Pλ) has been discussed.

In what follows, just to give a concrete example of our main result, we formulate it in a quite 
common framework, i.e. the hyperbolic space Hd , after briefly recalling the Poincaré model of 
this space.

Denoting by B(0, 1) := {
x ∈ Rd : |x| < 1

}
the open unit ball of Rd , the Poincaré ball model 

of Hd is simply B(0, 1) endowed with the Riemannian metric

gij (x) = �2(x)δij , (3)

for all x ∈ B(0, 1) and for all i, j = 1, . . . , d , where � : B(0, 1) → R is the function defined by

�(x) = 2

1 − |x|2 for all x ∈ B(0,1).

The Riemannian volume element dσg on this manifold is given by

dσg =√
detg dx = (�(x))ddx,
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where dx is the Lebesgue volume element of Rd . It is customary to set

∂B(0,1) = ∂Hd = {∞} and Hd = Hd ∪ ∂Hd = B(0,1).

The geodesic distance dg(x, y) between x, y ∈ Hd is expressed by

dg(x, y) = cosh−1
(

1 + 2|x − y|2
(1 − |x|2)(1 − |y|2)

)
,

from which one deduces that

dg(x,0) = ln

(
1 + |x|
1 − |x|

)
and that

B(0, r) = Bg

(
0, ln

(
1 + r

1 − r

))
,

for any r ∈ (0, 1), being Bg(x, r) := {y ∈ Hd : dg(x, y) < r} the open geodesic ball with centre 
x and radius r > 0. Taking account of the expression of the Laplace-Beltrami operator on a local 
chart of coordinates (x1, . . . , xd) and of the geodesic distance in Hd , the hyperbolic Laplacian 
�H takes the form

�H = 1

4
(1 − |x|2)2

d∑
i=1

∂2

∂xi
2 + d − 2

2
(1 − |x|2)

d∑
i=1

xi

∂

∂xi

= �

�2 + d − 2

�
〈x,∇〉 .

In this framework, our existence result reads as follows:

Theorem 1. Let G := SO(d1) × . . . × SO(dk), with dj ≥ 2, j = 1, . . . , k and d1 + . . . + dk = d , 
where SO(j) is the special orthogonal group in dimension j , let α ∈ L1(Hd) ∩ L∞(Hd) \ {0}
be non-negative and radially symmetric with respect to the origin and let f :R → R satisfy

(f1) there exist κ > 0, q ∈ (1, 2) and p ∈ [2, 2d/(d − 2)), such that

|f (t)| ≤ κ(|t |q−1 + |t |p−1), for all t ∈ R,

(f2) lim inf
t→0+

t∫
0

f (s)ds

t2 = +∞.

Furthermore, let r ∈ [2, 2d/(d − 2)) and l : (0, +∞) → R be the function

l(t) := t − c2∗
2∗ t2∗−1

κ
(
c
q
r ‖α‖ r

r−q d
tq−1 + c

p
p ‖α‖L∞(Hd ) t

p−1
) for all t > 0, (4)
L (H )
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where

cν := sup
w∈H 1

g (Hd )\{0}

‖w‖Lν(Hd )

‖w‖H 1
g (Hd )

, ν ∈
[

2,
2d

d − 2

]
.

Then, there exists an open interval � ⊆ (
0,maxt∈[0,+∞) l(t)

)
such that, for every λ ∈ �, the 

problem

−�H w + w = |w| 4
d−2 w + λα(x)f (w), x ∈Hd , w ∈ H 1

g (Hd), (P̃λ)

admits a non-zero and non-negative G-invariant solution w0,λ ∈ H 1
g (Hd).

The strategy adopted to tackle problem (Pλ) continues to be valid if we add a singular term to 
f, namely ⎧⎨⎩−�gw + w = w

d+2
d−2 + λα(σ)

(
f (w) + wr−1

)
, σ ∈M

w ∈ H 1
g (M), w > 0 in M,

(P 
λ )

where r ∈ (0, 1) and f : [0, +∞) → [0, +∞) is again continuous and subcritical. In this case the 
rational functional which naturally arises with this approach takes a slightly more complicated 
form and more attention has to be paid to the definition (and verification) of a weak solution to 
(P 

λ ).
In the final section we address the issue of the multiplicity of solutions to (Pλ) and we restrict 

ourselves to Rd , making the additional assumption that f is odd. It is clear that in this case, being 
the energy functional even, the solutions to (Pλ) appear in pairs. Borrowing an idea originally 
proposed by Bartsch and Willem [21] and later developed by Kristály, Moroşanu and O’Regan 
[22], we repeatedly apply a similar methodology to specific subspaces of H 1(Rd) which pre-
serve the compact embedding in Lp(Rd) and whose pairwise intersections contain only the null 
function. Thanks to these facts we are able to prove, for λ > 0 sufficiently small, a dimension-
depending multiplicity result: if d > 3 and d �= 5 there exist at least 1 + (−1)d + [

d−3
2

]
pair of 

solutions, one of which is radial, and the remaining ones are non-radial and sign-changing; when 
d = 5 there exists at least a pair of non-trivial radial solutions.

The paper is structured as follows. In Section 2 we fix notations and introduce the functional 
framework of our problem. In Sections 3 and 4 we prove the existence results for Problems 
(Pλ) and (P 

λ ), respectively. The final Section 5 is devoted to the multiplicity of solutions in the 
Euclidean setting with symmetric nonlinearity.

2. Preliminaries

In this section we briefly recall some notions from Riemannian geometry needed in the sequel 
and then illustrate the functional framework we will move in. We refer the reader to the following 
sources [23–25] for detailed derivations of the geometric quantities, their motivation and further 
applications.

Let (M, g) be a d-dimensional Riemannian manifold, d ≥ 3, and let gij be the components 
of the metric g. Denote by TσM the tangent space at σ ∈ M and by T M = ⋃

σ∈M Tσ M the 
tangent bundle. Let dg : M × M → [0, +∞) be the usual distance function associated with g, 
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Bg(σ, r) := {x ∈ M : dg(σ, x) < r} and Bg(σ, r) := {x ∈ M : dg(σ, x) ≤ r} be the open and 
closed geodesic balls centred at σ ∈ M and of radius r > 0.

If C∞
0 (M) denotes, as customary, the space of real-valued compactly supported smooth func-

tions on M, we set

‖w‖ :=
⎛⎝∫
M

|∇gw|2dσg +
∫
M

|w|2dσg

⎞⎠1/2

, (5)

for every w ∈ C∞
0 (M), where ∇gw is the covariant derivative of w and dσg is the Riemannian 

measure on M, related to the Lebesgue measure dx in Rd by the formula dσg = √
detg dx. We 

set

Volg(�) :=
∫
�

dσg

for every bounded open set � ⊂ M. Fixed a system of local coordinates (x1, . . . , xd), ∇gw can 
be represented by

(∇2
gw)ij = ∂2w

∂xi∂xj

− �k
ij

∂w

∂xk

,

where

�k
ij := 1

2

(
∂glj

∂xi

+ ∂gli

∂xj

− ∂gij

∂xk

)
glk

are the usual Christoffel’s symbols and glk are the elements of the inverse matrix of g (here and 
anywhere else, Einstein’s summation convention is tacitly adopted). It is useful to remind that, 
for every fixed σ0 ∈M, the eikonal equation

|∇gdg(σ0, ·)| = 1 (6)

is satisfied almost everywhere in M \ {σ0}. The Laplace-Beltrami operator is the differential 
operator �gw = div(∇gw) and its local expression is

�gw := gij

(
∂2w

∂xi∂xj

− �k
ij

∂w

∂xk

)
= − 1√

det(gij )

∂

∂xm

(√
det(gij )g

km ∂w

∂xk

)
.

The space H 1
g (M) is defined to be the completion of C∞

0 (M) with respect to the norm (5)
and it turns out to be a Hilbert space equipped with the inner product

〈w1,w2〉 :=
∫ (〈∇gw1,∇gw2

〉
g

+ w1w2

)
dσg, (7)
M
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for every w1, w2 ∈ H 1
g (M). The open (respectively, closed) ball centred at w ∈ H 1

g (M) of ra-

dius r > 0 will be indicated by B(w, r) (respectively, B(w, r)), and the sphere {z ∈ H 1
g (M) :

‖w − z‖ = r} by ∂B(w, r).
The notion of curvature on (M, g) is described by means of the Riemann tensor that assigns, 

to each point σ ∈ M, a multilinear function R(M,g) : TσM × TσM × TσM × TσM → R
satisfying the pair of conditions

R(M,g)(X1,X2,X3,X4) = −R(M,g)(X2,X1,X4,X3) = R(M,g)(X4,X3,X2,X1),

R(M,g)(X1,X2,X3,X4) + R(M,g)(X2,X3,X1,X4) + R(M,g)(X3,X1,X2,X4) = 0,

for any X1, X2, X3, X4 ∈ TσM. It locally takes the form

Rh
ijk = ∂�h

jk

∂xi

− ∂�h
ik

∂xj

+ �r
jk�

h
ir − �r

ik�
h
jr .

The Ricci tensor Ric(M,g) on (M, g) is defined to be the trace of R(M,g) and in local coordinates 
is represented by

Rik = Rh
ihk = ∂�h

hk

∂xi

− ∂�h
ik

∂xh

+ �r
hk�

h
ir − �r

ik�
h
hr .

Given a point σ ∈ M and a two-dimensional plane π ⊂ TσM with basis {X1, X2}, the sec-
tional curvature of π is defined by

kπ = k(X1,X2) := R(M,g)(X1,X2,X1,X2)

|X1|2g|X2|2g − 〈X1,X2〉2
g

.

Since the above definition is independent of the choice of the vectors {X1, X2}, one can com-
pute kπ by working with an orthonormal basis of π . A Riemannian manifold (M, g) is said to 
be a Hadamard manifold if it is complete, simply connected and with everywhere non-positive 
sectional curvature, i.e. such that k(X1, X2) ≤ 0 for every X1, X2 ∈ TσM linearly independent 
tangent vectors. A Hadamard manifold (M, g) is termed homogeneous if the group of all isome-
tries of M acts transitively on M. Cartan-Hadamard’s theorem guarantees that every Hadamard 
manifold (M, g) is diffeomorphic to Rd , d = dimM, in striking contrast to Meyer’s theorem, 
which states that any complete Riemannian manifold (M, g) of strictly positive Ricci curvature 
is compact. Besides the Euclidean space, there exist other interesting geometric objects having 
the structure of a Hadamard manifold, as shown shortly afterwards.

For the rest of this section and for the whole next one, without further mentioning, we will 
always assume that (M, g) is a d-dimensional, d ≥ 3, homogeneous Hadamard manifold.

Referring to Hoffman and Spruck [26], the Sobolev embedding H 1
g (M) ↪→ Lν(M) is con-

tinuous (but not compact) for every ν ∈ [2, 2∗], where 2∗ = 2d/(d − 2). In the light of this result, 
we indicate by cν the positive constant

cν := sup
w∈H 1(M)\{0}

‖w‖ν

‖w‖ ,
g
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‖·‖ν denoting as usual the Lν-norm on M.
Since problem (Pλ) is set in a non-compact framework, we will adopt a group-theoretical 

approach to identify suitable symmetric subspaces of H 1
g (M) for which the compactness of the 

embedding in Lν(M) can be regained. Let G be a subgroup of Isomg(M), the group of the 
isometries of (M, g). We say that w : M → R is G-invariant if w(τ(σ )) = w(σ) for every 
σ ∈ M and τ ∈ G, and set

FixG(M) := {σ ∈M : τ(σ ) = σ, for all τ ∈ G} .

We focus now on a specific family of subgroups of Isomg(M): fixed σ0 ∈M, denote by

Gσ0 = {
G ⊂ Isomg(M) : G is compact, connected and FixG(M) = {σ0}

}
. (8)

Some noteworthy prototypes of manifolds (M, g) and related groups of isometries G ∈ Gσ0

are the following ones; cf. [16] and the references therein.
If (M, g) = (Rd, geuc) where geuc is the canonical Euclidean metric, one can choose σ0 = 0

and G := SO(d1) × . . . × SO(dk) for a splitting of d = d1 + . . . + dk , with dj ≥ 2, j = 1, . . . , k, 
where SO(l) is the special orthogonal group in dimension l.

As already anticipated in the Introduction, the hyperbolic space (Hd, ghyp), where ghyp is 
defined by (3), turns out to be a homogeneous Hadamard manifold with kπ ≡ −1. Then, picking 
σ0 and G like in the Euclidean setting above, one can prove that G ∈ Gσ0 .

As a third example, we turn our attention to the symmetric positive-definite matrices. Denote 
by Sym(d, R) the set of all symmetric d × d real matrices and by P(d, R) ⊂ Sym(d, R) the 
open cone of symmetric positive-definite matrices. As P(d, R) is an open set of Sym(d, R), it 
turns out to be a differential manifold of dimension d(d + 1)/2. The tangent space TXP (d, R)

at X ∈ P(d, R) is naturally isomorphic via translation to Sym(d, R) and it is possible to define 
a scalar product on it by putting

〈A,B〉X = Tr(X−1BX−1A) (9)

for all X ∈ P(d, R), A, B ∈ TX(P (d, R)) � Sym(d, R), where Tr(A) denotes the trace of A ∈
Sym(d, R). The formula (9) defines a Riemannian metric on P(d, R). If P̃ (d, R) ⊂ P(d, R) is 
the subspace of matrices with determinant 1, then (P̃ (d, R), 〈·, ·〉) is a homogeneous Hadamard 
manifold with non-constant sectional curvature and the special linear group SL(d, R) leaves 
P̃ (d, R) invariant and acts transitively on it. Moreover, for every τ ∈ SL(d, R), the map [τ ] :
P̃ (d, R) → P̃ (d, R) defined by

[τ ](X) = τXτ t ,

where τ t is the transpose of τ , is an isometry. If G = SO(d, R), one can show that 
FixG(P̃ (d, R)) = {Id}, with Id identity matrix. So, on (P̃ (d, R), 〈·, ·〉), the choices σ0 = Id

and G = SO(d, R) fulfil the requirements.
We say that a function w ∈ H 1

g (M) is a weak solution to (Pλ) if

〈w,z〉 =
∫

|w| 4
d−2 wzdσg + λ

∫
α(σ)f (w)zdσg, for all z ∈ H 1

g (M).
M M
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It is easily seen that such a solution is a critical point of the energy naturally associated with (Pλ), 
i.e. the functional

Eλ(w) := 1

2
‖w‖2 − 1

2∗

∫
M

|w|2∗
dσg − λJ (w), for all w ∈ H 1

g (M), (10)

where

J (w) :=
∫
M

α(σ)F (w)dσg,

and

F(t) :=
t∫

0

f (s)ds, for all t ∈ R.

In what follows, we fix σ0 ∈ M, G ∈ Gσ0 and assume that the weight α satisfies

(α1) α ∈ L1(M) ∩ L∞(M) \ {0}, is non-negative and radially symmetric w.r.t. σ0 ∈ M, i.e., 
there exists ψ : [0, +∞) → R such that α(σ) = ψ(dg(σ0, σ)) for all σ ∈M.

The action of G on H 1
g (M) is defined as usual by

(τw)(σ ) = w(τ−1(σ )), for all τ ∈ G, w ∈ H 1
g (M), σ ∈ M. (11)

The assumptions on α and the structure of G allow us to deduce the following result.

Proposition 2. If α satisfy (α1) and G ∈ Gσ0 , then Eλ is G-invariant

Proof. First, notice that the action (11) is isometric. Indeed, if w ∈ H 1
g (M) and τ ∈ G, one has

‖τw‖2 =
∫
M

(
|∇g(τw)(σ )|2σ + |τw(σ)|2

)
dσg

=
∫
M

(
|∇gw(τ−1(σ ))|2

τ−1(σ )
+ |w(τ−1(σ ))|2

)
dσg

= ‖w‖2 ,

where, among the other things, we have made use of the chain rule

∇g(τw)(σ ) = Dττ−1(σ )∇gw(τ−1(σ )), for every σ ∈M,

Dττ−1(σ ) : Tτ−1(σ )M → TσM being the differential of τ at the point τ−1(σ ), and the fact that 
Dττ−1(σ ) is inner product-preserving. Moreover, for every τ ∈ G and σ ∈ M, one has
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α(τ(σ )) = ψ(dg(σ0, τ (σ ))) = ψ(dg(τ (σ0), τ (σ ))) = ψ(dg(σ0, σ )) = α(σ)

and hence

J (τw) =
∫
M

α(σ)F ((τw)(σ )) dσg =
∫
M

α(σ)F
(
w(τ−1(σ ))

)
dσg = J (w),

yielding the G-invariance of Eλ. �
As a next step, denote by

H 1
g,G(M) :=

{
w ∈ H 1

g (M) : τw = w for all τ ∈ G
}

the subspace of G-invariant functions of H 1
g (M) and by Eλ,G the restriction of Eλ to H 1

g,G(M). 
A recent embedding result (à la Lions) due to Skrzypczak and Tintarev, already mentioned in the 
Introduction, will be decisive in our next arguments. We state it below in a convenient form (see 
also [16]).

Theorem 3 ([15]). Let (M, g) be a d-dimensional, d ≥ 3, homogeneous Hadamard manifold 
and G be a compact connected subgroup of Isomg(M) such that FixG(M) is a singleton. Then 
H 1

g,G(M) ↪→ Lν(M) compactly for any ν ∈ (2, 2∗).

Noticing that any G ∈ Gσ0 acts continuously on H 1
g (M) by (11), and that Eλ is G-invariant, on 

account of Palais’ principle of symmetric criticality (recalled below for the sake of completeness) 
we are legitimized to look for critical points of the energy functional constrained on H 1

g,G(M).

Theorem 4 ([27]). Let X be a real Banach space, G be a compact topological group acting 
continuously on X by a map [τ, u] �→ τu from G × X → X, and � : X → R be a G-invariant 
C1-function. If u is a critical point of �|FixG(X), then u is also a critical point of �.

3. Existence of isometry-invariant solutions

We start by proving that, when f is in the subcritical regime, the functional Eλ,G is locally 
sequentially weakly lower semicontinuous.

Proposition 5. Assume (α1) and let f :R → R be a continuous function satisfying

(f1) there exist κ > 0, q ∈ (1, 2) and p ∈ [2, 2∗), such that

|f (t)| ≤ κ(|t |q−1 + |t |p−1), for all t ∈ R.

Then, there exists �0 > 0 such that Eλ,G is sequentially weakly lower semicontinuous in 
B(0, �0).

Proof. Let � > 0, {wj } ⊂ B(0, �) be such that wj ⇀ w∞ ∈ B(0, �), and let ÊG : H 1
g,G(M) → R

be the functional defined by
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ÊG(w) := 1

2
‖w‖2 − 1

2∗

∫
M

|w|2∗
dσg,

for every w ∈ H 1
g,G(M). With the aid of the well-known geometric property

‖w2‖2 − ‖w1‖2 − 2 〈w1,w2 − w1〉 = ‖w1 − w2‖2 , for all w1,w2 ∈ H 1
g,G(M),

and of Brézis-Lieb’s Lemma, we deduce that

lim inf
j→∞ (ÊG(wj ) − ÊG(w∞)) = lim inf

j→∞

⎛⎝1

2

(∥∥wj

∥∥2 − ‖w∞‖2
)

− 1

2∗

∫
M

(
|wj |2∗ − |w∞|2∗)

dσg

⎞⎠
≥ lim inf

j→∞

⎛⎝1

2

∥∥wj − w∞
∥∥2 − 1

2∗

∫
M

|wj − w∞|2∗
dσg

⎞⎠
≥ lim inf

j→∞

(
1

2
− c2∗

2∗
2∗ ‖wj − w∞‖2∗−2

)
‖wj − w∞‖2

≥ lim inf
j→∞

(
1

2
− c2∗

2∗
2∗ �2∗−2

)
‖wj − w∞‖2.

(12)

So, for

0 < � ≤ �̄ :=
(

d

(d − 2)c2∗
2∗

) d−2
4

, (13)

we get

lim inf
j→∞ ÊG(wj ) ≥ ÊG(w∞). (14)

Now, let us prove that the functional JG := J|H 1
g,G(M) is sequentially weakly continuous on 

the whole H 1
g,G(M). Arguing by contradiction, let {wj } ⊂ H 1

g,G(M) be such that wj ⇀ w̄ ∈
H 1

g,G(M) and suppose that there exists ε > 0 such that |J (wj ) − J (w̄)| ≥ ε for all j ∈ N . Let 
r1, r2, r3 ∈ R satisfy

2 ≤ r1 ≤ 2∗, 2∗r1

(2∗ − 1)r1 − 2∗q + 2∗ < r2 <
2r1

r1 − 2q + 2
,

r3 := r1r2
.

(r1 − q + 1)r2 − r1
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Due to (f1), for a suitable real sequence {ηj } ⊂ (0, 1), one has

ε ≤ |JG(wj ) − JG(w̄)| ≤
∫
M

α(σ)|F(wj ) − F(w̄)|dσg

≤
∫
M

α(σ)|(wj − w̄)f (w̄ + ηj (wj − w̄))|dσg

≤ κ

∫
M

α(σ)|wj − w̄|
(
|w̄ + ηj (wj − w̄)|q−1 + |w̄ + ηj (wj − w̄)|p−1

)
dσg

≤ κ

∫
M

α(σ)|wj − w̄|(|wj |q−1 + |wj |p−1)dσg

≤ κ
(
‖α‖r2

∥∥wj − w̄
∥∥

r3

∥∥wj

∥∥q−1
r1

+ ‖α‖∞
∥∥wj − w̄

∥∥
p

∥∥wj

∥∥p−1
p

)

(15)

and in the light of the compact embeddings H 1
g,G(M) ↪→ Lr3(M), H 1

g,G(M) ↪→ Lp(M), the 
last expression tends to 0 as j → ∞, a contradiction.

As a result, taking (13), (14) and (15) into account, Eλ,G turns out to be sequentially weakly 
lower semicontinuous in B(0, �0), provided that �0 ∈ (0, �̄). �

The next proposition provides some estimates for the functional consisting of the critical term 
and the potential J .

Proposition 6. Let λ > 0, f : R → R satisfy (f1), and let Ẽλ,G : H 1
g,G(M) → R be the func-

tional defined by

Ẽλ,G(w) := 1

2∗

∫
M

|w|2∗
dσg + λJG(w)

for any w ∈ H 1
g,G(M). Then the following facts hold:

(i) if

lim sup
ε→0+

sup
w∈B(0,�0)

Ẽλ,G(w) − sup
B(0,�0−ε)

Ẽλ,G(w)

ε
< �0 (16)

for some �0 > 0, then

inf
η<�0

sup
w∈B(0,�0)

Ẽλ,G(w) − sup
w∈B(0,η)

Ẽλ,G(w)

�2 − η2
<

1

2
; (17)
0
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(ii) if (17) is satisfied for some �0 > 0, then

inf
w∈B(0,�0)

sup
z∈B(0,�0)

Ẽλ,G(z) − Ẽλ,G(w)

�2
0 − ‖w‖2 <

1

2
. (18)

Proof. (i) From the identity

sup
w∈B(0,�0)

Ẽλ,G(w) − sup
w∈B(0,�0−ε)

Ẽλ,G(w)

�2
0 − (�0 − ε)2

=
sup

w∈B(0,�0)

Ẽλ,G(w) − sup
w∈B(0,�0−ε)

Ẽλ,G(w)

ε
· 1

2�0 − ε
,

it follows that

lim sup
ε→0+

sup
w∈B(0,�0)

Ẽλ,G(w) − sup
w∈B(0,�0−ε)

Ẽλ,G(w)

�2
0 − (�0 − ε)2

<
1

2
. (19)

Now, by (19) there exists ε̄0 > 0 such that

sup
w∈B(0,�0)

Ẽλ,G(w) − sup
w∈B(0,�0−ε)

Ẽλ,G(w)

�2
0 − (�0 − ε)2

<
1

2

for every ε ∈ (0, ̄ε0); setting η0 := �0 − ε0, with ε0 ∈ (0, ̄ε0), it follows that

sup
w∈B(0,�0)

Ẽλ,G(w) − sup
w∈B(0,η0)

Ẽλ,G(w)

�2
0 − η2

0

<
1

2

and thus the conclusion follows.
(ii) Thanks to inequality (17) one has

sup
w∈B(0,η0)

Ẽλ,G(w) > sup
w∈B(0,�0)

Ẽλ,G(w) − 1

2
(�2

0 − η2
0) (20)

for some 0 < η0 < �0. Arguing as in Proposition 5, Ẽλ,G is weakly lower semicontinuous in 
B(0, η0) and therefore

sup
w∈∂B(0,η0)

Ẽλ,G(w) = sup
∗
Ẽλ,G(w) = sup Ẽλ,G(w),
w∈∂B(0,η0) w∈B(0,η0)
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where ∂B(0, η0)
∗

is the weak closure of ∂B(0, η0) in H 1
g,G(M). By (20) there exists therefore 

w0 ∈ H 1
g,G(M) with ‖w0‖ = η0 such that

Ẽλ,G(w0) > sup
w∈B(0,�0)

Ẽλ,G(w) − 1

2
(�2

0 − η2
0),

and the second claim is proved as well. �
We are now in a position to prove our existence result.

Theorem 7. Let σ0 ∈ M, G ∈ Gσ0 , α satisfy (α1), f satisfy (f1) in addition to

(f2) lim inf
t→0+

F(t)

t2 = +∞.

Moreover, for any r ∈ [2, 2∗), let l : (0, +∞) → R be the function defined by

l(t) := t − c2∗
2∗ t2∗−1

κ
(
c
q
r ‖α‖ r

r−q
tq−1 + c

p
p ‖α‖∞ tp−1

) for all t > 0. (21)

Then, there exists an open interval � ⊆ (
0,maxt∈[0,+∞) l(t)

)
such that, for every λ ∈ �, (Pλ)

admits a non-zero G-invariant solution w0,λ ∈ H 1
g (M).

Remark 8. It is worth observing that, for any function f : R → R satisfying the pair of condi-
tions (f1) − (f2), the function

f +(t) :=
{

f (t) if t > 0
0 if t ≤ 0,

fulfils the same hypotheses. As a result, Theorem 7 provides the existence of a critical point of 
the functional

E+
λ (w) := 1

2
‖w‖2 − 1

2∗

∫
M

(w+)2∗
dσg − λ

∫
M

α(σ)F+(w)dσg, (22)

for all w ∈ H 1
g (M), with

F+(t) :=
t∫

0

f +(s)ds, for all t ∈ R.

But any critical point w0,λ of E+
λ has w−

0,λ := max{0, −w0,λ} = 0. Indeed, taking also account of 
the relation



JID:YJDEQ AID:10338 /FLA [m1+; v1.328; Prn:10/04/2020; 13:27] P.15 (1-29)

G. Molica Bisci, L. Vilasi / J. Differential Equations ••• (••••) •••–••• 15
〈
w0,λ,w

−
0,λ

〉
=
∫
M

〈
∇gw0,λ,∇gw

−
0,λ

〉
g
dσg +

∫
M

w0,λw
−
0,λdσg

= −
∫
M

(
|∇gw

−
0,λ|2 + (w−

0,λ)
2
)

dσg,

where w+
0,λ := max{w0,λ, 0}, we get

0 = E+′
λ (w0,λ)(w

−
0,λ)

=
〈
w0,λ,w

−
0,λ

〉
−
∫
M

(w+
0,λ)

2∗−1w−
0,λdσg − λ

∫
M

α(σ)f +(w0,λ)w
−
0,λdσg

= −
∥∥∥w−

0,λ

∥∥∥2

≤ 0.

This means that, under the assumptions of Theorem 7, any solution to (Pλ) is non-negative in 
M. Analogously, if f :R → R satisfies (f1) and

(f ′
2) lim inf

t→0−
F(t)

t2 = +∞,

one can prove the existence of a non-positive solution to (Pλ) by considering the functional

E−
λ (w) := 1

2
‖w‖2 − 1

2∗

∫
M

(w−)2∗
dσg − λ

∫
M

α(σ)F−(w)dσg, (23)

where

F−(t) :=
t∫

0

f −(s)ds

and

f −(t) :=
{

f (t) if t < 0
0 if t ≥ 0.

Proof of Theorem 7. Since limt→0+ l(t) = 0, limt→+∞ l(t) = −∞ and l > 0 in (0, δ), δ small 
enough, there exists �max > 0 such that l(�max) = maxt∈[0,+∞) l(t). Set �0 := min{�̄, �max}, �̄
being defined by (13), and � := (0, l(�0)).

Taking λ ∈ �, there exists �0,λ ∈ (0, �0) such that

0 < λ <
�0,λ − c2∗

2∗�2∗−1
0,λ

κ
(
c
q
r ‖α‖ r �

q−1 + c
p
p ‖α‖∞ �

p−1
) . (24)
r−q 0,λ 0,λ
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Since �0,λ < �̄, by Proposition 5, the functional Eλ,G is sequentially weakly lower semicon-
tinuous in B(0, �0,λ) and then there exists w0,λ ∈ B(0, �0,λ) such that

Eλ,G(w0,λ) = min
w∈B(0,�0,λ)

Eλ,G(w).

Suppose by contradiction that ‖w0,λ‖ = �0,λ. Fix ε ∈ (0, �0,λ) and define

ϕ(ε,�0,λ) := ε−1

(
sup

w∈B(0,�0,λ)

Ẽλ,G(w) − sup
w∈B(0,�0,λ−ε)

Ẽλ,G(w)

)
.

By (f1), Hölder and Sobolev inequalities, we get

ϕ(ε,�0,λ) ≤ ε−1 sup
w∈B(0,1)

∫
M

∣∣∣∣∣∣∣
�0,λw(σ )∫

(�0,λ−ε)w(σ )

(
|t |2∗−1 + λα(σ)|f (t)|

)
dt

∣∣∣∣∣∣∣dσg

≤ ε−1 sup
w∈B(0,1)

∫
M

∣∣∣∣∣∣∣
�0,λw(σ )∫

(�0,λ−ε)w(σ )

(
|t |2∗−1 + λκα(σ )

(
|t |q−1 + |t |p−1

))
dt

∣∣∣∣∣∣∣dσg

≤ ε−1 sup
w∈B(0,1)

(
�2∗

0,λ − (�0,λ − ε)2∗

2∗ ‖w‖2∗
2∗ + λκ

�
q

0,λ − (�0,λ − ε)q

q

·
∫
M

α(σ)|w|qdσg + λκ
�

p
0,λ − (�0,λ − ε)p

p

∫
M

α(σ)|w|pdσg

⎞⎠
≤ ε−1 sup

w∈B(0,1)

(
�2∗

0,λ − (�0,λ − ε)2∗

2∗ ‖w‖2∗
2∗ + λκ

�
q

0,λ − (�0,λ − ε)q

q
‖α‖ r

r−q
‖w‖q

r

+λκ
�

p
0,λ − (�0,λ − ε)p

p
‖α‖∞ ‖w‖p

p

)

≤ c2∗
2∗

2∗

(
�2∗

0,λ − (�0,λ − ε)2∗

ε

)
+

λκc
q
r ‖α‖ r

r−q

q

(
�

q

0,λ − (�0,λ − ε)q

ε

)

+ λκc
p
p ‖α‖∞
p

(
�

p

0,λ − (�0,λ − ε)p

ε

)
,

and taking the limsup for ε → 0+ we get

lim sup
ε→0+

ϕ(ε,�0,λ) ≤ c2∗
2∗�2∗−1

0,λ + λκc
q
r ‖α‖ r

r−q
�

q−1
0,λ + λκc

p
p ‖α‖∞ �

p−1
0,λ , (25)

which, due to (24), forces
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lim sup
ε→0+

ϕ(ε,�0,λ) < �0,λ.

Therefore, invoking Proposition 6, one has

inf
w∈B(0,�0,λ)

sup
z∈B(0,�0,λ)

Ẽλ,G(z) − Ẽλ,G(w)

�2
0,λ − ‖w‖2

g

<
1

2

and there exists w̄λ ∈ B(0, �0,λ) such that, for every w ∈ B(0, �0,λ),

Ẽλ,G(w) ≤ sup
B(0,�0,λ)

Ẽλ,G(w) < Ẽλ,G(w̄λ) + 1

2
(�2

0,λ − ‖w̄λ‖2),

which we can rewrite as

Eλ,G(w̄λ) := 1

2
‖w̄λ‖2 − Ẽλ,G(w̄λ) <

�2
0,λ

2
− Ẽλ,G(w). (26)

Evaluating the previous inequality at w = w0,λ we deduce

Eλ,G(w̄λ) <
1

2
�2

0,λ − Ẽλ,G(w0,λ) = Eλ,G(w0,λ),

against the minimality of w0,λ. In conclusion w0,λ ∈ B(0, �0,λ) and is therefore a local minimum 
for Eλ,G in the H 1

g -topology and a solution to (Pλ).
We now show that w0,λ is not identically zero on M. Let a < b be two positive constants, and 

define the following annular domain

Ab
a(σ0) := {

σ ∈M : b − a < dg(σ0, σ ) < a + b
}
.

By (α1) one can find two real numbers γ > δ > 0 and α0 > 0 such that

essinf
σ∈A

γ
δ (σ0)

α(σ ) ≥ α0 > 0. (27)

Now, set

wγ,δ(σ ) :=

⎧⎪⎪⎨⎪⎪⎩
0 if σ ∈ M \ A

γ
δ (σ0)

1 if σ ∈ A
γ

δ/2(σ0)

2(δ − |dg(σ0, σ ) − γ |)
δ

if σ ∈ A
γ
δ (σ0) \ A

γ

δ/2(σ0),

(28)

for every σ ∈ M. It is clear that supp wγ,δ ⊆ A
γ
δ (σ0) and ‖wγ,δ‖∞ = 1. By the definition of 

wγ,δ and exploiting also (6), we have
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∥∥wγ,δ

∥∥2 =
∫

A
γ
δ (σ0)

(
|∇gwγ,δ|2 + |wγ,δ|2

)
dσg

=
∫

A
γ
δ/2(σ0)

|∇gwγ,δ|2dσg +
∫

A
γ
δ/2(σ0)

|wγ,δ|2dσg

+
∫

A
γ
δ (σ0)\Aγ

δ/2(σ0)

|∇gwγ,δ|2dσg +
∫

A
γ
δ (σ0)\Aγ

δ/2(σ0)

|wγ,δ|2dσg

≤ Volg(A
γ
δ (σ0)) + 4

δ2

∫
A

γ
δ (σ0)\Aγ

δ/2(σ0)

∣∣∇g(δ − |dg(σ0, σ ) − γ |)∣∣2 dσg

= Volg(A
γ
δ (σ0)) + 4

δ2

∫
A

γ
δ (σ0)\Aγ

δ/2(σ0)

|∇g|dg(σ0, σ ) − γ ||2dσg

= Volg(A
γ
δ (σ0)) + 4

δ2 Volg
(
A

γ
δ (σ0) \ A

γ

δ/2(σ0)
)

≤
(

1 + 4

δ2

)
Volg(A

γ
δ (σ0)).

In the same wake, we can deduce that∫
M

|wγ,δ|2∗
dσg ≥

∫
A

γ
δ/2(σ0)

|wγ,δ|2∗
dσg = Volg(A

γ

δ/2(σ0)).

Thanks to (f2), there exists a sequence {tj } ⊂R+, with tj → 0 as j → +∞, such that

F(tj ) ≥ ct2
j ,

for all c > 0 and for sufficiently large j . Defining now the sequence wj := tjwγ,δ , j ∈N , on the 
basis of the previous estimates we get, for j large enough,

Eλ,G(wj ) ≤
(

1

2
+ 2

δ2

)
Volg(A

γ
δ (σ0))t

2
j − 1

2∗ Volg(A
γ

δ/2(σ0))t
2∗
j

− λcα0Volg(A
γ

δ/2(σ0))t
2
j

=
(

1

2
Volg(A

γ
δ (σ0)) + 2

δ2 Volg(A
γ
δ (σ0)) − λcα0Volg(A

γ

δ/2(σ0))

)
t2
j

− 1

2∗ Volg(A
γ

δ/2(σ0))t
2∗
j

By choosing c > 0 large enough, we can easily deduce that 0 is not a local minimizer of Eλ,G

and hence cannot coincide with w0,λ. This concludes the proof. �
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4. Nonlinearity with singular terms

The underlying idea of the proof of Theorem 7 remains valid when adding a term singular at 
zero, i.e. to treat the following singular variant of problem (Pλ):⎧⎨⎩−�gw + w = w

d+2
d−2 + λα(σ)

(
f (w) + wr−1

)
, σ ∈M

w ∈ H 1
g (M), w > 0 in M,

(P 
λ )

where r ∈ (0, 1) and f : [0, +∞) → [0, +∞) is continuous and subcritical. In this context a 
weak solution to (P 

λ ) is meant to be any w ∈ H 1
g (M) such that w > 0 a.e. in M and

〈w,z〉 −
∫
M

w
d+2
d−2 zdσg − λ

∫
M

α(σ)
(
f (w) + wr−1

)
zdσg = 0

for each z ∈ H 1
g (M). The energy naturally associated with (P 

λ ) is

Eλ(w) := 1

2
‖w‖2 − 1

2∗

∫
M

(w+)2∗
dσg

− λ

∫
M

α(σ)F (w+)dσg − λ

r

∫
M

α(σ)(w+)rdσg,

(29)

for all w ∈ H 1
g (M), and its restriction to H 1

g,G(M) is denoted as before by Eλ,G.
Our existence result for problem (P 

λ ) reads as follows:

Theorem 9. Let σ0 ∈ M, G ∈ Gσ0 , α satisfy (α1) and let f : [0, +∞) → [0, +∞) be a continu-
ous function for which

(f ′
1) there exist κ > 0, q ∈ (1, 2) and p ∈ [2, 2∗), such that

f (t) ≤ κ(|t |q−1 + |t |p−1), for all t ≥ 0.

Let r1 ∈ [2, 2∗) and m : [0, +∞) → R be the function defined by

m(t) := t2−r − c2∗
2∗ t2∗−r

cr
r1

‖α‖ r1
r1−r

+ κc
q
r1 ‖α‖ r1

r1−q
tq−r + κc

p
p ‖α‖∞ tp−r

.

Then, there exists an open interval � ⊆ (
0,maxt∈[0,+∞) m(t)

)
such that, for every λ ∈ �, (P 

λ )
admits a non-trivial G-invariant weak solution w1,λ ∈ H 1

g (M).

Proof. In order to prove that Eλ,G satisfies Proposition 5, it suffices to show that the functional 
Jr : H 1 (M) → R defined by
g,G
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Jr(w) := 1

r

∫
M

α(σ)(w+)rdσg, for all w ∈ H 1
g,G(M),

is sequentially weakly lower semicontinuous in H 1
g,G(M). To this end, let {wj } ⊂ H 1

g,G(M)

such that wj ⇀ w∞ ∈ H 1
g,G(M). The sequence {wj } is bounded in H 1

g,G(M) and, by the com-

pactness of the embedding H 1
g,G(M) ↪→ Lr1(M), one has wj → w∞ in Lr1(M). Moreover, up 

to a subsequence,

|wj(σ )| ≤ W(σ) and wj → w∞ a.e. in M,

for some W ∈ Lr1(M), and therefore∫
M

α(σ)|w|rdσg ≤
∫
M

α(σ)Wrdσg ≤ ‖α‖ r1
r1−r

‖W‖r
r1

.

The dominated convergence theorem then yields Jr(wj ) → Jr(w∞), as desired.
It is clear that the functional

H 1
g,G(M) � w �→ 1

2∗

∫
M

(w+)2∗
dσg + λ

∫
M

α(σ)

(
F(w+) + (w+)r

r

)
dσg

fulfils Proposition 6. So, arguing exactly as in Theorem 7 we deduce that the functional Eλ,G

admits a minimizer w1,λ on a sufficiently small ball B(0, �0,λ) ⊂ H 1
g,G(M) and such a minimizer 

is not identically zero. Indeed, fixing w ∈ H 1
g,G(M), w > 0 on M, if t > 0 one has

Eλ,G(tw) ≤ 1

2
‖w‖2 t2 − 1

2∗ ‖w‖2∗
2∗ t2∗ + λκ

q

∫
M

α(σ)wqdσg tq

+ λκ

p

∫
M

α(σ)wpdσg tp − λ

r

∫
M

α(σ)wrdσg tr

and hence Eλ,G(tw) is negative for t small enough. Finally, we show that w1,λ weakly solves 
(P 

λ ). The proof develops along the same line as [17,28]; we illustrate it below for the sake of 
completeness. Let us start by proving that w1,λ > 0 a.e. in M. One has

0 ≤ Eλ,G(w1,λ + tw−
1,λ) − Eλ,G(w1,λ)

= 1

2

(∥∥∥w1,λ + tw−
1,λ

∥∥∥2 − ∥∥w1,λ

∥∥2
)

− 1

2∗

∫
M

(((
w1,λ + tw−

1,λ

)+)2∗

−
(
w+

1,λ

)2∗
)

dσg

− λ

r

∫
α(σ)

(((
w1,λ + tw−

1,λ

)+)r

−
(
w+

1,λ

)r
)

dσg
M
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− λ

∫
M

α(σ)

(
F

((
w1,λ + tw−

1,λ

)+)− F
(
w+

1,λ

))
dσg,

where we exploited that, for t small enough, w1,λ + tw−
1,λ ∈ B(0, �0,λ) and w1,λ + tw−

1,λ = w+
1,λ. 

As a result, we get

lim
t→0

Eλ,G(w1,λ + tw−
1,λ) − Eλ,G(w1,λ)

t
=
∫
M

(〈
∇gw1,λ,∇gw

−
1,λ

〉
g

+ w1,λw
−
1,λ

)
dσg

= −∥∥w1,λ

∥∥2

and thus w1,λ ≥ 0 a.e. in M. If M1 ⊂ M has positive Riemannian measure and w1,λ = 0 in 
M1, taking z ∈ H 1

g,G(M), z > 0, and t > 0 small enough, we get

0 ≤ Eλ,G(w1,λ + tz) − Eλ,G(w1,λ)

≤ 1

2

(∥∥w1,λ + tz
∥∥2 − ∥∥w1,λ

∥∥2
)

− 1

2∗

∫
M

((
w1,λ + tz

)2∗ − (
w1,λ

)2∗)
dσg

− λtr

r

∫
M1

α(σ)zrdσg − λ

∫
M

α(σ)
(
F
(
w1,λ + tz

)− F
(
w1,λ

))
dσg.

Dividing by t and passing to the limit we obtain

0 ≤ lim
t→0

Eλ,G(w1,λ + tz) − Eλ,G(w1,λ)

t
≤ −∞,

and hence such a set M1 cannot exist and w1,λ > 0 all over M.
Now let us prove that

〈
w1,λ, z

〉− ∫
M

w
d+2
d−2
1,λ zdσg − λ

∫
M

α(σ)
(
f (w1,λ) + wr−1

1,λ

)
zdσg ≥ 0 (30)

for every non-negative test function z ∈ H 1
g,G(M). Fix such a function z, take a decreasing 

sequence {tj } ⊂ (0, 1) such that tj → 0 as j → +∞ and set

zj := (w1,λ + tj z)
r − wr

1,λ

tj
, for all j ∈N.

Arguing similarly to before and considering that, by Fatou’s lemma,∫
M

α(σ)wr−1
1,λ zdσg ≤ 1

r
lim inf
j→+∞

∫
M

α(σ)zj dσg,

we deduce
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0 ≤ lim inf
j→∞

Eλ,G(w1,λ + tj z) − Eλ,G(w1,λ)

tj

≤ 〈
w1,λ, z

〉− ∫
M

w
d+2
d−2
1,λ zdσg − λ

∫
M

α(σ)f (w1,λ)zdσg − λ

∫
M

α(σ)wr−1
1,λ zdσg,

as claimed. Now, choosing ε ∈ (0, 1) so that w1,λ + tw1,λ ∈ B(0, �0,λ) for |t | ≤ ε, define ψ :
[ε, ε] → R by ψ(t) = Eλ,G((1 + t)w1,λ). Since ψ has a minimum at t = 0 we easily deduce that

∥∥w1,λ

∥∥2 −
∫
M

w2∗
1,λdσg − λ

∫
M

α(σ)
(
f (w1,λ)w1,λ + wr

1,λ

)
dσg = 0. (31)

Now suppose h ∈ H 1
g,G(M) and define

z := (w1,λ + εh)+, M+
0 := {σ ∈M : w1,λ(σ ) + εh(σ ) ≥ 0},

M− := {σ ∈M : w1,λ(σ ) + εh(σ ) < 0}.

Plugging z into (30) and taking (31) into account, we get

0 ≤
∫

M+
0

〈∇gw1,λ∇g(w1,λ + εh)
〉
g
dσg +

∫
M+

0

w1,λ(w1,λ + εh)dσg

−
∫

M+
0

w2∗−1
1,λ (w1,λ + εh)dσg − λ

∫
M+

0

α(σ)f (w1,λ)(w1,λ + εh)dσg

− λ

∫
M+

0

α(σ)wr−1
1,λ (w1,λ + εh)dσg

=
⎛⎝∫
M

−
∫

M−

⎞⎠(〈∇gw1,λ∇g(w1,λ + εh)
〉
g

+ w1,λ(w1,λ + εh)

−w2∗−1
1,λ (w1,λ + εh) − λα(σ)f (w1,λ)(w1,λ + εh)

−λα(σ)wr−1
1,λ (w1,λ + εh)

)
dσg

= ε

∫
M

(〈∇gw1,λ∇gh
〉
g

+ w1,λh − w2∗−1
1,λ h − λα(σ)f (w1,λ)h − λα(σ)wr−1

1,λ h
)

dσg

−
∫

M−

(〈∇gw1,λ∇g(w1,λ + εh)
〉
g

+ w1,λ(w1,λ + εh) − w2∗−1
1,λ (w1,λ + εh)

− λα(σ)f (w1,λ)(w1,λ + εh) − λα(σ)wr−1(w1,λ + εh)
)

dσg
1,λ
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≤ ε

∫
M

(〈∇gw1,λ∇gh
〉
g

+ w1,λh − w2∗−1
1,λ h − λα(σ)f (w1,λ)h − λα(σ)wr−1

1,λ h
)

dσg

− ε

∫
M−

(〈∇gw1,λ∇gh
〉
g

+ w1,λh
)

dσg.

Considering that the Riemannian measure of M− goes to 0 as ε → 0, dividing by ε and taking 
the limit as ε → 0 we get

〈
w1,λ, h

〉− ∫
M

w
d+2
d−2
1,λ hdσg − λ

∫
M

α(σ)
(
f (w1,λ) + wr−1

1,λ

)
hdσg ≥ 0.

The arbitrariness of h implies that the above inequality holds for −h as well and so w1,λ is a 
weak solution to (P 

λ ). This concludes the proof. �
5. The case of Rd : multiple solutions in the presence of symmetries

In this final section we consider the case when (M, g) = (Rd, geuc) is the canonical Euclidean 
space and study the existence of multiple solutions (radial and not) for (Pλ) in the presence of a 
symmetric nonlinear term f .

We will denote a point in Rd by x (instead of σ ) and ‖·‖, ‖·‖ν will represent the usual norms 
on H 1(Rd) and Lν(Rd), respectively.

Let either d = 4 or d ≥ 6 and consider the subgroup Hd,i ⊂ O(d) given by

Hd,i :=

⎧⎪⎨⎪⎩
O(d/2) × O(d/2) if i = d − 2

2
O(i + 1) × O(d − 2i − 2) × O(i + 1) if i �= d − 2

2
,

for every i ∈ I := {1, ..., τd}, where

τd := (−1)d +
[
d − 3

2

]
.

For every i ∈ I , define the map η
Hd,i

: Rd → Rd as follows

η
Hd,i

(x) :=

⎧⎪⎨⎪⎩
(x3, x1) if i = d − 2

2
and x := (x1, x3) ∈Rd/2 ×Rd/2

(x3, x2, x1) if i �= d − 2

2
and x := (x1, x2, x3) ∈Ri+1 ×Rd−2i−2 ×Ri+1.

By definition, η
Hd,i

/∈ Hd,i and one has, in addition, η
Hd,i

Hd,iη
−1
Hd,i

= Hd,i (i.e. η
Hd,i

belongs 

to the normalizer of Hd,i in O(d)) and η2
Hd,i

= idRd for every i ∈ I . Now, let us consider the 
compact group

Hd,η := 〈Hd,i, η 〉 = Hd,i ∪ η Hd,i
i Hd,i Hd,i



JID:YJDEQ AID:10338 /FLA [m1+; v1.328; Prn:10/04/2020; 13:27] P.24 (1-29)

24 G. Molica Bisci, L. Vilasi / J. Differential Equations ••• (••••) •••–•••
and the action �i : Hd,ηi
× H 1(Rd) → H 1(Rd) of Hd,ηi

on H 1(Rd) given by

(h�i w)(x) :=
{

w(h−1x) if h ∈ Hd,i

−w
(
τ−1η−1

Hd,i
x
)

if h = η
Hd,i

τ ∈ Hd,ηi
\ Hd,i, τ ∈ Hd,i

(32)

for every w ∈ H 1(Rd), x ∈ Rd . We notice that �i is defined for every element of Hd,ηi
. Indeed, 

if h ∈ Hd,ηi
, then either h ∈ Hd,i or h = η

Hd,i
τ ∈ Hd,ηi

\ Hd,i , with τ ∈ Hd,i .
Setting

FixHd,ηi
(H 1(Rd)) := {w ∈ H 1(Rd) : h�i w = w for all h ∈ Hd,ηi

},
for every i ∈ I , following [21], the embedding

FixHd,ηi
(H 1(Rd)) ↪→ Lν(Rd) (33)

is compact for every ν ∈ (2, 2∗). The next important result illustrates the relation, in terms of 
inclusion, between Hd,ηi

-invariant and radial symmetric functions, and between Hd,ηi
-invariant 

functions as i ranges in I (cf. [22, Theorem 2.2]).

Proposition 10. The following facts hold:

(i) if d = 4 or d ≥ 6, then FixHd,ηi
(H 1(Rd)) ∩ FixO(d)(H

1(Rd)) = {0}, for every i ∈ I ;

(ii) if d = 6 or d ≥ 8, then FixHd,ηi
(H 1(Rd)) ∩ FixHd,ηj

(H 1(Rd)) = {0}, for every i, j ∈ I and 
i �= j .

By adopting the same approach as the previous section we can prove the following result.

Theorem 11. Let d ≥ 3, α satisfy (α1) with σ0 = 0, f : R → R satisfy (f1) − (f2), r ∈ [2, 2∗)
and l : (0, +∞) → R be defined by (21).

Then, setting λ∗ := maxt∈[0,+∞) l(t), there exists an open interval � ⊆ (0, λ∗) such that, for 
every λ ∈ �, the problem

−�w + w = |w| 4
d−2 w + λα(x)f (w), x ∈Rd , w ∈ H 1(Rd), (P̃λ)

admits a non-zero non-negative radial solution w0,λ ∈ H 1(Rd).

Proof. We consider the group G = O(d) acting on H 1(Rd) by the standard linear and isometric 
action (11). By (α1), Eλ is O(d)-invariant and Eλ,O(d), Ẽλ,O(d) are easily seen to satisfy Propo-
sitions 5 and 6, respectively. So, arguing as in Theorem 7, we deduce the existence of an open 
interval � such that, for λ ∈ � ⊆ (0, λ), Eλ,O(d) possesses a local minimizer w0,λ ∈ H 1

O(d)(R
d). 

The conclusion then is a consequence of Theorem 4. �
Remark 12. We notice that, if in Theorem 11 we keep all the assumptions and only replace (α1)

by

(α′ ) α ∈ L1(Rd) ∩ L∞(Rd) \ {0}, is non-negative and Hd,η -invariant for some i ∈ I ,
1 i
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then, we get the existence of at least one non-trivial solution, invariant under the action of Hd,ηi

on Rd .

Set

ci,ν := sup

{‖u‖ν

‖u‖ : u ∈ FixHd,ηi
(H 1(Rd)) \ {0}

}
,

for every ν ∈ (2, 2∗) and i ∈ I , and

λ
i := max

t≥0

t − c2∗
i,2∗ t2∗−1

κ
(
c
q
i,r ‖α‖ r

r−q
tq−1 + c

p
i,p ‖α‖∞ tp−1

) . (34)

The main result of this section reads as follows.

Theorem 13. Assume d > 3 and let f and α be as in Theorem 7. In addition, suppose that the 
nonlinearity f is odd.

Then, there exists an open interval � ⊆ (0, λ), where

λ :=
{

λ if d = 5
min{λ,λ

i : i ∈ I } if d �= 5,

such that, for every λ ∈ �, problem (P̃λ) admits at least

td := 1 + (−1)d +
[
d − 3

2

]
pairs of non-trivial weak solutions {±wλ,i} ⊂ H 1(Rd).

Moreover, if d �= 5 problem (P̃λ) admits at least

τd := (−1)d +
[
d − 3

2

]
pairs of sign-changing weak solutions {±zλ,i}i∈I ⊂ H 1(Rd).

Proof. We start by considering the case d = 5. The oddity of f implies the evenness of Eλ,O(d). 
So Theorem 11 guarantees that, for every λ ∈ � ⊆ (0, λ), problem (P̃λ) admits at least t5 = 1
non-trivial pair of radial weak solutions {±w0,λ} ⊂ H 1(Rd).

Assume now that d > 3 and d �= 5. For every λ > 0 and i = 1, 2, ..., τd , consider the restric-
tions

Eλ,i := Eλ|FixHd,ηi
(H 1(Rd )).

We notice that the range of d forces τd ≥ 1 and thus |I | ≥ 1.
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First, let us show that Eλ,i satisfies the properties required by our approach. The functional Eλ

is Hd,ηi
-invariant, i.e. Eλ(h �i w) = Eλ(w) for all h ∈ Hd,ηi

and w ∈ H 1(Rd). Indeed, Hd,ηi
acts 

isometrically on H 1(Rd) and, thanks to (α1), one has∫
Rd

α(x)F ((h�i w)(x))dx =
∫
Rd

α(x)F (w(h−1x))dx =
∫
Rd

α(y)F (w(y))dy

if h ∈ Hd,i , and∫
Rd

α(x)F ((h�i w)(x))dx =
∫
Rd

α(x)F (w(τ−1η−1
Hd,i

x))dx =
∫
Rd

α(y)F (w(y))dy

if h = ηHd,i
τ ∈ Hd,ηi

\Hd,i . It is also clear that Eλ,i is sequentially weakly lower semicontinuous 
on a suitable ball B(0, �0,i ) ⊂ H 1(Rd) and that Ẽλ,i fulfils Proposition 6. Then, retracing the 
same steps as Theorem 7, for λ ∈ (0, λ∗

i ) there exists zλ,i local minimizer of Eλ,i and due to 
Palais’ principle of symmetric criticality, the pairs of critical points {±zλ,i} of Eλ,i are also 
critical points of Eλ.

We have to show now that zλ,i �≡ 0 in FixHd,ηi
(H 1(Rd)). We use in a suitable way certain test 

functions introduced in [22]. Let 0 < δ < γ such that condition (27) holds and δ ≥ γ

5 + 4
√

2
. 

Set ϑ ∈ (0, 1) and define vϑ,i ∈ H 1(Rd) as follows: if i �= (d − 2)/2 and x = (x1, x2, x3) ∈
Rd/2 ×Rd−2i−2 ×Rd/2,

vϑ,i(x) :=
[(

γ − δ

4
− max

⎧⎨⎩
√(

|x1|2 − γ + 3δ

4

)2

+ |x3|2, ϑ γ − δ

4

⎫⎬⎭
)+

−
(

γ − δ

4
− max

⎧⎨⎩
√(

|x3|2 − γ + 3δ

4

)2

+ |x1|2, ϑ γ − δ

4

⎫⎬⎭
)+]

·
(

γ − δ

4
− max

{
|x2|, ϑ γ − δ

4

})+ 16

(γ − δ)2(1 − ϑ)2 ,

while, for every x = (x1, x3) ∈ Rd/2 ×Rd/2,

vϑ,(d−2)/2(x) :=
[(

γ − δ

4
− max

⎧⎨⎩
√(

|x1|2 − γ + 3δ

4

)2

+ |x3|2, ϑ γ − δ

4

⎫⎬⎭
)+

−
(

γ − δ

4
− max

⎧⎨⎩
√(

|x1|2 − γ + 3δ

4

)2

+ |x3|2, ϑ γ − δ

4

⎫⎬⎭
)+]

· 4

(γ − δ)(1 − ϑ)
.
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Next, for every μ ∈ (0, 1], let us consider the disjoint sets

Qμ,1 :=
⎧⎨⎩(x1, x3) ∈ Ri+1 ×Ri+1 :

√(
|x1|2 − γ + 3δ

4

)2

+ |x3|2 ≤ μ
γ − δ

4

⎫⎬⎭ ,

Qμ,2 :=
⎧⎨⎩(x1, x3) ∈ Ri+1 ×Ri+1 :

√(
|x3|2 − γ + 3δ

4

)2

+ |x1|2 ≤ μ
γ − δ

4

⎫⎬⎭ ,

and define

Dμ,(d−2)/2 :=
{
(x1, x3) ∈Rd/2 ×Rd/2 : (x1, x3) ∈ Qμ,1 ∪ Qμ,2

}
,

Dμ,i :=
{
(x1, x2, x3) ∈ Ri+1 ×Rd−2i−2 ×Ri+1 : (x1, x3) ∈ Qμ,1 ∪ Qμ,2,

|x2| ≤ μ
γ − δ

4

}
, ∀i �= d − 2

2
.

The sets Dμ,i have positive Lebesgue measure and are Hd,ηi
-invariant. Moreover, for every 

ϑ ∈ (0, 1), the special shape of vϑ,i guarantees that vϑ,i ∈ FixHd,ηi
(H 1(Rd)) and that

(j1) supp(vϑ,i) = D1,i ⊆ A
γ
δ (0);

(j2) ‖vϑ,i‖∞ = 1;
(j3) |vϑ,i(x)| = 1 for every x ∈ Dϑ,i .

Thanks to (f2), there exists a sequence {tj } ⊂R+, with tj → 0 as j → +∞, such that

F(tj ) ≥ ct2
j ,

for all c > 0 and for sufficiently large j . Thus, let wj,i := tj vϑ,i for any j ∈N . Of course wj,i ∈
FixHd,ηi

(H 1(Rd)) for any j ∈ N . Furthermore, taking the properties (j1)–(j3) into account, since 
F is even (this implies that F(wj,i(x)) = F(|wj,i(x)|) = F(tj ) for every x ∈ Dϑ,i ) we get, for j
large enough,

Eλ,i(wj,i) = 1

2

∥∥vϑ,i

∥∥2
t2
j − 1

2∗

∫
D1,i

(vϑ,i)
2∗

dx t2∗
j − λ

∫
Dϑ,i

α(x)F (wj,i)dx

− λ

∫
A

γ
δ (0)\Dϑ,i

α(x)F (wj,i)dx

≤ 1

2

∥∥vϑ,i

∥∥2
t2
j − 1

2∗

∫
D1,i

(vϑ,i)
2∗

dx t2∗
j

− λcα0

⎛⎜⎝|Dϑ,i | +
∫

A
γ
(0)\D

(vϑ,i)
2dx

⎞⎟⎠ t2
j .
δ ϑ,i
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By choosing c > 0 large enough, we can easily deduce that 0 is not a local minimizer of Eλ,i and 
hence cannot coincide with zλ,i .

In conclusion, if λ < λ, taking Proposition 10 into account, problem (P̃λ) admits at least 
td := τd + 1 pairs of non-trivial weak solutions {±wλ,i}. By construction, it is clear that

τd := (−1)d +
[
d − 3

2

]
pairs of the attained solutions are sign-changing. The proof is then completed. �
Remark 14. We observe that Theorem 13 is not relevant in dimension three. However, also in 
this case, it provides the existence of one pair of non-trivial and radially symmetric solutions to 
(P̃λ) whenever λ is sufficiently small.

Remark 15. For the sake of completeness, we point out that the approach presented in this paper 
could also be followed to investigate a larger class of elliptic equations governed by several dif-
ferential operators, like the ones considered in [29–31]. However, for this wider class of energies, 
some different technical tools are needed to get analogous existence results. We intend to address 
these interesting cases in future investigations.
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