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Abstract
In this paper we study the existence of infinitely many weak solutions for
equations driven by nonlocal integrodifferential operators with homogeneous
Dirichlet boundary conditions. A model for these operators is given by the
fractional Laplacian

−(−�)su(x) :=
∫

Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy, x ∈ R

n

where s ∈ (0, 1) is fixed.
We consider different superlinear growth assumptions on the nonlinearity,

starting from the well-known Ambrosetti–Rabinowitz condition. In this
framework we obtain three different results about the existence of infinitely
many weak solutions for the problem under consideration, by using the Fountain
Theorem. All these theorems extend some classical results for semilinear
Laplacian equations to the nonlocal fractional setting.
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1. Introduction and main results

In this paper we are concerned with the existence of infinitely many weak solutions of the
nonlocal fractional equations whose prototype of order s ∈ (0, 1) is given by{

(−�)su = f (x, u) in �

u = 0 in R
n \ �,

(1.1)

which is the counterpart of this Laplace equation{−�u = f (x, u) in �

u = 0 in ∂�.
(1.2)

Here (−�)s is the fractional Laplace operator, which, up to normalization factors, may be
defined as

−(−�)su(x) :=
∫

Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy, x ∈ R

n.

In recent years, a great attention has been focused on the study of fractional and nonlocal
operators of elliptic type, both for the pure mathematical research and for concrete real-world
applications. Fractional and nonlocal operators appear in many fields such as, among the others,
optimization, finance, phase transitions, stratified materials, anomalous diffusion, crystal
dislocation, soft thin films, semipermeable membranes, flame propagation, conservation laws,
ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, multiple scattering,
minimal surfaces, materials science and water waves. This is one of the reason why, recently,
nonlocal fractional problems are widely studied in the literature in many different contexts. Just
to name a few, we recall, for instance, the following papers and the references therein: [9,10,29]
for regularity results, [4,5,8,17,24,25,36] for the existence of solutions, [26] for multiplicity
of solutions and [18, 27] for Kirchhoff nonlocal fractional problems.

In [33] the authors considered the following general nonlocal problem{−LKu = f (x, u) in �

u = 0 in R
n \ �.

(1.3)

Here � is an open bounded subset of R
n with continuous boundary ∂�, n > 2s, s ∈ (0, 1),

while LK is the integrodifferential operator defined as follows

LKu(x) :=
∫

Rn

(
u(x + y) + u(x − y) − 2u(x)

)
K(y) dy, x ∈ R

n, (1.4)

with the kernel K : R
n \ {0} → (0, +∞) such that

mK ∈ L1(Rn), where m(x) = min{|x|2, 1} ; (1.5)

there exists θ > 0 such that K(x) � θ |x|−(n+2s) for any x ∈ R
n \ {0}. (1.6)

A prototype for K is given by the singular kernel K(x) = |x|−(n+2s) which gives rise to the
fractional Laplace operator −(−�)s . In [33] an existence theorem for problem (1.3) has been
proved by using the Mountain Pass Theorem, when the nonlinear term f has a superlinear and
subcritical growth.

Motivated by an evident and increasing interest in the current literature on fractional
elliptic problems, here we are interested in the existence of infinitely many weak solutions of
problem (1.3) under the same superlinear growth assumptions on f adopted in [33], that is
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f : � × R → R is a function verifying the following standard conditions

f ∈ C(� × R) (1.7)

there exist a1, a2 > 0 and q ∈ (2, 2∗), 2∗ = 2n/(n − 2s), such that
(1.8)

|f (x, t)| � a1 + a2|t |q−1 for any x ∈ �, t ∈ R ;
there exist µ > 2 and r > 0 such that for any x ∈ �, t ∈ R, |t | � r

(1.9)

0 < µF(x, t) � tf (x, t),

where the function F is the primitive of f with respect to the second variable, that is

F(x, t) =
∫ t

0
f (x, τ )dτ . (1.10)

When looking for infinitely many solutions, it is natural requiring some symmetry on the
nonlinearity. In the sequel we will assume that the following further assumption on f is
satisfied

f (x, −t) = −f (x, t) for any x ∈ �, t ∈ R. (1.11)

As a model for f we can take the function f (x, t) = a(x)|t |q−2t , with a ∈ C(�) and
q ∈ (2, 2∗).

In the literature assumption (1.9) is well-known and it is called Ambrosetti–Rabinowitz
condition, since it was originally introduced by Ambrosetti and Rabinowitz in [3], where, as
an application of the famous Mountain Pass Theorem, they obtained the existence of nontrivial
solutions of problem (1.2), under superlinear and subcritical growth conditions on the right-
hand side.

A lot of works concerning superlinear elliptic boundary value problem have been written by
using this usual Ambrosetti–Rabinowitz condition (see, for instance, [35,37] and the references
therein), whose role consists in ensuring the boundedness of the Palais–Smale sequences of
the energy functional associated with the problem under consideration.

The Ambrosetti–Rabinowitz condition is a superlinear growth assumption on the
nonlinearity f . Indeed, from (1.9) it follows that for some a3, a4 > 0

F(x, t) � a3|t |µ − a4 for any (x, t) ∈ � × R, (1.12)

see, for instance, [34, lemma 4]. However, there are many functions which are superlinear at
infinity, but do not satisfy the Ambrosetti–Rabinowitz condition. At this purpose, we would
note that from (1.12) and the fact that µ > 2, it follows that

lim
|t |→+∞

F(x, t)

|t |2 = +∞ uniformly for any x ∈ �. (1.13)

Of course, also condition (1.13) characterizes the nonlinearity f to be superlinear at infinity.
It is easily seen that the function

f (x, t) = t log(1 + |t |) (1.14)

verifies condition (1.13) and does not satisfy (1.12) (and so, as a consequence, does not
verify (1.9)).

In order to study the superlinear problem (1.2) in [19] Jeanjean introduced the following
assumption on f :

there exists γ � 1 such that for any x ∈ �
(1.15)

F(x, t ′) � γF(x, t) for any t, t ′ ∈ R with 0 < t ′ � t,
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where

F(x, t) = 1

2
tf (x, t) − F(x, t). (1.16)

It is easy to see that the function (1.14) satisfies also the condition (1.15).
In recent years, condition (1.15) was often applied to consider the existence of nontrivial

solutions for the superlinear problem (1.2) without the Ambrosetti–Rabinowitz condition, for
example, see [2, 15, 20–22]. For other papers treating superlinear problems without the
Ambrosetti–Rabinowitz condition we refer to [13,16,19,23,30,38,39] and references therein.

According to [22, proposition 2.3], the condition (1.15) is weaker than the following
assumption:

the function t �→ f (·, t)
t

is increasing in t � 0 and decreasing in t � 0. (1.17)

However, both (1.15) and (1.17) are global conditions, and hence they are not very satisfactory.
For this reason, we replace the condition (1.17) with the following local condition introduced
by Liu in [21]:

there exists t̄ > 0 such that for any x ∈ �
(1.18)

the function t �→ f (x, t)

t
is increasing in t � t̄ and decreasing in t � −t̄ .

After this overview on the assumptions on the nonlinearity f , we would note that problem (1.3)
is variational in nature and the energy functional associated with it is given by the
functional JK : X0 → R defined as

JK(u) := 1

2

∫
Rn×Rn

|u(x) − u(y)|2K(x − y) dx dy −
∫

�

F(x, u(x)) dx, (1.19)

where F is the function defined in (1.10).
Now, we can state our main result.

Theorem 1. Let s ∈ (0, 1), n > 2s and � be an open bounded set of R
n with continuous

boundary. Let K : R
n \ {0} → (0, +∞) be a function satisfying (1.5) and (1.6) and let

f : � × R → R be a function verifying (1.7), (1.8), (1.11) and

(a) (1.9) or
(b) (1.13) and (1.15) or
(c) (1.13) and (1.18).

Then, the problem (1.3) has infinitely many solutions uj ∈ X0, j ∈ N, whose energy
JK(uj ) → +∞ as j → +∞.

We would remark that, due to the symmetry assumption (1.11), if u is a weak solution of
problem (1.3), then also −u does. Hence, our results assure the existence of infinitely many
pairs {uj , −uj }j∈N of weak solutions for (1.3).

The strategy in order to get the multiplicity results stated here above consists in looking for
infinitely many critical points for the Euler–Lagrange functional associated with problem (1.3),
namely here we will apply the Fountain Theorem proved by Bartsch in [6]. As usual for critical
point theorems, we have to study the compactness properties of the functional together with its
geometric features. With respect to the compactness, we will prove that the functional satisfies
the classical Palais–Smale condition when the nonlinearity verifies the Ambrosetti–Rabinowitz
assumption, while, for a right-hand side satisfying other superlinear conditions (see (1.13) and
(1.15) or (1.18)), the Cerami condition will be considered. In both cases the main difficulty
relies in the proof of the boundedness of the Palais–Smale (or Cerami) sequence.
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As for the geometry of the functional, we will show that it is negative in a ball of a
suitable finite-dimensional subspace of X0 and positive in a ball of an infinite-dimensional
subspace. For the negativity of the functional we will mainly use the equivalence of the norms
in finite-dimensional spaces, while for the other geometric features we will need a more careful
analysis, strictly related to the superlinear assumptions on the nonlinear term f .

Finally, we would note that theorem 1 represents the nonlocal counterpart of [6,
theorem 3.7], [22, theorem 1.1] and [21, theorem 1.4]. We would also point out that in [25,
theorem 3.1] the author proved the existence of infinitely many weak solutions of problem (1.3)
requiring conditions (1.7)–(1.9) and (1.11), but exploiting a method different from the one used
here and, precisely, a symmetric version of the Mountain Pass Theorem for even functionals.

In [34] the authors studied the nonlocal problem{−LKu − λu = f (x, u) in �

u = 0 in R
n \ �,

(1.20)

and proved the existence of a nontrivial solution for it, for any λ ∈ R, as an application of the
Mountain Pass Theorem and of the Linking Theorem (see [3, 28]).

With the same arguments used in the proof of theorem 1 and with some careful estimates of
the term containing the parameter λ, it is easy to see that problem (1.20) admits infinitely many
weak solutions, under all the different superlinear assumptions on f we considered above.

The paper is organized as follows. In section 2 we will present some necessary preliminary
notions and results. In section 3 we will discuss the compactness properties of the energy
functional associated with the problem under consideration. Finally, section 4 will be devoted
to the proofs of the main result of the paper.

2. Preliminaries

In this section we give some preliminary results which will be used in the sequel.

2.1. The functional space X0

Problems (1.1) and (1.3) have a variational nature and, in order to study them from this point
of view, what we first need is to give a suitable variational formulation for them.

The natural spaces to look for solutions for these problems are the fractional Sobolev
spaces. On the other hand, the variational formulation needs to encode the Dirichlet datum
u = 0 in R

n \ �. In order to overcome this problem, in [32] (see also [33, 34]) the authors
considered a new functional space, denoted by X0, which is inspired to the fractional Sobolev
spaces (but it is not equivalent to them) and seems to be the good space for writing the variational
formulation of our problems.

The space X0 is defined as

X0 := {
g ∈ X : g = 0 a.e. in R

n \ �
}
,

where the functional space X denotes the linear space of Lebesgue measurable functions from
R

n to R such that the restriction to � of any function g in X belongs to L2(�) and

the map (x, y) �→ (g(x) − g(y))
√

K(x − y) is in L2
(
(Rn × R

n) \ (C� × C�), dx dy
)

(here C� := R
n \ �). Moreover, X0 is endowed with the norm

X0 � g �→ ‖g‖X0 :=
(∫

Rn×Rn

|g(x) − g(y)|2K(x − y) dx dy

)1/2

(2.1)
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and
(
X0, ‖ · ‖X0

)
is a Hilbert space (for this see [33, Lemma 7]), with scalar product

〈u, v〉X0 :=
∫

Rn×Rn

(
u(x) − u(y)

)(
v(x) − v(y)

)
K(x − y) dx dy. (2.2)

The usual fractional Sobolev space Hs(�) is endowed with the so-called Gagliardo norm (see,
for instance [1, 14]) given by

‖g‖Hs(�) := ‖g‖L2(�) +
( ∫

�×�

|g(x) − g(y)|2
|x − y|n+2s

dx dy
)1/2

. (2.3)

It is easy to see that, even in the model case in which K(x) = |x|−(n+2s), the norms in (2.1)
and (2.3) are not the same: this makes the space X0 not equivalent to the usual fractional
Sobolev spaces and the classical fractional Sobolev space approach not sufficient for studying
our problem from a variational point of view.

Just for completeness, we would recall that both the spaces X and X0 are non-empty, since
C2

0 (�) ⊆ X0 (see [32, lemma 5.1]), and that for a general kernel K satisfying conditions (1.5)
and (1.6), the following inclusion holds true

X0 ⊆ {
g ∈ Hs(Rn) : g = 0 a.e. in R

n \ �
}
,

while, when K(x) = |x|−(n+2s), the space X0 can be characterized as follows

X0 = {
g ∈ Hs(Rn) : g = 0 a.e. in R

n \ �
}
.

For further details on X and X0 we refer to [32–34], where various properties of these spaces
were proved. While, for more details on the fractional Sobolev spaces we refer to [14] and to
the references therein.

In the sequel, we also need some properties of the spectrum of the operator −LK (for a
complete study we refer to [31, proposition 2.3], and [34, proposition 9 and appendix A]. We
recall that the eigenvalue problem{−LKu = λu in �

u = 0 in R
n \ �.

(2.4)

possesses a divergent sequence of positive eigenvalues

λ1 < λ2 � . . . � λk � λk+1 � . . . ,

whose corresponding eigenfunctions will be denoted by ek . From [34, proposition 9], we
know that {ek}k∈N can be chosen in such a way that this sequence provides an orthonormal
basis in L2(�) and an orthogonal basis in X0.

2.2. Weak solutions and energy functional of the problem

Along this paper we are interested in the existence of infinitely many weak solutions for
problem (1.3), that is on solutions of the following problem


∫
Rn×Rn (u(x) − u(y))(ϕ(x) − ϕ(y))K(x − y)dx dy = ∫

�
f (x, u(x))ϕ(x)dx

∀ ϕ ∈ X0

u ∈ X0,

(2.5)

which represents the Euler–Lagrange equation of the energy functional JK defined in (1.19).
We would remark that JK ∈ C1(X0) thanks to the assumptions on f and also due to the
embedding properties of X0 into the classical Lebesgue spaces (see [33, lemmas 6 and 8]
and [34, lemma 9]).

In order to prove our main result, stated in theorem 1, we will apply the Fountain Theorem
due to Bartsch (see [6]), which, under suitable compactness and geometric assumptions on a
functional, provides the existence of an unbounded sequence of critical value for it.
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3. Verification of the compactness conditions

The compactness assumption required by the Fountain Theorem is the well-known Palais–
Smale condition (see, for instance, [35, 37] and references therein), which in our framework
reads as follows:

JK satisfies the Palais–Smale compactness condition at level c ∈ R

if any sequence {uj }j∈N in X0 such that

JK(uj ) → c and sup
{∣∣〈 J ′

K(uj ), ϕ 〉∣∣ : ϕ ∈ X0, ‖ϕ‖X0 = 1
}

→ 0 as j → +∞,

admits a subsequence strongly convergent in X0.

In the case when the right-hand side in problem (1.3) satisfies conditions (1.8) and (1.9), in
the sequel we will prove that the corresponding energy functional JK verifies the Palais–Smale
condition. While, when removing the Ambrosetti–Rabinowitz condition (1.9) and replacing it
with assumptions (1.13) and (1.15) or (1.18), we will show that JK verifies another compactness
assumption, say the well-know Cerami condition, which in our setting can be written as follows:

JK satisfies the Cerami compactness condition at level c ∈ R

if any sequence {uj }j∈N in X0 such that

JK(uj ) → c and (1 + ‖uj‖) sup
{∣∣〈 J ′

K(uj ), ϕ 〉∣∣ : ϕ ∈ X0, ‖ϕ‖X0 = 1
}

→ 0

as j → +∞, admits a subsequence strongly convergent in X0.

The Cerami condition was introduced by Cerami in [11, 12] as a weak version of the
Palais–Smale condition. Hence, the Fountain Theorem holds true also under this compactness
assumption. We would remark that if a functional satisfies the Palais–Smale condition or the
Cerami condition, then it verifies the deformation condition, that is it fits with the requirements
of the Deformation Theorem.

3.1. Nonlinearities satisfying the Ambrosetti–Rabinowitz condition

In this framework we prove the following result about the compactness of the functional JK :

Proposition 2. Let f : � × R → R be a function verifying conditions (1.7)–(1.9). Then, JK

satisfies the Palais–Smale condition at any level c ∈ R.

Proof. Let c ∈ R and let {uj }j∈N be a sequence in X0 such that

JK(uj ) → c (3.1)

and

sup
{∣∣〈 J ′

K(uj ), ϕ 〉∣∣ : ϕ ∈ X0, ‖ϕ‖X0 = 1
}

→ 0 (3.2)

as j → +∞.
We proceed by steps: first of all we show that the sequence {uj }j∈N is bounded in X0 and

then that it admits a subsequence strongly convergent in X0.

Step 1. The sequence {uj }j∈N is bounded in X0. For any j ∈ N by (3.1) and (3.2) it easily
follows that there exists κ > 0 such that∣∣∣〈J ′

K(uj ),
uj

‖uj‖X0

〉
∣∣∣ � κ

and

|JK(uj )| � κ,

7
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so that

JK(uj ) − 1

µ
〈J ′

K(uj ), uj 〉 � κ
(
1 + ‖uj‖X0

)
, (3.3)

where µ is the parameter given in (1.9).
By (1.8) and integrating it is easily seen that for any x ∈ � and for any t ∈ R

|F(x, t)| � a1 |t | +
a2

q
|t |q . (3.4)

Hence, by (3.4) and again (1.8) we have that for any j ∈ N∣∣∣
∫

�∩{|uj |� r}

(
F(x, uj (x)) − 1

µ
f (x, uj (x)) uj (x)

)
dx

∣∣∣
(3.5)

�
(

a1r +
a2

q
rq +

a1

µ
r +

a2

µ
rq

)
|�| =: κ̃ .

Thus, thanks to (1.9) and (3.5), we get that

JK(uj ) − 1

µ
〈J ′

K(uj ), uj 〉 =
(

1

2
− 1

µ

)
‖uj‖2

X0

−
∫

�

(
F(x, uj (x)) − 1

µ
f (x, uj (x)) uj (x)

)
dx

�
(

1

2
− 1

µ

)
‖uj‖2

X0
(3.6)

−
∫

�∩{|uj |�r}

(
F(x, uj (x)) − 1

µ
f (x, uj (x)) uj (x)

)
dx

�
(

1

2
− 1

µ

)
‖uj‖2

X0
− κ̃

for any j ∈ N.
By (3.3), (3.6) and the fact that µ > 2 we have that(

1

2
− 1

µ

)
‖uj‖2

X0
� κ

(
1 + ‖uj‖X0

)
+ κ̃

for any j ∈ N. Hence, step 1 is proved.

Step 2. Up to a subsequence, {uj }j∈N strongly converges in X0. Since {uj }j∈N is bounded in
X0 by step 1 and X0 is a reflexive space (being a Hilbert space, by [33, lemma 7]), up to a
subsequence, still denoted by {uj }j∈N, there exists u∞ ∈ X0 such that∫

Rn×Rn

(
uj (x) − uj (y)

)(
ϕ(x) − ϕ(y)

)
K(x − y) dx dy →

(3.7)∫
Rn×Rn

(
u∞(x) − u∞(y)

)(
ϕ(x) − ϕ(y)

)
K(x − y) dx dy for any ϕ ∈ X0

as j → +∞. Moreover, up to a subsequence,

uj → u∞ in Lq(Rn) (3.8)

uj → u∞ a.e. in R
n

as j → +∞ and there exists 
 ∈ Lq(Rn) such that

|uj (x)| � 
(x) a.e. in R
n for any j ∈ N (3.9)

(see, for instance, [7, theorem 4.9]).

8
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By (1.8), (3.7)–(3.9), the fact that the map t �→ f (·, t) is continuous in t ∈ R and the
Dominated Convergence Theorem we get∫

�

f (x, uj (x))uj (x) dx →
∫

�

f (x, u∞(x))u∞(x) dx (3.10)

and ∫
�

f (x, uj (x))u∞(x) dx →
∫

�

f (x, u∞(x))u∞(x) dx (3.11)

as j → +∞. Moreover, by (3.2) and step 1 we have that

0 ← 〈J ′
K(uj ), uj 〉 =

∫
Rn×Rn

|uj (x) − uj (y)|2K(x − y) dx dy −
∫

�

f (x, uj (x))uj (x) dx

so that, by (3.10) we deduce that∫
Rn×Rn

|uj (x) − uj (y)|2K(x − y) dx dy →
∫

�

f (x, u∞(x))u∞(x) dx (3.12)

as j → +∞. Furthermore, again by (3.2), we get

0 ← 〈J ′
K(uj ), u∞〉 =

∫
Rn×Rn

(
uj (x) − uj (y)

)(
u∞(x) − u∞(y)

)
K(x − y) dx dy

−
∫

�

f (x, uj (x))u∞(x) dx (3.13)

as j → +∞. By (3.7) with ϕ = u∞, (3.11) and (3.13) we obtain∫
Rn×Rn

|u∞(x) − u∞(y)|2K(x − y) dx dy =
∫

�

f (x, u∞(x))u∞(x) dx. (3.14)

Thus, (3.12) and (3.14) give that

‖uj‖X0 → ‖u∞‖X0 , (3.15)

as j → ∞.
Finally, it is easy to see that

‖uj −u∞‖2
X0

= ‖uj‖2
X0

+ ‖u∞‖2
X0

−2
∫

Rn×Rn

(
uj (x)−uj (y)

)(
u∞(x)−u∞(y)

)
K(x−y) dx dy

→ 2‖u∞‖2
X0

− 2
∫

Rn×Rn

|u∞(x) − u∞(y)|2K(x − y) dx dy = 0

as j → +∞, thanks to (3.7) and (3.15). Then, the assertion of step 2 is proved. This concludes
the proof of proposition 2. �

3.2. Nonlinearities under the superlinear assumptions (1.13) and (1.15)

In this framework we show that the functional JK verifies the Cerami condition. Before
proving this fact, we would note that, as a consequence of the assumptions (1.11) and (1.15),
the following condition is verified:

there exists γ � 1 such that for any x ∈ � (3.16)

F(x, t ′) � γF(x, t) for any t, t ′ ∈ R with 0 < |t ′| � |t |,
where F is the function given in (1.16).

9
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Now, we are ready to prove the next result, that is

Proposition 3. Let f : � × R → R be a function verifying conditions (1.7), (1.8), (1.11),
(1.13) and (1.15). Then, JK satisfies the Cerami condition at any level c ∈ R.

Proof. Let c ∈ R and let {uj }j∈N be a Cerami sequence in X0, that is let {uj }j∈N be such that

JK(uj ) → c (3.17)

and

(1 + ‖uj‖) sup
{∣∣〈 J ′

K(uj ), ϕ 〉∣∣ : ϕ ∈ X0, ‖ϕ‖X0 = 1
}

→ 0 (3.18)

as j → +∞.
First of all, we show that the sequence {uj }j∈N is bounded in X0. To this purpose we argue

as in the proof of [15, lemma 2.2]. We assume, by contradiction, that {uj }j∈N is unbounded in
X0, that is we may suppose that, up to a subsequence (still denoted by {uj }j∈N)

‖uj‖X0 → +∞ (3.19)

as j → +∞.
Note that, by (3.18) and (3.19), it is easily seen that

sup
{∣∣〈 J ′

K(uj ), ϕ 〉∣∣ : ϕ ∈ X0, ‖ϕ‖X0 = 1
}

→ 0 (3.20)

as j → +∞.
Now, for any j ∈ N, let

vj = uj

‖uj‖X0

. (3.21)

Of course, the sequence {vj }j∈N is bounded in X0 and so, up to a subsequence, we have that
there exists v∞ ∈ X0 such that

vj → v∞ in Lq(Rn)
(3.22)

vj → v∞ a.e. in R
n

as j → +∞ and there exists 
 ∈ Lq(Rn) such that

|vj (x)| � 
(x) a.e. in R
n for any j ∈ N (3.23)

(see [7, theorem 4.9]). In the sequel we will consider separately the cases when v∞ ≡ 0 and
v∞ �≡ 0 and we will prove that in both these situations a contradiction occurs.

Firstly, let us suppose that

v∞ ≡ 0. (3.24)

As in [19], we can say that for any j ∈ N there exists tj ∈ [0, 1] such that

JK(tjuj ) = max
t∈[0,1]

JK(tuj ). (3.25)

Since (3.19) holds true, for any m ∈ N, we can choose rm = 2
√

m such that

rm‖uj‖−1
X0

∈ (0, 1), (3.26)

provided j is large enough, say j > ̄ , with ̄ = ̄ (m).
By (3.22) and the continuity of the function F , we get that

F(x, rmvj (x)) → F(x, rmv∞(x)) a.e. x ∈ � (3.27)

10
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as j → +∞ for any m ∈ N. Moreover, integrating (1.8) and taking into account (3.23), we
have that

|F(x, rmvj (x))| � a1 |rmvj (x)| +
a2

q
|rmvj (x)|q

(3.28)
� a1 rm
(x) +

a2

q
(rm
(x))q ∈ L1(�),

a.e. x ∈ � and for any m, j ∈ N. Hence, (3.27), (3.28) and the Dominated Convergence
Theorem yield that

F(·, rmvj (·)) → F(·, rmv∞(·)) in L1(�) (3.29)

as j → +∞ for any m ∈ N. Since F(x, 0) = 0 for any x ∈ � and (3.24) holds true, (3.29)
gives that ∫

�

F(x, rmvj (x)) dx → 0 (3.30)

as j → +∞ for any m ∈ N. Thus, (3.25), (3.26) and (3.30) yield

JK(tjuj ) � JK(rm‖uj‖−1
X0

uj )

= JK(rmvj )

= 1

2
‖rmvj‖2

X0
−

∫
�

F(x, rmvj (x)) dx

= 2m −
∫

�

F(x, rmvj (x)) dx � m,

provided j is large enough and for any m ∈ N. From this we deduce that

JK(tjuj ) → +∞ (3.31)

as j → +∞.
Now, note that JK(0) = 0 and (3.17) holds true. Combining these two facts it is easily

seen that tj ∈ (0, 1) and so, by (3.25), we get that

d

dt

∣∣∣
t=tj

JK(tuj ) = 0

for any j ∈ N. As a consequence of this, we have that

〈J ′
K(tjuj ), tjuj 〉 = tj

d

dt

∣∣∣
t=tj

JK(tuj ) = 0. (3.32)

We claim that

lim sup
j→+∞

JK(tjuj ) � κ, (3.33)

for a suitable positive constant κ . Indeed, by (3.32) and using (3.16), we get

1

γ
JK(tjuj ) = 1

γ

(
JK(tjuj ) − 1

2
〈J ′

K(tjuj ), tjuj 〉
)

= 1

γ

(
−

∫
�

F(x, tjuj (x)) dx +
1

2

∫
�

tjuj (x) f (x, tjuj (x)) dx

)

= 1

γ

∫
�

F(x, tjuj (x)) dx

�
∫

�

F(x, uj (x)) dx

11
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=
∫

�

[1

2
uj (x)f (x, uj (x)) − F(x, uj (x))

]
dx

= JK(uj ) − 1

2
〈J ′

K(uj ), uj 〉 → c

as j → +∞, thanks to (3.17) and (3.20). This proves (3.33), which contradicts (3.31). Thus,
the sequence {uj }j∈N has to be bounded in X0.

Now, suppose that v∞ �≡ 0. Then, the set �′ := {x ∈ � : v∞(x) �= 0} has positive
Lebesgue measure and

|uj (x)| → +∞ a.e. x ∈ �′ (3.34)

as j → +∞, thanks to (3.21), (3.22) and the fact that v∞ �≡ 0.
By (3.17) and (3.19) it is easy to see that

JK(uj )

‖uj‖2
X0

→ 0,

that is

1

2
−

∫
�′

F(x, uj (x))

‖uj‖2
X0

dx −
∫

�\�′

F(x, uj (x))

‖uj‖2
X0

dx = o(1) (3.35)

as j → +∞.
Let us consider separately the two integrals in formula (3.35). With respect to the first

one, we have that

F(x, uj (x))

‖uj‖2
X0

= F(x, uj (x))

|uj (x)|2
|uj (x)|2
‖uj‖2

X0

= F(x, uj (x))

|uj (x)|2 |vj (x)|2 → +∞ a.e. x ∈ �′

as j → +∞, thanks to (1.13), (3.22), (3.34) and the definition of �′. Hence, by using the
Fatou lemma, we obtain∫

�′

F(x, uj (x))

‖uj‖2
X0

dx → +∞ (3.36)

as j → +∞.
As for the second integral in (3.35), we claim that∫

�\�′

F(x, uj (x))

‖uj‖2
X0

dx � − κ

‖uj‖2
X0

|� \ �′|, (3.37)

for some positive constant κ . Indeed by (1.13), it follows that

lim
|t |→+∞

F(x, t) = +∞ uniformly for any x ∈ �. (3.38)

Hence, by (3.38) there exist two positive constants t̃ and H such that

F(x, t) � H (3.39)

for every x ∈ � and |t | > t̃ . On the other hand, since F is continuous in � × R, one has

F(x, t) � min
(x,t)∈�×[−t̃ ,t̃]

F(x, t), (3.40)

12
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for every x ∈ � and |t | � t̃ . Note that min(x,t)∈�×[−t̃ ,t̃] F(x, t) � 0, being F(x, 0) = 0 for
any x ∈ �. Then, by (3.39) and (3.40) it follows that

F(x, t) � −κ for any (x, t) ∈ � × R (3.41)

for some positive constant κ . Inequality (3.41) immediately yields the claim (3.37).
As a consequence of (3.19) and (3.37) it is easy to see that

lim
j→+∞

∫
�\�′

F(x, uj (x))

‖uj‖2
X0

dx � 0, (3.42)

(note that this limit exists thanks to (3.35) and (3.36)). All in all, by (3.35), (3.36) and (3.42)
we get a contradiction. Thus, the sequence {uj }j∈N is bounded in X0.

In order to prove the assertion of proposition 3 from now on we can argue as in step 2 of
the proof of proposition 2. �

We would remark that along the proof of proposition 3 the assumption (1.15) was used
(and was crucial) just for proving the inequality (3.33).

3.3. Nonlinearities verifying the superlinear conditions (1.13) and (1.18)

In this setting we need the following lemma, which will be crucial in the proof of the main
result of this subsection.

Lemma 4. If (1.18) holds true, then for any x ∈ �, the function F(x, t) is increasing in t � t̄

and decreasing in t � −t̄ , where F is the function given in (1.16).
In particular, there exists C1 > 0 such that

F(x, s) � F(x, t) + C1

for any x ∈ � and 0 � s � t or t � s � 0.

See [21, lemma 2.3] for details.

Proposition 5. Let f : � × R → R be a function verifying conditions (1.7), (1.8), (1.13) and
(1.18). Then, JK satisfies the Cerami condition at any level c ∈ R.

Proof. We can argue exactly as in the proof of proposition 3. We just have to modify the proof
of inequality (3.33): indeed, for proving it, in proposition 3 we used condition (1.15) (actually
(3.16)), which now is no more assumed.

Here we will show the validity of (3.33) making use of the assumption (1.18) and of
lemma 4. We point out that our notation is the one used in the proof of proposition 3. In view
of Lemma 4 we have that

JK(tjuj ) = JK(tjuj ) − 1

2
〈J ′

K(tjuj ), tjuj 〉

=
∫

�

F(x, tjuj (x)) dx

=
∫

{uj �0}
F(x, tjuj (x)) dx +

∫
{uj <0}

F(x, tjuj (x)) dx

�
∫

{uj �0}

[
F(x, uj (x)) + C1

]
+

∫
{uj <0}

[
F(x, uj (x)) + C1

]

=
∫

�

F(x, uj (x)) dx + C1|�|

= JK(uj ) − 1

2
〈J ′

K(uj ), uj 〉 + C1|�| → c + C1|�|
as j → +∞. This proves (3.33). The proof of proposition 5 is thus completed. �

13
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4. The proof of the main result

In this section we give the proofs of the existence of infinitely many solutions for problem (1.3),
both when the right-hand side satisfies the Ambrosetti–Rabinowitz condition and when other
superlinear assumptions are required. In both cases the strategy consists in applying the
Fountain Theorem of Bartsch (see [6]) to the functional JK .

Following the notation used in [6, theorem 2.5] (see also [37]), in the sequel for any k ∈ N

we put

Yk := span{e1, . . . , ek}
and

Zk := span{ek, ek+1, . . .}.
Since Yk is finite-dimensional, all norms on Yk are equivalent. Therefore, there exist two

positive constants Ck, q and C̃k, q , depending on k and q, such that for any u ∈ Yk

Ck, q‖u‖X0 � ‖u‖Lq(�) � C̃k, q‖u‖X0 . (4.1)

The Fountain Theorem provides the existence of an unbounded sequence of critical value for
a smooth functional, under suitable compactness condition (say, the Palais–Smale condition)
and geometric assumptions on it, which, in our framework, read as follows:

(i) ak := max
{
JK(u) : u ∈ Yk, ‖u‖X0 = rk

}
� 0;

(ii) bk := inf
{
JK(u) : u ∈ Zk, ‖u‖X0 = γk

}
→ ∞ as k → ∞.

4.1. Proof of theorem 1 under assumption (a)

In order to perform the proof of theorem 1 when condition (a) is assumed, we first need the
following result:

Lemma 6. Let 1 � q < 2∗ and, for any k ∈ N, let

βk := sup
{
‖u‖Lq(�) : u ∈ Zk, ‖u‖X0 = 1

}
.

Then, βk → 0 as k → ∞.

Proof. By definition of Zk , we have that Zk+1 ⊂ Zk and so, as a consequence, 0 < βk+1 � βk

for any k ∈ N. Hence,

βk → β (4.2)

as k → +∞, for some β � 0. Moreover, by definition of βk , for any k ∈ N there exists
uk ∈ Zk such that

‖uk‖X0 = 1 and ‖uk‖Lq(�) > βk/2. (4.3)

Since X0 is a Hilbert space, and hence a reflexive Banach space, there exist u∞ ∈ X0 and a
subsequence of uk (still denoted by uk) such that uk → u∞ weakly in X0, that is

〈uk, ϕ〉X0 → 〈u∞, ϕ〉X0 for any ϕ ∈ X0

as k → +∞. Since each Zk is convex and closed, hence it is closed for the weak topology.
Consequently,

u∞ ∈ ∩+∞
k=1Zk = {0}.

14
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Hence, by the Sobolev embedding theorem, we get

uk → 0 in Lq(�) (4.4)

as k → +∞. By (4.2), the fact that β is nonnegative, (4.3) and (4.4) we get that βk → 0 as
k → +∞ and this concludes the proof of lemma 6. �
Proof of theorem 1 under assumption (a). We mimic the proof of [37, theorem 3.7]. By
proposition 2 we have that JK satisfies the Palais–Smale condition, while, by (1.11) we get
that JK(−u) = JK(u) for any u ∈ X0. In order to apply the Fountain Theorem, it remains to
study the geometry of the functional JK . To this purpose, let us proceed by steps.

Step 1. For any k ∈ N there exists rk > 0 such that

ak = max
{
JK(u) : u ∈ Yk, ‖u‖X0 = rk

}
� 0.

By (1.12) and (4.1) we get that for any u ∈ Yk

JK(u) � 1

2
‖u‖2

X0
− a3‖u‖µ

Lµ(�) + a4|�|
(4.5)

� 1

2
‖u‖2

X0
− Ĉk, µ‖u‖µ

X0
+ a4|�|

for a suitable positive constant Ĉk, µ depending on k and µ. As a consequence of (4.5), for any
u ∈ Yk with ‖u‖X0 = rk we get that

JK(u) � 0,

provided rk > 0 is large enough, due to the fact that µ > 2. Thus, step 1 is proved.

Step 2. There exists γk > 0 such that

bk = inf
{
JK(u) : u ∈ Zk, ‖u‖X0 = γk

}
→ +∞ as k → +∞.

By (1.8) and integrating, it is easy to see that (3.4) holds true, and so, as a consequence, we
get that there exists a constant C > 0 such that

|F(x, t)| � C(1 + |t |q) (4.6)

for any x ∈ � and t ∈ R. Then, by (4.6) for any u ∈ Zk \ {0}, we obtain

JK(u) � 1

2
‖u‖2

X0
− C‖u‖q

Lq(�) − C|�|

= 1

2
‖u‖2

X0
− C

∥∥∥ u

‖u‖X0

∥∥∥q

Lq(�)
‖u‖q

X0
− C|�|

(4.7)

� 1

2
‖u‖2

X0
− Cβ

q

k ‖u‖q

X0
− C|�|

= ‖u‖2
X0

(
1

2
− Cβ

q

k ‖u‖q−2
X0

)
− C|�|,

where βk is defined as in lemma 6. Choosing

γk = (
qCβ

q

k

)−1/(q−2)
,

it is easy to see that γk → +∞ as k → +∞, thanks to lemma 6 and the fact that q > 2. As a
consequence of this and by (4.7) we get that for any u ∈ Zk with ‖u‖X0 = γk

JK(u) � ‖u‖2
X0

(
1

2
− Cβ

q

k ‖u‖q−2
X0

)
− C|�| =

(
1

2
− 1

q

)
γ 2

k − C|�| → +∞
as k → +∞. Thus, step 2 is fulfilled.

The proof of theorem 1 under assumption (a) is complete. �
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We notice that the Ambrosetti–Rabinowitz condition (1.9) was used just for proving step 1
in the verification of the geometric structure of the functional JK (actually we used (1.12)).
While in the proof of step 2 the main tools were the assumption (1.8) and the Sobolev embedding
theorems (see lemma 6).

4.2. Proof of theorem 1 under assumption (b)

By proposition 3 and (1.11), we have that JK satisfies the Cerami condition (and so the Palais–
Smale condition) and JK(−u) = JK(u) for any u ∈ X0. The verification of the geometric
assumption (ii) of the Fountain Theorem follows as in step 2 in section 4.1. It remains to verify
the condition (i). At this purpose we will use the finite-dimension of the linear subspace Yk

and assumption (1.13).
Indeed, for any k ∈ N, by (1.13) there exists δk > 0 such that

F(x, t) � 1

C2
k

|t |2 for any x ∈ � and any t ∈ R with |t | > δk, (4.8)

where Ck := Ck, 2, being Ck, 2 the positive constant given in (4.1) with q = 2. Moreover, by
Weierstrass Theorem, we have that

F(x, t) � mk := min
x∈�,|t |�δk

F (x, t) for any x ∈ � and any t ∈ R with |t | � δk. (4.9)

Note that mk � 0, since F(x, 0) = 0 for any x ∈ �. By (4.8) and (4.9), it is easy to see that

F(x, t) � 1

C2
k

|t |2 − Bk for any (x, t) ∈ � × R

for a suitable positive constant Bk (say, Bk � δ2
k/C2

k − mk).
As a consequence of this and by (4.1), for any u ∈ Yk we have

JK(u) = 1

2
‖u‖2

X0
−

∫
�

F(x, u(x)) dx

� 1

2
‖u‖2

X0
− 1

C2
k

‖u‖2
L2(�) + Bk|�|

(4.10)

� 1

2
‖u‖2

X0
− ‖u‖2

X0
+ Bk|�|

= −1

2
‖u‖2

X0
+ Bk|�|,

so that, when ‖u‖X0 = rk it follows that

JK(u) � 0,

provided rk > 0 is large enough. This proves that JK satisfies condition (i) of the Fountain
Theorem and this ends the proof of theorem 1 under assumption (b).

4.3. Proof of theorem 1 under assumption (c)

The functional JK satisfies the Cerami condition by proposition 5, and so also the Palais-Smale
assumption is verified. Moreover, JK(−u) = JK(u) for any u ∈ X0, thanks to (1.11).

As for the geometric features of JK , condition (ii) of the Fountain Theorem follows as in
step 2 of section 4.1. While condition (i) can be proved as in section 4.2. Hence, the proof of
theorem 1 under assumption (c) is complete.
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GNAMPA Project 2014 Proprietà geometriche e analitiche per problemi non-locali. The third
author was supported by the MIUR National Research Project Variational and Topological
Methods in the Study of Nonlinear Phenomena and by the ERC grant ε (Elliptic Pde’s and
Symmetry of Interfaces and Layers for Odd Nonlinearities). We would like to thank the referee
for her/his useful and interesting comments and suggestions.

References AQ1

[1] Adams R A 1975 Sobolev Spaces (New York: Academic)
[2] Alves C O and Liu S B 2010 On superlinear p(x)-Laplacian equations in R

N Nonlinear Anal. 73 2566–79
[3] Ambrosetti A and Rabinowitz P 1973 Dual variational methods in critical point theory and applications J. Funct.

Anal. 14 349–81
[4] Autuori G and Pucci P 2013 Elliptic problems involving the fractional Laplacian in R

N J. Differ. Equ. 25 2340–62
[5] Barrios B, Colorado E, Servadei R and Soria F A critical fractional equation with concave–convex power

nonlinearities to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire
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