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Abstract 21 

Lead (Pb) mimicking other biologically essential metal has been regarded as a very toxic element 22 

and poses serious threat to biota. A mesocosm experiment has been implemented to assess the 23 

influence of Pb on meiofaunal and benthic foraminiferal communities. To this end, sediments 24 

bearing such communities were incubated in mesocosm, exposed to different levels of Pb in 25 

seawater and monitored up to eight weeks. Concentrations of Pb below 1 mg/L in water do not 26 
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promote a significant increase of this metal in sediments. Relatively high concentrations of Pb seem 27 

to affect meiofaunal and benthic foraminiferal communities by reducing their richness or diversity 28 

and the sensitive behavior of most taxa can be defined. The mesocosm approach is here considered 29 

as an effective method to document the responses of meiofaunal and benthic foraminiferal 30 

communities to various kinds and concentrations of pollutants over time and validating the field 31 

study outcomes. 32 

 33 
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 36 

1. INTRODUCTION 37 

Increasing human activities have deeply impacted marine and estuarine ecosystems, affected 38 

living organisms therein and degraded the environment quality. Because of the toxicity, 39 

bioaccumulative, and non-biodegradable nature, trace elements, also known as heavy metals, might 40 

pose a serious threat to organisms (Stankovic et al. 2014). Among them, lead (Pb) has been 41 

regarded as very toxic and easily exposed and is of very great concern as it mimics other 42 

biologically essential metals (Lidsky and Schneider 2003; Flora et al. 2012). In light of it, Pb 43 

represents a toxic element for biota even at low concentrations (Sousa Bispo et al. 2002). Although 44 

Pb seawater concentrations range from 0.002 to 0.2 µg/L in open ocean water, concentrations 45 

greater than 1 µg/L might be found in coastal area due to natural sources and anthropogenic 46 

activities (Neff 2002; Lavilla et al. 2011). Lead in water is then prone to be sorbed to suspended 47 

solids and sediments, where the latter represents one of the most important sink. Accordingly, 48 

sediments contain considerably higher levels of Pb than surface waters that vary, in coastal 49 

sediments, up to 912 mg/kg with a mean value of 87 mg/kg (EPA 1982; Nriagu 1978). The effects 50 

range low (ERL) and effects range median (ERM) of Pb concentrations in sediment are 46.7 and 51 

218 ppm, respectively (Long et al. 1995). Thus, the understanding of the effects of heavy metals, 52 
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and specifically of Pb, on biota is particularly important and can be pursued through different 53 

approaches: field studies (i.e. monitoring programs), laboratory cultures (i.e. exposure of a single 54 

species to pollutants) and micro- and mesocosm experiments (i.e. exposure of sediments and the 55 

entire community living therein to pollutants). The latter approach represents a very effective and 56 

direct method to assess the effect of a single parameter (i.e. pollutant) on the biota through different 57 

concentrations and time (Frontalini et al. 2018). In fact, micro- and mesocosms experiments are 58 

intended to reduce and possibly eliminate the temporal and spatial environmental variability 59 

allowing the investigators to focus on one or a combination of variables (i.e. pollutant) and to 60 

establish cause-and-effect relationships. 61 

Meiofaunal organisms are known to play a key role in the benthic ‘small food web’ as well as to 62 

be a trophic source for pelagic organisms through juvenile fishes or epibenthic crustaceans (Zeppilli 63 

et al. 2016). Fichet et al. (1999) observed that meiofauna, and in particular nematodes may be an 64 

important route for metals transfer from sediment to living resources through the food web. The 65 

release of bioavailable metals represent a risk to the biota (Amiard et al. 1995). However, only a 66 

relatively limited number of meiofaunal and foraminiferal micro- and mesocosm experiments have 67 

been conducted so far on heavy metals (e.g. Austen and McEvoy 1997; Gustafsson et al. 2000; 68 

Ernst et al. 2006; Gyedu-Ababio and Baird 2006; Hedfi et al. 2007; Mahmoudi et al. 2007; Hermi et 69 

al. 2009; Beyrem et al. 2011; Boufahja et al. 2011; Frontalini and Coccioni 2012; Frontalini et al. 70 

2018) and a low number of them was focused on the effects of Pb (i.e. Austen and McEvoy 1997; 71 

Millward et al. 2001; Gyedu-Ababio and Baird 2006; Mahmoudi et al. 2007). 72 

As an example, Austen and McEvoy (1997) treated offshore meiobenthic communities with 73 

different levels of Pb (up to 1580 µg/g) and documented significant variations on meiofauna at 74 

medium concentrations of Pb (1343 µg/g). A reduction in meiofaunal diversity and nematodes 75 

density and diversity was related to higher concentration of Pb (Gyedu-Ababio and Baird 2006). 76 

Similar results with a reduction of diversity, density, evenness and alteration of the composition of 77 
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the nematode assemblages was observed to high concentration of Pb in a microcosm experiment 78 

(Mahmoudi et al. 2007). 79 

The main aim of the present paper is to document the response of a meiofaunal community 80 

incubated in mesocosm when exposed to selected concentrations of Pb. 81 

 82 

2. MATERIALS AND METHODS  83 

2.1 Sampling and experiment setup   84 

Sediment collection was at 14 m water depth site (43°33'54'' N, 13°39'52'' E) in the coastal area 85 

off the Mt. Conero (central Adriatic Sea) characterized by oligo-mesotrophic conditions and low 86 

influence of human activity (Frontalini and Coccioni 2008). Physico-chemical parameters, namely 87 

temperature, pH, salinity, Eh and dissolved oxygen of water were measured by using a 88 

multiparametric CTD (Conductivity, Temperature and Depth) probe in vertical profile. Sediments 89 

were collected by multiple deployments of Van Veen grab and the sampling of the uppermost part 90 

of sediment (ca. 2 cm). Once on board, sediment was highly homogenized and sieved over a 500-91 

µm sieve tissue to remove bioturbators. The remaining fraction was placed in an insulated box 92 

covered by ambient seawater, and kept near ambient temperature until arrival at our shore-based 93 

laboratory.  94 

Artificial Sea Water (ASW) was prepared following the methods of Ciacci et al. (2012), stored in 95 

the dark, aerated and mixed under in situ temperature. A total of seven Pb-ASW concentrations plus 96 

control were prepared. Lead (II) chloride (PbCl2, CAS Number 7758-95-4, Sigma-Aldrich) 98% 97 

pure was used for stock solutions. The final pollutant concentrations for experimental media were 98 

obtained by adding appropriate volumes of stock solutions to ASW. The selected concentrations 99 

were control (ctrl), 10, 100, 200, 500 µg/L (ppb) and 1, 5, 10 mg/L (ppm). Eight tanks (aquarium, 100 

60 cm X 40 cm X 20 cm) were filled with approximately 20 L of the Pb-ASW solutions. A total of 101 

twelve mesocosms (15 cm x 8 cm x 3 cm) containing 1 cm thick sediment were placed inside each 102 

tank (Fig. 1). Multichannel pumps were used to circulate and to oxygenate water through silicone 103 
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rubber tubing anchored between the tanks’ bottom and plastic grids. Tanks were placed in a 104 

controlled environment with air temperature of 14-16 °C, uniformly maintained throughout the 105 

experiment. Dissolved Oxygen (DO), Salinity (S), Temperature (T), Oxidation Reduction potential 106 

(ORP) and pH of the seawater were routinely monitored by a set of HQ40d portable multi-107 

parameter probes.  108 

 109 

2.2 Subsampling 110 

From each mesocosm and at every sampling time (one week, T1; two weeks, T2; three weeks, 111 

T3; four weeks T4, six weeks T5 and 8 weeks, T6), ca. 50 cm
3
 of sediment and 3+3 replicates of 10 112 

cm
3
 of sediment were collected from each mesocosm for chemical, meiofaunal and foraminiferal 113 

analyses, respectively. Additionally, 50 mL of water from each tank was also sampled. 114 

Water sample was placed into 50-mL centrifuge tube, immediately acidified with 50 µL of nitric 115 

acid 65% and refrigerated at 4 °C until chemical analysis. Sediment sample was placed into 50-mL 116 

centrifuge tube and frozen upon collection. Three replicates of 10 cm
3
 of sediment were treated with 117 

a 2g/L Rose Bengal solution and used for foraminiferal analyses whereas the other 3 replicates were 118 

treated with a 7% MgCl2 aqueous solution for narcotizing fauna, fixed in a 4% formaldehyde 119 

solution in buffered sea-water, and stained with Rose Bengal (2 g/L). 120 

 121 

2.3 Lead analyses in water and sediment  122 

The methodological description of analyses for lead concentrations in water and sediment was 123 

reported in Maccotta et al. (2016). Briefly, sediment was dried in an oven at 40 °C for 48 h, 124 

powdered, and digested (HNO3–H2O2–HF). A Perkin Elmer AAnalyst 800 atomic absorption 125 

spectrometer with graphite furnace was used to measure Pb concentrations in water and sediments.  126 

 127 

2.4 Meiofaunal and foraminiferal analyses 128 
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Only samples collected at T1, T2, T4 and T6 for control and 100 µg/L, 1 mg/L and 10 mg/L 129 

were considered for meiofaunal and foraminiferal analyses.  130 

In the laboratory, samples for meiofauna were carefully washed through a 42 µm sieves for 131 

retaining the meiofaunal component (Frontalini et al. 2014). The resulting fraction was used to 132 

extract meiobenthos using the Ludox HS30-flotation method (Semprucci et al. 2014). All the 133 

meiofaunal organisms were sorted and counted into major taxa (mainly Phylum and Order level of 134 

rank) under a stereomicroscope (Leica G26) from the three replicates of each mesocosm. 135 

Temporary slides were prepared for soft-body meiofaunal groups (e.g. Platyhelminthes, Nemertea) 136 

to obtain an exact identification under a 100x oil immersion objective using Nomarski Differential 137 

Interference Contrast illumination (Optiphot-2 Nikon). The richness (number of taxa) was 138 

calculated at major taxon level.  139 

Foraminiferal samples treated with rose Bengal were gently washed through 63 µm sieve to 140 

remove any excess stain, and were then oven dried at 50°C. All samples and replicates were used 141 

for benthic foraminiferal counts on >63 µm fraction. Benthic foraminiferal specimens were 142 

taxonomically identified following Cimerman and Langer (1991). The following indices were 143 

calculated: Shannon-Wiener diversity index (Hˈ, log2) and Pielou-evenness (Jˈ). 144 

 145 

2.5 Statistical analyses 146 

Statistical analyses were performed on the relative abundances of the meiofaunal major taxa and 147 

foraminiferal species. A Principal Component Analysis (PCA) was performed to determine the 148 

meiofaunal and foraminiferal community’s responses to the increasing Pb concentrations and 149 

progressive exposure time. Prior to PCA, all of the biotic and abiotic data were normalized by 150 

applying an additive logarithmic transformation log(1+X). For foraminifera, only taxa with a 151 

relative abundance exceeding 3% were taken into consideration. Even if rare species, commonly 152 

considered the most sensitive ones, were down-weighted in this way, their contribution was 153 

accounted by means of the calculation of Shannon and Pielou indices. In detail, the relative 154 
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abundances of the benthic components were projected on the factor plane as primary variables, 155 

while Pb concentration of both water and sediment matrices were used as secondary variables 156 

without contributing to the results of the analysis. These statistical tests are performed using 157 

STATISTICA v.8 computer program. Analysis of Similarity (ANOSIM) was used to test the 158 

significance of the differences between treatments. A transformation log(1+X) and Bray-Curtis 159 

similarity measure were applied to the data of both meiofaunal and foraminiferal communities. The 160 

multivariate data analysis followed the methods described by Clarke and Gorley (2006) using the 161 

PRIMER Version 5 software package. 162 

 163 

3. RESULTS 164 

3.1. Physico-chemical parameters and Pb concentrations 165 

Physico-chemical parameters remained quite constant throughout the experiment. The mean 166 

value of salinity was 36.9‰ with a slight increase (ca. 1‰) during the experiment. The mean DO 167 

value in the tanks was 9.37 mg/L with some fluctuations. A significant decrease of Pb 168 

concentrations in water was mirrored by an increase in the sediment. Very high values of Pb in 169 

sediments were associated with 10 ppm at T4 (38 ppm) and T6 (127.5 ppm) with the latter 170 

exceeding the ERL (Fig. 2). 171 

 172 

3.2 Meiofauna 173 

Total meiofaunal abundance varied from 189±45 ind./10 cm
3
 at T6 1 ppm to 371±41 at T1 ctrl 174 

ind. 10 cm
3
. A total of 12 meiofaunal taxa was identified in the study area: Foraminifera, 175 

Platyhelminthes, Nematoda, Kinorhyncha, Copepoda, Crustacea nauplii, Ostracoda, Polychaeta, 176 

Oligochaeta, Bivalvia, Gasteropoda and Halacaroidea. Among them, the dominant taxa were 177 

Nematoda (75.1±10.3%) and Foraminifera (23.6±10.7%), all the other taxa showed very low 178 

percentages (<1%). Meiofaunal richness (namely number of taxa) was lower at T4 100 ppb and T6 179 

100 ppb and (3 taxa) and higher at T1 1ppm (8 taxa) and T1 ctrl (7 taxa).
 

180 
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 181 

3.3 Benthic foraminifera 182 

A total of 26 benthic foraminiferal taxa was recognized in the studied samples. The most 183 

abundant taxa were Ammonia parkinsoniana (50.0%, on average), Ammonia tepida (26.6%, on 184 

average), Eggerelloides scaber (5.9%, on average), Aubygnina perlucida (3.6%, on average), 185 

Haynesina depressula (3.1%, on average), Bolivina spathulata (2.8%, on average), Elphidium 186 

advenum (2.0%, on average), Bulimina elongata (1.5%, on average) and Bolivina striatula (1.3%, 187 

on average). The Hˈ varied from 0.88 T6 1 ppm to 1.88 T1 ctrl. The J values ranged from 0.59 T6 1 188 

ppm to 0.75 T2 ctrl. 189 

 190 

3.4 Statistical analyses 191 

ANOSIM revealed a significant difference of the meiofaunal community between samples 192 

(Global R=0.40; p=0.001). The PCA based on meiofaunal taxa revealed that ~53% of total variance 193 

(inertia) can be explained by the first two principal components (factors) (Fig. 3a). These exhibit 194 

eigenvalues greater than one and have therefore been considered. Most of the meiofaunal taxa and 195 

specifically Nematoda, Kinorhyncha, Polychaeta, and Platyhelminthes as well as meiofaunal 196 

richness showed an opposite trend of the Pb concentration in sediment. The only taxon exhibiting a 197 

positively relation to Pb concentration in sediment was Ostracoda. Bivalvia appeared to be 198 

negatively related to both Pb water and sediment contents, whereas a positive relation was found 199 

between Pb content in water and Gasteropoda, Copepoda, Polychaeta and nauplii. When projecting 200 

samples on the factor plans, most of the Pb-enriched samples were placed in the negative part of the 201 

first component (Fig. 3b). ANOSIM revealed a significant difference of the Foraminifera 202 

community between samples (Global R=0.33; p=0.001). The PCA based on foraminiferal taxa 203 

showed that ~52% of total variance (inertia) can be explained by the first two principal components 204 

(factors) (Fig. 3c). Similar to meiofaunal taxa, most of the benthic foraminiferal species as well as 205 

H’ and J exhibited negative relations with Pb concentration in sediment. Only A. tepida and B. 206 
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spathulata appear to be positively related to Pb concentration in sediment. The most Pb-enriched 207 

samples were located in the positive values of the first component (Fig. 3d). 208 

 209 

4. DISCUSSION 210 

Lead (Pb) has been considered as a very toxic and is of particular concern by mimicking other 211 

biologically essential metals (Lidsky and Schneider 2003; Flora et al. 2012). In our experiment, 212 

very high nominal concentrations (i.e. 1 and 10 ppm that is mg/L) were used for testing the 213 

response of meiofaunal and benthic foraminiferal assemblages. These concentrations were much 214 

higher than those found in open ocean water (0.002 to 0.2 µg/L) or coastal area (>1 µg/L) (Neff 215 

2002; Lavilla et al. 2011). The choice of the targeted concentration was driven to ensure a real 216 

enrichment in the sediments where our considered biota live. In fact, Pb is absorbed to suspended 217 

solids and sediments, where the latter represents one of the most important sink. The initial 218 

concentration of Pb in sediment, in our experiment, was 13.2 mg/kg that was lower than the Italian 219 

Sediment Quality Guidelines (LCB, chemical base level 37 mg/kg for mud over 25% and LCL 220 

chemical limit level 70 mg/kg) or the Effect Range Low (46.7 mg/kg) (Long et al. 1995). Following 221 

the available data and interpretation of Maccotta et al. (2016), a clear temporal evolution of Pb 222 

release in seawater and absorption in sediment was observed (Fig. 2). Concentrations lower than 1 223 

mg/L in seawater did not lead to any appreciable increase in sediments as these concentrations were 224 

comparable lower by order of magnitude than the initial Pb levels naturally present in the 225 

sediments. A significant decrease in Pb concentrations of seawater coupled with a concurrent 226 

increase of Pb in sediment was evidenced at T3 that was four weeks after the beginning of the 227 

experiment. In particular, higher concentrations than 20 mg/kg in sediments were found for 1 ppm 228 

experiment at T4 and T6 and for 10 ppm one at T1 and T2. The highest concentrations were 229 

confined for 10 ppm experiment at T4 (38 mg/kg) and T6 (127.6 mg/kg) that were both higher of 230 

the Italian thresholds. In lights of it, only samples retrieved from 10 ppm tank at T4 and T6 could be 231 

considered polluted (P) whereas all the other samples were regarded as unpolluted (UP) (Fig. 2). 232 
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The investigated communities, namely meiofauna and benthic foraminifera, resulted negatively 233 

affected over time and exposure to the lead treatment. In particular, meiofaunal structure appears 234 

negatively affected by the increase of Pb in the sediment, with the exception of Ostracoda that seem 235 

to be positively correlated with Pb increasing. Ostracoda are generally reported as sensitive to 236 

environmental stress, but several species have been documented to have adaptive behaviors to 237 

numerous environmental changes (Mirto et al. 2012; Vandekerkhove et al. 2013). Contrary to the 238 

general tolerance of Nematoda observed in field studies (Mirto et al. 2004; Semprucci et al. 2015), 239 

their abundances appeared directly and negatively affected by Pb concentrations in sediment. This 240 

trend is in agreement with the results of other microcosm experiments that documented a significant 241 

decrease of nematodes in relation to the increased trace element concentrations (Gyedu-Ababio and 242 

Baird 2006; Hedfi et al. 2007; Boufahja et al. 2011; Chaaban Santos et al. 2018). Recent studies on 243 

Caenorhabditis elegans have highlighted that this species avoids food spots even containing low 244 

concentrations of Pb that likely interferes with its food finding (Monteiro et al. 2014). Kinorhyncha, 245 

Polychaeta and Platyhelminthes are also negatively affected by Pb. In particular, Kinorhyncha are 246 

recognized as a very sensitive taxon to anthropogenic stress (Gyedu-Ababio and Baird 2006; Mirto 247 

et al. 2012; Dal Zotto et al. 2016). In our samples, Kinorhyncha are mainly represented by 248 

Pycnophyes communis that, given the negative correlation found with Pb, may be regarded as a k-249 

strategist species for Pb impact. Dal Zotto et al. (2016) proposed the Nematoda/Kinorhyncha 250 

(Ne/Ki) ratio as a tool to assess the human impact because these taxa have an opposite auto-251 

ecological behavior. However, the trends observed in our experiment suggest that Ne/Ki ratio 252 

cannot be applied to detect the trace element effects on the meiobenthic compartment given that 253 

both taxa decrease with its enhancement. Nematoda and Foraminifera are removed from the 254 

meiobenthos community to track differences between unpolluted (UP) and polluted (P) samples 255 

(Fig. 4). Among the minor groups, Copepoda (36%), Platyhelminthes (30%), Kinorhyncha (22%), 256 

followed by Bivalvia (5%), Ostracoda, crustacean nauplii and Polychaeta (2%) characterized the UP 257 

samples, while Copepoda (47%), Platyhelminthes (28%), Kinorhyncha (19%), followed by 258 
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Ostracoda (5%) characterized the P samples (Fig. 4). Decreases in relative abundance of 259 

Platyhelminthes and Kinorhyncha were documented in P samples. Meiofaunal richness showed a 260 

clear decline in the samples that showed the highest Pb concentrations (Fig. 4). Similarly, a 261 

reduction of diversity and abundance and changes in meiofaunal community structure (Nematoda) 262 

were observed in a microcosm experiment treated with several heavy metals (i.e. Cu, Zn, Cd and 263 

Pb) (Austen and McEvoy, 1997). Four targeted concentrations were selected for Pb that are from 56 264 

µg/g that is mg/kg (control), 247 mg/kg (low), 1343 mg/kg (medium) and 1680 mg/kg (high) 265 

(Austen and McEvoy, 1997). Their concentrations were much higher than those considered in the 266 

present experiment and only the Pb-low experiment showed comparable concentration with 10 ppm 267 

T6 (127.6 mg/kg). Taking into account that the nematodes viability was only checked on the 268 

preservation, the same authors reported that Nematoda were significantly affected by medium 269 

concentration of Pb and not the low dose. Similarly, Millward et al. (2001) addressed the impact on 270 

a meiofauna-dominated salt marsh community of a mixture of Cu, Cr, Cd, Pb, and Hg at three 271 

concentrations up to a month in microcosm experiments. Lead contents in sediment were analyzed 272 

both through 1 N HCl and total (HNO3) extractions. The second extraction is similar to that used in 273 

the present study and the resulting Pb concentrations spanned from 48 to 242 mg/kg that match well 274 

with those of our experiment. They noted that deposit feeders (i.e. bivalves, and gastropods) were 275 

more sensitive to metal contamination than particle feeders (Nematoda, Ostracoda, and Copepoda) 276 

and hypothesized the feeding strategy and therefore the metal uptake as responsible for the specific 277 

sensitivity. In our experiment, when Nematoda are not considered in the meiofaunal communities 278 

(Fig. 4), Copepoda and Ostracoda seem to be more abundant at higher Pb concentrations, with the 279 

latter interestingly supported by the PCA (Fig. 2). The response of meiofaunal and nematode 280 

assemblages in terms of density, diversity, and composition to different environmental 281 

contaminants including Pb was evaluated with a microcosm experiment with estuarine sediment 282 

(Gyedu-Ababio and Baird, 2006). The author documented a lowering in meiofaunal diversity and 283 

nematode abundance associated with Pb treatment. Interestingly, they observed the most marked 284 
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reduction of nematode density to Pb and Zn treatments than with organic carbon, Cu, and Fe 285 

treatments. Similarly, we observed a significant reduction of nematode abundance (Fig. 2). Again, a 286 

reduction of nematodes’ diversity was found in Pb treated microcosms (Mahmoudi et al. 2007). It is 287 

particularly interesting the opposite trend between meiofaunal richness and Pb concentrations in the 288 

sediment. This faunal parameter is commonly used to assess the ecological quality status of the 289 

marine sediments by means of the meiofaunal community (e.g. Bianchelli et al. 2016; Semprucci et 290 

al. 2017) and the results here obtained could further support its use in studies focused on the trace 291 

element impact. 292 

Similar to other meiofaunal groups, most of benthic foraminiferal species are negatively affected 293 

by increasing concentrations of Pb in sediment. An opposite behavior was only noted for Ammonia 294 

tepida and Bolivina spathulata. The former is a species typical of shallow marine environments, 295 

lagoons and deltaic zones and has been widely considered as a tolerant taxon to chemical and 296 

thermal pollution, fertilizing products, and hydrocarbons (i.e. Ferraro et al. 2006; Frontalini et al. 297 

2009). When the UN and P samples are compared, A. parkinsoniana (53%), A. tepida (24%), E. 298 

scaber (6%), A. perlucida (4%), B. spathulata, H. depressula (3%), B. elongata, B. striatula, E. 299 

advenum (2%), B. punctata and P. granosum (1%) mainly characterized the UP samples, while A. 300 

parkinsoniana (52%), A. tepida (30%), E. scaber (6%), A perlucida (4%), B. spathulata, H. 301 

depressula (2%), B. elongata, B. striatula and E. advenum (1%) characterized the P ones (Fig. 4). 302 

Most of the studies carried out in polluted environments have evidenced that a lowering in 303 

foraminiferal diversity can be viewed as a measure of environmental stress on benthic foraminiferal 304 

communities caused by pollution (Frontalini and Coccioni, 2011). In our experiment, the lower 305 

values of diversity were associated with higher concentrations of Pb (Fig. 4). A reduction of 306 

diversity (Shannon) was documented in a similar laboratory experiment with Hg (Frontalini et al. 307 

2018). Remarkably, this reduction was documented for both morphological (CellTracker Green, 308 

CTG, CMFDA labelling and Rose Bengal, RB, dying) and molecular (environmental DNA) 309 

analyses. It was reported that comparatively more negative correlations between diversity indexes 310 
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and Hg were documented in the CTG dataset than the RB ones. Although widely used as standard 311 

dying in ecological and environmental studies, the RB might lead to an overestimation of the 312 

abundance (Bernhard et al. 2006). In light of this, the application of RB staining might have 313 

included in our dataset some false positive (stained but not living) and slightly blurred and 314 

underestimate the real effects of Pb contamination. 315 

Laboratory experiments based on meso- and microcosm represent a valuable approach by which 316 

the response of meiofaunal and benthic foraminiferal communities to various types and 317 

concentrations of pollutants can be monitored through time. The approach allows the direct 318 

evaluation of the effect of a single pollutant on organisms living in their original setting (sediment). 319 

Such experiments have the advantages of avoiding inadequate reference sites, mixtures of different 320 

pollutants, the establishment of cause-effect relationships, and the great natural variability both in 321 

time and space of field studies (Gyedu-Ababio and Baird 2006). Similar experiments targeting the 322 

response of benthic foraminifera have been performed with tributyltin (Gustafsson et al. 2000), oil 323 

(Ernst et al. 2006), Cu (Frontalini and Coccioni 2012) and Hg (Frontalini et al. 2018). Indeed, 324 

meiofaunal communities’ experiments, in micro- and mesocosm, have also been carried out to test 325 

the effects of pollutants (i.e. Austen and McEvoy 1997; Gyedu-Ababio and Baird 2006; Hedfi et al. 326 

2007; Mahmoudi et al. 2007; Hermi et al. 2009; Beyrem et al. 2011; Boufahja et al. 2011).  327 

Differently from other experiments that mixed sediments containing living meiofaunal 328 

communities with defaunated sediments with different targeted concentrations of pollutants (Austen 329 

and McEvoy 1997; Gyedu-Ababio and Baird 2006), our experiment incubated meiofaunal and 330 

foraminiferal communities retrieved from unpolluted sites and treated with Pb in seawater that 331 

allow a gradual release of the pollutant from water to sediment preventing a sudden exposure to 332 

biota.  333 

 334 

5. CONCLUSION 335 
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The results of the present study further strengthen the application of meiofaunal and benthic 336 

foraminiferal communities as environmental proxies. It also reinforces the consideration of 337 

laboratory experiments (i.e. micro- and mesocosms) as a methodological approach by which the 338 

effect of a single or a set of mixed, either organic or inorganic pollutants can be studied on biota 339 

through time. The results from our study reveal a reduction of diversity both in meiofaunal and 340 

benthic foraminiferal communities and the specific behavior of some taxa within these two 341 

communities. These findings highlight the importance of using meiofaunal and foraminiferal 342 

communities in laboratory experiment to assess the dose-response relationships that allow the 343 

validation of field study outcomes. 344 
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 471 

Figure captions: 472 

Figure 1. Schematic design of the experiment. Tanks (60 cm × 40 cm × 20 cm) represent different 473 

concentrations of Pb in in artificial sea water. Lids are used over the tank to prevent 474 

evaporation (not shown). Mesocosms (15 cm× 8 cm × 3 cm) are filled with 1 cm-thick of 475 

<500-µm sediments and represent the sampling interval. Multichannel pumps are used to 476 

circulate and oxygenate water. In bold concentration and time considered for meiofaunal 477 

and benthic foraminiferal communities. 478 

Figure 2. Trend of lead concentration over the time in mesocosm containing an initial concentration 479 

of 10 mg L−1. Points represent experimental data, solid curve is the fit to the data by the 480 

forms [A]τ = [A]0 e±kτ and [A]τ = [A]0 +C e±kτ. 481 

Figure 3. PCA ordination diagram based on meiofaunal (a, b) and benthic foraminiferal (c, d) 482 

communities. Concentrations of Pb in sediment and water are here used as secondary 483 

variables. 484 

Figure 4. Summary of the meiofaunal structure and richness and benthic foraminiferal composition 485 

and diversity reported as Pb-unpolluted (UP) vs. polluted (P) conditions.  486 
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