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Abstract

Silver nanoparticles (AgNP), one of the main nanomaterials for production and use, are expected to 

reach the aquatic environment, representing a potential threat to aquatic organisms. In this study, 

the effects of bare AgNPs (47nm) on the marine mussel Mytilus galloprovincialis were evaluated at 

the cellular and whole organism level utilizing both immune cells (hemocytes) and developing 

embryos. The effects were compared with those of ionic Ag+(AgNO3). In vitro short-term exposure 

(30 min) of hemocytes to AgNPs induced small lysosomal membrane destabilization (LMS EC50 

=273.1 μg/mL) and did not affect other immune parameters (phagocytosis and ROS production). 

Responses were little affected by hemolymph serum (HS) as exposure medium in comparison to 

ASW. However, AgNPs significantly affected mitochondrial membrane potential and actin 

cytoskeleton at lower concentrations. AgNO3 showed much higher toxicity, with an EC50 =1.23 

μg/mL for LMS, decreased phagocytosis and induced mitochondrial and cytoskeletal damage at 

similar concentrations.

Both AgNPs and AgNO3significantly affected Mytilus embryo development, with EC50= 23.7 and 1 

µg/L, respectively. AgNPs caused malformations and developmental delay, but no mortality, 

whereas AgNO3 mainly induced shell malformations followed by developmental arrest or death.  

Overall, the results indicate little toxicity of AgNPs compared with AgNO3; moreover, the 

mechanisms of action of AgNP appeared to be distinct from those of Ag⁺. The results indicate little 

contribution of released Ag+ in our experimental conditions. These data provide a further insight 

into potential impact of AgNPs in marine invertebrates.
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1. Introduction

Silver nanoparticles (AgNPs) have a large number of applications for their chemico-physical 

characteristics and, above all, in virtue of their biocidal action. The widespread utilization of AgNPs 

in a large range of consumer products, including textiles, care products and food packaging, will 

inevitably lead to their release in the environment (reviewed in Pulit-Prociak and Banach, 2016; 

McGillicuddy et al., 2017). According to Gottschalk et al. (2009) Predicted Environmental 

Concentrations (PECs) of AgNP for surface water in Europe are expected to be in the low ng/L-

range (0.76ng/L), but it is expected to be released in larger quantities within the next decades 

(Fabrega et al., 2011; McGillicuddy et al., 2017). Once in the aquatic environment, AgNPs can 

undergo several transformation processes (agglomeration/aggregation, oxidation, dissolution, 

adsorption with soluble and particulate organic matter); in particular, release of Ag+ ions may 

represent an additional source of silver in the environment (Levard et al., 2012; Sendra et al., 2017). 

With regards to ecotoxicity, it is widely acknowledged that the impact of AgNPs mainly depend on 

the Ag+ released from the nanomaterial (Jemec et al., 2016).However, AgNPs may also exhibit a 

particle-specific toxicity, possibly mediated by physical interactions of the nanoparticulate form 

with biological systems(Li et al., 2014; Fabrega et al., 2011; Magesky and Pelletier 2018).

The impact of AgNPs has been widely investigated in marine invertebrates; these studies showed 

that in vivo exposure lead to silver accumulation, and different types of responses at molecular, 

cellular and tissue level (reviewed in Magesky and Pelletier 2018). The bivalve Mytilus spp. Is 

considered a suitable model for studying the effects and mechanisms of action of different types of 

NPs (Canesi et al., 2012; Canesi and Procházová 2013; Rocha et al., 2015; Canesi and Corsi, 2016; 

Beyer et al., 2017; Fagio et al., 2018). In vivo exposure to AgNPs have previously shown silver 

accumulation, induction of oxidative stress and damage to several cell components, including DNA 

(Zuykov et al., 2011; Gomes et al., 2013;McCarthy et al., 2013; Jimeno-Romero et al., 2017). These 
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data provided valuable information at the whole organism level, also considering different potential 

pathway of exposure. 

With regards to in vitro data, the application of a battery of functional tests on Mytilus immune 

cells, the hemocytes, has been proven as a powerful tool for the rapid in vitro screening of the 

immunomodulatory effects and identification of the mechanisms of action of different types of NPs 

(Canesi et al., 2012; Canesi and Procházková, 2013; Canesi and Corsi, 2016; Canesi et al., 2016). 

These studies also underlined the importance of exposure medium in determining particle behaviour 

and interactions with target cells in a physiological environment (Balbi et al., 2017a, Canesi et al., 

2017). However, information on the impact of AgNPs in bivalves at the cellular level is scarce, with 

only one study available to date. Exposure of M. galloprovincialis hemocytes and gill cells to 

several types of maltose-coated AgNPs of different sizes revealed higher toxicity of smaller size 

NPs, damages to cell components and activation of cellular defences after 24 h (Katsumiti et al., 

2015). These data underlined the importance to further investigate the in vitro effects of AgNPs in 

mussel cells, in order to better understand their mechanism of action and possible toxicity. 

In marine invertebrates, NPs generally do not have lethal effects at environmental concentrations, 

but can induce changes in their life cycle, growth or anatomical deformities, that can lead to a 

diminished biological performance of wild populations (Canesi and Corsi 2016). The application of 

developmental assays, involving exposure during the most sensitive stages of the organisms to 

environmental contaminants, would greatly help in the fast screening of NP toxicity (Fabbri et al., 

2014). Most data are available on the sea urchin model, where exposure to nanoparticulate and ionic 

silver induced distinct effects depending on the life stage (Šiller et al., 2013; Magesky and Pelletier 

2018). Developmental effects were also reported for AgNPs in oysters (Ringwood et al., 2010). 

However, no information is available on the effects of AgNPs on Mytilus embryos. 

In the present study, the effects of bare AgNPs were investigated at the cellular level in short term 

in vitro experiments of M. galloprovincialis hemocytes; the impact on mussel early embryo 
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development was also evaluated. Parallel experiments were carried out using AgNO3 in order to 

compare the effects of ionic silver. Hemocytes were exposed in vitro for 30 min to 

different concentrations of AgNPs (0.1-1000 µg/mL) or AgNO3 (0.1-10 µg/mL) and Lysosomal 

Membrane Stability (LMS) was first evaluated as a marker of cellular stress. Functional immune 

parameters were also evaluated (extracellular reactive oxygen species-ROS production, 

phagocytosis). Experiments with AgNPs were carried out in either artificial sea water (ASW) or 

hemolymph serum (HS) to evaluate the influence of exposure medium. Moreover, at selected 

concentrations of AgNPs and AgNO3, the effects on mitochondrial membrane potential and on 

actin cytoskeleton were evaluated by Confocal Laser Scanning Microscopy (CLSM). 

The developmental effects of AgNPs were evaluated by the 48 h embryotoxicity test; fertilized eggs 

were exposed to AgNP (0.001-1000 µg/L) or AgNO3 (0.1-25 µg/L). At the end of the assay, both 

percentage of normal D-larvae and the type of effect (malformations, delayed development, death) 

were evaluated. 

2. Materials and methods

2.1. Characterization of NPs

AgNPs (47MN-03) were purchased from Advanced Materials Inframat. The sample is a 

silver, black and ultrafine nanopowder with no coating. Characterization of primary particles and 

AgNP suspensions were performed as previously described (Brunelli et al., 2013). The average size 

of particle distribution of primary particles was evaluated by HR-TEM (High Resolution 

Transmission Microscopy) using a JEOL (Tokyo, Japan) 3010 microscope operating at 300 kV. 

Specific surface area was evaluated using BET method by nitrogen adsorption on a Micromeritics 

(Norcross, GA, USA) ASAP 2000 instrument, with an adsorption temperature of -196 °C, and pre-

treating under high vacuum at 300 °C for 2 h.
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Particle suspensions were prepared using 20 mg of AgNPs powder in 20 mL of Artificial Marine 

Water (AMW, ASTM D1141-98; pH7) and the suspension was sonicated for 15 min at 40 W, 

pulsed 10% using a probe sonication in an ice bath. The desired dilutions were made in AMW or 

mussel hemolymph serum (HS). Both suspensions (10; 50; 100 mg/L for AMW and 10 mg/L for 

HS) were characterized: hydrodynamic size distribution and agglomeration were determined by 

Dynamic Light Scattering (DLS) with a Nicomp Submicron Particle Sizer Autodilute® Model 370 

(Santa Barbara, CA, USA), using a 90° scattering angle (Brunelli, 2013). ζ-potential values was 

measured using Electrophoretic light scattering.

For exposure experiments, AgNP was suspended in milliQ water at 1 mg/mL and 

homogenized using a probe sonication for 15 min in an ice bath. The next dilutions to obtain the 

desired exposure concentrations were made in either artificial seawater (ASW, pH 8) or 

hemolymph serum (HS), depending on the experiment. To obtain HS, the hemolymph was 

freshly extracted from mussels, filtered with gauze and centrifuged at 500 xg at 4°C for 10 min, 

and the supernatant was collected (Canesi et al., 2017). The different suspensions were in turn 

sonicated for 15 min prior to use. Stock solutions of silver nitrate (AgNO3) were prepared in 

milliQ water at 1 mg/mL and diluted in ASW to obtain the desired exposure concentrations. 

2.2. Mussels and hemocyte sample preparations

Mussels (M. galloprovincialis Lam.), were purchased in 2017 from an aquaculture farm in 

the Ligurian Sea (La Spezia, Italy) out of the main spawning period (February-March) for hemocyte 

functional assays. Mussels were transferred to the laboratory and acclimatized in static tanks 

containing aerated artificial sea water-ASW (ASTM, 2004), pH 7.9-8.1, 36 ppt salinity (1 

L/animal), at 16 ± 1 °C. Hemolymph was extracted from the adductor muscle of 4-5 animals, using 

a syringe with an 18 G1/2’’ needle, filtered with gauze, and pooled. Hemocyte monolayers were 

prepared as previously described (Canesi et al., 2010).
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2.3 Lysosomal membrane stability (LMS) and phagocytosis 

LMS was evaluated by the NRR (Neutral Red Retention time) assay as previously described 

(Ciacci et al., 2012; Canesi et al., 2010, 2015; Balbi et al., 2017b). Hemocyte monolayers on glass 

slides were incubated with 20 μL of the AgNP suspension in filtered ASW or HS for 30 min to 

reach the desired final concentrations of 0.1-0.5-1-5-10-50-100-500-1000 µg/mL. Parallel 

experiments were carried out with AgNO3 at the final concentrations of 0.1-0.2-0.5-1-1.5-2-10 µg/

mL in ASW. After incubation, the medium was removed and cells were incubated with a neutral red 

(NR) solution (final concentration 40 µg/mL from a stock solution of NR 40 mg/mL in DMSO); 

after 15 min excess dye was washed out and 20 μL of ASW was added. Every 15 min, slides were 

examined under an optical microscope and the percentage of cells showing loss of the dye from 

lysosomes in each field was evaluated. For each time point 10 fields were randomly observed, each 

containing 8–10 cells. The end point of the assay was defined as the time at which 50% of the cells 

showed sign of lysosomal leaking (the cytosol becoming red and the cells rounded). All incubations 

were carried out at 16 °C.

Phagocytic activity was evaluated as uptake of Neutral Red-conjugated zymosan particles in 

hemocyte monolayers as previously described (Ciacci et al., 2012). Hemocytes monolayers 

were incubated with AgNP and AgnO3 for 30 min. Neutral Red-stained zymosan in 0.05 M 

Tris-HCl buffer (TBS), pH 7.6, containing 2.5% NaCl was added to each monolayer at a 

concentration of about 1:50 hemocytes:zymosan diluted in filtered ASW, and allowed to 

incubate for 60min at 16 °C. Monolayers were then washed three times with ASW, fixed with 

Baker's formol calcium (4% v/v formaldehyde, 2%NaCl, 1% calciumacetate) for 30 min and 

mounted in Kaiser's medium for microscopical examination with an inverted Olympus IX53 

microscope (Olympus, Milano, Italy). For each slide, the percentage of phagocytic hemocytes 

was calculated from a minimum of 200 cells. Data are expressed as % of phagocytizing cells.
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2.4. Confocal Laser Scanning Microscopy (CLSM)

Hemocytes were exposed to AgNPs (5, 10, 50 µg/mL in ASW) or AgNO3 (0.2 and 

1 µg/mL) for 30 min. Cells were fixed with paraformaldehyde at 4% for 10 min, washed two 

times for 2 min with TBS (0.05 M Tris-HCl buffer, pH 7.8) and permeabilized with 0.05%

NP-40 (Nonidet-40) for 10 min. 

Mitochondrial membrane potential (MMP, Δψm) was evaluated by the fluorescent dye 

Tetramethylrhodamine ethyl ester perchlorate (TMRE) as previously described (Ciacci et al., 2012; 

Canesi et al., 2008, 2015). TMRE is a quantitative marker for the maintenance of the mitochondrial 

membrane potential and it is accumulated within the mitochondrial matrix in accordance to the 

Nernst equation. TMRE exclusively stains the mitochondria and is not retained in cells upon 

collapse of the Δψm. Hemocytes were incubated with 40 nM TMRE for 10 min and observed by 

confocal microscopy. 

Actin cytoskeleton structure was evaluated in hemocytes loaded with ActinGreen™488 

ReadyProbes® Reagent for 30 min to reveal F-actin.

Fluorescence of TMRE (excitation 568 nm, emission 590-630 nm), and ActinGreen™488 

(excitation 495 nm, emission 518 nm) was detected using a Leica TCS SP5 confocal setup mounted 

on a Leica DMI 6000 CS inverted microscope (Leica Microsystems, Heidelberg, Germany) using a 

63x 1.4 oil objective (HCX PL APO 63.0-1.40 OIL UV). Images were analysed by the Leica 

Application Suite Advanced Fluorescence (LASAF) and ImageJ Software (Wayne Rasband, 

Bethesda, MA).

2.5 Mussels and gamete collection 

Mussels sampled at the main spawning season (Feb-March) were transferred to the laboratory 

and acclimatized in static tanks containing aerated artificial sea water (ASTM, 2004), pH 7.9-8.1, 
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36 ppt salinity (1 L/animal), at 16 ± 1°C.Mussels were utilized within 2 days for gamete collection 

as previously described (Fabbri et al., 2014). When mussels beginning to spontaneously spawn were 

observed, each individual was immediately placed in a 250 mL beaker containing 200 mL of 

aerated ASW until complete gamete emission. After spawning, mussels were removed from beakers 

and sperms and eggs were sieved through 50 μm and 100 μm meshes, respectively, to remove 

impurities. Egg quality (shape, size) and sperm motility were checked using an inverted 

microscope. Eggs were fertilized with an egg:sperm ratio 1:10 in polystyrene 96-microwell plates 

(Costar, Corning Incorporate, NY, USA). After 30 min fertilization success (n. fertilized eggs / n. 

total eggs × 100) was verified by microscopical observation (>85%).

2.6 Embryotoxicity test 

The 48-h embryotoxicity assay (ASTM, 2004) was carried out in 96-microwell plates 

according to Fabbri et al. (2014). Aliquots of 20 µL of 10x suspensions of AgNPs or of AgNO3 

solutions, suitably diluted in filter sterilized ASW, were added to fertilized eggs in each microwell 

to reach the nominal final concentrations (0-1000 µg/L for AgNPs and 0-25 µg/L for AgNO3) in a 

200 µL volume. Microplates were gently stirred for 1 min, and then incubated at 18 ± 1°C for 48 h, 

with a 16 h:8 h light:dark photoperiod. At the end of the incubation time, samples were fixed with 

buffered formalin (4%). A larva was considered normal when the shell was D-shaped (straight 

hinge) and the mantle did not protrude out of the shell, and malformed if had not reached the stage 

typical for 48 h (trocophora or earlier stages) or when some developmental defects were observed 

(concave, malformed or damaged shell, protruding mantle). The recorded endpoint was the 

percentage of normal D-larvae in each well respect to the total, including malformed larvae and pre-

D stages. The acceptability of test results was based on controls fora percentage of normal D-shell 

stage larvae >75% (ASTM, 2004). Three experiments were made using 6 wells replicates per 

conditions. All larvae in each well were examined by optical microscopy using an inverted 

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



10

Olympus IX53 microscope (Olympus, Milano, Italy) at 400x, equipped with a CCD UC30 camera 

and a digital image acquisition software (cellSens Entry).

2.7. Statistics

Data, representing the mean ± SD of 4 experiments, were analysed by ANOVA followed by 

Tukey's post-test (p ≤ 0.05). For embryotoxicity test, data, representing the mean ± SD of 3 

independent experiments, carried out in 6 replicates in 96-microwell plates. The EC50 was defined 

as the concentration causing 50% reduction in the number of D-veligers at a 95% confidence 

interval (CI). All statistic calculations were performed by the PRISM 7 GraphPad software.

3. Results

3.1 AgNP characterization

In Fig.1 are reported the data on physico-chemical characterization of AgNP. Primary 

particle characterization showed that AgNPs are formed by irregular elongated polyhedrons and 

spherical particles with rounded and smooth edges (Fig. 1A, TEM images). The Z-average particle 

size obtained was 61 nm, with value ranging between 41 and 81 nm (64% of particles comprised 

between 35 and 65 nm) (Fig.1A distribution graph by frequency), very similar as the declared value 

(i.e. 40-90 nm). The sample presented little inorganic element impurities of Fe (24 ± 2 µg/g) and Ca 

(0.5 ± 0.1 µg/g) and a specific surface area obtained by BET method of 3.8 ± 0.1 m2/

g. Characterization of particle suspensions in two exposure media (Fig.1B), ASW (10, 50, 100 mg/

L) and hemolymph serum (HS) (10 mg/L) was performed. DLS analysis of AgNPs in ASW 

showed the formation of two populations of agglomerates whose size increased with concentration 

(10, 50, 100 mg/L). Smaller agglomerates (138 ± 20; 130 ± 22; 340 ± 55 nm for each 

concentration respectively), represented less than a third of the whole population, whereas the 

majority was 
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represented by larger agglomerates (671 ± 122; 590 ± 99; 1600 ± 340 nm). A similar behaviour was 

observed for AgNP suspensions in HS (10 mg/L), with two populations of AgNPs, 89 ± 18 nm and 

473 ± 57 nm, that were slightly smaller than those observed in ASW at the same concentration. 

Values of ζ-potential were similar at different concentrations in ASW (between -1.1 mv and -1.8 

mV) and the same in both media at the same concentration (10 mg/L) (-1.5 ± 3.7 mV).

3.2. Hemocyte functional responses

The short term in vitro effects of different concentrations of AgNPs on M. galloprovincialis 

hemocytes were compared in ASW and HS, since different exposure media have been shown to 

influence the toxicity of certain types of NPs (Canesi et al., 2015, 2016, 2017). Hemocytes were 

exposed for 30 min to different concentrations (up to 1000 µg/mL) of AgNPs in ASW or HS and 

Lysosomal membrane stability (LMS) was first evaluated as a marker of cellular stress; the results 

are reported in Fig. 2. As shown in Fig. 2A, exposure of hemocytes to AgNPs in ASW induced a 

significant and concentration dependent decrease in LMS from 5 to 100 µg/mL (-17% to -38%, 

respectively; P ≤ 0.05). A further decrease in LMS was observed at higher concentrations, together 

with cell detachment and death due to the presence of large agglomerates (not shown). A similar 

trend was observed for AgNP suspensions in HS. However, a slightly higher effect was observed 

with HS with respect to ASW only at 100 µg/mL (-50% in HS vs -38% in ASW; P ≤ 0.05). 

Exposure to AgNO3 induced a sharp concentration-dependent decrease in LMS, that was significant 

from 0.5 µg/mL (-18% with respect to control; P ≤ 0.05). A complete destabilization was observed 

at 2 µg/mL (Fig. 2B). 

The distinct effects between AgNPs in ASW and AgNO3were compared by evaluating their EC50 

values. For AgNP suspensions in ASW the EC50 was 273.1 μg/mL (95% CI: 184.9-442.5 μg/mL). 

For AgNO3 an EC50 of 1.23 μg/mL (95% CI: 0.83-1.84 μg/mL) was obtained. 
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Due to the small difference in LMS observed in different exposure media, other parameters 

related to the immune function were measured using AgNP suspensions in ASW. AgNPs did not 

affect the phagocytic ability at any concentration tested from 5 to 100 μg/mL (Fig.3A). In contrast, 

AgNO3 caused a concentration dependent decrease in phagocytic ability from 0.2 μg/mL (P ≤ 0.05) 

(Fig. 3B). Neither AgNPs or AgNO3, induced extracellular ROS release (data not shown). 

3.3 Effect on mitochondrial parameters and cytoskeleton

The effects of hemocyte incubation with AgNPs (30 min) on mitochondria were evaluated 

by cell staining with TMRE (Tetramethylrhodamine, ethyl ester perchlorate) an indicator of 

mitochondrial membrane potential Δψm, and representative CLSM images are reported in Fig. 4. At 

lower concentrations (5 μg/mL) AgNPs did not affect TMRE fluorescence (not shown), whereas at 

50 μg/mL a clear decrease was observed with respect to controls (Fig. 4A and B). AgNP 

agglomerates of different sizes (μm) were observed in the extracellular medium, with smaller 

agglomerates apparently taken up by the cells (Fig. 4B, right panel). Lower concentrations of 

AgNO3 (0.2 µg/mL) were ineffective (not shown). However, at higher concentrations (1 μg/mL) 

AgNO3 decreased TMRE fluorescence and induced cell rounding (Fig. 4C). 

The effects of AgNPs on cytoskeletal structures of mussel hemocytes were evaluated by 

ActinGreen™488 staining, that reveals the architecture of cytosolic microfilaments, and 

representative CLSM images are shown in Fig. 5. Control hemocytes showed extended lamellipodia 

and cytoplasmic prolongations with the presence of thin microspikes, indicating strong adhesion to 

the substrate (Fig.5A). In hemocytes exposed to lower concentrations of AgNPs (5 and 10 µg/mL), 

a general decrease in the cytoplasmic signal was observed; however, cells retained their adherent 

shape, with evident microspikes (Fig.5B and 5C). In contrast, after exposure to 

higher concentrations (50 µg/mL), cells adopted a round shape with smaller cell extensions, and 

the actin 

signal was often concentrated at the edge of the cells, close to the plasma membrane (Fig. 5D-F). In 
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hemocytes exposed to AgNO3, a decrease in the cytoplasmic actin signal with respect to controls 

was observed at concentrations as low as 0.2 µg/mL, although cell morphology was unaffected 

(Fig.5G). At higher concentrations (1 µg/mL), AgNO3 induced cell rounding and blebbing, 

indicating extensive cell damage and loss of adhesion (Fig. 5H). 

3.4 Embryotoxicity test

Fertilized eggs were exposed to different concentrations (from 0.001 to 1000 µg/L) of 

AgNPs in 96-microwell plates, and the percentage of normal D-larvae was evaluated after 48 h as 

previously described (Fabbri et al., 2014; Balbi et al., 2017c). In controls, the percentage of normal 

D-larvae at 48 h was 82 ± 5%. The results, reported in Fig. 6, show that AgNPs induced a 

concentration-dependent decrease in normal larval development, with an EC50= 23.7 µg/L (20.8 – 

26.9 µg/L). The effect was significant from 10 µg/L (-30%; P ≤ 0.01) and was dramatic (-75%) 

from concentrations ≥ 60 µg/L (Fig. 6A). As shown in Fig. 6B, at concentrations below EC50, a 

concentration-dependent increase in malformed D-veligers was observed. A rise in the percentage of 

immature D-larvae and trocophorae was detected at higher concentrations. From concentrations of 

80-100 µg/L, AgNPs completely inhibited the formation of the D-shaped veliger, with about 75% of 

the larvae withheld at the trocophora stage. Representative images of control and AgNPs-exposed 

larvae are reported in Fig. 6(C1-C3). Fig.6 C1 shows a normal D-veliger after 48h post fertilization 

with a characteristic D-shape. At 20 µg/L malformed larvae were observed (42% of total embryos); 

the characteristic D-shape was altered showing shell indentations and protruding mantle (Fig.6 C2). 

At higher concentrations (100 µg/L), larval development was delayed, with a majority of embryos at 

the trocophorae stage (C3).

The effects of AgNO3 on embryo development were also evaluated, and the results are 

reported in Fig. 7. AgNO3 induced a sharp concentration-dependent decrease in normal embryo 

development, with an EC50 value of 1 µg/L (0.5 – 1.9 µg/L) (Fig. 7A), with most embryos showing 
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strong shell malformations (Fig. 7B). From 5 µg/L, no normal D-veligers were observed; AgNO3 

prevented development of fertilized eggs or resulted in dead trocophorae (not shown).

4. Discussion

Marine invertebrates can represent a significant target for the impact of nanosilver (Magesky 

and Pelletier, 2018), one of the most widespread NP type (Pulit-Prociak and Banach, 2016). In this 

work, data are presented on the effects of bare AgNPs (47 nm) in the marine bivalve M. 

galloprovincialis evaluated at the cellular and whole organism level using two model systems i.e. 

short term in vitro exposure of hemocytes and the 48 h embryotoxicity assay. The effects were 

compared with those of AgNO3.

4.1 Effects on hemocytes

High ionic strength media promote the formation of large AgNP agglomerates of several hundreds 

of nm, often represented by two main populations (Li et al., 2012; Yin et al., 2015). Accordingly, 

the results here presented show that in ASW AgNPs form large agglomerates of increasing size at 

increasing concentrations, with constant formation of two populations, the majority represented by 

larger agglomerates of hundred nms (Fig. 1). The results are comparable with other data on 

behaviour of different types of AgNPs in ASW (Sendra et al., 2017, Schiavo et al., 2017). No 

differences in ζ-potential were observed in ASW and HS, with values close to the point of zero 

charge (-1.5 ± 3.7 mV). Moreover, at 10 mg/L, agglomeration was lower in HS than in ASW: such 

an effect was previously observed with amino modified nanopolystyrene PS-NH2 and nCeO2 

(Canesi et al., 2016; Canesi et al., 2017). These data indicate that in the experimental conditions 

utilized for most in vitro tests (≤ 100 µg/mL) the major part of AgNPs will be present in the form of 

agglomerates. Indeed, larger AgNP agglomerates of micrometric size were observed in the 

extracellular medium and smaller agglomerates were apparently internalized by hemocytes.  These 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



observations are important for considering and understanding the response of hemocytes towards 

AgNPs. The results of functional parameters indicate little toxicity of AgNPs in mussel hemocytes. 

Although a concentration-dependent decrease in LMS was observed, from 5 µg/mL, EC50 values 

were extremely high (273.1 μg/mL). Accordingly, no changes were observed in phagocytosis and 

extracellular ROS production at concentrations up to 100 μg/mL in both ASW and HS. The lack of 

disturbance of immune-related parameters suggests that in our experimental conditions AgNP 

agglomerates have little interactions at the level of the cell membrane. The results are in line with 

those previously obtained in cells from M. galloprovincialis exposed to maltose-coated AgNPs 

for longer periods of time (Katsumiti et al., 2015). As to the possible uptake of AgNPs or 

AgNP agglomerates, this could fairly occur during the 30 min incubation by phagocytosis. 

However, preliminary TEM observations indicate little intracellular uptake of AgNPs.

In this work, the effects of AgNPs were also investigated in the presence of different 

exposure media (in ASW and HS). The importance of the exposure media has been emphasized 

when testing NPs in different cell models, including mussel hemocytes (Ren et al., 2016; Canesi et 

al., 2017). Data on identification of NP protein coronas for PS-NH2 and nCeO2 suggested that the 

net surface charge retained by the particles in high ionic strength media, such as mussel 

hemolymph, might be an important factor in the formation of a stable protein corona, that can 

increase or decrease particle interactions with hemocytes (Canesi et al. 2017). The results here 

obtained seem to reinforce this hypothesis: AgNPs displayed a quasi-neutral surface charge in both 

ASW and HS, and the presence of HS had little effect on lysosomal membrane stability, indicating 

that interactions with protein serum components seem to little affect the response of hemocyte to 

AgNPs. 

AgNPs are known to be highly corroded in presence of salts and oxygen and can release 

silver ions (Ag+) in high ionic strength media like ASW (Liu and Hurt, 2010; Levard et al., 2012). 

Although Ag solubility may be different in ASW and HS, the similar hemocyte responses observed 

in the two media suggest  that differences in Ag dissolution in relation to toxicity may be negligible. 
15
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On the other hand, available data from exposure experiments of cells from marine organisms are on 

Ag dissolution  in standard AgNP suspensions in SW, and not in the actual exposure  media specific 

for each cell type (mussel cells or unicellular algae) (Katsumiti et al., 2015; Schiavo et al., 2017). In 

this light, determination of dissolution of meal based NPs in actual exposure media for in vitro 

experiments using different models of cells from marine organisms represents a general 

problem that has not been addressed so far, and that would require a detailed analytical 

investigation.  

 In order to investigate the complementary role of ions released from NPs, 

parallel experiments were performed using silver nitrate (AgNO3) to evaluate the effects of 

Ag+ in its soluble form. AgNO3 induced a dramatic decrease in LMS, with an EC50as low 

as 1 µg/mL. Moreover, in the same concentration range, AgNO3 induced a concentration-

dependent inhibition of the phagocytic activity. These data indicate a much stronger and 

distinct effect of Ag+ in comparison with AgNPs in mussel hemocytes. 

In mussels, in vitro and in vivo studies have shown that the immune system represents 

a sensitive target for different types of NPs. In particular, the application of a battery of 

functional tests on Mytilus hemocytes, as a cell model of marine organisms, has proven as a 

powerful tool for the rapid in vitro screening of the immunomodulatory effects of different types 

of NPs (Canesi et al., 2012; Canesi and Procházková, 2013, Canesi and Corsi et al., 2016). 

Induction of functional responses, as well as of cellular damage and apoptotic processes, were 

particularly rapid, occurring within 1 h of exposure, in line with the physiological role of bivalve 

hemocytes as the first line of defence against non-self material (Canesi et al., 2017 and refs. 

quoted therein). In short term exposure experiments NPs rapidly affected different parameters 

related to lysosomal function, phagocytosis, oxyradical production, apoptosis, with LMS being 

considered the most sensitive endpoint (Canesi et al., 2012; Canesi and Procházková, 2013, 

Canesi and Corsi et al., 2016). However, certain NP types (nanosized carbon black-NCB, PS-

NH2 and n-ZnO) have been shown to affect also mitochondrial parameters and pre-apoptotic 

processes (Canesi et al., 2008, 2015; Ciacci et al., 2012). 
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The results here presented show that AgNPs induced a rapid decrease in 

mitochondrial membrane potential at 50 µg/mL, a concentration much lower than the EC50 for 

LMS. Alteration of Ψ∆m by AgNPs was recorded for several mammalian and human cells 

(Asharani et al., 2009; Singh and Romarao 2012; Yang et al., 2012). AgNPs can strongly interact 

with membrane thiol groups (-SH) and stay immobilized near the membrane, including the 

mitochondrial membrane, where they can interfere with protons present in the intermembrane 

space thus affecting the electron flow and possibly enhancing the formation of ROS (Lapestra-

Fernandez et al., 2012; Yang et al., 2012; Zhang et al., 2014). Also exposure to AgNO3 reduced 

mitochondrial membrane potential, although at much lower concentrations; a clear decrease in 

TMRE fluorescence accompanied by cell rounding was observed at 1 µg/mL, thus paralleling 

the effects on lysosomal membranes.

AgNPs also affected hemocyte cytoskeletal structures, with a decrease in 

immunofluorescence of filamentous actin from 5 µg/mL; at higher concentrations (50 µg/

mL), morphological changes were also observed, with cells adopting a round shape with 

smaller extensions; moreover, a concentration of the actin signal in the peripheral part of the 

cells was observed. The effects of AgNPs on cytoskeletal structures are in line with previous 

data obtained both in mussel hemocytes (Katsumiti et al., 2015) and in human cells (Zhao et al., 

2017), although at longer exposure time (hours). Cytoskeletal alterations induced by AgNPs 

may be ascribed to AgNP dissolution; Ag+ ions may act directly, by binding to actin 

filaments causing depolymerisation, or indirectly, through alterations of Ca2+ homeostasis, 

mitochondrial damage and ROS production (Asharani et al., 2009; Singh and Romarao 2012; 

Gomes et al., 2013; Zhao et al., 2017). However, AgNPs show a strong binding capacity for both 

actin and tubulin in vitro, altering secondary structures of the proteins and in particular perturbing 

the structural integrity of the alpha helices of actin (Wen et al., 2013). The results here obtained 

indicate that the effects of AgNPs on actin cytoskeleton in mussel hemocytes are extremely rapid, 

occurring at 30 min of exposure and at concentrations that did not cause strong lysosomal damage 

or impairment of immune parameters. In 

contrast, AgNO3 severely affected actin cytoskeleton, and induced cell rounding at much lower 
17
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concentrations (0.2-1 µg/mL), in parallel with decreased in LMS and phagocytic activity, indicating 

extensive cellular damage. 

4.2. Effects on embryo development 

For environmental regulatory purposes, data on early life stages of aquatic species are 

important to establish the sensitivity of a species to different contaminants. The 48 h bivalve 

embryotoxicity test represents a standardized and reproducible protocol that allows the sensitive 

evaluation of the early developmental effects of a number of both legacy and emerging pollutants 

(ASTM, 2004, ASTM, 2012; Fabbri et al., 2014). 

The present results demonstrate that AgNPs significantly affect M. galloprovincialis early 

development. A sharp concentration-dependent decrease in the percentage of normal embryos was 

recorded in a narrow concentration range (10-100 µg/L), with an EC50 of 23.7 µg/L. At lower 

concentrations, the characteristic D-shape of embryos was altered, showing shell indentations and 

protruding mantle. Moreover, from 40 µg/L, an increase in immature embryos was observed, 

indicating progressive developmental arrest. Similarly, embryos of the oyster Crassostrea virginica 

exposed to AgNPs of smaller size (15 nm) showed a decrease in normal development; the effects 

were observed at low µg/L concentrations, although particle behaviour and type of developmental 

effect were not evaluated (Ringwood et al., 2010). Higher concentrations (300 µg/L) of citrate 

stabilized AgNPs (5-35 nm) have been shown to induce developmental toxicity in the sea urchin 

Paracentrotus lividus at 48 hpf. (Šiller et al., 2013). All together, these data suggest that different 

types of AgNPs may have a significant impact on embryo development in marine invertebrates. 

Moreover, our data show that in M. galloprovincialis embryos AgNPs had stronger 

detrimental effects compared to other types of NPs. Exposure to stabilized zero-valent nanoiron 

(nZVI) resulted in a decrease in normal D-shaped mussel embryos, with significant effects from 

concentrations ≤ 100 µg/L (Kadar et al., 2011). In contrast, n-TiO2 did not affect embryo 
18
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development at concentrations lower than 4 mg/L (Libralato et al., 2012; Balbi et al., 2014). 

Similarly, nCeO2 was ineffective up to 1 mg/L (Canesi, unpublished results).

When the embryotoxicity of ionic Ag+ was evaluated using AgNO3, obtained EC50 values (1 

μg/L) were more than twenty times lower than that of AgNPs and similar to that induced by Cu2+, 

the reference metal used as positive control in the embryotoxicity assay (Fabbri et al., 2014). In 

comparison with short term in vitro tests with hemocytes, the effects of AgNPs over the time course 

of the embryotoxicity assay (48 h) may be the result of metal dissolution in ASW, as shown for 

different types of AgNPs, depending on particle size, agglomeration, pH and coating, with smaller 

and coated AgNPs releasing more Ag+ (Katsumiti et al., 2015; Schiavo et al., 2017; Sendra et al., 

2017). Although in the present study the release of Ag+ was not evaluated, Schiavo et al. (2017) 

showed that for the same AgNP type (uncoated 47nm AgNPs) released Ag+ in ASW was about 0.6- 

1.5- 3% at 0, 24 and 48 h, respectively. If this were the case, at the EC50 for AgNPs of 23.7 µg/L 

embryos would be exposed to a maximum of 0.7 µg/L Ag+ at the end of the assay (48 h) and to 

much lower concentrations at shorter times of exposure (0.14, 0.35 µg/L, respectively, for fertilized 

eggs and trocophorae at 0 and 24 h pf). The lower impact of AgNP on embryos compared to 

AgNO3 could be related to the limited amount of bioavailable nanomaterial due to high 

agglomeration state of AgNPs in ASW. Moreover, the type of effects of AgNPs on embryo 

development were distinct from those of ionic Ag+. AgNPs caused malformations and 

developmental delay, but no mortality, in a wide concentration range, whereas AgNO3 mainly 

induced shell malformations followed by developmental arrest or death.

5. Conclusions

The data reported in the present study represent a first attempt to compare the possible 

effects and mechanism of action of AgNPs and soluble Ag+ in mussels at the cellular and organism 

level. In both experimental settings, AgNPs was effective at much higher concentrations that those 
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of AgNO3, indicating little toxicity; moreover, the mechanisms of action of AgNPs appeared to be 

distinct from those of Ag⁺ in both hemocytes and embryos. The lower toxicity of AgNPs may be 

partly due to agglomeration. In addition, characterisation of Ag speciation in experimental media is 

critical for mechanistically linking AgNP dissolution to toxicity (Lodeiro et al., 2017). Alongside 

physicochemical processes, investigation of the speciation and biotransformation is also important 

for understanding physiological, biochemical, and molecular modifications induced by exposure by 

AgNPs in marine organisms (Wang et al., 2015; Magesky and Pelletier 2018). In polychaetes, 

chronic exposure to different types of AgNPs results in the formation of different amounts Ag metal 

and  AgCl, apparently depending on the original form of silver to which the worms were exposed, 

in particular to the type of coating, with citrate-AgNPs also resulting in the formation of Ag2S 

(Wang et al., 2015). Moreover, Ag sulfidation in exposure media has been shown to decrease the 

toxicity of AgNPs in aquatic and terrestrial organisms (Levard et al., 2013). However, no 

information is available on the protective effects of Ag2S in marine organisms. Although 

determination of Ag speciation in either exposure media and within cells/embryos was outside of 

the scope of the present work, it may contribute to explain the effects of AgNPs.

Overall, the results provide a further insight into the effects and mechanisms of action 

of AgNPs in marine invertebrates. According to the results of a recent study, engineered 

nanomaterials pose relatively low risk for most environmental compartments (Giese et al., 2018); in 

particular, for AgNPs, the PECs for marine waters reveal present values below pg/l levels and, in 

2050, up to 1 pg/l, much lower than those utilized in the present work and in available literature on 

the effects of AgNPs in marine organisms. However, as underlined by Giese et al. (2018), 

organisms residing near ‘point sources’ (e.g., production plant outfalls and waste treatment plants), 

may be at increased risk; this may apply to marine mussels living in such coastal and estuarine 

environments.
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Figures captions

Figure 1 -Physico-chemical characterization of bare 47 nm AgNPs (Inframat® Advanced 

Materials). 

A) Primary particle characterization. Top left: Z-average (nm), inorganic element impurities

evaluated by ICP-OES and specific surface area by BET method. Bottom left: Particle size 

distribution graph by frequency. Right: TEM images.
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B) Characterization of AgNP suspensions in artificial seawater (ASW) and Mytilus hemolymph

serum (HS), using DLS analysis showing Z-average (nm) and ζ-potential (mV). Data are reported 

as mean ± SD.

Figure 2- Effects of AgNPs and AgNO3 on Lysosomal membrane stability (LMS) of Mytilus 

hemocytes. Hemocytes were exposed for 30 min to different concentrations of AgNPs and LMS 

was evaluated by the NRR time assay (A). AgNP suspensions in either ASW or hemolymph serum 

(HS) were utilized. Parallel experiments were carried out using different concentrations of AgNO3 

diluted in ASW (B). Data, representing the mean ± SD of four experiments in triplicate, were 

analysed by ANOVA followed by Tukey's post hoc test (p < 0.05); * = all treatments vs controls; # 

= HS vs ASW.

Figure 3-Effects of AgNPs and AgNO3in ASW on phagocytic activity of Mytilus hemocytes, A) 

AgNPs; B) AgNO3. Data, representing the mean ± SD of three experiments in triplicate, were 

analysed by ANOVA followed by Tukey's post hoc test. Significant differences with respect to 

controls (p < 0.05) are reported (*).

Figure 4 - Confocal fluorescence microscopy: effects of exposure of Mytilus hemocytes to AgNPs 

and AgNO3 (30 min)on mitochondrial membrane potential (m)evaluated by TMRE fluorescence. 

Control and treated hemocytes were loaded with TMRE (and representative images are reported 

(568 excitation/ 590-630 emission) (Left panels). A) Control hemocytes; B) hemocytes exposed to 

AgNPs (50 µg/mL); C) hemocytes exposed to AgNO3: 0.2 µg/mL. In right panels, light microscopy 

images are also reported: B) shows the presence of large AgNP agglomerates in the extracellular 

medium (arrowheads) and of smaller agglomerates apparently taken up by the cells (arrows). In C), 

cell rounding induced by AgNO3 can be observed. Scale bar: 25 µm.
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Figure 5 -Confocal fluorescence microscopy: effects of exposure of Mytilus hemocytes to AgNPs 

and AgNO3 (30 min)on actin cytoskeleton. Control and treated hemocytes were loaded with 

ActinGreen™488 and representative images are reported (495 excitation/518 emission): A) Control 

hemocytes; B-F) hemocytes exposed to AgNPs: B) 5 µg/mL, C) 10 µg/ml and D-F) 50 µg/mL; G-

H)Hemocytes exposed to AgNO3 : G) 0.2 µg/mL and H) 1 µg/mL. Scale bar: 25µm.

Figure 6 - Effects of AgNPs on M. galloprovincialis larval development evaluated in the 48 h 

embryotoxicity assay. Fertilized eggs were exposed to different concentrations of AgNPs in ASW 

(0.001-1000 µg/L). 

A) Percentage of normal D-shaped larvae with respect to controls. The EC50 reported for AgNP

exposure was 23.7 µg/L. B) Percentage of normal D-veliger (white), malformed D-veliger (grey), 

pre-veligers (black) and trocophora (shaded) in each experimental condition. C1-C3: Representative 

light microscopy images of control and AgNP-exposed embryos: C1) a normal D-larva; C2) a 

malformed D-larva showing shell indentations (arrowheads) and protruding mantle (arrow) in 

samples exposed to 20 µg/L AgNPs; C3) an immature embryo withheld at the trocophora stage in 

samples exposed to 100 µg/L AgNPs. Scale bars: 20 μm. Data represent the mean ± SD of 3 

experiments carried out in 96-multiwell plates (6 replicate wells for each sample).

Figure 7 - Effects of AgNO3 on M. galloprovincialis larval development in the 48 h embryotoxicity 

assay. Fertilized eggs were exposed to different concentrations of AgNO3 (0.1-25 µg/L). A) 

Percentage of normal D-shaped larvae with respect to controls. The EC50 reported for AgNO3 

exposure was 1 µg/L. B) Representative light microscopy image of a malformed D-larva exposed to 
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5 µg/L AgNO3. Scale bar: 20 µm. Data, representing the mean ± SD of 3 experiments carried out in 

96-multiwell plates (6 replicate wells for each sample).
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