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Abstract

Ataxia telangiectasia (A-T) is an incurable and rare hereditary syndrome. In recent times,

treatment with glucocorticoid analogues has been shown to improve the neurological symp-

toms that characterize this condition, but the molecular mechanism of action of these ana-

logues remains unknown. Hence, the aim of this study was to gain insight into the molecular

mechanism of action of glucocorticoid analogues in the treatment of A-T by investigating the

role of Dexamethasone (Dexa) in A-T lymphoblastoid cell lines. We used 2DE and tandem

MS to identify proteins that were influenced by the drug in A-T cells but not in healthy cells.

Thirty-four proteins were defined out of a total of 746±63. Transcriptome analysis was per-

formed by microarray and showed the differential expression of 599 A-T and 362 wild type

(WT) genes and a healthy un-matching between protein abundance and the corresponding

gene expression variation. The proteomic and transcriptomic profiles allowed the network

pathway analysis to pinpoint the biological and molecular functions affected by Dexametha-

sone in Dexa-treated cells. The present integrated study provides evidence of the molecular

mechanism of action of Dexamethasone in an A-T cellular model but also the broader

effects of the drug in other tested cell lines.

Introduction

Ataxia Telangiectasia (A-T) is a rare genetic syndrome caused by mutations in the ataxia telan-
giectasia mutated (ATM) [1] gene. The gene product codes for a protein kinase belonging to
the PI3 Kinase-like Kinase (PIKK) [2]. Depending on the level of the mutation, the resultant
loss of ATM protein expression or function can lead to pleiotropic clinical phenotypes [3]
such as ataxia, oculocutaneous teleangiectasias, immunodeficiency, infections, radio sensitivity
and proneness to cancer and neurodegenerative disorders. Typically, A-T patients are wheel-
chair dependent by the age of ten, and their life expectancy is around twenty-five years. The
ATM gene ensures DNA repair in the nucleus [4], while its role in the cytosol is still poorly
understood [5–7].
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No effective disease-modifying treatment is presently available, and supporting therapies
are used to care for patients. However, in the last few years, observational studies [8,9] and
clinical trials [10–12] have shown that treatment with glucocorticoids improves symptoms and
neurologic functions in patients with A-T.

In spite of their efficiency, the mechanism of action of glucocorticoids in A-T subjects
remains unclear. Hence, several studies have been carried out seeking to gain insight into the
likely molecular action of glucocorticoids in A-T patients. The authors of the present study
have previously described the influence of Dexamethasone on gene expression, splicing,
NRF2-mediated antioxidant response by redox balance improvement and cellular nano-
mechanics by cytoskeleton and nuclear dynamics [13–18]. D’Assante et al. have reported the
influence of Betamethasone on molecules involved in autophagosome degradation [19].

The main aim of the present study was therefore to add to this body of knowledge regarding
the mechanism of action of glucocorticoids in A-T, which may in turn lead to improvements
in A-T patient therapies. Here in we examine the combination of two “omics” approaches
(proteomic and transcriptomic) adopted to study lymphoblastoid cell lines (LCLs) treated
with Dexamethasone. The modulated proteins and genes that were discovered were employed
in a functional network analysis in order to evaluate the cellular molecular functions and bio-
logical processes influenced by Dexa action. The investigation was also extended to a wider
sample size, allowing us to explore the variability of Dexa effects in different cell lines. Tran-
scriptomic data were also compared with available in vivo data recently published [18].

Material and methods

Cell cultures

The lymphoblastoid cell lines (LCLs) used in this study were obtained from A-T patients
(ATM-/- AT129RM, AT50RM, ATK13RM, ATK36RM) and a healthy donor (ATM+/+

WT238). The cell lines WT238, AT50RM and AT129RM derived from a previous work [17],
while the cell line ATK13RM and ATK36RM were isolated during a phase II clinical trial [11]
with the approval of ethical committee and all patients provided informed consent (along with
the consent of their parents or legal guardian, as required). The LCLs were maintained in
RPMI1640 medium supplemented with 2 mmol/l L-glutamine, 50 mg/ml gentamycin and
10% fetal calf serum in 5% CO2 at 37˚C. Cells were treated with 100nM Dexa for 48h prior to
protein and RNA extractions. Dimethylsulfoxide (DMSO) was used as the drug vehicle and
thus administered in untreated cells used as controls.

Sample preparation and 2DE analysis

The 2DE analysis were performed on the AT129RM and WT238 samples. A total of approxi-
mately 1x107 cells for each condition were washed in isotonic Tris/sucrose buffer and subse-
quently lysed in ice by sonication cycles in lysis buffer (50nM Tris-HCl, 150mM NaCl, CHAPS
0.5%, SDS 0.1%) containing protease and phosphatase inhibitors. After 20’ incubation, 15U of
Benzonase was added and incubation was continued for an additional 30’. After a further soni-
cation cycle in ice, the lysates were clarified by centrifugation. Proteins were precipitated by
Acetone/TCA (4/1 volumes), washed in Acetone and dried. The pellets were re-suspended in
Protein Extraction Reagent Type 4 (SIGMA) and after the protein concentration assay, 1mg
was further diluted in the same buffer containing pH 3–10 ampholytes, 5mM TBP and loaded
onto IPG ReadyStrips pH 3–10 NL (Bio-Rad), rehydrated at 50V for 12h at 20˚C. Isoelectric
focusing was performed on the protean IEF Cell (Bio-Rad) as follows: 15’ at 250V, rapid volt-
age ramping to 10,000V and a final step at 10,000V up to 80,000V hours. After equilibration
and alkylation, the strips were laid on an 8–15% T gradient SDS-PAGE gel. The runs were
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performed at 20˚C at constant current (each gel at 8mA for 60’, followed by 16mA until the
run was completed). The staining had been previously performed by Brilliant Blue G–Colloidal
(SIGMA) and then switched to a modified silver staining as described by Shevshenko and
Mortz [20,21]. The analysis was performed in triplicate and there was a fair reproducibility
between the replicates.

Image analysis and LC-MS/MS

The image of each gel was acquired by Fluor-S MAX Multi-Imager scanner (Bio-Rad). Spots
were detected, matched and quantified by Melanie software. Spot selection was performed on
specifically altered protein abundance in AT129RM then on WT after the drug treatment. The
spots were qualified as differentially abundant with a fold change >1.5 and p0.05, and were
subsequently selected for MS analysis. Briefly, the spots were excised and processed as reported
by Shevchenko and colleagues [22]. The resulting peptides were processed by the LC-ESI-MS/
MS system (Q-TOF MicroTM Micromass, Manchester, UK) equipped with a Z-spray nanoflow
electrospray ion source and a CapLC apparatus. A Symmetry C18 nano column (Waters, Mil-
ford, Mass, USA) was employed as an analytical column.

The instrument was set in a positive ion mode using N2 as the carrying gas. The capillary
was set to 2,800 V, the sample cone to 30 V and desolvation temperature to 80˚C. The survey
scan mode was set as follows: MS range from 200 to 1,500m/z, MS to MS/MS by ion intensity,
MS/MS range from 200 to 2,000m/z. Collision energy was set according to the ions’ charge
state using Argon as the collision gas. For protein identification, MS/MS spectra were used as
query in MASCOT (Matrix Sciences, London UK). Protein identity was assessed (in addition
to MASCOT score) with at least three-peptide coverage and consistency with pI/Mw inferred
by 2D-PAGE.

Western blot analysis

The antibodies (anti-HSPA8, anti-AIF, anti-14.3.3 z/δ, anti-Calreticulin, anti-HMGB1, anti-
HPRT1 and Anti-PP2A A subunit) used in this study were from Cell Signaling Technology and
were used as recommended by the supplier. Cell lysates were prepared from all available cell
lines. After PBS washing, the pellets were re-suspended in Protein Extraction Reagent Type 4,
and following sonication in ice, the lysates were clarified by centrifugation. The protein contents
were measured using the Bradford assay and 20 μg of each sample was used for SDS PAGE sep-
aration and subsequent transferred on Hybond-C membranes (GE Healthcare Life Sciences).
Primary antibodies were detected by secondary HRP-conjugated antibodies using the ECL
detection system (Advansta). Whole lane normalization was used for quantitative investigation,
as previously described by Colella et al. [23] and Gürtler et al. [24]. Experiments were performed
in quintuplicates and the statistical analysis was performed using the paired t-test.

Affymetrix microarray analysis

Total RNA extracts were obtained from all used cell lines using an RNeasy Plus Mini Kit (QIA-
GEN). RNA labelling and hybridization were carried out according to the Affymetrix two-
cycle target labelling protocol. For each experiment the cRNA was hybridized to Affymetrix
HTA 2.0 Gene Chip Array.

The data analysis, after pre-processing at probe level (CEL files), were performed by RMA
background adjustment, quantile method for normalization and median polish for summari-
zation. The FKBP5, TMEM2 and NFIL3 gene expression were evaluated by qPCR (Thermo-
Fisher TaqMan1 Gene Expression Assays) through a 7500 Real-Time PCR System (Applied
Biosystems).
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The relationship between protein quantities and corresponding gene expression
(AT129RM and WT238) was individually evaluated in the samples. For the functional annota-
tion of DEGs, genes were selected by the Affymetrix TAC console, using an FDR p-value
0.05 and the subsequent network analysis was performed by the Reactome (FI) Functional
Interaction Network plugin for Cytoscape [25]. Alternative splicing analysis was also per-
formed for the same two samples. The expressed genes with at least one differentially expressed
PSR or Junction (FDR p-value0.05 and splicing index>|2|) were considered as alternatively
spliced.

The gene expression analysis was extended to all A-T samples by MeV [26,27]. Statistically
and differentially expressed genes were selected by the paired permutation t-test (FDR0.01)
and were further used to compute the hierarchical tree (HLC).

Results

Impact of Dexa on proteomic profile

In the past few years, we have carried out gene expression analysis of A-T cells after Dexameth-
asone treatment [13]. In the present study, we performed a proteomic comparative analysis of
A-T and WT LCLs treated with Dexamethasone combined to a deeper gene expression and
splicing examination performed by microarray.

Representative 2DE images are reported in Fig 1 (ATRM129, WT238 treated or not). Since
the investigation mainly focused on those proteins that were specifically altered by Dexa in
A-T samples, by comparing signal abundance in all samples, it was possible to isolate 52 spots
out of 746±63. After processing, it was possible to define (due to handling and/or HPLC-MS
failure) 34 differentially expressed proteins, reported in Table 1. As illustrated, the isolated
spots were chosen since they were selectively and differentially altered in Dexa treated A-T
samples than in treated or not WT. Even if a basal difference between the A-T sample and the
WT one is noticeable (AT129RM/WT238 “Protein U or D” column) the effect of Dexa, not
only eventually restored the lacking between samples, but also improved the extent of response
was statistically different when compared to treated WT (Table 1, AT129RM +Dexa/WT238
+Dexa “Protein U or D” column). The gene expression of each protein-matching gene is also
reported alongside the p values from the variance analysis and FDR scores.

The entire protein interaction network (PPI enrichment p-value = 0) based on the proteo-
mic dataset is shown in Fig 2A. The corresponding biological processes, molecular functions,
KEGG pathways, PFAM domains and INTERPRO features are reported in S1 Supplementary
File, while the corresponding Reactome FI network pathways are reported in Fig 2B and
described in S2 Supplementary File.

The accuracy of the proteomic results was assessed by testing some randomly chosen targets
(HSPA8, AIF, CALR, HMGB1, HPRT1, PP2A A subunit and 14.3.3 z/δ) using the western blot
technique as reported in Fig 3 and Fig 4. All the tested western blots agree with the 2DE results
(WT238 and AT129RM). Only the expression of the 14.3.3 z/δ protein differs from the 2DE
data, as it appeared unaffected by Dexa. It should be noted that the protein assignment for the
2DE 14.3.3 spot was based on the maximum number of identified peptides in the Mascot out-
come (14.3.3 z/δ definitely), but at least five isoforms were truly present in the isolated spot
(supplementary S1 Fig). Accordingly, an erroneous antibody could be used, leading to the un-
matching results of 2DE and the western blots.

Impact of Dexa on gene expression profile

The Dexa altered gene expression profiles of samples AT129RM and WT238 (599 and 362
gene symbols respectively) are reported in S3 Supplementary File, while the corresponding
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Reactome FI networks are reported in supplementary S2 Fig as well as the network pathways,
biological pathways and molecular functions (S4 Supplementary File). The consistency of the
microarray experiments was assayed by evaluating the gene expression of FKBP5, TMEM2
and NFIL3 targets, since they are well-known genes altered by Dexa administration both in
vitro and in vivo [18,26–29]. In brief, the above-mentioned genes were actually found to be
upregulated in all the microarray sets (treated samples over controls; FKBP5 average overex-
pression FC 2.2 p = 0.00 FDR = 0.05; TMEM2 average overexpression FC 5.5 p = 0.00
FDR = 0.07; NFIL3 average overexpression FC 2.11 p = 0.00 FDR = 0.8). The overexpression
was confirmed also by qPCR performed on the same targets (Fig 5).

Impact of Dexa on splicing

The splicing analysis was performed by the Gene Chip Array dataset and 614 transcripts in
AT129RM and 891 transcripts in WT238 (553 and 813 matching gene symbols respectively)

Fig 1. 2DE representative images. A-T and WT samples treated or not treated with Dexa. Each gel image was elaborated with Melanie
software. Three technical replicates were used.

https://doi.org/10.1371/journal.pone.0195388.g001
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were found to be alternatively spliced as reported in S5 Supplementary File. The affected bio-
logical pathways are reported in the same file, and the corresponding Reactome FI networks
are illustrated in supplementary S3 Fig. Through the comparison of the splicing analysis gene
sets and gene expression variations of both samples, it was possible to draw the Veen diagram
reported in Fig 6. Only 19 gene symbols were found to be both modulated and spliced in
AT129RM sample and 24 gene symbols in WT238 (only AP3S1 was in common, supplemen-
tary S1 Table).

Table 1. Proteins regulated by Dexa inferred by the 2DE experiments. All comparisons scores. The bold text column shows the protein ratio (“U” upregulated, “D”
downregulated and “=“ as unvaried) of the indicated comparison, while the plain text reports the gene expression ratio (U upregulated, D downregulated and “=“ as unvar-
ied), the variance analysis p value and the FDR p value.

AT129RM / WT238 AT129RM + Dexa / AT129RM WT 238 + Dexa / WT238 AT129RM +Dexa / WT238+Dexa

Gene
Symbol

Protein
U or D

Gene
Expr. U

or D

p
value

FDR p
value

Protein
U or D

Gene
Expr. U

or D

p
value

FDR p
value

Protein
U or D

Gene
Expr. U

or D

p
value

FDR p
value

Protein
U or D

Gene
Expr. U

or D

p
value

FDR p
value

ACTB D = 0.00 0.02 U = 0.47 0.73 = = 0.03 0.28 U = 0.04 0.18

AIF = U 0.01 0.10 U = 0.43 0.7 = = 0.30 0.70 U U 0.05 0.19

ATP5B = U 0.04 0.16 U D 0.15 0.44 = D 0.29 0.68 U U 0.17 0.35

CALR U U 0.00 0.06 U = 0.05 0.27 D D 0.31 0.70 U U 0.05 0.19

CCT3 U U 0.00 0.02 D = 0.97 0.99 = D 0.13 0.50 D U 0.01 0.11

EEF2 = = 0.27 0.46 U = 0.58 0.81 = = 0.10 0.47 U U 0.02 0.13

ENOPH1 = = 0.72 0.83 U = 0.77 0.9 = D 0.61 0.87 U U 0.71 0.82

EZR D = 0.25 0.44 U U 0.02 0.21 = = 0.43 0.79 U U 0 0.06

FKBP3 U = 0.60 0.75 U U 0.05 0.29 U = 0.95 0.98 U U 0.43 0.59

FUBP1 = U 0.00 0.05 U = 0.76 0.9 U = 0.08 0.42 U U 0.01 0.1

GAPDH = = 0.00 0.06 D = 0.01 0.16 D = 0.02 0.08 D = 0.01 0.09

HCLS1 = = 0.30 0.49 U = 0.01 0.12 D D 0.15 0.54 U U 0.12 0.29

HMGB1 U U 0.02 0.11 U U 0.11 0.39 U = 0.04 0.33 U U 0.07 0.23

HPRT1 U = 0.50 0.67 U U 0.1 0.37 D = 0.73 0.92 U U 0.64 0.76

HSP90AB1 = = 0.02 0.04 U = 0 0.03 = = 0.01 0.19 U U 0 0.04

HSP90AB2P = = 0.06 0.19 U D 0.12 0.39 = U 0.00 0.02 U D 0 0.07

HSP90B1 D U 0.00 0.00 U = 0.42 0.7 = = 0.00 0.12 U U 0 0.01

HSPA8 D U 0.01 0.08 U = 0 0.01 D = 0.50 0.82 U U 0.02 0.12

HSPD1 = U 0.00 0.00 U = 0.07 0.31 = = 0.02 0.25 U U 0 0

HYOU1 = U 0.00 0.02 U D 0.13 0.41 U D 0.07 0.39 U U 0 0.04

LCP1 = = 0.00 0.04 U = 0.002 0.07 U = 0.00 0.02 U U 0.29 0.47

MSN = = 0.00 0.07 U D 0.12 0.4 U = 0.40 0.77 U = 0.28 0.46

MZB1 = U 0.27 0.46 U = 0.96 0.98 = = 0.79 0.81 U U 0.67 0.79

P4HB = = 0.49 0.66 U = 0.28 0.58 U = 0.56 0.85 U U 0.57 0.71

PCBP1 = = 0.25 0.44 D = 0.75 0.9 U D 0.02 0.24 D U 0.03 0.16

PPP2R1A = = 0.15 0.34 U = 0.56 0.79 = = 0.16 0.55 U = 0.61 0.75

PSMB9 = D 0.27 0.46 U = 0.99 0.99 = D 0.43 0.78 U = 0.75 0.84

RPS3A = = 0.67 0.80 U = 0.55 0.79 = = 0.42 0.78 U U 0.73 0.83

SRSF1 U U 0.01 0.10 D = 0.63 0.83 = D 0.39 0.76 D U 0.03 0.11

SYNCRIP D U 0.00 0.01 U = 0.86 0.94 = = 0.00 0.11 U U 0 0.02

TPM3 = U 0.41 0.60 U = 0.71 0.88 = = 0.82 0.95 U U 0.34 0.52

TUBA1B = U 0.11 0.28 U = 0.51 0.76 = = 0.70 0.91 U U 0.1 0.27

XRCC6 D U 0.00 0.05 U = 0.66 0.85 = D 0.08 0.43 U U 0 0.08

YWHAZ = = 0.91 0.95 U = 0.06 0.3 U = 0.78 0.93 U U 0.23 0.41

https://doi.org/10.1371/journal.pone.0195388.t001
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Survey on other A-T samples

All the tested antibodies (HSPA8, AIF, CALR, HMGB1, HPRT1, PP2A A subunit and 14.3.3 z/
δ) were used to infer proteomic data of the other tested A-T cell lines as illustrated in the same
Fig 3. Among the tested cell lines, only the AT50RM sample behaved like the AT129RM one.
The other tested samples showed very low amounts of the investigated protein (except for
HSAP8) with varied outcomes. The evaluation of gene expression on other A-T samples
showed 675 statistically modulated transcripts (658 gene symbols) that were employed in the
HLC clustering process reported in Fig 7.

The HLC dendrogram showed a similar expression pattern for the samples AT129RM and
AT50RM and, separated by the WT238 group, the cluster of samples K13RM and K36RM
shared a similar gene expression profile. The genomic data revealed similarity between the
AT129RM-AT50RM and K13RM-K36RM samples. The gene expression features found in
A-T samples statistically characterised the shared genes modulated by Dexa beyond the

Fig 2. (A-B) STRING (A) and Reactome FI (B) networks. The proteomic data were used to compute both networks. The
functional interaction of the discovered proteins in the AT129RM sample was extremely elevated as reported in S1 and S2
Supplementary Files. The nodes colours (in B) represent the Reactome FI clustered genes and the numbers state the
enrichment pathways of nodes in clusters as reported in S2 Supplementary File.

https://doi.org/10.1371/journal.pone.0195388.g002

Fig 3. Western blot. Representative images of western blots performed in all tested LCLs, subsequently quantified as reported in Fig 4.

https://doi.org/10.1371/journal.pone.0195388.g003
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individual sample variability. The affected biological pathways are reported in S6 Supplemen-
tary File and the drawn Reactome FI network in supplementary S4 Fig.

Discussion

Results illustrated in the present study represent the first integrated analysis by proteomic and
transcriptomic, to investigate in vitro the Dexamethasone molecular mechanism of action in
an A-T established model, as this drug is employed as effective therapy in A-T patients
[11,12,16,18]. The chosen spots selection approach allowed highlighting the protein amounts
variation in A-T cells in response to Dexa treatment, rather than the generalised cellular gluco-
corticoid response that, in our opinion, represent an attractive basis to comprehend the partic-
ular outcome of glucocorticoid usage in ataxia telangiectasia treatment. Some of the selected
proteins in AT129RM showed also a basal dissimilar expression pattern compared to
untreated WT (depending on A-T status?) but all of them showed a differential treatment
response behaviour than WT. In fact, we were not able to observe any simple protein recovery
in treated A-T.

Upon examining these results, we immediately noted the overall lack of correlation between
gene expression and protein amount in the treated AT129RM sample. Surprising but accept-
able if we consider that in the last few years several studies demonstrated the overall mRNA /
protein correlation of about 0.4 [28–30].

In contrast, the same genes in the treated AT129RM/WT comparison showed a good gene
expression-protein amount match. It is possible to suppose (within the sensitivity of microar-
ray approach) that in the A-T sample, Dexa increased the level of the identified protein but not
the corresponding gene expression while, at least after 48h of Dexa exposure, in the WT sam-
ple the drug affected the expression of the examined genes. Concerning the A-T sample, only
the FKBP3 and EZR proteins showed a matching gene expression variation (according to the p
value).

The FKBP3 gene expression might be modulated by Dexa in the same way that the FKBP5
gene is modulated. The codified protein has a role in DNA packaging, interaction with
HDACs [31] splicing of mRNA, ribosomal assembly, along with other aspects of neuronal sig-
nalling [32,33]. The EZR gene has recently been reported to be induced by Dexa in podocytes

Fig 4. Western blot analysis of all tested LCLs. The protein abundance of selected targets in sample AT129RM is in
agreement with the 2DE outcome (paired t-test p<0.05) except for 14.3.3 z/δ (see text). Only the AT50RM sample
behaved in a similar manner to the AT129RM sample, despite the ATK13RM and ATK36RM cell lines. The W-N
graphic reports the whole lane normalization data of the WB experiments.

https://doi.org/10.1371/journal.pone.0195388.g004

Fig 5. FKBP5, TMEM2 and NFIL3 gene expression by qPCR. The well-known genes altered by Dexa administration have
been tested by qPCR in order to validate the microarray procedure.

https://doi.org/10.1371/journal.pone.0195388.g005
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[34] and to codify for an actin-binding protein involved in cytoskeleton reassembly. This last
finding, together with the other identified cytoskeletal proteins discovered through proteomic
analysis (ACTB, MSN, TPM3, CCT3, LCP1 and TUBA1B), support the findings of a previous
work by the authors of the present investigation, in which the mechanical proprieties of the
same cell line were found to be influenced by Dexa [15].

The overexpression of Calreticulin, a protein that binds Calcium, was particularly elevated
in the AT129RM sample. It has a chaperonin-like activity and is able to bind transcription fac-
tors. Its regulation may be related to the effects of the glucocorticoids. In fact, it is able to inter-
act with the DNA-binding domain of NR3C1, a receptor for glucocorticoids [35,36], and
mediates its nuclear export [37]. Furthermore, CALR is involved in calcium storage in the
endoplasmic reticulum, regulating diverse vital cell functions.

Fig 6. Veen diagram. The splicing and expression outputs were compared and plotted to show differences about spliced and altered expression genes between WT and
AT. Only small amounts of gene symbols were shared in all tested comparisons.

https://doi.org/10.1371/journal.pone.0195388.g006
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HSPA8 was found to be downregulated in WT238 and upregulated in AT129RM. This pro-
tein is also a molecular chaperone that is not just involved in protein homeostasis. Indeed,
when interacting with other partners, HSPA8 is able to acquire other cellular functions [38],
including a role in autophagy regulation [39], one of the biological paths affected in A-T cells.

In the proteomic derived Reactome FI network (Fig 2B), the following pathways were influ-
enced: PI3K-AKT path, ATR signalling, spliceosome regulation and, as previously described,
the regulation of the actin cytoskeleton. The stimulation of the AKT pathway by Dexa is in
agreement with our previous observation [17] of AKT-ERK signalling activation. The role of
AKT in DNA double strand break repair has been thoroughly described in the radioresistance
mechanism of tumor cells [40–44], and we cannot exclude a similar behaviour in A-T cells as a
balancing function for DNA repair. Furthermore, several studies associate the lack of ATM
mediated AKT signaling with neuronal degeneration [45–47], and the possibility of a rescue
mechanism promoted by Dexa is a very interesting prospect.

The HSP90 protein family (included in the reported proteomic data) is found in the
PI3K-AKT node. The reported cytosolic HSP90AB1, HSP90AB2P and the ER HSP90B1 [48]
may be related to the overall glucocorticoid effects on GR signalling, but interestingly, this
family is also involved in DNA repair [49] and was reportedly impaired in A-T cellular models
used in a previous proteomic study [50]. In the present investigation, Dexa was shown to
improve the amount of these proteins.

Another protein directly involved in DNA repair is the identified protein XRCC6 (Ku70).
This protein is known to participate in early time during the DSB damage response and can
modulate the ATM-dependent ATR activation during this response [51–53]. It is noteworthy
that in the analysed LCLs, the expression of miniATM was standing [17], and it could partici-
pate alongside the above-mentioned protein in the DNA repair process. Indeed, the presence
of the term “ATR signalling pathway” (in the proteome derived Reactome FI network, S2 Sup-
plementary File) and the highlighted biological pathways regarding DNA homeostasis (S4 Sup-
plementary File, Reactome FI networks by microarray: Mitotic G1-G1/S phases, M/G1
Transition, DNA replication, Synthesis of DNA), suggest that the DNA repair process might
be active in the case of DSBs.

Interesting the term “splicing” in the above-mentioned networks is often present and actu-
ally, by microarray, we were able to show that splicing occurred after Dexa exposure. It is also
noteworthy that the ATM gene product was found to be alternatively spliced, which is consis-
tent with findings of a previous report [17] by the authors of the present study. Since only 19
genes with altered expression were also spliced, all the other unaltered expressed but spliced
genes probably contribute to confuse the whole outcome of Dexa effect in A-T cells, as illus-
trated by the influenced biological pathways of spliced gene list. Also in WT238 sample the
splicing response was observed (24 gene products resulted both differentially expressed and
spliced), but only 38 genes resulted commonly spliced as in A-T sample, suggesting that also
the splicing response is differentially influenced by glucocorticoids in ataxia telangiectasia.

Cheema et al. [54] have reported proteomic profile changes in response to ionizing radia-
tion (IR) in A-T cells and ATM complemented A-T cell lines. Interestingly, some of the identi-
fied proteins were also noted in the present investigation. In fact, Dexa proved capable of
inducing the proteins ACTB, EEF2, EZR, FUBP1, GAPDH, MSN and SRSF1 in A-T cells in
the same manner that they were induced in the IR exposure response. On the contrary,

Fig 7. HLC outcome obtained by microarray expression profile of A-T samples. A total of 675 differentially
expressed transcripts allowed us to classify AT129RM and AT50RM as similar to each other, while the other A-T
samples behaved differently. The same behaviour pattern was inferred by western blot analysis.

https://doi.org/10.1371/journal.pone.0195388.g007
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HSP90B1, HSPA8 and LCP1 were upregulated by Dexa, while they were downregulated in the
case of IR stimulation. It could supposed that Dexa can partially simulate the radiation
exposure.

The accuracy of the proteomic results was assessed by testing some randomly chosen by
western blotting with a good data agreement, and by the same assay, it was possible to extend
the proteomic data to the other tested samples. The behaviour of the other cell lines was inho-
mogeneous, and especially the cell lines K36RM and K13RM showed a different proteomic
pattern compared to AT129RM and AT50RM, at least regarding the tested targets. In the last
two samples, the amount of investigated proteins is lower than in all other cell lines and often
they behaved completely different. This may be due to genetic variability of samples hence
leading to a different response to glucocorticoids. The same matching correspondence was
highlighted by HLC examination, thus suggesting that the proteomic pattern modulated by
Dexa is actually influenced by the genotype of the tested cells, thus further puzzling the com-
prehension of a common molecular mechanism of action of Dexamethasone. Variation of
Dexa efficacy was also noted in treated A-T patients [11] and the data illustrated may support
the suggestion that response to Dexa is A-T subject genotype dependent. Unfortunately, we
are not able to compare the tested cell lines to patient treatment outcome (concerning the cell
lines K36RM and K13RM, derived from a clinical trial); the AT129RM and AT50RM samples
are cell lines from ‘90 and no glucocorticoid therapy was ongoing. The authors of the present
paper have recently reported the transcriptomic results of a clinical trial in which long term
Dexa administration was performed in A-T patients using red blood cells [18]. Hence, the
comparison of gene expression variation between in vivo data and the in vitro model was actu-
ally possible. The gene list of common modulated gene symbols is reported in supplementary
S2 Table alongside the shared molecular pathways in the Reactome FI networks. There was
only a slight overlapping of the results. This is probably due to the different biological samples
used in the two studies, but undoubtedly the main differences lie in the administration modal-
ity, and hence the drug concentration, and effective exposure time. On the other hand, some
biological effects were found both in in vivo and in vitro, such as the presence of the ATMdexa1
transcript [16]. Alongside the illustrated results, remains the puzzling effects of Dexa adminis-
tration on the tested cell lines, assuming that the genetic variability exerts a significant influ-
ence on drug administration outcome.

Based on all of these findings we cannot rule out the possibility that the obtained proteomic
data may also be extended to some in vivo biological responses. It would be very interesting to
test some of the above-mentioned targets in the blood of A-T patients who will be enrolled in
an upcoming phase III clinical trial (ATTeST, https://clinicaltrials.gov/show/NCT02770807).

Supporting information

S1 Fig. Mascot outcome of Spot #21. The protein assignment performed according to the
highest number of covering peptides, in this case the 14-3-3 zeta/delta. However, the same
spot also returned as 14-3-3 gamma, beta/alpha, theta and eta. The western blot unlatching
results may be due to the different isoform of the tested antibody.
(TIF)

S2 Fig. (A-B) Reactome FI networks derived by Dexa modulated genes in WT238 sample (A)
and in A-T129RM (B). The gene expression analysis using the Affymetrix platform allowed us
to isolate statistically and differentially expressed transcripts. The full list of differentially
expressed transcripts is reported in S3 Supplementary File. The nodes colours represent the
Reactome FI clustered genes while the numbers state the enrichment pathways of nodes in
clusters as reported in S4 Supplementary File alongside biological pathways and molecular
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functions.
(TIF)

S3 Fig. Reactome FI network of spliced transcripts. The STRING analysis of 2DE character-
ised spots from the A-T AT129RM sample lied to perform a splicing analysis of the same sam-
ple using the Affimetrix platform. Actually 614 transcripts proved to be alternatively spliced
and were used to draw the functional network reported in B. Concurrently also the WT spliced
transcripts were inferred and used to compute the functional network reported in A. The
nodes colours represent the Reactome FI clustered genes while the numbers state the enrich-
ment pathways of nodes in clusters as reported in S5 Supplementary File alongside biological
pathways and molecular functions.
(TIF)

S4 Fig. Reactome FI network by transcriptomic analysis of all A-T samples. The network
details are reported in S6 Supplementary File. The nodes colours represent the Reactome FI
clustered genes while the numbers state the enrichment pathways of nodes in clusters. The
profile of all A-T allowed the HLC outcome and sample clusterization illustrated in Fig 7. The
whole A-T transcriptome statistically would decrease the Dexa modulated genes variance due
to the genetic variability of the samples.
(TIF)

S1 Supplementary File. Excel file containing the STRING outcome of the protein
highlighted by 2DE analysis in the AT129RM sample.
(XLSX)

S2 Supplementary File. Excel file reporting the Reactome FI outcome of the protein
highlighted from 2DE of the AT129RM sample.
(XLSX)

S3 Supplementary File. Excel file containing the lists of differentially expressed transcripts
in the WT238 and AT129RM samples.
(XLSX)

S4 Supplementary File. Excel file containing the outputs of Reactome FI analysis of micro-
array experiments. Gene symbols, nodes, paths in networks, biological pathways and molecu-
lar functions for samples WT238 and AT129RM are reported.
(XLSX)

S5 Supplementary File. Excel file with the gene symbols list obtained by Affymetrix splic-
ing analysis of the AT129RM and WT238 samples. Reactome FI nodes, paths in networks,
biological pathways and molecular functions are also reported.
(XLSX)

S6 Supplementary File. Excel file with microarray investigation of all A-T samples. Reac-
tome FI nodes, paths in networks, biological pathways and molecular functions are described.
(XLSX)

S1 Table. Comparison of the gene list from the splicing analysis with the gene expression
variation in sample AT129RM (19 genes were found to be both modulated and spliced),
and in WT238 (24 genes were both modulated and spliced).
(DOCX)

S2 Table. Gene list of common modulated gene symbols and shared molecular pathways in
the Reactome FI networks from the comparison of gene expression variation between in
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vivo and in vitro data.
(DOCX)
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