
Simulation Modelling Practice and Theory 114 (2022) 102413

A
1

S
a
L
a

b

A

K
S
P
V
C
B
D

1

s
a
f

l
d
o

m

h
R

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

ecurity analysis of distributed ledgers and blockchains through
gent-based simulation
uca Serena a, Gabriele D’Angelo a,∗, Stefano Ferretti b

Department of Computer Science and Engineering, University of Bologna, Italy
Department of Pure and Applied Sciences, University of Urbino ‘‘Carlo Bo’’, Italy

R T I C L E I N F O

eywords:
imulation
arallel and Distributed Simulation
irtual environments
yber-security
lockchain
istributed ledger technologies

A B S T R A C T

In this paper,1 we describe LUNES-Blockchain, an agent-based simulator of blockchains that
relies on Parallel and Distributed Simulation (PADS) techniques to obtain high scalability. The
software is organized as a multi-level simulator that permits to simulate a virtual environment,
made of many nodes running the protocol of a specific Distributed Ledger Technology (DLT),
such as the Bitcoin or the Ethereum blockchains. This virtual environment is executed on top
of a lower-level Peer-to-Peer (P2P) network overlay, which can be structured based on different
topologies and with a given number of nodes and edges. Functionalities at different levels
of abstraction are managed separately, by different software modules and with different time
granularity. This allows for accurate simulations, where (and when) it is needed, and enhances
the simulation performance. Using LUNES-Blockchain, it is possible to simulate different types
of attacks on the DLT. In this paper, we specifically focus on the P2P layer, considering the
selfish mining, the 51% attack and the Sybil attack. For which concerns selfish mining and
the 51% attack, our aim is to understand how much the hash-rate (i.e. a general measure of
the processing power in the blockchain network) of the attacker can influence the outcome
of the misbehavior. On the other hand, in the filtering denial of service (i.e. Sybil Attack), we
investigate which dissemination protocol in the underlying P2P network makes the system more
resilient to a varying number of nodes that drop the messages. The results confirm the viability
of the simulation-based techniques for the investigation of security aspects of DLTs.

. Introduction

Distributed ledgers and blockchain-based technologies have become more and more popular over these years, due to their
uitability to be used in many distributed application scenarios [1,2]. Traceability, auditing, attestation-as-a-service, pseudo-
nonymity, and cooperation are just few examples, other than the traditional fintech applications that made these technologies
amous.

A Distributed Ledger Technology (DLT) is a distributed software system that can be seen organized as a protocol stack. At its
ower level, an overlay network is built on top of the Internet layer. This Peer-to-Peer (P2P) system is responsible to manage the
issemination of the messages. Each node is logically linked to a certain number of neighbors, and communicates with them based
n a ‘‘gossip-like’’ dissemination protocol. Furthermore, some discovery mechanism is used, in order to build the P2P overlay [3]. For

∗ Correspondence to: Department of Computer Science and Engineering, University of Bologna, Via dell’Università, 50, 47521, Cesena (FC), Italy.
E-mail addresses: luca.serena2@unibo.it (L. Serena), g.dangelo@unibo.it (G. D’Angelo), stefano.ferretti@uniurb.it (S. Ferretti).

1 An early version of this work appeared in Rosa et al. (2019). This paper is an extensively revised and extended version where more than 50% is new
aterial.
vailable online 22 September 2021
569-190X/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.simpat.2021.102413
eceived 23 November 2020; Received in revised form 10 August 2021; Accepted 13 September 2021

http://www.elsevier.com/locate/simpat
http://www.elsevier.com/locate/simpat
mailto:luca.serena2@unibo.it
mailto:g.dangelo@unibo.it
mailto:stefano.ferretti@uniurb.it
https://doi.org/10.1016/j.simpat.2021.102413
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2021.102413&domain=pdf
https://doi.org/10.1016/j.simpat.2021.102413


Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.

t
t
o

o
b
a
t
e
s
S
t

t
p
p
s
t

e
T
d
w
t
c
c
s
n

g
a
a
a
v
a

f
n
t
w
s
v

w
D
d
e
s
D

S
v
p

2

t

instance, a random selection protocol is used in Bitcoin, while Ethereum employs a UDP-based node discovery mechanism inspired
by Kademlia [4].

The actual distributed ledgers are built on top of this kind of P2P system. Each node has its copy of the ledger that records all the
ransactions that have been generated in the network. Eventual consistency of the view of the distributed ledger is reached through
he adoption of a consensus scheme. There are several protocols that may be adopted for this task. Usually, blockchains are based
n ‘‘Proof of Work’’, ‘‘Proof of Stake’’ or one of their variants.

Finally, on top of the consensus layer we have the real transaction ledger, that records transactions and data. The implementation
f the ledger varies, depending on the technology. In Bitcoin and Ethereum, for instance, the ledger is organized as a sequence of
locks, each block containing a set of transactions (for this reason, they are called ‘‘blockchains’’). Some newer alternative solutions
dopt different data structures. Just as an example, the Tangle ledger employed in IOTA is in fact a directed acyclic graph of
ransactions. Moreover, in traditional blockchains, such as Bitcoin, the transactions that are inserted into the ledger just contain
xchanges of cryptocurrencies. Instead, the so called blockchains 2.0 (and further) allow for ‘‘programmable transactions’’, i.e. the
ystem is able to insert into the blockchain smart contracts, actual contracts written with a Turing complete scripting language [1].
uch smart contracts can be triggered through specific transactions. Once activated, a related code is executed whose output changes
he internal state of the smart contract.

While a layered organization of a decentralized system, such as DLTs, allows us to isolate the very different aspects of the
echnology and to obtain a better understanding of the components’ protocols, the functioning of each layer influences the
erformance of the other layers. Thus, it becomes interesting to evaluate all possible alternatives of each component, and how
ossible modifications affect other aspects of the DLT. However, the complexity of DLTs, and the large scale nature of this distributed
ystem make extremely difficult such evaluation process. This is especially true when dealing with security issues. For this reason,
he creation of a virtual environment, in which DLTs are simulated, might represent a viable and profitable strategy.

In this work, we present a virtual environment called LUNES-Blockchain. The main component of LUNES-Blockchain is a discrete
vent simulator that is able to simulate the blockchain behavior and to trigger certain attacks on such a decentralized data structure.
he software has been designed to be scalable, thus it follows a Parallel And Distributed Simulation (PADS) approach. More in
etail, the simulator allows us to create a synthetic DLT, organized as a virtual environment of different interacting agents. It is
orth noticing that LUNES-blockchain has been designed and implemented to follow a multilevel approach. In fact, each level of

he virtual environment simulates a different layer of a DLT protocol stack. Thus, a P2P level has been implemented, which is in
harge of the modeling the overlay creation, management and message dissemination. The upper level models the specific DLT
onsensus scheme and the internals needed to maintain a consistent version of the ledger. (For example, as concerns Bitcoin, the
ystem simulates the Proof-of-Work — PoW mining approach, in which each node in the blockchain concurrently tries to mine a
ovel block.)

The adoption of a multi-level approach has the advantage that each level can be configured to work with a specific time
ranularity, based on the specific nature of the events that need to be simulated at different layers. For instance, the events generated
t the (upper) blockchain level can be represented at a coarser grain than the (underlying) overlay level. In fact, the generation of
novel transaction, or a block in the blockchain corresponds to multiple dissemination steps at the overlay level, where messages

re broadcast through the overlay, i.e. they are transmitted from a node to its neighbors, and so on. Following this approach, a
irtual environment composed of DLT nodes is created and it is implemented by a further lower-level simulation middleware as an
gent-based framework on top of a PADS system.

The resulting virtual environment is able to model the behavior of a blockchain with a high degree of fidelity and to obtain
ast results even in presence of complex or large-size networks to model. LUNES-Blockchain can be used as a testbed to study
ew components to be integrated in the DLT, to evaluate the performance of existing algorithms or to verify the reliability of
he blockchain in presence of failures or malicious actors. In this paper, the developed virtual environment is used to study some
ell-known security attacks to the Bitcoin blockchain, i.e. (i) a Denial-of-Service (DoS) attack (also known as Sybil attack) [5], (ii)

elfish mining [6], and (iii) 51% attack [7]. Indeed, we claim that the use of simulation techniques as a part of highly realistic
irtual environments can be a profitable approach to study and assess the security aspects of a system.

As concerns the evaluation reported in this paper, in order to show the feasibility of the virtual environment based on simulation,
e provide results related to the execution of the mentioned security attacks when applied to different configurations both at the
LT level and at the overlay level. For instances by changing the overlay topology and the specific configuration of the gossip
issemination strategy. We report on both the outcomes of the attacks, thus providing results related to the specific simulated virtual
nvironment, as well as the performance of the simulator itself, in terms of time necessary to complete the simulation execution and
calability. The obtained results demonstrate the viability of exploiting agent-based simulation for building virtual environments of
LTs.

The remainder of this paper is organized as follows. Section 2 provides some background and a discussion on related works.
ection 3 describes the virtual environment. Section 4 is related to the presentation of the security attacks and to the usage of the
irtual environment to assess their impact on the Bitcoin blockchain. Section 5 provides experimental results, with respect to the
erformance evaluation about the simulation tool we built. Finally, Section 6 provides some conclusions and final remarks.

. Background and related work

The blockchain is a technology that was initially proposed in the Bitcoin system, in 2009, by an anonymous author with
2

he pseudonym of Satoshi Nakamoto [8]. It can be seen as a decentralized and immutable database where all participants can



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.

l
w
a
e

2

o
c
a
a

c
m
i
a
t
(

2

s
n
S
m
t

o
s
b
c
m
n
c
b

transact directly without relying on an intermediary, such as a bank. Crucial for the proper functioning of the system is the role
of cryptography, as well as the use of a consensus protocol, which ensures that all the various nodes agree on the content of
the distributed ledger. Usually the users are identified with a pseudonym derived from their cryptographic public key, so while
transactions are known in the ledger, it is difficult to identify the involved parties.

While Bitcoin is still currently the most famous and the most commonly used blockchain-based system, certain kinds of platforms,
ike Ethereum, are gaining popularity because they enable to develop more complex applications through the use of Smart Contracts,
hich are actual contracts written with a Turing complete scripting language. In fact, cryptocurrencies like Bitcoin basically only
llow for money transfer, while blockchains based on smart contracts make it possible to create distributed applications. The
xecution of the public code composing the smart contract is carried out by the multiple nodes that are part of the system.

.1. The peer-to-peer overlay and the distributed ledger

The blockchain is a type of distributed ledger, where information is grouped into blocks, which are logically linked among each
ther through the use of a hash pointer to a previous block. Thus, blocks are organized in a chain, and forks can occur. In the
ase of forks, usually the strategy is to continue the longest chain, ignoring shorter ones. At the distributed system layer, nodes
re organized as a peer-to-peer network, in which each active participant has a copy of the shared ledger. For the communication
mong the nodes the underlying network is exploited, using the typical Internet protocols.

Each novel transaction, generated by a node, is disseminated through the P2P system using a flooding dissemination proto-
ol [9,10]. More specifically, these protocols (which are usually referred as ‘‘gossip protocols’’) can implement different strategies to
aximize the dissemination of the messages while controlling the communication overhead. The simplest approach, for a node that

s part of the network, is to broadcast the newly received message to all the neighbors except the forwarder. A caching mechanism
nd a time-to-live associated with the messages will prevent infinite loops of messages. However, there are more complex strategies
hat enable us to minimize the amount of messages sent or to enhance the anonymity properties of the sender of a specific message
i.e. a transaction recorded in the blockchain). In the following we briefly introduce the most common dissemination strategies.

• Fixed Probability : a message is sent to a neighbor only if a random-generated number is greater than a certain threshold value
(that is a parameter that can be tuned). The operation is then repeated for every neighbor of the node, except for the forwarder
of the message.

• Probabilistic Broadcast : a message is sent to all the neighbors (except the forwarder) only if a random-generated number is
greater than a certain threshold value. Otherwise no message is sent.

• Dandelion: this dissemination protocol has the specific goal to enhance the anonymity of the sender of a transaction. It consists
in two main phases: in the initial ‘‘stem phase’’, the message is forwarded to a single random neighbor. In the following, the
information is broadcast into the network in what is called the ‘‘fluff phase’’.

• Dandelion+-: based on Dandelion++ [11], it is an improved version of Dandelion that aims to strengthen the resilience against
the de-anonymization of blockchain users and the execution of Sybil attacks. In particular, to avoid having lost transactions
(caused by malicious or defective nodes that drop the messages during the stem phase), the protocol implements a fail-safe
mechanism. In fact, if a node receives a message during the stem phase and it does not get it back after a certain amount
of time in the fluff period, then such a node will start the fluff phase by itself, by broadcasting the message. In the actual
implementation of Dandelion++ other changes with respect to Dandelion are performed. Particularly, in Dandelion++ nodes
in one epoch (i.e. a period of about 10 min) are either ‘‘relayers’’ or ‘‘diffusers’’, and thus they relay the messages to either one
neighbor or to all the neighbors. In the tests reported in this paper, for simplicity and for being able to evaluate the specific
impact of the recovery mechanism, we decided to only consider the fail-safe mechanism among the upgrades of Dandelion++
(and we refer as ‘‘Dandelion+-’’ for this specific variant of the protocol.

.2. Consensus scheme

The consensus scheme is a protocol that ensures that all the nodes of the P2P network maintain the same view on the current
tate of the blockchain. The scheme defines what has to be done to validate a block, finding a common agreement among all the
odes of the network. In the past years, several consensus schemes have been proposed in the distributed systems research area.
ome of these schemes are utilized today in blockchain technologies (e.g. Practical Byzantine Fault Tolerance [12]). However, the
ain approaches used in blockchain are the Proof-of-Work (Pow, used in Bitcoin and the actual Ethereum) and Proof-of-Stake (PoS,

hat is planned to be used in the novel Ethereum version) [3].
In PoW systems, in order to validate a block, nodes have to solve a computational crypto-puzzle that requires a very large amount

f computational power. This activity is called mining and the users participating in the mining activity are called miners. More
pecifically, a valid block is found when one finds a specific number (called nonce) that, when hashed together with the proposed
lock, provides as a hash output a sufficiently small number, contained in a certain range. The difficulty of resolving the puzzle
an be dynamically updated in order to adapt to the overall growth of computing power. When using the PoW, it may happen that
ore than one node mines a block at the same time, thus creating a fork in the chain of the mined blocks. When this occurs, the
odes agree to consider as valid only the blocks in the longest chain that will therefore be continued in the future. Conversely, the
ontent of the shorter chains will be ignored. Proof-of-Work has often been criticized due to the enormous waste of energy caused
3

y the mining activity.



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.

m
a
t

e
r
t

2

o
t
n
w
a

s

s

g

b
a

n
g

p
o

B
a

i
e

c

p
A

p
a

s

p
o
f
h
n
o
c
n

The systems based on PoS are much less computation-consuming. The users who want to participate in the validation of a block
ust deposit a certain amount of cryptocurrency. The probability that a node is chosen as the next validator is proportional to the

mount of currency deposited in the escrow. To reduce the likelihood of some kinds of attack, there may also be some mechanisms
hat prevent the same nodes from validating blocks too often.

Regardless of the protocol used, the hash of the previous block in the chain is inserted in the novel block, therefore making it
asier to verify the ledger state in a tamper-proof manner. It is worth reminding that the work of validating a block is financially
ewarded. The reward can be achieved by the act itself of validating a block and from the fees that the users pay to get their
ransactions validated.

.3. Simulation of blockchains

At the time of writing, the literature on blockchain simulators is still not abundant. Usually, the main focus is on the analysis
f the blockchain, the use of smart contracts and sometimes the security issues of blockchain systems. The typical approach is
o develop smart contracts and test them using local blockchains. Remix, Metamask, Ganache, Multichain and the Ethereum test
etworks (e.g. Ropsten, Rinkeby) are examples of environments though to write, compile and debug smart contracts. In accordance
ith the multi-layered vision of a blockchain we discussed in the previous section, a common approach is to simulate just a few
spects of a blockchain at a time.

The majority of scientific literature about the simulation of blockchains is interested in predicting the performance of blockchain
ystems or in modeling specific aspects such as the consensus algorithms.

For example, in [13], the authors propose to use modeling and simulation techniques to predict the latency of blockchain-based
ystems.

The authors of [14] describe the usage of SimPy to measure some metrics from a simulated Blockchain system and compute a
eneral score that is called ‘‘quality of blockchain’’.

The focus of [15] is on the mining process. More in detail, the authors have implemented the simulation of the mining process
ased on queuing theory. They extracted from the Bitcoin real data, the parameters necessary to simulate the process by means of
M/M/n/L queuing system evaluated using JSIMgraph.

In [16], a blockchain network simulator is presented. This simulator follows an event-driven approach to model the neighbor
odes selection of the peer-to-peer overlay. As in LUNES-Blockchain, the mining activity is not simulated in detail, but a block
eneration is mimicked based on the computational capabilities of nodes.

VIBES is a blockchain simulator, thought for large modeling scale P2P networks [17]. The rationale behind this simulator is to
rovide a blockchain simulator that is not confined to the Bitcoin protocol, trying to support large-scale simulations with thousands
f nodes.

BlockSim is composed of a Python framework able to build discrete-event dynamic system models for blockchain systems [18].
lockSim is organized in three layers: incentive layer, connector layer and system layer. Particular emphasis is given on the modeling
nd simulation of block creation through PoW.

In [19] is described a new methodology that enables the direct execution of multi-threaded applications inside of Shadow that
s an existing parallel discrete-event network simulation framework. This is used to implement a new Shadow plug-in that directly
xecutes the Bitcoin reference client software (i.e. Shadow-Bitcoin).

A small number of research activities has focused on the usage of simulation-based techniques to evaluate the security of the
urrent blockchain systems or to drive their future development.

The simulation-based evaluation of a very specific kind of blockchain, i.e. Tangle-based blockchains, is discussed in [20]. The
aper shows how a simple simulation model can be defined to model the Parasite Attack, Double Spending Attacks and Hybrid
ttacks on top of a Tangle.

The authors of [21] propose to use an agent-based simulation to guide and optimize protocol development in a Proof-of-Stake
arameter optimization and peer-to-peer networking design. In this work, they describe a system for simulating how adversarial
gents, both economically rational and Byzantine, interact with a blockchain protocol.

In [22], the mining strategy of Bitcoin is simulated and studied. A network is modeled, but the propagation of transactions is not
imulated, since the focal point is to study the impact of the block size, block interval, and the block request management system.

To the best of our knowledge, LUNES-Blockchain is the first simulator of blockchains that is able to take advantage of the
erformance speedup and extended scalability provided by PADS. A detailed performance evaluation of the speedup that can be
btained by employing PADS techniques in the simulation of blockchains is left as future work since in this paper we prefer to
ocus on the security aspects of DLTs that can be investigated by means of simulation. However, the simulation of blockchains
as a lot common with the simulation of complex networks. For example, the communication as represented in the peer-to-peer
etwork used to spread messages in the distributed system that builds up the DTL is not different from a message dissemination
n a complex network (i.e. gossiping on a scale-free network). On this side, PADS techniques have already demonstrated that they
an significantly reduce the amount of time that is required to complete the simulation runs while enabling the simulation of larger
etwork topologies [9,23–26].
4



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.

d
c
s
c
b

d
a
w
w
T
i

p

2.4. Security analysis through virtual environments

Virtual environments are an important tool for studying the security, efficiency and scalability of a computer system. Sometimes,
epending on the complexity of the systems, it is not possible to analyze certain specific problems only by analytic methods or model
hecking, thus the creation of a virtual environment that relies on the usage of simulation techniques may be needed. In certain
ituations, it could be necessary to build a model characterized by high fidelity, maybe including in the virtual testbed also hardware
omponents. Under other circumstances, on the other hand, it might not be necessary to represent all the system in its complexity
ut some aspects can be neglected, thus favoring the execution speed of the virtual environment and its scalability.

In particular, the creation of a virtual environment based on simulation has the advantage that made it possible to study and
etect issues in advance with respect to the real implementation of the system to be built. For example, it is possible to carefully
nalyze critical points and possible vulnerabilities of the applications that are going to be developed. This can be useful above all
here the actual implementation is costly or where potential bugs could lead to dire or not easily fixable consequences. Another
ell-known example are digital twins. A digital twin is defined as a digital replica of a living or non-living physical entity [27].
hat replica can be a very useful testbed for existing systems as well, since it allows us to test and evaluate strategies for solving or

mproving certain known issues without shutting down the actual system.
While most of the studies about cybersecurity focus on confidentiality (i.e. data can be accessed only by those who have the

ermission), integrity (i.e. data are not altered or corrupted) and availability (i.e. data and services are always available to those who
have the permission whenever they want), this work aims to investigate the usage of virtual environments for the study of high
level attacks, specifically to the overlay network (i.e. Sybil attack) and to the consensus protocol (51% and selfish mining attacks).

The focus of this paper is on attacks that, in some way, involve the whole network. We decided to study this kind of attacks
because they are among the major risks in the current blockchains and because they represent a good opportunity to show the
scalability of LUNES-Blockchain. On the other hand, it is worth to note that virtual environments can be also used to study targeted
attacks on the virtualized systems or to investigate specific conditions of given nodes in the blockchain network. For example, we
could be interested in evaluating the security aspects of certain dissemination protocols in presence of poorly connected nodes. In
fact, the structuring of the overlay network can affect the level of coverage and efficiency that can be achieved in the system, with
the least connected nodes behaving as most vulnerable ones. LUNES-blockchain allows us to easily test the network configurations
that may present criticalities (i.e. corner cases).

3. Simulation of the Bitcoin network

With the aim to make this paper as self-contained as possible, in this section we introduce some background on Discrete Event
Simulation (DES) and Parallel And Distributed Simulation (PADS) techniques. After that, we describe the ARTÌS/GAIA simulation
middleware and the LUNES simulation model that have been used for implementing LUNES-Blockchain.

DES is a simulation paradigm that allows us to combine likelihood of the representation and ease of use. In DES, each event
(i.e. a change in the simulated model) happens at a specific time in the model evolution. In other words, a DES can be seen as
the execution in chronological order of a sequence of events. Under the implementation viewpoint, the main components of a DES
are (i) a set of state variables that model to the various entities in the modeled system, (ii) an ordered list of future events to be
executed and (iii) a global clock that represents the current time in the simulation and that triggers the execution of events from
the ordered list.

A DES can be implemented in many different ways. For example, it is possible to rely on both monolithic or distributed
architectures. In a monolithic (i.e. sequential) simulation, all the model state variables representing the simulated model are allocated
in a single execution process (usually run on top of a single CPU core) that is in charge of managing and generating events. The
main advantage of this approach is its simplicity but often its execution speed is not optimal and it lacks of scalability. For example,
the scalability of the simulator is limited, both in terms of time required to complete the simulation runs and complexity of the
system that can be modeled [28].

When it is necessary to boost execution performances or to model complex systems then it is possible to follow a PADS approach.
In this case, the simulation is executed on top of a parallel/distributed execution architecture composed of multiple interconnected
CPUs. A PADS permits to share the model workload among multiple LPs (i.e. logical processes, model components executed by
single execution units). Following this approach there is no more a global state of the simulation model but each LP manages a
specific portion of the simulated model. In practice, each LP (that is now run on a different CPU core) deals with just a part of the
pending events and the various LPs communicate via messages to deliver remote events. The main advantage of using a PADS is that
it enables the modeling and the processing of larger and more complex simulation models with respect to a monolithic setup. On
the other hand, the partitioning of the simulated model is not a complex problem [29] and the usage of a synchronization algorithm
that coordinates the LPs execution is needed to guarantee the simulation correctness [30]. In other words, the output obtained by
a PADS simulation must be exactly the same as what obtained when running the simulation model by using a sequential approach.
5



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.

t
a
o
(
n

e
I
o
p

3.1. ARTÌS/GAIA

The Advanced RTI System (ARTÌS) is a parallel and distributed simulation middleware that implements the partitioning of
he simulation model in a set of LPs. Following this approach, the simulation is run on top of a parallel/distributed execution
rchitecture that is composed of multiple interconnected Physical Execution Units (PEUs). Each PEU (i.e. a CPU core) runs at least
ne LP. The simulation middleware (i.e. ARTÌS) is in charge of providing to the LPs some main services like (i) time management
i.e. synchronization), that is necessary for obtaining correct simulation results and (ii) data distribution management, that is
ecessary for the efficient delivery of interactions between the LPs.

The communication between the different partitions of the simulated model (i.e. LPs) is very relevant in terms of overhead for the
xecution of a PADS. This is due to the amount of time that is spent in delivering the interactions between the model components.
n other words, the amount of time that is necessary to complete the execution of a PADS (i.e. wall-clock time) is highly dependent
n the performance of the communication network (i.e. latency, bandwidth and jitter) that interconnects the PEUs and how the
artitioning of the simulation model has been arranged.

The Generic Adaptive Interaction Architecture (GAIA) is a software framework that uses the service provided by ARTÌS [31] and
that has two main goals: to simplify the definition of PADS models and to increase the efficiency of their execution. To achieve these
goals, the simulation model is partitioned in a set of Simulated Entities (SEs) that can be seen as fine-grained model components.
Each LP clusters a set of SEs and provides to them some basic simulation services (e.g. synchronization and message passing) and
some higher level services (e.g. proximity detection, advanced data structures etc.). Following the approach implemented in GAIA,
the evolution of the simulation model is obtained through interactions among the SEs. These interactions are then encapsulated by
timestamped messages that are exchanged between the LPs. From the simulation modeling viewpoint, GAIA follows a Multi Agent
System (MAS) approach in which each SE represents an agent. Depending on the simulation model that is implemented using GAIA,
the SE can be a network node, a car or any other object used by the simulation model. More generally, each SE can be seen as an
autonomous agent able to perform some specific actions (i.e. individual behavior) and to interact with other agents in the simulation
(i.e. group behaviors).

In addition, GAIA implements a rather complex set of mechanisms that are aimed to reduce the communication overhead in
the parallel/distributed execution setup. This is obtained by clustering the SEs that have frequent interactions in the same LP. For
example, if a group of SEs is close in the simulated space, and they communicate using proximity-based technology (e.g. WiFi
networks), then it is likely a good idea to cluster them together. In terms of communication overhead, clustering the heavily-
interacting entities has the advantage to reduce the amount of costly LAN/WAN/Internet communications while increasing the
usage of efficient shared memory messages. In the current version of GAIA, this is obtained by analyzing the interaction pattern of
each SE during the simulation execution and then triggering the necessary SEs re-allocations (i.e. migrations) between the LPs. The
decision on when and how to perform migrations can be taken in many different ways. Currently, GAIA implements the clustering
of SEs using a set of high-level heuristics that analyze the communication behavior and that are independent form the specific
simulation domain.

3.2. LUNES

LUNES (Large Unstructured NEtwork Simulator) is a simulator of complex networks implemented on top of ARTÌS/GAIA. The
software has been designed to simulate large scale peer-to-peer networks and to evaluate the efficiency of data dissemination
protocols running on top of them. The tool is thought to be easily expandable [9], so that adding new simulation models on top of
the existing services is a rather simple task.

The simulator has a modular structure in which each module is in charge of a specific phase that is executed separately:

• Creation of network topology, which is entrusted to an external library called ‘‘igraph’’ [32]. There is the possibility to choose
among different network topologies, as well as setting the network size (i.e. number of nodes) and the total number of edges.

• Protocol simulation, that implements the data dissemination on top of the peer-to-peer network for a given amount of simulated
time. If there is a simulation model implemented on top of the dissemination protocol, then it is executed in this phase.

• Performance evaluation, batch data evaluation and computation of main metrics on the data collected during the simulation.

Given that, LUNES is built on top of ARTÌS (i.e. parallel and distributed processing) and GAIA (i.e. adaptive self-clustering, dynamic
computational and communication load-balancing), it can benefit of an efficient approach to simulate detailed protocols on top of
large scale networks. For example, some tests on the hardware used for the performance evaluation reported in the following of this
paper, showed that running LUNES using 4 LPs (on top of 4 different PEUs) permits to almost halve the time required to complete
the simulation runs with respect to a sequential simulation (i.e. using a single LP).

3.3. LUNES-Blockchain

LUNES-Blockchain is a virtual environment based on LUNES, whose structure is described in Fig. 1. This virtual environment
allows us to study both the behavior of the blockchain and the main security attacks on the modeled system. In LUNES-blockchain,
each node is represented by means of an agent that implements a local behavior and interacts with other agents. This kind
of representation simplifies the development of the model and, in our view, it adds a high-level of extensibility to the virtual
6

environment.



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 1. LUNES-Blockchain system architecture: the blockchain simulator (i.e. LUNES-Blockchain) runs on top of the (simulated) communication services provided
by the P2P dissemination simulator (i.e. LUNES).

LUNES-Blockchain specifically simulates the behavior of a blockchain based on PoW, such as Bitcoin. Some of the nodes are
defined to be miners, and it is assigned to them a specific hash-rate, corresponding to the percentage of computational power at
the disposal of those nodes. Furthermore, the software allows us to assign to certain nodes, representing computationally powerful
clusters, a bigger amount of cryptographic power. Finally, during the simulation of the attacks, a specific hash-rate is assigned to
the malicious node, thus scaling back the hash-rates of the other nodes.

In the virtual environment, the time in the simulated systems is represented by using a sequence of time-steps. As mentioned
before, to increase the veracity of the simulation, the virtual environment uses a multilevel approach, in order to represent separately
the mining steps (about 5 min long) and the propagation steps (a few fractions of a second). In LUNES-Blockchain, the simulation
of the mining process is modeled to follow the difficulty and the behavior of the Bitcoin mining process, where a block is mined
on average every 10 min. This multi-level approach permits to model the fine details when it is necessary without affecting the
simulator scalability.

The design of LUNES-Blockchain has been structured in phases: (i) modeling and simulation of a generic blockchain; (ii) modeling
of the specific aspects of the Bitcoin blockchain; (iii) modeling of some specific attacks to the blockchain (i.e. ‘‘51% attack’’, ‘‘denial
of service’’ and ‘‘selfish mining’’). This multi-phase approach, permits to easily add the missing functionalities (e.g. another type of
attack) or to add the support for another blockchains.

According to the Bitcoin policy, the Bitcoin simulation model included in LUNES-Blockchain (i.e. phase ii), propagates the new
blocks using a broadcast dissemination mechanism [33]. Despite that, LUNES-Blockchain allows the use of different dissemination
protocols as well. This enables to evaluate the impact of these protocols on the blockchain performance and their effects on the
blockchain security. For example, when evaluating the denial of service attack, the different dissemination protocols provided by
LUNES led to different spreading of messages on the P2P network. This permits the use of the LUNES-Blockchain virtual environment
to investigate the resilience of the dissemination algorithms, as well as of consensus protocols, against a certain number of nodes that
do not relay the received messages. LUNES-blockchain is a high level simulator, which aims to reproduce only the relevant aspects
for our purposes, thus lowering the complexity and enhancing the ease of management. For example, Proof-of-Work is replaced by
the probability for a node to mine a block in a certain time interval and the blocks in the simulations are not structured with all
the effective components, because reproducing an actual exchange of transactions would be meaningless for our results and would
only bring a significant time overhead in the execution. In accordance to this principle, in the simulations of the Sybil attack the
behavior of the blockchain is not reproduced, since this attack is not specific of the crypto-systems, but it can be applicable to all the
peer-to-peer systems based on the relays of messages. Finally, the software is thought to allow the users to easily modify execution
parameters such as the employed gossip protocol, the overall number of time-steps, the percentage of nodes acting as miners and
the difficulty for a node to mine a block. Regarding the latter, in our default configuration a block is mined on average every two
mining time-steps, meaning that each time-step represents a time slot of about 5 min.

LUNES-Blockchain is available for peer-review and it will be included in the forthcoming release of LUNES that will be available
in source code format on the research group website [31].

4. Evaluation of security attacks

In this section, we report the results obtained using LUNES-Blockchain to study some well-known security attacks on the
simulated Bitcoin blockchain. In particular, regarding to the 51% attack, we study the relationship between the hash-rate of the
attacker and his/her ability to control the flow of the generation of blocks, which could lead to a misbehavior like the double
spending [34]. About selfish mining, we evaluate the feasibility of the attack and the actual benefits for the attacker of such a
strategy. Finally, for which concerns the Sybil attack, we analyze the role of the dissemination protocol used in the underlying
peer-to-peer network (i.e. gossip protocol) and the topology of the network in resisting to the attempt to isolate specific nodes from
the system.
7



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 2. The 𝑋-axis indicates the percentage of cryptographic power owned by the attacker while the 𝑌 -axis indicates the number of blocks mined by the attacker.

4.1. 51% attack

51% attacks occur when a node, or a group of colluded nodes, owns a significant part (if not the majority) of the hashing power
of the blockchain network, thus undermining the decentralized nature of the system. Attackers can exploit their computational
power to mine a high amount of blocks in order to carry out fraudulent behavior, such as double spending. It is important to notice
that, in order to have a majority of the hash-rate and be sure to have enough power to control the evolution of the blockchain, the
attacker actually needs a hash-rate strictly higher than 50% (i.e. 50%+ 1). However, for the sake of a simpler name, people usually
refer to this situation as ‘‘51%". Thus, we adopt the same terminology.

Three different criteria have been used to evaluate how much the cryptographic power, owned by the attacker, can influence its
ability to control the flow of blocks’ generation. The metrics used are:

• Number of blocks actually mined by the attacker and then inserted in the main chain;
• Percentage of blocks in the main chain mined by the attacker;
• Percentage of blocks mined by the attacker which ends up in the main chain.

The LUNES-Blockchain virtual environment has been configured to simulate a random graph composed of 500 nodes and 2000
undirected edges. In this configuration of the simulator, 99 tests have been made, each one with an increasing percentage of the
attacker’s hash-rate (from 1% to 99%). For each of the 99 tests several runs have been executed and the average result have been
calculated and reported. Every setup has been evaluated twice, in order to check if the presence of the pools of miners (i.e. miners
who group together sharing their cryptographic power to have a better chance to mine a block) can influence the attack outcomes.
In the first configuration, we simulated the presence of 9 nodes, representing the biggest known Bitcoin pools and constituting
all together the 80.4% of the hash-rate of the network (attacker excluded). In the second configuration, pools are not considered,
meaning that there are no nodes with a hash-rate significantly higher than the others.

The results show that, unsurprisingly, the higher the hash-rate of the attacker the higher the number of blocks mined by the
attacker, since the ability of mining a block for a node is proportional to its computational power. The curve in Fig. 2 has an almost
linear behavior. It is worth noticing that, on this aspect, the presence of mining pools does not affect the behavior of the attack.

Fig. 3 shows a relevant difference between the expected and the observed behavior of the attacker (i.e. it was expected for
a node owning ℎ% of the hash-rate to validate approximately ℎ% of the blocks in the main chain). With the attacker having a
hash-rate greater than 25%, the percentage of the blocks mined by the malicious nodes is always greater than what is expected,
with a discrepancy around 10% for certain values. The motivation of such a behavior is that when a fork occurs, the nodes are
encouraged to extend the part of the forked chain that contains their own validated blocks. LUNES-Blockchain implements such a
strategy. Fig. 4 shows that the percentage of the blocks mined by the attacker among all the blocks (and not just the ones that end
up in the main chain) follows the expected behavior. This confirms that the discrepancy noted in Fig. 3 occurs just because of the
choice of which chain to extend. Furthermore, from Fig. 3 one can deduce the probability to perform double spending, since in
order to accomplish such fraudulent behavior the attacker needs to mine the next block that is going to appear in the main chain.
Our results agree with studies like [7], stating that for attackers with medium-low hash-rate it is difficult (but not impossible) to
succeed in double spending, while for attackers with a high hash-rate the success of the attack is much more probable.

Fig. 5 shows the percentage of the blocks mined by the attacker that actually end up in the main chain. The observed curve is
more irregular if compared to the results presented above. However, the trend that, the higher the attacker’s hash-rate the higher the
8

percentage of blocks ending up in the main chain, is still evident. This happens for two main reasons: (i) with a growing hash-rate



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 3. The 𝑋-axis indicates the percentage of the cryptographic power owned by the attacker while the 𝑌 -axis indicates the percentage of blocks in the main
chain mined by the attacker. The blue line indicates the expected behavior while the orange curve reports the observed behavior.

Fig. 4. The 𝑋-axis indicates the percentage of the cryptographic power owned by the attacker while the 𝑌 -axis indicates the percentage of the total blocks
mined by the attacker. The blue line indicates the expected behavior while the orange curve reports the observed behavior.

owned by the attacker, there are less blocks that are mined by other nodes; (ii) in case of forks, the malicious user will continue to
extend the chain where there is a larger amount of blocks mined by him.

It is relevant to note that the results reported in this section show that the presence of mining pools does not significantly affect
the outcome of 51% attacks.

4.2. Selfish mining attack

Selfish mining is an attack in which a malicious node does not spread immediately to the network the last block that it has
mined. In fact, it tries to mine further blocks with the aim to gain an advantage of at least two unities with respect to the public
ledger. In case of success, the computational effort of the other nodes becomes useless. This happens because, in the case of forks,
the nodes agree to consider as valid and extend the longest chain. Thus, if the malicious node is able to locally mine a sequence of
blocks longer than the main chain of the public blockchain, then the computational effort of the other miners will be wasted until
when the attacker reveals its blocks. Using the LUNES-Blockchain virtual environment, we have tested how the blockchain behaves
when an attacker has an advantage of 2 or 3 units before spreading its blocks.

Similarly to the 51% attack, the selfish mining attack was investigated in the presence of a random graph with 500 nodes and
2000 edges. Also in this case, we varied the attacker hash-rate in order to better figure out the outcomes of the attack in different
conditions.
9



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 5. The 𝑋-axis indicates the percentage of cryptographic power owned by the attacker while the 𝑌 -axis indicates the percentage of blocks mined by the
attacker that actually ended up in the main chain.

Fig. 6. Selfish Mining Attack executed on a simulated network with random graph topology, 500 nodes and 2000 edges.

Fig. 6 shows that, as expected, increasing the hash-rate owned by the attacker leads to a greater number of finalized attacks. It
is worth noticing that our tests demonstrate that selfish mining is not always convenient for the attacker. In fact, if an attacker that
owns 50% or less of the total hash-rate applies a selfish mining strategy, then the attacker is able to spread in the public main chain
fewer blocks than when he/she implements a normal behavior (i.e. not malicious). Conversely, when the attacker owns a very high
hash-rate (i.e. more than a half of the overall computational power) then this attack strategy can be convenient. Fig. 7 reports the
measured efficiency of the selfish mining strategy.

4.3. Sybil attack

A Sybil Attack is a specific type of denial of service in which a malicious user (or a group of colluded users) tries to gain
a disproportionate influence in the network by creating a large number of fake identities directly controlled by him/her. More
specifically, in this case the goal of the attacker is to isolate some specific nodes from the system, impeding them to spread their
transactions to the network. Thus, when a Sybil node (i.e. a node controlled by the attacker) receives a message created by the
victim, it does not forward such a message to its neighbors. On the other hand, Sybil nodes behave according to the dissemination
protocol for all the other messages received.

In the tests described in this section, we report the outcomes obtained from the LUNES-Blockchain virtual environment when
the attack is executed on random graphs composed of 10 000 nodes. In each simulation run, we collected the percentage of potential
10



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 7. Number of attacker’s blocks that ended up in the main chain. This number indicates the advantage (in terms of blocks) that the attacker wants to
achieve before spreading to the world the blocks mined locally (and not broadcasted to the whole network yet).

receivers (i.e. the nodes of the system except the attackers and the creator of the transaction) that are actually able to receive the
newly generated message that has been delivered to the network. As described above, the goal of the attackers is to limit the diffusion
of messages (i.e. containing the new transactions) up to the point to exclude some nodes from the updates. In order to obtain results
that are not influenced by the position of the nodes (whether if involved in the creation of the message or in the attack) within
the network, the tests were repeated several times, choosing each time a different node as a message originator and then selecting
the malicious nodes randomly. In these experiments, unlike other analyzed attacks, the computational power owned by the nodes
is irrelevant for the purpose of the simulation, thus no hash-rate is assigned to the nodes in order to lower the complexity of the
software. The employed dissemination protocol and the percentage of malicious nodes in the network are the only variable elements
considered in this analysis.

We have firstly investigated a setup in which each network generated for modeling the message dissemination is composed of
an average of 8 edges per node [35]. The aim of this evaluation is to show which dissemination protocols are able to ensure a
greater level of resilience against a varying percentage of malicious nodes (i.e. nodes that do not relay the received message, trying
to isolate the victim user from the system).

Fig. 8 shows the results obtained by Dandelion (in two different configurations of the stem phase) and Dandelion+- (that is a
variant of Dandelion++ described in Section 2.1). Figs. 9 and 10, report the results obtained using the Probabilistic Broadcast and the
Fixed Probability dissemination protocols. Also in this case, different setups for the dissemination protocols have been investigated
(i.e. dissemination probabilities). The outcomes show that Dandelion is extremely vulnerable to Sybil attacks if compared to the
other algorithms. This situation can be significantly improved by switching to the Dandelion+- dissemination protocol. In this way,
it is possible to have both better guarantees for the anonymity of the blockchain users and a good resilience against Sybil attacks.
The Fixed Probability and the Probabilistic Broadcast protocols show similar results, but it is worth noticing that Fixed Probability
constantly behaves slightly better.

Figs. 11–13 report on the results obtained when doubling the number of edges in the network. As shown in the figures, in this
case the attack is much more difficult to carry out, thus meaning that the average degree of the nodes is a key factor for withstanding
the Sybil attack.

Finally, we used LUNES-Blockchain to study the effect of the network topology on the resilience to the Sybil attacks. More
specifically, we repeated all the previously described tests but using small-world graphs instead of random graphs. The number of
nodes and edges has been maintained equivalent. The results are not reported in this paper for conciseness but show that in this
specific case the network topology has no relevant effects, in fact the obtained results are almost identical.

5. Performance evaluation of LUNES-Blockchain

In this section, we analyze the runtime performance of the LUNES-Blockchain virtual environment. More specifically, we
investigate how much the duration of the execution is dependent on the graph size and on the level of parallelization. We report
this kind of analysis since we think that virtual environments should not only be able to provide correct and precise results but
also to operate, in some specific cases, so fast that they can be used to operate real-world systems. For example, in support of
real-time what-if analysis. All the tests reported in this section were executed on a PC equipped with an Intel Core i5 processor (8th
generation) with 8 GBs of RAM running GNU/Linux Fedora 33 (kernel 5.8.17-300.fc33.x86_64).

First of all, we have measured the amount of time required for completing the execution of the 51% tests on a network with 500
nodes and 2000 edges. The sequential execution (i.e. LUNES-Blockchain running on a single CPU core) required on average 19 min
11



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 8. Coverage (Percentage of honest nodes reached) — Dissemination: Dandelion, Overlay Topology: Random Graph with 40 000 edges.

Fig. 9. Coverage (Percentage of honest nodes reached) — Dissemination: Probabilistic Broadcast, Overlay Topology: Random Graph with 40 000 edges.

Fig. 10. Coverage (Percentage of honest nodes reached) — Dissemination: Fixed Probability, Overlay Topology: Random Graph with 40 000 edges.
12



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
Fig. 11. Coverage (Percentage of honest nodes reached) — Dissemination: Dandelion, Overlay Topology: Random Graph with 80 000 edges.

Fig. 12. Coverage (Percentage of honest nodes reached) — Dissemination: Probabilistic Broadcast, Overlay Topology: Random Graph with 80 000 edges.

Fig. 13. Coverage (Percentage of honest nodes reached) — Dissemination: Fixed Probability, Overlay Topology: Random Graph with 80 000 edges.
13



Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.

n
o
d
d

a
c
F
o

a
t

a

6

a
t
p
d
p
a
o
p
t
f
g
a
l

R

Table 1
Execution time of the dissemination protocol (i.e. LUNES) when varying on the number of LPs.
Number of edges 1 LP 2 LP 3 LP 4 LP 5 LP 6 LP

500 nodes, 1500 edges 30 s 29 s 28 s 26 s 25 s 22 s
500 nodes, 2000 edges 41 s 41 s 39 s 35 s 32 s 30 s
500 nodes, 2500 edges 53 s 51 s 47 s 45 s 41 s 39 s
1000 nodes, 4000 edges 331 s 209 s 184 s 146 s 138 s 126 s

and 30 s. As expected, by doubling the number of edges the simulation required more than double the time, precisely 40m40s,
while it required 46m09s to run with 1000 nodes and 4000 edges. When processing the data, we noticed slight variations among
different executions, in the range of one minute, that are due to the random behavior of the gossip protocols implemented for the
dissemination phase.

Analogously, selfish mining tests required, on average, 14m30s on a network with 500 nodes and 2000 edges, 33m17s on a
etwork with double the edges and 36m21s on a graph with 1000 nodes and 4000 edges. It is interesting to note that the number
f links affects the execution times more than the number of nodes. This can be easily explained by analyzing the behavior of the
issemination protocols since every increase in the number of edges has a huge impact on the number of messages that need to be
isseminated in the network. This aspect has been already investigated in [9].

As concerns the lower-level of the simulation (up to the implementation of the dissemination protocols), adopting a parallel
pproach (i.e. multiple execution units are used for running the simulation) can speed up the execution of the LUNES-Blockchain
omponent that implements this part of the simulation model (i.e. LUNES). Table 1 reports the execution times, obtained using the
ixed Probability algorithm over a 500 nodes graph with a varying number of edges of the network and using different configurations
f LPs (i.e. CPU cores used concurrently).

The data reported in the table suggest that even if several LPs are needed to achieve a significant speedup, it is possible to get
performance gain by using parallel execution. For example, with 5 LPs it is possible to achieve a 20% reduction of the execution

ime of this part of the simulator.
We think that future systems, that will be based on larger networks and even more intensive communication patterns, will be

ble to further benefit of simulations following a PADS approach.

. Conclusions

In this paper, we have introduced a virtual environment built on top of an agent-based simulator called LUNES-Blockchain, which
llows us to simulate the blockchain behavior even in the presence of attacks. The virtual environment has been then used to verify
he outcomes of the attacks in presence of different blockchain setups. Selfish mining and 51% attack simulations showed that, as
redictable, the feasibility of the attacks is directly proportional to the hash-rate owned by the malicious node. However, it was
emonstrated that selfish mining is not an efficient strategy for the attacker if this one owns less than a half of the overall computing
ower. As concerns the 51% attack, the most interesting consideration is that when the hash-rate ℎ% of the attacker is ℎ > 30%, the
ttacker is constantly able to mine a greater percentage of blocks, with respect to the percentage of computational power. On the
ther hand, denial of service attacks have a considerably greater success in the least connected networks, because there is a greater
robability that a node is connected to only malicious nodes. Finally, the simulation results showed that the gossip protocols used
o spread information also have an impact on the resilience level, in particular an enhanced version of Dandelion that implements a
ail-safe mechanism (in this paper referred as Dandelion+-) is able to fix the issues detected in the original version of Dandelion. In
eneral, LUNES-Blockchain demonstrated that virtual environments based on simulation can be used to study some relevant security
spects of complex systems such as blockchains. Moreover, when scalability is an issue, a parallel/distributed approach can give a
imited but still relevant performance boost with respect to traditional methodologies based on sequential simulation.

eferences

[1] G. D’Angelo, S. Ferretti, M. Marzolla, A blockchain-based flight data recorder for cloud accountability, in: Proceedings of the 1st Workshop on
Cryptocurrencies and Blockchains for Distributed Systems, CryBlock’18, Association for Computing Machinery, New York, NY, USA, ISBN: 9781450358385,
2018, pp. 93–98, http://dx.doi.org/10.1145/3211933.3211950.

[2] M. Zichichi, M. Contu, S. Ferretti, G. D’Angelo, LikeStarter: a smart-contract based social DAO for crowdfunding, in: IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2019, pp. 313–318, http://dx.doi.org/10.1109/INFCOMW.2019.8845133.

[3] Y. Xiao, N. Zhang, W. Lou, Y. Hou, A survey of distributed consensus protocols for blockchain networks, IEEE Commun. Surv. Tutor. 22 (2) (2020)
1432–1465, http://dx.doi.org/10.1109/COMST.2020.2969706.

[4] P. Maymounkov, D. Mazières, Kademlia: A peer-to-peer information system based on the XOR metric, in: P. Druschel, F. Kaashoek, A. Rowstron (Eds.),
Peer-To-Peer Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-540-45748-0, 2002, pp. 53–65.

[5] I. Eyal, E.G. Sirer, Majority is not enough: Bitcoin mining is vulnerable, Commun. ACM (ISSN: 0001-0782) 61 (7) (2018) 95–102.
[6] C. Grunspan, R. Pérez-Marco, On profitability of selfish mining, 2018, arXiv preprint arXiv:1805.08281.
[7] S. Sayeed, H. Marco-Gisbert, Assessing blockchain consensus and security mechanisms against the 51% attack, Appl. Sci. 9 (9) (2019) 1788.
[8] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009, http://bitcoin.org/bitcoin.pdf.
[9] G. D’Angelo, S. Ferretti, Highly intensive data dissemination in complex networks, J. Parallel Distrib. Comput. (ISSN: 0743-7315) 99 (2017) 28–50,

http://dx.doi.org/10.1016/j.jpdc.2016.08.004, URL https://www.sciencedirect.com/science/article/pii/S0743731516301058.
14

http://dx.doi.org/10.1145/3211933.3211950
http://dx.doi.org/10.1109/INFCOMW.2019.8845133
http://dx.doi.org/10.1109/COMST.2020.2969706
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb4
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb4
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb4
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb5
http://arxiv.org/abs/1805.08281
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb7
http://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1016/j.jpdc.2016.08.004
https://www.sciencedirect.com/science/article/pii/S0743731516301058


Simulation Modelling Practice and Theory 114 (2022) 102413L. Serena et al.
[10] S. Ferretti, Gossiping for resource discovering: An analysis based on complex network theory, Future Gener. Comput. Syst. (ISSN: 0167-739X) 29 (6)
(2013) 1631–1644, http://dx.doi.org/10.1016/j.future.2012.06.002, URL https://www.sciencedirect.com/science/article/pii/S0167739X12001367.

[11] G. Fanti, S.B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava, A. Miller, P. Viswanath, Dandelion++: Lightweight cryptocurrency networking with
formal anonymity guarantees, Proc. ACM Meas. Anal. Comput. Syst. 2 (2) (2018) http://dx.doi.org/10.1145/3224424.

[12] M. Castro, B. Liskov, Practical Byzantine fault tolerance, in: Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI
’99, USENIX Association, Berkeley, CA, USA, ISBN: 1-880446-39-1, 1999, pp. 173–186.

[13] R. Yasaweerasinghelage, M. Staples, I. Weber, Predicting latency of blockchain-based systems using architectural modelling and simulation, in: 2017 IEEE
International Conference on Software Architecture (ICSA), 2017, pp. 253–256, http://dx.doi.org/10.1109/ICSA.2017.22.

[14] B. Wang, S. Chen, L. Yao, B. Liu, X. Xu, L. Zhu, A simulation approach for studying behavior and quality of blockchain networks, in: S. Chen, H. Wang,
L.-J. Zhang (Eds.), Blockchain – ICBC 2018, Springer International Publishing, Cham, ISBN: 978-3-319-94478-4, 2018, pp. 18–31.

[15] R. Memon, J. Li, J. Ahmed, A. Khan, M. Nazir, M. Mangrio, Modeling of blockchain based systems using queuing theory simulation, in: 2018
15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2018, pp. 107–111, http:
//dx.doi.org/10.1109/ICCWAMTIP.2018.8632560.

[16] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, K. Shudo, SimBlock: A blockchain network simulator, in: Proc. of the 2nd Workshop on Cryptocurrencies and
Blockchains for Distributed Systems, CryBlock’19, IEEE, 2019.

[17] L. Stoykov, K. Zhang, H.-A. Jacobsen, VIBES: Fast blockchain simulations for large-scale peer-to-peer networks: Demo, in: Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Posters and Demos, Middleware ’17, ACM, New York, NY, USA, ISBN: 978-1-4503-5201-7, 2017, pp. 19–20.

[18] M. Alharby, A. van Moorsel, BlockSim: A simulation framework for blockchain systems, SIGMETRICS Perform. Eval. Rev. (ISSN: 0163-5999) 46 (3) (2019)
135–138.

[19] A. Miller, R. Jansen, Shadow-bitcoin: Scalable simulation via direct execution of multi-threaded applications, in: 8th Workshop on Cyber Security
Experimentation and Test (CSET 15), USENIX Association, Washington, D.C., 2015.

[20] B. Wang, Q. Wang, S. Chen, Y. Xiang, Security analysis on tangle-based blockchain through simulation, in: J.K. Liu, H. Cui (Eds.), Information Security
and Privacy, Springer International Publishing, Cham, ISBN: 978-3-030-55304-3, 2020, pp. 653–663.

[21] T. Chitra, M. Quaintance, S. Haber, W. Martino, Agent-Based Simulations of Blockchain protocols illustrated via Kadena’s Chainweb, in: 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), 2019, pp. 386–395, http://dx.doi.org/10.1109/EuroSPW.2019.00049.

[22] A. Gervais, G.O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, S. Capkun, On the security and performance of proof of work blockchains, in: Proceedings
of the 2016 ACM SIGSAC conference on computer and communications security, CCS ’16, ACM, New York, NY, USA, ISBN: 978-1-4503-4139-4, 2016, pp.
3–16.

[23] L. Serena, M. Zichichi, S. Ferretti, G. D’Angelo, Simulation of dissemination strategies on temporal networks, in: Proceedings of the 2021 Annual Modeling
and Simulation Conference (ANNSIM 2021), 2021.

[24] R.S. Pienta, R.M. Fujimoto, On the parallel simulation of scale-free networks, in: Proceedings of the 1st ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM PADS ’13, Association for Computing Machinery, New York, NY, USA, ISBN: 9781450319201, 2013, pp. 179–188,
http://dx.doi.org/10.1145/2486092.2486115.

[25] G. D’Angelo, S. Ferretti, Simulation of scale-free networks, ICST, 2010, http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672.
[26] V.T. Nguyen, R. Fujimoto, Link partitioning in parallel simulation of scale-free networks, in: Proceedings of the 20th International Symposium on Distributed

Simulation and Real-Time Applications, DS-RT ’16, IEEE Press, ISBN: 9781509035045, 2016, pp. 77–84, http://dx.doi.org/10.1109/DS-RT.2016.17.
[27] A. Pokhrel, V. Katta, R. Colomo-Palacios, Digital twin for cybersecurity incident prediction: A multivocal literature review, in: Proceedings of the

IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW’20, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450379632, 2020, pp. 671–678, http://dx.doi.org/10.1145/3387940.3392199.

[28] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario, J. Garcia-Haro, Simulation scalability issues in wireless sensor networks, IEEE Commun.
Mag. 44 (7) (2006) 64–73, http://dx.doi.org/10.1109/MCOM.2006.1668384.

[29] G. D’Angelo, The simulation model partitioning problem: An adaptive solution based on self-clustering, Simul. Model. Pract. Theory (ISSN: 1569-190X)
70 (2017) 1–20, http://dx.doi.org/10.1016/j.simpat.2016.10.001, URL https://www.sciencedirect.com/science/article/pii/S1569190X16302350.

[30] R. Fujimoto, Parallel and Distributed Simulation Systems, Wiley & Sons, 2000.
[31] G. D’Angelo, S. Ferretti, Parallel And Distributed Simulation (PADS) Research Group, 2020, http://pads.cs.unibo.it.
[32] IGraph library, Network analysis software, 2020, https://igraph.org/.
[33] C. Decker, R. Wattenhofer, Information propagation in the bitcoin network, in: IEEE P2P 2013 Proceedings, 2013, pp. 1–10, http://dx.doi.org/10.1109/

P2P.2013.6688704.
[34] M. Rosenfeld, Analysis of hashrate-based double spending, 2014, arXiv preprint arXiv:1402.2009.
[35] E. Rosa, G. D’Angelo, S. Ferretti, Agent-based simulation of blockchains, in: G. Tan, A. Lehmann, Y.M. Teo, W. Cai (Eds.), Methods and Applications for

Modeling and Simulation of Complex Systems, Springer Singapore, Singapore, ISBN: 978-981-15-1078-6, 2019, pp. 115–126.
15

http://dx.doi.org/10.1016/j.future.2012.06.002
https://www.sciencedirect.com/science/article/pii/S0167739X12001367
http://dx.doi.org/10.1145/3224424
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb12
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb12
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb12
http://dx.doi.org/10.1109/ICSA.2017.22
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb14
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb14
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb14
http://dx.doi.org/10.1109/ICCWAMTIP.2018.8632560
http://dx.doi.org/10.1109/ICCWAMTIP.2018.8632560
http://dx.doi.org/10.1109/ICCWAMTIP.2018.8632560
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb16
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb16
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb16
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb17
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb17
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb17
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb18
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb18
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb18
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb19
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb19
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb19
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb20
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb20
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb20
http://dx.doi.org/10.1109/EuroSPW.2019.00049
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb22
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb22
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb22
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb22
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb22
http://dx.doi.org/10.1145/2486092.2486115
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.1109/DS-RT.2016.17
http://dx.doi.org/10.1145/3387940.3392199
http://dx.doi.org/10.1109/MCOM.2006.1668384
http://dx.doi.org/10.1016/j.simpat.2016.10.001
https://www.sciencedirect.com/science/article/pii/S1569190X16302350
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb30
http://pads.cs.unibo.it
https://igraph.org/
http://dx.doi.org/10.1109/P2P.2013.6688704
http://dx.doi.org/10.1109/P2P.2013.6688704
http://dx.doi.org/10.1109/P2P.2013.6688704
http://arxiv.org/abs/1402.2009
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb35
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb35
http://refhub.elsevier.com/S1569-190X(21)00113-1/sb35

	Security analysis of distributed ledgers and blockchains through agent-based simulation
	Introduction
	Background and related work
	The peer-to-peer overlay and the distributed ledger
	Consensus scheme
	Simulation of blockchains
	Security analysis through virtual environments

	Simulation of the Bitcoin network
	ARTIS/GAIA
	LUNES
	LUNES-Blockchain

	Evaluation of security attacks
	51% attack
	Selfish mining attack
	Sybil attack

	Performance evaluation of LUNES-Blockchain
	Conclusions
	References


