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Abstract: In this research, we present a new approach to define the distribution of block volumes
during rockfall simulations. Unmanned aerial vehicles (UAVs) are utilized to generate high-accuracy
3D models of the inaccessible SW flank of the Mount Rava (Italy), to provide improved definition of
data gathered from conventional geomechanical surveys and to also denote important changes in the
fracture intensity. These changes are likely related to the variation of the bedding thickness and to the
presence of fracture corridors in fault damage zones in some areas of the slope. The dataset obtained
integrating UAV and conventional surveys is then utilized to create and validate two accurate 3D
discrete fracture network models, representative of high and low fracture intensity areas, respectively.
From these, the ranges of block volumes characterizing the in situ rock mass are extracted, providing
important input for rockfall simulations. Initially, rockfall simulations were performed assuming a
uniform block volume variation for each release cell. However, subsequent simulations used a more
realistic nonuniform distribution of block volumes, based on the relative block volume frequency
extracted from discrete fracture network (DFN) models. The results of the simulations were validated
against recent rockfall events and show that it is possible to integrate into rockfall simulations a more
realistic relative frequency distribution of block volumes using the results of DFN analyses.

Keywords: unmanned aerial vehicle data; rockfall simulation; discrete fracture network models;
nonuniform distribution of block volumes

1. Introduction

Rockfalls are a major hazard to persons and property, especially in proximity of infrastructure
such as roads, railways and housing. In this research, we analyzed the area of the Scanno Lake, at
the foot of the Mount Rava. The area is characterized by deposits of paleolandslide and more recent
landslide/rockfall events. During such recent rockfall events, rock blocks of volume varying between
ca. 0.01 to 500 m3 detached from the SW flank of the Mount Rava and travelled up until the base
of the slope as well as in proximity of infrastructures such the Frattura road, the Frattura Vecchia
village and the Frattura graveyard (Figure 1). During this study, this section of the mountain was
thoroughly investigated through conventional and remote sensing surveys, with the final objective
to define an innovative approach based on the integration of structural geomechanical and rockfall
trajectory analyses, and to provide improved understanding of the rockfall hazard posed by the
geological setting.
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Figure 1. SW flank of the Mount Rava with the Scanno landslide and landslide scar (in red) 
highlighted. Location of the study area is shown in the inset. 

The steps involved in the analysis of rockfalls usually include the survey and characterization 
of rock outcrops, kinematic assessment and/or engineering classification of rock masses and, where 
necessary, stability and rockfall runout simulations.  

The survey and characterization of rock outcrops allow the acquisition of information about 
geometrical and physical characteristics of rock masses, such as rock strength, slope and 
discontinuity attitude, discontinuity spacing, persistence, roughness etc. [1]. Such parameters are 
usually collected through conventional engineering geological (geomechanical) surveys that, in the 
case of inaccessible or high steep slopes, are sometimes combined with more innovative remote 
sensing techniques. The advent of these new remote sensing technologies for the survey of 
geological features has led to step-change increases in the quality of data available for 
slope/geomechanical studies. Laser scanning (LS) and digital photogrammetry (DP) have been the 
most widely used remote sensing techniques for landslide studies and characterization [2–6]. Lato et 
al. [2] showed how to improve the use of LS data for the automated structural evaluation of 
discontinuities in rock slopes, while Francioni et al. [4] illustrated the use of DP for the 
characterization and stability analysis with limit equilibrium methods of a coastal area in Cornwall 
(UK). Bonneau and Hutchinson [5] showed the use of terrestrial laser scanning for the 
characterization of a cliff–talus system in the Thompson River Valley (British Columbia, Canada) 
and Kromer et al. [6] developed an automated fixed-location time lapse photogrammetric rock slope 
monitoring system. A critical overview of some of the limitations of terrestrial DP and LS when 
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The steps involved in the analysis of rockfalls usually include the survey and characterization
of rock outcrops, kinematic assessment and/or engineering classification of rock masses and, where
necessary, stability and rockfall runout simulations.

The survey and characterization of rock outcrops allow the acquisition of information about
geometrical and physical characteristics of rock masses, such as rock strength, slope and discontinuity
attitude, discontinuity spacing, persistence, roughness etc. [1]. Such parameters are usually collected
through conventional engineering geological (geomechanical) surveys that, in the case of inaccessible
or high steep slopes, are sometimes combined with more innovative remote sensing techniques.
The advent of these new remote sensing technologies for the survey of geological features has led to
step-change increases in the quality of data available for slope/geomechanical studies. Laser scanning
(LS) and digital photogrammetry (DP) have been the most widely used remote sensing techniques
for landslide studies and characterization [2–6]. Lato et al. [2] showed how to improve the use of LS
data for the automated structural evaluation of discontinuities in rock slopes, while Francioni et al. [4]
illustrated the use of DP for the characterization and stability analysis with limit equilibrium methods
of a coastal area in Cornwall (UK). Bonneau and Hutchinson [5] showed the use of terrestrial laser
scanning for the characterization of a cliff–talus system in the Thompson River Valley (British Columbia,
Canada) and Kromer et al. [6] developed an automated fixed-location time lapse photogrammetric
rock slope monitoring system. A critical overview of some of the limitations of terrestrial DP and
LS when dealing with high steep rock slopes was presented by Sturzenegger and Stead [7]. Many of
the limitations discussed by Sturzenegger and Stead [3] have now largely been overcome by the
increasing use of aerial platforms such as Unmanned Aerial Vehicles (UAV). The introduction of such
platforms has dramatically improved the application of these systems [8,9], making DP and LS even
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more attractive for investigation of natural hazards. Rossi et al. [10] showed the applicability of a
multisensor drone for the mapping and monitoring of different types of geohazard and Donati et al. [11]
and Wang et al. [12] illustrate the use of UAV in the analysis of the Hope Slide (Canada) and a cliff rock
face in Fort Munro (Pakistan). Francioni et al. [13] and Stead et al. [14] reviewed the use of remote
sensing techniques for slope stability purposes, providing guidance and on how and when the data
obtained from these techniques can be used as input for stability analyses.

The data gathered during conventional and remote sensing geomechanical surveys allows the
engineering characterization/classification of rock masses, the development of discrete fracture network
(DFN) models and stability analyses. During the analysis of rockfall hazard, engineering rock mass
classification may be integrated with rockfall simulations. These types of analysis compute the
trajectory of potential failing rock blocks and the most suitable characteristics for protection works
(e.g., height, width and the capability to dissipate energy of rock blocks upon impact). Different types
of rockfall simulations exist in relation to the software used and the data available (e.g., [15–19]).
According to Dorren [20], all the rockfall models can be categorized in three main groups: (i) empirical
models, (ii) process-based models and (iii) GIS-based models. Empirical rockfall models (sometimes
denoted as statistical models, [21]) are usually based on relationships between topography and the
length of the runout zone of one or more rockfall events. Several models were developed over the
last few decades using this approach. Tianchi [22] developed a model for a preliminary estimate of
the extent of a threatening rockfall, based on two relationships defined using recorded data from
76 major rockfalls. Toppe [23] and Evans and Hungr [24] suggest the Fahrböschung principle [25]
to predict runout zones of rockfall events. For any given rockfall, this principle can be defined as
the angle between a horizontal plane and a line from the top of a rockfall source scar to the stopping
point. In contrast to empirical models, the process-based models describe or simulate the modes of
motion of falling rocks over slope surfaces [21,26–28]. Finally, GIS-based models can run within a
GIS environment or can be raster-based models for which input data is provided by GIS analysis [20].
GIS-based rockfall models consist of the identification of rockfall source, the determination of fall track
and the calculation of the length of the runout zone [29]. GIS-based models can be based on empirical
rockfall models [24,30] or process-based models [30,31].

In general, the quality of the results achieved from these analyses is directly related to the input
parameters used [32]. In particular, the geometry/volume of the potential failing blocks and coefficient
of restitutions play a key role in the final results [24,33–35]. The coefficient of restitutions can be
interpreted using remote sensing data and field observations, while the geometry or blocks can be
defined using geomechanical data or through the analysis of past failures (when available) [36].

Concerning the use of DFN in geoscience, this was presented by several authors in the last
decade [37–40]. DFN models require high quality input data, and a strong calibration/validation
process to be considered representative of the rock mass. Therefore, the introduction of remote sensing
techniques, which enable a more detailed analysis of fractures, makes the use of these techniques even
more attractive, particularly where access is an issue. DFN models were used in different type of
studies, varying from stability analyses to the study of fluid circulation. However, the combined use of
UAV data and DFN to improve 3D rockfall simulations is not widely documented in the literature.
Lambert et al. [41] showed the use of discrete fracture modeling techniques to accurately depict the fabric
of rock mass and probability of failure. More recently, Ruiz-Carulla and Corominas [42] investigated
the performance of the rockfall fractal fragmentation model developed by Ruiz-Carulla et al. [43].
A review of key issues in rockfall hazard evaluation was presented by Crosta et al. [44].

2. Study Area

Investigations were undertaken in the SW flank of the Monte Rava (Abruzzi Apennines, Italy).
The SW flank of the Monte Rava is characterized by the enormous scar left by the famous Scanno
paleolandslide, which dammed the Tasso River and formed Scanno Lake, one of the most famous
examples of a naturally dammed lake in Italy (Figure 1). The area is located in the Sagittario River
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drainage basin, between the Montagna Grande and Mt. Genzana ridges. It is in one of the highest
average elevation areas in the entire Central Apennines. Radiocarbon dating of soil samples collected
from the paleolandslide debris accumulation suggests an age of c. 12,800 years [45].

The Scanno paleolandslide has been investigated by several scholars over the last few
decades. Nicoletti et al. [46] described the debris accumulation area and deposition mechanisms.
Bianchi-Fasani et al. [45] and Della Seta et al. [47] focused their study on the landslide failure
mechanisms, describing the Scanno landslide as a slow-moving rock avalanche where the bedding
planes represent the sliding surface. More recently, Francioni et al. [48] proposed a new interpretation,
suggesting the landslide scar is controlled by low- and high-angle normal faults associated with the
Difesa–Monte Genzana–Vallone delle Masserie (DMG) fault zone. Their research highlighted how the
high-angle faults (SW dipping, F2–F3) and two joint sets (dipping toward SW and SE) represent the
backscarp surfaces and lateral release surfaces of the Scanno paleolandslide, respectively.

Geologically, the study area is characterized by Jurassic–Paleogene marine limestone, with very
thick beds of calcarenites, and marly limestone with thin clayey marly layers (Mount Genzana,
MG, unit). The middle-lower part of the valley is formed by pelitic–arenaceous siliciclastic rocks
(Neogene foredeep deposits). Quaternary clastic continental deposits (slope breccia deposits, alluvial
fan conglomerate) largely cover the bedrock [49]. On the SW flank of the Monte Rava, within the
Scanno landslide scar, the bedrock is specifically covered by talus slope and cone deposits resulting
from the recent degradation of the landslide crown. Figure 2 shows a simplified geological map of the
study area, after Francioni et al. [48].
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The main DMG fault zone characterizes the area forming the tectonic contact between the MG
unit (limestone and marly limestone in the footwall) with siliciclastic deposits in the hanging wall.
The DMG fault zone consists of several faults forming horst structures of different scale and sigmoidal
geometries [48]. The bedrock shows a general NW–SE trend with irregular attitude related to the
fault zones.

The occurrence of the Scanno landslide deeply modified the geometry of the SW flank of the
Monte Rava, forming a concave and steep scar (with a maximum elevation a.s.l. of 1860 m at the top of
Monte Rava) and a rugged accumulation area. The landslide accumulation area features a gentle slope
in the upper part, with evidence of slump blocks (with back tilted faces) in the lower part along the
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valley bottom and upslope on the opposite valley side [48]. The bottom of the valley is represented by
a flat alluvial area. The area is also characterized by fluvial–alluvial fan deposits (at the bottom of the
valley) and by deposits of more recent landslide/rockfall events.

3. Materials and Methods

In this research, we develop a new approach involving the integration of discrete fracture network
(DFN) simulations to support and improve rockfall analyses. This is based on a statistical analysis
of fractures and derived DFNs to define the ranges of block volumes within a hypothetical/virtual
rock mass. From the conventional geomechanical surveys, it was possible to calculate the orientation,
Fisher constant K (a measure of the degree of discontinuity poles clustering), spacing and persistence
of each discontinuity set. The 3D models obtained from UAV surveys were utilized to improve the
data gathered from conventional surveys and to develop several sampling windows. These were then
analyzed through the recently developed freeware software FracPaq [50], which allowed definition of
the ranges of fracture intensity for each discontinuity set. Through these data, 3D DFN models of the
slope and the range of rock block volumes characterizing the rock mass were established. These ranges
were subsequently used as input parameters in 3D rockfall trajectory simulations through the software
Rockyfor3D (RF3D), a GIS-based model based on the integration of both statistic- and process-based
approaches [51].

Two different types of rockfall analysis were performed, rockfall analysis 1 and 2. During the
rockfall analysis the released rock blocks class had a Gaussian uniform distribution, defined by fixed
presets available in RF3D. Once the results gathered from this analysis were calibrated against a
validation set of end points (arrest locations of rock blocks) mapped from aerial RGB orthophotographs,
a novel method to define the distribution of rock block volumes was developed and tested in rockfall
analysis 2. This analysis was based on the use of a more robust nonuniform block volume distribution
using the relative block volume frequency extracted from DFN models.

3.1. Conventional and DP (UAV-Based) Geomechanical Surveys

Conventional geomechanical surveys were performed at the toe of the Scanno paleolandslide
scar (SW flank of the Mount Rava) to determine the characteristics of the main discontinuity sets.
Due to the difficulties in accessing most of the outcrops in the vicinity of the scar zone, only five
small geomechanical scanlines were carried out (Figure 3A). By flying a UAV, it was possible to
reach previously inaccessible areas and obtain topographical data representative of the entire slope.
Three main areas within the landslide scar area were analyzed (UAV 1, UAV 2 and UAV 3, Figure 3A).
The slopes on the three areas, UAV 1–3, present different orientations that allowed the reduction of
orientation bias during the measurements of discontinuity attitude. Dip and dip direction of the slopes
within these areas are 65◦/249◦ for UAV 1, 60◦/168◦ for UAV 2 and 56◦/194◦ for UAV 3. The drone
used for the surveys was equipped with a camera with the following characteristics: 12.4 megapixel
camera resolution; 2.8 mm focal length; 6.16 mm wide and 4.62 mm high camera sensor size. In order
to achieve a high-resolution 3D model of the outcrops, photographs were taken from an average
distance from the slope of ca. 35 and 50 m in locations with complex geological conditions (very high
fracture intensity areas associated with thin bedded marly limestone or fracture corridors related to
fault damage zones, such as area UAV 1 in Figure 3A) and in less fractured areas with very thick
bedded calcarenites (UAV 2 and 3 in Figure 3A), respectively. The UAV DP survey was undertaken
through multiple vertical photographic strips, flying at an ascending and descending speed of 5.0 km/h.
Figure 3B shows an example flight plan for the area covered by UAV 3. To guarantee a vertical overlap
of ca. 80%, photographs were acquired every 2 seconds when the distance from the slope was ca. 35 m,
and every 4 seconds when the distance was 50 m. The distance between each vertical strip was set to
ca. 5 m to ensure a lateral overlap between strips of ca. 80%.
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Figure 3. Conventional and UAV-based digital photogrammetry (DP) geomechanical surveys.
(A) Conventional geomechanical scanlines (G1–G5, in red) and areas surveyed through UAV (UAV 1–3,
in white). (B) Example of the flight plan for the area UAV 3.

The photographs gathered from UAV surveys were processed using Agisoft Metashape [52] to
create the 3D point cloud models of the outcrops. The freeware software CloudCompare [53] was then
utilized to manage the point cloud data and define the main discontinuity sets in the rock mass and
their respective spacing and persistence. For verification and validation purposes, the remote sensing
rock discontinuity dataset was compared with the data measured in conventional contact scanline
surveys. Other geomechanical parameters, such as joint roughness (JRC), joint compressive strength
(JCS), joint alteration and aperture, were defined during conventional scanline surveys (G1–G5 in
Figure 3) and integrated with the UAV data.

3.2. Sampling Windows and 3D DFN

The UAV-extracted 3D models were also used to create sampling windows in different slope areas.
From these observations, we derived the fracture intensity, expressed as the length of fractures per unit
area (P21) [54]. The discontinuities identified in the sampling windows (Figure 4A) were imported into
the FracPaq software (Figure 4B), where it was possible to calculate P21. As opposed to conventional
methods used for the calculation of P21, which considers the total length of fractures over the total
area of the sampling windows, FracPaq can define multiple P21 values for every sampling window
and calculate an average value and its standard deviation. This was performed by calculating the
total length of discontinuities within 16 test circles (Figure 4C). The use of 16 circles for each sampling
window decreased the uncertainties associated with the fracture intensity computation and observed
variance within each sampling window.
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Figure 4. (A) Sampling windows from UAV 1. (B) Fractures (associated to one joint set) identified in
the test sampling windows. (C) Calculation of P21 (within the 16 red circles).

The P21 values were then used to develop a 3D DFN model using Move software [55]. The DFN
was created using the discontinuity sets recorded during the surveys and, for each set, the Fisher value
(K), the fracture length and aperture were used to establish the fracture network. In the software
Move, the fracture intensity is input as P32 (fracture area per unit volume). Since the P32 is not readily
available and cannot be measured directly from the surface, the DFN analysis within Move must
be carried out using an iterative approach. An initial hypothetical value of P32 is used to develop a
DFN model (Figure 5A). Several cross sections of this model were then exported (Figure 5B shows
an example cross section) and the fracture traces intersecting the test planes were used to calculate
P21, utilizing the same procedure illustrated in Figure 4 for in situ sampling windows (Figure 5C).
The average P21 value was then compared with the value gathered from the sampling windows and
the P32 calibrated when the P21 extracted from the DFN cross sections matched the values measured
from the UAV-extracted sampling windows. Once validated, it was possible to extract the range of
rock block volumes and the relative block volume frequency (i.e., the percentage of blocks with specific
volumes within the rock mass considered) from the DFN model.
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3.3. Rockfall Simulations

In order to capture the complex and unpredictable behavior of a failing mass of rock from a slope,
a number of rockfall trajectory analysis codes were developed throughout the years, and provide an
established method to assess rockfall hazard [16,17,20,56,57]. Fundamental information needed to
generate models that can accurately describe rockfall trajectories is the topographical representation
of the slope, a high-accuracy digital twin, either in the form of a raster DEM or a vertical profile.
In the case of GIS-based methods, digital topography serves the purpose of providing a virtual surface
from which to compute the types of motion (freefall, bounce, roll or drag) of the falling rock blocks.
Broadly speaking, rockfall modeling software treats impact theory in two different ways: the lumped
mass (LM) approach versus the rigid body (RB) approach. The lumped mass approach considers the
mass being concentrated in a single point, whereas the rigid body approach uses a defined geometry
to model the rock block [18,19].

As mentioned above, in this research we adopted the GIS-based code Rockyfor3D. The software
uses a three-dimensional rigid-body impact model (RB) that calculates trajectories of single, individually
falling rocks with discrete geometry (RB). Rockyfor3D can be used for regional-, local- and slope-scale
rockfall simulations [51]. The input parameters that define rock blocks are the release cell location, the
rock density, the shape and volume (with the possibility to set a statistical variation range) and initial
vertical velocity. The local slope surface roughness is represented by a parameter defined as height of a
representative obstacle (MOH), expressed in m. This parameter does not add a local variation of height,
but accounts for the uncertain nature of the bedrock cover and its geometry, as well as its mechanical
properties. Typical MOH values, as suggested by Dorren [51], which are encountered by a falling rock
are represented by three statistical classes, rg70%, rg20%, and rg10%. During each rebound calculation,
the MOH value in a cell is randomly chosen from the three representative values according to their
probabilities of occurrence [51]. Finally, the soil type is defined through a raster map identifying the
type of bedrock exposed. Once the soil-type slope is defined, the normal (Rn) and tangential (Rt)
coefficients of restitution are set for each position within the DEM; these values are responsible for
setting the energy transfer functions (i.e., the inelastic impacts or the energy loss upon every impact).

In this research, the simulations were performed using a 5 × 5 m resolution DEM. The locations
of release points were selected based on the DEM’s slope values. We defined a lower slope
threshold of 55◦ and pixels with a value exceeding that threshold were identified as candidate
release cells. Slope roughness (MOH values) and soil type (Rn) were determined by field inspection and
geomorphological analysis of high-resolution aerial images. The tangential coefficient of restitution (Rt)
is automatically calculated by Rockyfor3D through the composition and size of the material covering
the surface and the radius of the falling block itself [51]. The rock density, shape and volume were
defined by combining field and remote sensed geomechanical data. In particular, the use of DFN
models allowed definition of the possible ranges of block volumes. In Rockyfor3D, the volume of the
blocks to be released has to be defined in each release cell; it can be uniform in all the cells or can vary
within a predefined percentage (±5%, ±10%, and ±50%). This random variation is the same for all
three block dimensions.

Two different rockfall analyses, rockfall analysis 1 and 2, were carried out. During rockfall analysis
1, to verify the reliability of the input parameters, we performed initial calibration tests utilizing a
uniform ranges of block volume representative of DFN 1 (0.008–0.1 m3) and eight uniform ranges
of block volumes representative of DFN 2 (0.6–1.5, 1.6–3, 3.1–7.5, 7.6–20, 21–55, 56–120, 121–260,
261–585 m3). These ranges were decided in relation to the total range of block volume gathered from
the DFN 1 and 2 analyses and the ability to vary a predefined volume of a maximum percentage of
50%. Validation of the rockfall model was obtained iteratively by comparing the rockfall simulation
results with a map representing the distribution of endpoints for recent rockfall events. This map,
shown in Figure 6, was developed in a GIS environment, integrating the analysis of high-resolution
orthophotographs and field inspection. Over 600 blocks with volume over 1 m3 were identified and
digitalized in the map and divided using the same ranges of block volumes utilized for the calibration
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of the rockfall model (Figure 6A). Examples of block identification are represented in Figure 6B–F,
which highlights the shape and volume of blocks interpreted in different areas at the toe of the slope.
In particular, Figure 6B shows the biggest block identified in the study area, with a volume of ca.
1000 m3.
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After achieving a satisfactory result (rockfall analysis 1 showed good agreement with a map of
recent rockfall events), a new method to input nonuniform ranges of block volumes, based on the
block size distribution (relative block volume frequency) gathered from DFN analysis, was developed
and implemented in the simulations in rockfall analysis 2. Once the relative frequency of potential
block volumes was extracted from the DFN, the same distribution was used to define the block sizes in
the release cells. For example, if the DFN analysis shows that 10% of blocks have a volume of 10 m3,
and considering a total of 3000 release cells, 300 of these cells (randomly chosen) will be populated
with 10 m3 blocks. This procedure was carried out through the integrated use of GIS spatial analysis
technique and spreadsheet software.

With this newly proposed approach, it was possible to perform a simulation with a customized
relative frequency distribution of rock sizes and volumes, rather than using a standard Gaussian
distribution (i.e., as used in rockfall analysis 1), hence utilizing a release hazard scenario based on the
statistics extracted from the DFN model.

Considering that the choice of the release cells should be random, different simulations were
carried out to verify possible scenarios. The determination/choice of the best scenario could be
established by comparing the results of the simulation with a map of recent rockfalls (as was done
in this research). When such a map is unavailable, all the scenarios then need to be considered
potentially realistic.

4. Results

4.1. Geomechanical Data and Fracture Analysis

Three main photogrammetric models were derived from the UAV surveys (UAV 1–3). Table 1
shows the details of the UAV surveys and derived point clouds.

Table 1. Data related to the UAV surveys and point clouds.

UAV 1 UAV 2 UAV 3 TOT

Number of images 1394 320 417 2131
Flying altitude 36.1 m 46.5 m 48.4 m -

Ground resolution 1.32 cm/pix 1.75 cm/pix 1.87 cm/pix -
Coverage area 30,400 m2 14,100 m2 20,200 m2 64,700 m2

Camera stations 1305 310 416 2031
Tie points 470,465 66,838 50,459 587,762

Projections 2,027,078 837,491 586,300 3,450,869
Reprojection error 2.22 pix 0.734 pix 0.949 pix -
Dense cloud points 80,389,940 315,345 39,098,143 -

The area imaged using UAV 1 is the location with highest ground resolution (1.32 cm/pix) due
to the geological characteristics and high fracture intensity. To achieve such resolution, the survey
was conducted at 36 m from the slope using 1365 photographs. Images of areas UAV 2 and 3 were
acquired from ca. 46 and 48 m from the slope, resulting in resolutions of 1.7–1.9 cm/pix. Figure 7
shows representative 3D models of areas UAV 1 (Figure 7A), UAV 2 (Figure 7B) and UAV 3 (Figure 7C)
obtained from postprocessing of the UAV photographs.
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model of area UAV 2 (surface 14,100 m2). (C) 3D model of area UAV 3 (surface 20,200 m2). (D) Stereonet
(pole vectors plot, equal angle, lower hemisphere) with discontinuity attitude measurements.

The integration of geomechanical and DP data highlighted two main discontinuity sets, J1 and J2,
NW and NE striking, respectively. Bedding planes, S0, show a variable orientation, with a generalized
NW–SE orientation, and ranging from NE dipping to SW dipping in proximity to the normal faults
outcropping in proximity of area UAV 1. In this area, the rock strata appear dragged towards the SW
by the main SW dipping faults. Figure 7D shows the stereonet, highlighting the main discontinuity sets
and the variability in the bedding plane orientations. The different dip and dip direction of slope faces
on the three UAV areas reduced orientation bias during discontinuity analysis. In particular, the area
UAV 1 (dip and dip direction of slope 65◦/249◦) was particularly suited to the study of set J2 and S0,
while the areas UAV 2 and 3 (dip and dip-direction of slope 60◦/168◦ and 56◦/194◦, respectively) for the
study of J1 and S0. In general, it was found that the orientation of the discontinuity sets was constant
in the different slope areas (with the exception of S0 in proximity of fault zones, as mentioned above).

Due to the geological characteristics of the study area, persistence and intensity of fracture sets
vary within the landslide scar, especially in the proximity of thin bedded layers and/or fault zones.
Due to this, it was decided to create two different DFN models, DFN 1 and DFN 2, representative of
high fracture intensity domains (with high P21 values) and low fracture intensity domains (with low
P21 values), respectively. The fracture intensity variation was evaluated through the analysis of several
sampling windows created within the three investigated areas (UAV 1–3). The discontinuities identified
in these sampling windows (Figures 8A and 9A) were analyzed through FracPaq (Figures 8B and 9B)
in order to calculate the fracture intensity value, P21, of each discontinuity set (P21 was measured using
the procedure illustrated in Section 3 and Figure 4). Fracture intensity values and length (persistence)
of discontinuity sets given in Tables 2–4 were used to develop and constrain the 3D DFN models.
In Table 2, the fracture intensity values are shown in terms of P21 extracted from sampling windows
and DFN. Tables 3 and 4 show the fracture intensity (in terms of P32) and the discontinuity lengths,
extracted from UAV sampling windows and included in the DFN model using mean and standard
deviation or power law distribution (the option chosen was the one that best fit with the sampling
window data). The results of this procedure, in both high and low fracture intensity areas, is illustrated
in Figures 8 and 9, respectively. Figure 8 shows the discontinuities identified in high fracture intensity
areas (Figure 8A), their analysis in FracPaq (Figure 8B) and the section extracted from the final DFN
1 and 2 (Figure 8C). Figure 9 illustrates the discontinuities identified in low fracture intensity areas
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(Figure 9A), their analysis in FracPaq (Figure 9B) and the section extracted from the final DFN models
representing low fracture intensity areas (Figure 9C). It is possible to observe, following the validation
procedure, that the intensity values are similar and the DFN model is representative of the fracture
intensities measured on the slope.

Table 2. Comparison between P21 values and relative standard deviation (in brackets, calculated
excluding minimum and maximum values) obtained from fracture analyses undertaken on the
UAV-extracted sampling windows and DFN.

High Fracture Intensity–DFN 1 Low Fracture Intensity–DFN 2

S0 J1 J2 S0 J1 J2

Average P21-Sampling windows 2.05
(±0.61)

0.98
(±0.31)

3.43
(±0.89)

0.07
(±0.02)

0.33
(±0.12)

0.49
(±0.15)

Average P21-DFN 2.17
(±0.61)

0.94
(±0.26)

3.40
(±0.94)

0.07
(±0.04)

0.3
(±0.0)

0.49
(±0.15)

Table 3. Characteristics of discontinuity sets used to develop DFN 1.

S0 J1 J2

Intensity, m2/m3 P32 6.0 2.0 6.30

Length, m Min 0.5 - 0.3
Max 54.0 - 30.0

Exponent −2.1 - −2.7
Mean - 35.6 -

Std Dev - 4.0 -

Orientation, deg Dip 46 79 83
Dip Dir 41 233 156
Fisher K 70 100 180

Table 4. Characteristics of discontinuity sets used to develop DFN 2.

S0 J1 J2

Intensity, m2/m3 P32 0.22 0.18 0.9

Length, m Min - - 60
Max - - 154

Exponent - - −3.0
Mean 129.0 60 -

Std Dev 13.6 10 -

Orientation, deg Dip 46 79 83
Dip Dir 41 233 156
Fisher K 50 180 200
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Figure 8. (A) Example of sampling windows from high fracture intensity areas. (B) Fractures identified
in sampling windows and used for the calculation of P21. (C) Sections extracted from DFN 1 after
model validation.
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possible to observe from Figure 10A that, in DFN 2, the minimum block volume is 0.6 m3, while the 
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range, with the majority of the block volumes (ca. 70%) below 25 m3. Circa 20% of block volumes are 
between 25 and 100 m3, ~5% are between 100 and 200 m3 and ~2% between 200 and 300 m3. Only 
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Figure 9. (A) Example of sampling windows from low fracture intensity areas. (B) Fractures identified
in sampling windows and used for the calculation of P21. (C) Sections extracted from DFN 2 after
model validation.

Figure 10 shows the results of DFN 2. Figure 10A illustrates a graph of relative block volume
frequency (%). Figure 10B shows the DFN model for the three discontinuity sets J1, J2 and S0, while
Figure 10C shows the range of block volumes represented through the discretization of a 400 × 400 m
rock mass (dimensions similar to the studied slope, colors represent different block sizes). It is possible
to observe from Figure 10A that, in DFN 2, the minimum block volume is 0.6 m3, while the maximum
can reach 1000 m3. However, the relative frequency of block volume can vary within this range, with
the majority of the block volumes (ca. 70%) below 25 m3. Circa 20% of block volumes are between 25
and 100 m3, ~5% are between 100 and 200 m3 and ~2% between 200 and 300 m3. Only 0.6% and 0.3%
of blocks are made up of volumes up to 500 m3 and 1000 m3, respectively.
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Figure 10. DFN 2. (A) Graph of relative block volume frequency (%). (B) DFN model of the three
discontinuity sets J1, J2 and S0. (C) Range of block volumes represented through the discretization of a
400 × 400 m rock mass.

The DFN 1 presents very different results (Figure 11A–C) with more than 99% of block volumes
below 0.1 m3 (Figure 11A), a minimum volume of 0.008 m3 and a maximum volume slightly above
1 m3. This DFN can be considered representative of highly fractured areas associated with the DMG
fault zone.
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4.2. Rockyfor3D Simulation Results

Rockfall simulations provide maps of the spatial distribution of end points of rock block trajectories.
The results of these simulations are usually presented in the form of probability density functions
showing the reach probability, the volume and number of blocks deposited, kinetic energy etc.

Slope roughness and soil type were initially obtained by studying the available geomorphological
map, high-resolution orthophotographs and by field inspections. The MOH values were subsequently
adjusted during the rockfall model calibration in relation to model response and comparison between
rockfall model results, and location of rock blocks associated with recent previous rockfall events (map
of Figure 6). Figure 12 highlights the soil type map obtained after the calibration process. Table 5
reports the MOH values, represented by three statistical classes, rg70, rg20 and rg10, assigned to each
soil type.
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Table 5. Soil types and MOH values.

ID Soil Type Rn Range Rg70 (m) Rg20 (m) Rg10 (m)

0 Lake 0 0 0 0
1 Fine soil material (depth > ~100 cm) 0.21–0.25 0.3 0.5 0.9

3 Scree (Ø < ~10 cm), or medium compact soil with
small rock fragments, or forest road 0.30–0.36 0.25 0.5 0.9

4a Talus slope (Ø > ~10 cm), or compact soil with
large rock fragments 0.34–0.42 0.05 0.05 1

4b Talus slope (Ø > ~10 cm), or compact soil with
large rock fragments 0.34–0.42 0.05 0.1 0.2

4c Talus slope (Ø > ~10 cm), or compact soil with
large rock fragments 0.34–0.42 0.3 0.3 0.3

4d Talus slope (Ø > ~10 cm), or compact soil with
large rock fragments 0.34–0.42 0.25 0.5 0.9

5 Bedrock with thin weathered material or soil cover 0.39–0.47 0 0 0.1
6 Bedrock 0.48–0.58 0 0 0.05

Prior to running the simulations, the locations of release points (cells) were selected by setting a
slope threshold, which was set to 55◦ (all the pixels with a slope value above 55◦ were initially selected
as release cells). After the identification of the potential release cell locations, all the candidate pixel
positions were compared to aerial pictures and erroneous release points, such as vegetated areas, were
discounted. Figure 13A shows the release cells identified using this approach. Rock density was set
to 2500 kg/m3 according to Francioni et al. (2019), while the range of block volumes was defined in
relation to the DFN analysis illustrated in Section 4.1.
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Figure 13B shows the results from the first simulation of rockfall analysis 1, carried out using 
block volumes varying from 0.008 to 0.125 m3 (representative of DFN 1). It is possible to see that the 
areas of block deposition (light green) correspond well with the debris fan and slope deposit areas, 
which are usually made of blocks with volumes lower than 0.1 m3. 

Figure 13. (A) Release cells (in red) used for rockfall simulations. (B) Simulation carried out with DFN
1 derived block volumes variable from 0.008 to 0.1 m3 and showing the number of deposited blocks
(“Nr. Deposited” in the legend).

Figure 13B shows the results from the first simulation of rockfall analysis 1, carried out using
block volumes varying from 0.008 to 0.125 m3 (representative of DFN 1). It is possible to see that the
areas of block deposition (light green) correspond well with the debris fan and slope deposit areas,
which are usually made of blocks with volumes lower than 0.1 m3.

Figures 14A–D and 15A–D show the results of the other eight simulations of rockfall analysis 1,
undertaken using the range of volumes derived from the low fracture intensity DFN 2 (from 0.6 to
500 m3). The resultant locations of deposited blocks are highlighted in light green. These can be
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compared with the locations of rock blocks representing recent rockfall events, shown by red dots and
grouped using the same range of block volume used during each simulation.

The simulations carried out with block volumes ranging from 0.6 to 1.5 m3 (Figure 14A) and 1.6
to 3 m3 (Figure 14B) show that the blocks tend to deposit in the area between the landslide scar and
the Frattura Road, which links the old and historical Frattura Vecchia village to the Frattura village.
When increasing the block volumes up to 7.5 m3 (Figure 14C) and 20 m3 (Figure 14D), some of the
simulations suggest there is a possibility that the blocks can reach and cross the road, sometimes
reaching as far as Frattura graveyard. The majority of deposited blocks, however, are still contained
within the area between the slope and the Frattura Road. This changes when the volume of blocks is
further increased. This can be seen in the simulations presented in Figure 15A–D, where the blocks
with volumes higher than 20 m3 often overcome the Frattura road. With volumes greater than 55 m3,
most of the simulated rockfalls extend beyond the road and reach the Frattura graveyard.
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Figure 14. Results of rockfall simulations showing the number of deposited blocks (“Nr. Deposited” in
the legend) when using ranges of block volumes from DFN 2: 0.6–1.5 m3 (A), 1.6–3 m3 (B), 3.1–7.5 m3 (C)
and 20 m3 (D). Red dots represent recent rockfall events with the same volume of simulated rockfalls.
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Figure 15. Results of rockfall simulations showing the number of deposited blocks (“Nr. Deposited” in
the legend) when using ranges of low fracture intensity DFN 2 derived block volumes: 21–55 m3 (A),
56–120 m3 (B), 121–260 m3 (C) and 261–585 m3 (D). Red dots represent recent rockfall events with the
same volume of simulated rockfalls.

The results of these simulations, in terms of locations of deposited blocks, show a very good
correspondence with the maps of recent rockfall events, demonstrating the validity of the rockfall
models (Figures 13–15). However, it must be stressed that these simulations are based on the use of
uniform ranges of block volumes, which are not representative of the in situ rock block distribution,
where the relative frequency of block volume may vary. From the DFN analysis, it is possible to see that
the range of block volume fluctuates from 0.008 to 1.1 m3 in DFN 1 and from 0.6 to 500 m3 in DFN 2
(the blocks reaching 1000 m3 were not considered due to the very low relative frequency). The majority
of block volumes varies between 0.008 and 0.16 m3 in DFN 1 and between 0.6 and 25 m3 in DFN 2.

To further strengthen the rockfall model, these results were compared with the relative frequency
of block volume extracted from the map of recent rockfall events. Furthermore, a new map representing
potential rock blocks characterizing the area UAV 2 was created and the relative frequency of these
blocks calculated. The results of these two analyses, which considered block volumes ranging from
0.6 to ca. 1100 m3 (as for DFN 2), are represented in Figure 16A,B. Figure 16A illustrates the relative
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frequency of block volumes extracted from the map of recent rockfall events and Figure 16B the relative
frequency of block volumes calculated from the map of potential blocks characterizing the area UAV 2.
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area UAV 2.

It is possible to see that the frequency of block volumes of both analyses is very similar to the one
derived from the DFN 2, with the majority of the blocks between 0.6 to 25 m3, less frequent blocks
between 25 and 100 m3 (ca. 10–15%) and sporadic blocks over 300 m3. Although it was confirmed
that most of the blocks have volumes below 25 m3, the analyses also confirm the presence of (less
frequent) medium to large blocks highlighted by the DFN analysis (Figure 10) and the map of recent
rockfall events (Figure 6). A further confirmation of the presence of such blocks is confirmed by the
analysis of rockfall scars. An example of this is shown in Figure 17 where it is possible to observe
the 3D model of the area UAV 2 (Figure 17A), four examples of rockfall scars (Figure 17B–E) and a
suspended block (Figure 17F). The calculated volume of failed blocks associated with such scars is
ca. 40 m3 (Figure 17B), ca. 200 m3 (Figure 17C), ca. 60 m3 (Figure 17D) and ca. 230 m3 (Figure 17E).
Figure 17F highlights the volume of an overhanging block with a volume of ca. 500 m3.
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Figure 17. The 3D model of the area UAV 2 (A), examples of rockfall scars (B–E) and a suspended
block (F). The calculated volume of failed blocks associated with such scars is ca. 40 m3 (Figure 17B), ca.
200 m3 (Figure 17C), ca. 60 m3 (Figure 17D) and ca. 230 m3 (Figure 17E). Figure 17F highlights the
volume of overhanging block with a volume of ca. 500 m3.

In light of this evidence, it is clear that the use of a uniform range of volume, as commonly seen in
rockfall simulations, does not represent a realistic rock mass condition. Therefore, as part of rockfall
analysis 2, we developed a new approach that introduces the use of relative block volume frequency
gathered from DFN models. In relation to this relative frequency and the total amount of release cells
selected for rockfall simulations, we calculated the number of cells to be assigned to a specific volume.
In terms of spatial location, the selection of block volumes among the release cells was randomly
performed and therefore several simulations were undertaken to verify multiple possible scenarios.
In each simulation, the relative frequency of block volumes was fixed, but their spatial distribution
within the release cells was randomly changed. Figure 18A shows an example of the release cell maps
created using the proposed relative frequency volumes; the colors represent the different volumes
and it is possible to see how these are not uniform but are related to the frequency derived from DFN
models. Figure 18B highlights the results of one of the simulations with relative frequency volumes.
Using this approach, every map highlights the rockfall trajectories associated with the entire range of
volumes gathered from the DFN model. In this case, the simulation shows that the smallest blocks
arrest their travel at the toe of the slope and the larger ones can potentially reach the road and other
infrastructure. The location of deposited blocks and their volumes agree with that observed during
field mapping of recent rockfall events (Figures 6 and 18C), which presents the rock blocks interpreted
from high-resolution orthophotographs. This can be clearly seen by comparing Figure 18B,C, and
highlights the good agreement between the spatial distribution of deposited blocks and their volumes.
The differences in the accumulation of blocks in the two maps, i.e., the significant number of blocks
with volumes between 120 and 260 m3 in the map of Figure 18B, is related to different amount of
blocks present as shown in the two maps. The map presented in Figure 18B shows the simulation of
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3100 rockfalls and their end point locations, while Figure 18C shows the location of ca. 600 rock blocks
interpreted from the high-resolution orthophotographs and field inspection.
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5. Discussion

This paper describes the integrated use of UAV data and DFN modeling to improve the results
of rockfall simulation. Mount Rava is used as the case study and is the site of the large Scanno
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paleolandslide. The failure left a large landslide scar that significantly changed the morphology of the
mountain, forming steep rock slopes on its SW flank, which are often affected by local rockfall events.
The slope is ca. 400 m high and 600 m wide and very difficult to access and survey. The use of UAV
made it possible to reach inaccessible areas within the landslide scar and to significantly improve the
data for geomechanical characterization. Imagery of the most geologically complex area (area UAV 1)
was acquired from a distance of ca. 36 m, providing a model resolution of ca. 13 cm/pix. To obtain
such a high-resolution model, however, the required processing time was very long and the model
management complex. Therefore, the other two areas (UAV 2 and 3) were acquired from a distance of
46 m, obtaining a model resolution of ca. 17–19 cm/pix, which is a high resolution and suitable for the
two areas, allowing recognition of all the geological features. In agreement with Della Seta et al. [47]
and Francioni et al. [48], three main discontinuity sets are recognized. The 3D models and sampling
windows extracted from UAV data make it possible to also denote important changes in the fracture
intensity in the different areas of the landslide scar. The changes in the fracture intensity is likely
related to the thickness of the bedding and the fracture corridors in fault damage zones in some areas
of the slope under study. This agrees with previous studies carried out by Francioni et al. [48] and
Miccadei et al. [49], which demonstrated the presence of a complex fault system.

Consideration of the variation in the fracture intensity is critical during the creation of DFN
models and calculation of block volumes. Hence, we developed two different DFN models, DFN 1 and
2, representing high and low intensity fracture areas, respectively.

In this study the DFN model was developed by integrating conventional geomechanical and
UAV-extracted data. The DFN were validated against the generated fracture intensity values, which
were gathered from the analysis of sampling windows and the recently developed fracture analysis
software FracPaq. This software allows the calculation of P21 using several circles within the sampling
windows. This approach makes the calculation of fracture intensity more rigorous, allowing for the
calculation in every sampling window of an average P21 and the analysis of their relative standard
deviation and minimum and maximum values. The 2D section extracted from the 3D DFN was
analyzed using the same approach/software, facilitating comparison and making the validation
more rigorous. The software FracPaq was developed mainly for structural geological problems, as
documented by Giuffrida et al. [58] and Watkins et al. [59]. In this paper, we adopted the software to
improve the analysis of fracture intensity, P21. The use of this approach/software is relatively new in
engineering geology and it may represent a tool to further improve the development of DFN models
for the analysis of slopes.

The range of block volumes obtained from DFN 1 and DFN 2 were validated against the map
of recent rockfall events and the maps of potential rock blocks in the area UAV 2 (Figure 16A,B) and
subsequently used as input in 3D rockfall simulation using the software Rockyfor3D. This software
was adopted in several rockfall analyses in recent years. For example, Vanneschi et al. [34] combined
the use of remote sensing techniques and Rockyfor3D to perform a study of rockfall runout and
geological hazard in a natural slope in Italy. Corona et al. [60] investigated the uncertainties related to
the choice of parameters accounting for energy dissipation and surface roughness. Moos et al. [61,62]
carried out two different analyses to analyze the effect of specific tree species and vegetation on rockfall
risk. In these examples, as in many others documented in literature, the authors performed several
simulations changing the range of rock volumes released. This allows verification of the response of
the rockfall model under different scenarios. In Rockyfor3D, the block dimensions defined in each
source cell can be varied randomly within a predefined percent (based on a defined uniform volume
variation between ±0% and ±50%) before each simulation. However, this variation has to be uniform
and can reach a maximum of 50% of the chosen volume. Therefore, the use of this approach for wide
ranges of block volumes is not possible and several simulations have to be carried out while gradually
increasing the range of volumes. Furthermore, in cases where the distribution of block volumes is not
uniform, the results may not be representative of the real rock mass condition.



Remote Sens. 2020, 12, 2053 24 of 28

In the present research, a new approach is introduced which is based on the use of relative
frequency of block volume extracted from DFN models. The difference between this approach and
the methods presented in literature is that once the rockfall model is calibrated and validated, every
rockfall simulation will include a realistic DFN-based distribution of block volumes, without the need
to perform multiple simulations changing the range of block volume. This allows presentation of
the results in the form of a single final simulation, where the location of deposited blocks and their
respective volume can be shown. Furthermore, the resulting map of kinetic energy will represent
the entire range of potential energy dissipated upon impacts, avoiding the need to create different
kinetic energy maps in relation to the change of block volumes. An example of a kinetic energy map
extracted from the simulation results shown in Figure 18B is provided in Figure 19. This approach
allows the analysis to include a more realistic distribution of rock volumes, where the potential block
volumes are randomly distributed among the release cells. However, it is still necessary to perform
multiple simulations varying the distribution of block volumes among the release cells to verify all
possible scenarios. The choice of the best scenario can be established by comparing the results of the
simulation with a map of recent rockfalls; where such as map is unavailable, then all the scenarios
have to be considered.
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6. Conclusions

This paper presents the combined use of UAV and DFN models to provide improved results of
rockfall simulation. It was demonstrated that the use of UAV imaging is very important in the case
of wide and inaccessible slopes, and especially in the case of very complex geological and structural
settings. In this study, we highlighted, due to the presence of fault zones, how fracture intensity varies
within the Scanno landslide scar. The calculation of fracture intensity was carried out by using the
recently developed software FracPaq. Although this software was developed for structural geological
purposes, it was shown that the approach based on the calculation of several P21 values in every
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sampling window can be useful for improved slope stability studies and generation of representative
DFN models. In the case of DFN 1, the resultant block volumes were very small, with majority of
blocks below 0.1 m3. When analyzing the DFN 2, the range of block volume changed dramatically,
with 70% of block volumes ranging between 0.5 and 25 m3. Approximately 20% of the rockfall block
volumes were between 25 and 100 m3, ca. 5% were between 100 and 200 m3 and ca. 2% between 200
and 300 m3. Some blocks generated had volumes up to 500 m3 (0.6%) and 1000 m3 (0.3%). The presence
of blocks of such dimensions was confirmed by map analysis of recent rockfall events and the map of
potential rock blocks in area UAV 2 (Figure 16). Considering this, and the wide range of block volumes
gathered from DFN analysis, we performed two suites of rockfall analysis simulations. During rockfall
analysis 1, different rockfall simulations were undertaken, where there was a gradual increase in
block dimensions using a conventional uniform block volume distribution. Using this procedure, we
calibrated and validated the rockfall model against the map of the end point locations of recent rockfall
events. The good match between this map and the results of rockfall simulations in terms of the size of
the deposited blocks demonstrated the validity of the proposed models.

To further improve the quality of the rockfall simulation results, a new approach that includes the
relative frequency of block volumes derived from the DFN for every single simulation was developed
in the rockfall analysis 2. The results obtained from these analyses showed that it is possible to integrate
into rockfall simulations a more realistic relative frequency distribution of block volumes using the
results of DFN analyses. The results of the models were also compared with a map of recent rockfall
events. The output gathered from this method allowed the visualization of the location of deposited
blocks (classified according to volumes ranges) and their potential kinetic energy on a single map.
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