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Abstract: Using published cross-sections and a series of geological constraints, a 3D geological
model of an important area of the Adriatic sector of peninsular Italy—i.e., the Marche region—was
developed. Then, an analytical procedure, taking into account the heat rising from the mantle and
the radiogenic heat produced by the crust, was applied on the pre-built structural model, in order to
obtain the 3D geothermal setting of the entire region. The results highlighted the key role played
by the Moho geometry, particularly as a step of ~10 km occurs between the Adriatic Moho of the
subducting plate to the west and the new Tyrrhenian Moho characterizing the back-arc area to the
west. The comparison between our results and available borehole data suggests a good fit between
the applied analytical methodology and published datasets. A visible anomaly is located at a specific
site (i.e., the coastal town of Senigallia), where it may be envisaged that fluid circulation produced a
local surface heat flow increase; this makes the Senigallia area a promising feature for the possible
exploitation of geothermal systems.

Keywords: central Italy; heat flow; 3D thermal modelling; thermal structure; temperature profile

1. Introduction

The high geothermal energy potential is well known in central Italy, especially in
the Tuscany region, where geothermal exploration started during the 1990s in Larderello
and Monte Amiata [1–6]. At present, closer attention has been given to the geothermal
energy potential of the neighboring Marche region, involving the investigation of both fluid
circulation [7] and surface heat flux [8–10]. Recent studies focused on the central Apennines
regional setting, which is characterized by an increasing surface heat flow moving from
the mountain chain to the Adriatic off-shore to the east, besides that occurring toward the
Tuscany region to the west [8–10].

When assessing a potential site for geothermal exploitation, a comprehensive picture
of crustal setting and temperature profile is fundamental for any site-specific, appropriate
field development. Today, indispensable geothermal suitability assessments are often
carried out using a series of invasive inspections involving legal permission and high cost
(e.g., well drilling) [11].

In this study, we produced the first 3D geological model of the crust in the Marche
region based on Moho depth provided by Grad et al. [12], the seismic profile CROP-
03 interpreted by Barchi et al. [13] and Santini et al. [9], a series of published balanced
geological cross-sections [14–16], the geological map by Conti et al. [17] and a 10 m cell
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size digital elevation model (DEM) [18]. Subsequently, taking into account the heat rising
from the mantle and the radiogenic heat produced by radioactive elements in the crust, an
analytical methodology was used in order to produce a crustal 3D thermal model of the
entire sector based on the pre-built 3D geological model. Finally, we compared our results
with those obtained by previous studies to improve the description of thermal implications.
This work provides a general framework of temperature distributions in the studied area,
and emphasizes the key role played by the Moho geometry in the thermal structure of the
central Apennines.

2. Geological Background

The area of study (Figure 1) is located in the Apennine fold and thrust belt. This
area represents the most recent expression of the geodynamic process that produced the
Mediterranean basins after the collision between Europe and Africa, which started during
the late Cretaceous period and was followed by Oligocene and Neogene periods’ slab-
retreat events [15,17,19–22].
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Figure 1. Area of study (blue rectangle). The green line is the trace of the seismic profile CROP-03 [13], the violet lines are
the published balanced geological cross-sections [14–16]. The base is the geological map after Conti et al. [17].

The tectonic evolution of the entire area is strongly debated due to the complexity of
the geodynamic processes that generated the mountain chain (e.g., [9,21,23,24]). Several
authors have proposed models based on stratigraphic and structural analysis of transects
oriented along the flow lines of relative motion [25,26], whereas others have followed
an approach based on the laws of plate kinematics [22,27]; however, all of these studies
found a Moho step in correspondence with the Apennines chain, caused by a discontinuity
between the subducting Adriatic plate and the Tyrrhenian back-arc domain to the west.
The Moho step (~10 km) was also observed by recent geophysical studies of Italian and
European Moho geometry [12,21,28–33].

In this study area, the deepest units are the Paleozoic crystalline basement and the
overlaying Permo-Triassic continental siliciclastic strata (i.e., the Verrucano Group). Neither
of them crop out in the area, but their presence was confirmed by seismic studies and
deep wells [28,34]. The overlying sedimentary cover is several thousand meters thick. It is
composed of Triassic evaporites (Burano Anhydrites Fm.) followed by the ca. 1000 m thick,
pre-orogenic and dominantly carbonate, Triassic–Eocene portion of the Umbria–Marche
succession (including the Calcare Massiccio Fm. at the base, up to the Scaglia Rossa Fm.
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at the top). This is overlain by a 2000–2500 m thick succession of Late Eocene to Plio-
Pleistocene, dominantly terrigenous marine deposits (including the Scaglia Cinerea Fm. up
to the Sabbie Gialle Fm.), followed by late Quaternary continental deposits (Figure 1) [35–38].

Overlying the Triassic evaporites, the Late Triassic–Lower Jurassic platform carbonates
of the Calcare Massiccio Fm. reach 800 m of thickness. During the Jurassic extensional
phase, the carbonate platform was dissected by normal faults, producing structural de-
pressions and structural heights [39]. On this uneven bathymetry, pelagic sediments of
variable thickness were deposited forming ‘complete’, ‘condensed’ and ‘composite’ suc-
cessions [40,41]. Basin deposition of limestone and marl continued from Late Jurassic to
Middle Miocene times, progressively increasing the contribution of argillaceous material
in younger formations. The closure of the Mesozoic Tethys Ocean and the collision of
European (Corsica–Sardinia block) and African (Adria block) continental margins, resulted
in collisional orogenesis since the Oligocene [42]. The resulting fold-and-thrust belt con-
sists of ENE-verging folds and WSW-dipping thrusts [14–16,43–49]. Coeval deposition
of siliciclastic material occurred in the evolving foreland basin system (including, in the
Marche region, the Miocene–Arenacea, Camerino and Laga basins [50], as well as the
Plio-Pleistocene Argille Azzurre basin (stratigraphically overlying Messinian evaporites).
Late Quaternary continental deposits unconformably overly the marine succession.

The stress field acting in the axial zone of the central Apennines since the Middle Pleis-
tocene produced normal fault systems responsible for moderate to high seismicity [51,52]
in the inner zone of the Marche region [16,53–66], whereas active horizontal compression
characterizes the coastal sector and offshore areas [67,68].

3. Materials and Methods

In order to produce a 3D geothermal model of the Marche region, we used an analytical
procedure based on a 3D geological model and calculated geotherms on a series of pseudo-
wells located within the 3D geological model. The results for each pseudo-well were then
interpolated to produce a 3D model of the entire thermal structure of the region.

3.1. 3D Geological Model

Over the years, many authors produced geological cross-sections perpendicular to
the strike of the mountain chain based on available seismic profiles and geological field
observations [7,13–16,21,49,69]. Furthermore, seismic tomographies were performed to
investigate the thickness of the sedimentary cover and the Moho depth [12,21,29,31–33].

We produced a three-layer 3D geological model of the study area based on the Moho
geometry provided by Grad et al. [12], the inner zone of the seismic profile CROP-03 [13]
interpreted by Mazzoli et al. [14] (Figure 2), a series of published balanced geological
cross-sections [14–16] (Figure 3), the geological map by Conti et al. [17] (Figure 1), and a
10 m cell size digital elevation model (DEM) [18].
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The three-layer 3D geological model (Figure 4) was built using Blender [70], a free and
open-source 3D computer graphics software used to show complex 3D geometries in many
fields of study [71,72], including geology and geophysics [73–75].
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Grad et al. [12]; (b) Top basement surface based on CROP-03 [13] interpreted by Mazzoli et al. [14] 
Figure 4. Geological 3D model of the area of study (152.245 km × 98.930 km): (a) 3D Moho based on
Grad et al. [12]; (b) Top basement surface based on CROP-03 [13] interpreted by Mazzoli et al. [14] and
published balanced geological cross-section [14–16]; (c) Top limestones surface based on CROP-03 [12]
interpreted by Mazzoli et al. [14], published balanced geological cross-section [14–16] and geological
map of Conti et al. [17]; (d) Complete 3D geological model composed by Moho, top basement, top
limestones and topography based on a 10 m cell size digital elevation model (DEM) [18].
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3.2. Geothermal Model: Constraints and Assumptions

The computational procedure took into account the heat rising from the mantle and
the radiogenic heat due to radioactive elements located in the crust. The latter is divided,
in this case, into three layers (Figure 4). To perform the geothermal model, we considered
one hundred and sixty-five pseudo-wells located in the nodes of a ca. 10 × 10 km sampling
grid traced on the study area, in addition to other six pseudo-wells placed on CROP-03
(Figure 5).
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Figure 5. (a) Map view of the sampling grid with one hundred and sixty-five pseudo-wells and the
other six (from CR1 to CR6) placed on CROP-03; (b) 3D geological model with pseudo-wells.

Each pseudo-well included data on the heat source, Moho depth, and thickness of
each layer considering:

1 Altitude: we took into account the topography using a 10 m cell size digital elevation
model (DEM) [18];
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2 Variable thickness of the first layer (hCS) represented the terrigenous marine succes-
sion (Late Eocene to Plio-Pleistocene) and late Quaternary continental deposits. It was
based on a series of published balanced geological cross-sections [14–16] (Figure 3),
and the geological map by Conti et al. [17] (Figure 1). We considered a constant heat
production rate of the Siliciclastic succession HCS = 1.05 µWm−3 (with a range of
0.9–1.3 µWm−3) [10] and thermal conductivity kCS = 2.1 Wm−1 ◦C−1 (with a range
of 2.0–2.2 Wm−1 ◦C−1) [8];

3 The variable thickness of the second layer (hCC), representing the Umbria–Marche
calcareous–marly succession from Triassic evaporites (Burano Anhydrites Formation)
to the Scaglia Rossa Fm., was based on a series of published balanced geological cross-
sections [14–16] (Figure 3), and the geological map by Conti et al. [17] (Figure 1). We
considered the constant heat production rate of the Umbria–Marche calcareous–marly
succession, HCC = 0.45 µWm−3 (with a range of 0.3–0.6 µWm−3) [10], and thermal
conductivity, kCC = 2.4 Wm−1 ◦C−1 (with a range of 2.3–2.5 Wm−1 ◦C−1) [8];

4 Variable thickness of the third layer (hB) represented the basement. We considered a
thickness of the basement from the Moho (based on Grad et al. [12]) to the top base-
ment constrained by the CROP-03 seismic profile [13] interpreted by Mazzoli et al. [14]
(Figure 2) and a series of published balanced geological cross-sections [14–16] (Figure 3).
We considered a basement thermal conductivity of kB = 2.7 Wm−1 ◦C−1 (with a
range of 2.6 − 2.8 Wm−1 ◦C−1) [8] and a heat production rate of the basement of
HB = 3.15 µWm−3 (with a range of 3.0 − 3.3 µWm−3) [76,77], exponentially decreas-
ing with depth. The radiogenic sources’ intensity, for any thickness hB, diminished
downward with a logarithmic decrement D, which had the dimension of depth and a
characteristic value of 8 km in the region [76,78];

5 Variable heat flux at the Moho (Qm) from 20 mWm−2 to the east and 40 mWm−2 to
the west [21,79,80].

3.3. Analytical Procedure

The entire thermal structure is affected by two sources of heat: (i) the heat flowing
upward from the Moho, coming from the mantle (Qm), and (ii) the heat production rates
of the cover (HCS and HCC) and the basement (HB), due to the presence of radioactive
elements in the crust. To obtain the surface heat flux, we used the analytical procedure
by Dragoni et al. [76] and further applied by Santini et al. [9,78] and Basilici et al. [74,81],
modified specifically for the area of study. In the computation of the surface heat flow,
in addition to contributions of Qm, we added radiogenic heat, obtaining the following
equation used to calculate the surface heat flow (Qs):

QS = Qm + HCShCS + HCChCC + HBD
(

1 − e−
(h−hC)

D

)
(1)

where h and hC are the thicknesses of the crustal structure and of the whole cover, respec-
tively, with hC = hCS + hCC.

To compute the temperature trend with the depth, we adopted the analytical procedure
summarized in Table 1, while the parameters considered are listed in Table 2 (with symbols
and related definitions).
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Table 1. Equations adopted for the analytical procedure.

0 ≤ z ≤ hCS hCS < z ≤ hC hC < z ≤ h

T(z) Ts + TCSH(z) Ts + TCSH(hCS) + TCCH(z) Ts + TCSH(hCS) + TCCH(hC) + TBH(z)

TCSH(z) QS
kCS

z − HCS
2kCS

z2

TCCH(z) QS−HCShCS
kCC

(z − hCS)− HCC
2kCC

(z − hCS)
2

TBH(z) Qm
kB

(z − hC) +
HB D2

kB

(
1 − e−

(z−hC )
D

)

Table 2. Analytical procedure parameters.

hCC calcareous cover thickness
hC whole cover thickness
hB basement thickness
h whole crustal thickness
D depth scale

HCS siliciclastic cover radioactivity produced heat
HCC calcareous cover radioactivity produced heat
HB basement radioactivity produced heat
kCS siliciclastic cover thermal conductivity
kCC calcareous cover thermal conductivity
kB basement thermal conductivity
Qs surface heat flow density
Qm mantle heat flow density
Ts surface temperature

TCSH siliciclastic cover heat temperature
TCCH calcareous cover heat temperature
TBH basement heat temperature
hCS siliciclastic cover thickness

The temperature in the first layer (hCS) is due to the heat flow at the top of calcareous
cover and to the contribution of the radiogenic source of this layer, adding to these, the
surface temperature (TS)

T(z) = TS +
QS
kCS

z − HCS
2kCS

z2, 0 ≤ z ≤ hCS (2)

for simplicity, defining the depth dependent terms as TCSH(z).
In the second layer (hCC), the geotherm initial value is the temperature at the bottom

of the first layer (TS + TCSH(hCS)), to which is added the temperature variation due to the
radiogenic source present in the calcareous cover and to the heat flow at its bottom

T(z) = TS + TCSH(hCS) +
QS − HCShCS

kCC
(z − hCS)−

HCC
2kCC

(z − hCS)
2, hCS ≤ z ≤ hC (3)

defining the depth dependent terms as TCCH(z).
Finally, the temperature in the basement depends on the mantle heat flow and on the

radiogenic source present in it, adding the temperature calculated at the top of the layer
(Ts + TCSH(hCS) + TCCH(hC))

T(z) = TS + TCSH(hCS) + TCCH(hC) +
Qm

kB
(z − hC) +

HBD2

kB

(
1 − e−

(z−hC)
D

)
, hC ≤ z ≤ h (4)

4. Results

Using the analytical procedure described in Section 3.3, we calculated surface heat
flow, geotherms, and isotherms for each pseudo-well (Figure 5) located in the 3D geological
model (Figure 4). The output model of the surface heat flow computation is shown in
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Figure 6. It was obtained by interpolating the QS value obtained from each pseudo-well
with a fourth-order polynomial equation.
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Figure 6. Surface heat flow obtained interpolating the surface heat flow value resulted by each
pseudo-well with a fourth-order polynomial equation.

The variable thickness of the three layers of the 3D geological model produced a
variable trend in the surface heat flow, which appears to be strongly influenced by the
Moho geometry. Surface heat flow varies from 46–50 mWm−2 in the central zone, to
60–67 mWm−2 in the inner zone (Arezzo–Perugia area). This variation appears to be
mainly associated with the Moho step, which rises the top of the mantle by ~10 km in the
SW sector (Figure 4a). In addition, the Rimini–Cesena area and the zone located between
Ancona and Macerata, show an increase in surface heat flow of ~5 mWm−2, probably due
to the thickening of the Siliciclastic succession (Figure 4b,c). Furthermore, considering
the range of values of the radiogenic heat sources for the three layers, we estimated the
changes in the computed surface heat flow. In particular, we obtained a maximum increase
of about 6% if the upper limits of the range are considered, whereas the decrease in surface
heat flow did not exceed 5%, taking into account the lower limits of the range.

To study the trend in the temperature and depth along the CROP-03 line, we calculated
the geotherms for the six pseudo-wells located along the profile, and then interpolated
them using second-order polynomial equations representing the 50◦, 100◦, 150◦ and 200◦

isotherms. Figures 7 and 8 show the geotherms calculated for the pseudo-wells CR1 to
CR6 (Figure 5) and the relative isotherms along the CROP-03 (Figure 2), respectively. In
particular, pseudo-well CR2 showed an overall higher temperature profile with respect to
CR1 (Figure 7). This was due to the higher altitude (of 1000 m a.s.l.) of CR1 with respect
to the other pseudo-wells (located 0–400 m a.s.l.). Nevertheless, the general trend in the
calculated geotherms and interpolated isotherms shows an increase in the temperature
gradient going from the coastal area to the inner zone.
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Furthermore, in order to analyze the trend in the isotherms for the whole study area,
we calculated the geotherm for each pseudo-well, and then interpolating by second-order
polynomial equations, we obtained the contour maps representing the 50 ◦C, 100 ◦C, 150 ◦C
and 200 ◦C isotherms (Figure 9). The contour map for the isotherm at 50 ◦C shows a general,
northward deepening trend characterized by an area of shallow depth (<1.1 km), south of
Camerino. On the other hand, the isotherm 100 ◦C map shows a dominantly north-eastward
deepening trend, with its shallowest depths in the westernmost area (close to Arezzo).
The contour maps of 150 ◦C and 200 ◦C isotherms show similar trends characterized
by greater depths in a wider area—defined as a ‘thermal depression’—extending from
Pesaro to Camerino and just west of Macerata, whereas the shallowest depths occur in the
westernmost area (close to Arezzo and Perugia).
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5. Discussion

The thermal structure of the area is characterized by a trend that highlights a general
increase in temperature from the coastal area to the inner zone. This is visible in the model
of the surface heat flow (Figure 6), along the CROP-03 profile (Figures 7 and 8) and in the
temperature contour map (Figure 9). The analytical procedure indicates that the geometry
of the Moho produces a high impact on the entire thermal setting of the Marche region,
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showing high heat flow values where the Moho is shallower (Arezzo–Perugia–Foligno
area) and a sharp decrease in heat flow values, corresponding to the ~10 km Moho step.
The presence of radioactive elements in the crust, instead, produces a homogeneous
increase in temperature in the entire area, especially where the siliciclastic layer increases
in thickness. However, the difference in the heat production rates between the calcareous
layer (HCC = 0.45 µWm−3) and the siliciclastic layer

(
HCS = 1.05 mWm−3) is substantial.

A difference of 0.60 mWm−3 in the heat production rate is also responsible for the ‘thermal
depression’ located between Pesaro, Camerino and Macerata, where the siliciclastic cover
is almost absent. On the other hand, the rise of the 50 ◦C isotherm south of Camerino could
be linked with the circulation and ascent towards the surface of fluids in correspondence
with the most important calcareous reliefs.

To obtain a better understanding of the thermal structure of the study area, our results
were compared with previous studies [8,10,82]. Pauselli et al. [10] produced a surface
heat flow map of central Italy constrained by available thermal and petrophysical logs
from wells drilled for geothermal and hydrocarbon exploration purposes. In Figure 10, we
compared our surface heat flow map with the results of Pauselli et al. [10].
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Figure 10. Heat flow map by Pauselli et al. [10] compared with calculated surface heat flow map
(QS) shown in Figure 7 (blue lines).

The general trend in the surface heat flow calculated by the improved analytical
procedure is comparable with that obtained by Pauselli et al. [10]. The Arezzo–Perugia area
represents the highest value of QS in the entire region (~70 mWm−2) in both our study
(Figure 6) and in Pauselli et al. [10] (Figure 10). Slightly more elevated values in the map
created by Pauselli et al. [10], with respect to our result, suggest a possible source of heat
that is in addition to the radiogenic heat produced by the crust and the heat flowing up from
the mantle (Qm), which are included in the analytical procedure. In the Senigallia area, a
QS discrepancy value is clear. This means that in Senigallia, the surface heat flow measured
from the wells (Figure 10) is due to another heat source. Chicco et al. [7] highlighted the
presence of deep, high-angle faults that can certainly influence fluid circulation by means



Energies 2021, 14, 6511 13 of 18

of water ascent from depth along fault damage zones. This fact makes the Senigallia area
a promising feature for possible geothermal systems. Other QS discrepancies occur in
the Rimini area, although they are less prominent. The rest of the map does not show
QS discrepancies, thus confirming that most of the measured surface heat flow is due to
the radiogenic heat and the heat flowing up from the mantle, which, in turn, depends on
Moho geometry. This fact is visible in the Camerino–Pesaro area, where the absence of
the siliciclastic cover results in a lower QS value in both the analytical model (our results,
Figure 6) and measured values (Pauselli et al. [10] result, Figure 10).

Della Vedova et al. [8] computed isotherms along the CROP-03 profile using bore-
holes within a 10 km distance from the section trace and lithology-dependent thermal
conductivity values. The result of the work is compared with our results in Figure 11.
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The general trend pointed out by the analytical procedure (blue isotherms in Figure 11)
is consistent with the results by Della Vedova et al. [8]. The temperature values discrep-
ancy is probably due to a different mathematical interpolation used. Obviously, the T
value discrepancy increases with depth. To improve the description of our results, in
Figure 12, we compared three well temperature profiles published by Pauselli et al. [10],
Della Vedova et al. [8] and Verdoja et al. [81] with the closest pseudo-wells of our study.

The comparison between our pseudo-wells (orange lines in Figure 12) and published
temperature profiles (green lines in Figure 12) shows a good fit between the analytical
model and borehole measurements.
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Figure 12. Comparison of the temperatures between (a) pseudo-well n◦ 4 and well Sarsina1 (S1) by
Verdoja et al. [81], (b) pseudo-well n◦ 8 and well SS1 by Della Vedova et al. [8], (c) pseudo-well n◦ 91
and well B1 by Pauselli et al. [10].
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6. Conclusions

The results of this study provide the first 3D geological model of the crust in the
Marche region, based on Moho depth by Grad et al. [12], the deep seismic reflection profile
CROP-03 [13] interpreted by Mazzoli et al. [14], a series of published balanced geological
cross-sections [14–16], the geological map by Conti et al. [17] and a 10 m cell size digital
elevation model (DEM) [18]. An analytical methodology was elaborated to produce a 3D
geothermal model of the crust taking into account the heat rising from the mantle and the
radiogenic heat produced by radioactive elements. The model output showed an increase
in temperature going from the coastal area to the inner zone. Comparing our outcomes
with published results of previous works [8,10,81], we highlighted compatible results
between our model and borehole measurements. The Moho geometry appeared to play a
key role in the temperature model of the entire Marche region, producing a sharp change in
temperature where a step of ~10 km occurs between the Adriatic foreland and Tyrrhenian
back-arc domains. In the Senigallia and Rimini areas, a discrepancy of surface heat flow
occurred between our QS values and those provided by Pauselli et al. [10], probably due
to circulating and rising fluids [7] not considered in the applied analytical procedure; this
fact makes the Senigallia area a promising site to evaluate possible geothermal systems. In
particular, besides the suitable condition for low-enthalpy plants for the heating/cooling
of buildings, dedicated studies should be aimed at investigating the possibility of medium-
enthalpy system plants.
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